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Zürich, Switzerland

Received 7 February 2003; revised 13 November 2003; accepted 28 November 2003; published 13 February 2004.

[1] The reaction of alpine glaciers to shifts in the equilibrium line altitude (ELA) is
calculated by using a two-dimensional numerical model to solve the full equations for the
velocity and stress fields (full-system model) in the absence of basal motion. Rates of
advance and retreat of the snout of typically sized alpine glaciers are found to be
insensitive to the details of the flow at the snout, even when the glaciers are far from
steady state. A comparison of results obtained with a full-system model and a shallow ice
approximation (SIA) model yields no significant differences in advance or retreat rates.
This assumption has been implicitly made in numerous previous climatic studies and is
here shown to be well justified. Using a realistic mass balance altitude feedback, only
slight model-dependent changes in steady state lengths are found. The relative importance
of mass balance and glacier dynamics for the transient response of alpine glaciers to
changes in the ELA is given a precise meaning by determining the model-dependent
additional shifts in ELA needed for the SIA and the full-system models to produce
identical changes in length. For alpine glaciers, these additional shifts in ELA are on the
order of 10 m, which is within the error range of ELA estimates. It follows that at least
in the absence of significant basal motion, there is no need to include the effects of
horizontal stresses when calculating the reaction of alpine glaciers to climatic changes.
Attention should focus on accurate determination of the mass balance distribution and
model tuning to give realistic ice thickness distributions. INDEX TERMS: 1620 Global

Change: Climate dynamics (3309); 1827 Hydrology: Glaciology (1863); 1823 Hydrology: Frozen ground;
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1. Introduction

[2] There is considerable interest in retrieving information
on past climatic history using records of glacier fluctuations
and in determining future changes in size and distribution
of glaciers caused by possible future global climate change
[e.g., Haeberli and Beniston, 1998; Oerlemans, 2001]. For
the transient evolution of large ice masses to be calculated,
both the mass balance variation in space and time and the
mechanics of glacier flow must be accounted for. The
question arises as to what level of detail the mechanics of
ice flow must be described for the purpose of calculating
climate-related length changes over timescales longer than
a few years.

[3] Here we address this question by comparing two
numerical models of the retreat and advance of typically
sized alpine glaciers: a two-dimensional model including all
terms of the momentum equations (full-system model) and a
shallow ice approximation (SIA) model [Hutter, 1983].
This type of comparison has not been performed before.
The full-system model includes gradients of all stress
components in both spatial directions, while the SIA model
ignores all horizontal stress gradients, leading to a greatly
simplified description of glacier flow, where the flux at every
point is related to the local surface slope and ice thickness.
Furthermore, the full-system model uses a moving-mesh
technique, allowing the position of the snout to be deter-
mined with high accuracy. The SIA model, on the other
hand, uses a spatially fixed grid, a commonly used mesh
method in glacier mechanics.
[4] The SIA has been used in most previous studies of

the effects of mass balance changes on glaciers and ice
sheets [e.g., Oerlemans, 2001], with the noticeable excep-
tion of the work of Albrecht et al. [2000] and Vieli et al.
[2001]. The SIA forms the foundation of most current
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mechanical models of ice sheets and ice caps [e.g.,
Huybrechts, 1992; Hulbe and Payne, 2001].
[5] Raymond et al. [1989] calculated changes in glacier

length induced by climate change using several ice flow
models of increasing complexity. They concluded that the
initial reaction of glaciers to changing climate is a complex
process requiring fairly sophisticated ice flow models.
They suggested that the asymptotic approach to steady
state can, on the other hand, be described using much
simpler models.
[6] Greuell [1992] found that including longitudinal

deviatoric stress gradients hardly affected the calculated
response of Hintereisferner over timescales longer than
�100 years. Using SIA models for the calculation of
shorter-term fluctuations was found to be problematic.
[7] Pattyn [2002] calculated the response of Haut Glacier

d’Arolla to perturbations in thickness and mass balance
using a full-system model and compared results with those
of a SIA model. As he used an altitude-independent mass
balance perturbation, the steady state geometry was the
same for both models. The rate at which the glacier
approached steady state differed, however; these differences
were judged to be rather small for the particular mass
balance forcing used, �10%.

2. Model Description

[8] The gravity-driven transient evolution of an ice mass
is calculated with a two-dimensional vertical plane flow
model. The equations are written for a two-dimensional
Cartesian geometry in an Eulerian reference frame with
indices i, j = 1, 2, where the index 1 stands for the horizontal
and 2 for the vertical component. The field equations to be
solved describe the conservation of mass for incompressible
materials,

vi;i ¼ 0;

and the conservation of angular and linear momentum,

sij ¼ sji and rgi þ sij;j ¼ 0; ð1Þ

where vi are the components of the velocity vector, sij are
the components of the Cauchy stress tensor, r is the material
density, and gi are the components of the gravity vector. The
comma notation is employed, in which the indices
following a comma imply a partial differentiation with
respect to the corresponding spatial variable.
[9] A nonlinear power law [Glen, 1955; Steinemann,

1958] is used to describe the relationship between deviatoric
stresses and strain rates:

_�ij ¼ A tn�1 sðdÞij ; ð2Þ

where _�ij are the strain rates and sij
(d) are the deviatoric

stresses given by sij
(d ) = sij � (1/3)dijskk. The effective

shear stress t is defined by t2 = (1/2)sij
(d)sij

(d). In all
model calculations the rate factor is assumed constant for
the whole ice mass, and the flow law exponent n is taken to
be 3.

[10] The free surface evolves according to the kinematic
boundary condition

@zs
@t

þ us
@zs
@x

� ws ¼ _b zð Þ; ð3Þ

where zs (x, t) describes the surface elevation, t is the time,
us and ws are the horizontal and vertical components of the
flow velocity at the surface, respectively, and _b(z) is the
mass balance rate function. The mass balance rate function
can be either a function of the glacier bed z = zb(x) or, more
realistically, of the surface altitude z = zs (x, t) and therefore
time-dependent. The velocities at the lower boundary are set
to zero.
[11] Two different numerical models are used: (1) a full-

system model, which solves all the terms of the above
field equations, and (2) a shallow ice approximation (SIA)
model [Hutter, 1983], which ignores all stress gradients
other than the vertical gradient of shear stress. The SIA is
that d = d/l � 1, where d is a typical ice thickness and l is a
horizontal distance scale. It is common to refer to models
solving the zeroth-order shallow ice equations simply as
shallow ice approximation models.
[12] The implementation of the SIA model used here is

based on finite differences on a fixed grid. The flux and
slope are calculated by using centered differences at a
staggered grid with a semi-implicit forward step in time.
This is a standard approach often used in modeling of ice
masses [Hindmarsh and Payne, 1996]. The terminus
position is calculated as the first grid point where the
ice thickness is zero and no subgrid tracking of terminus
position is attempted. Discretization errors in terminus
position were estimated by using different grid sizes and
were found to be comparable to, or less than, the grid
size.
[13] The full-system calculations were performed with the

commercial finite element (FE) program MARC, adapted
for use in glaciology by Gudmundsson [1999]. A four-node,
isoparametric, quadrilateral Hermann element is used with a
bilinear velocity interpolation. The code solves the full set
of momentum equations and has been used extensively for
flow modeling of alpine and of grounded tidewater glaciers
[Gudmundsson, 1999; Vieli et al., 2001]. The results of the
numerical FE code have been verified in various ways, for
example, by comparing calculated results with analytical
solutions [Gudmundsson, 1997; Aðalgeirsdóttir et al., 2000;
Raymond et al., 2003].
[14] The full-system model uses a moving grid, with the

surface grid points moving every time step in both hori-
zontal and vertical directions as needed in order to represent
the new surface position as accurately as possible. The
interior nodal points are then redistributed within the
deforming body so as to minimize element distortion. This
is done without affecting the connectivity of the finite
element mesh or the number of nodal degrees of freedom.
The structure of the system of equations does, hence, not
change during the calculation. Since a direct solver is used,
conserving the structure of the equations improves the
numerical efficiency of the approach as no reassembling
of the equation system is needed during a model run. It
has been verified that the remeshing algorithm preserves
volume accurately [Leysinger and Gudmundsson, 2000].
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[15] The full-system model typically requires hours or
days on a multipurpose parallel computer (HP-Superdome).
With a SIA model, the same problem can be solved within
minutes on a typical personal computer. Evidently, it is of
considerable practical interest to be able to use the SIA
whenever possible. It is, however, a nontrivial task to
estimate the errors introduced by ignoring the horizontal
stress terms. This can be done through a model intercompar-
ison study. We find that although the velocities at the snout
are strongly model-dependent, the differences in calculated
rates of advance and retreat are small. This finding supports
the macroscale approach to glacier mechanics advocated by
Oerlemans [1989], Jóhannesson et al. [1989b], Van der Veen
[1999], and Harrison et al. [2001].

3. Model Intercomparison Study

[16] The purpose of the model-model comparisons is to
quantify the modeling errors introduced in calculating the
retreat and advance of ice masses using a no-slip basal
boundary condition when reduced numerical models such
as the SIA models are used instead of the more complete
full-system model. The SIA is an example of a long-
wavelength approximation theory that assumes the aspect
ratio (d) to be small. How small d must be for the errors to
remain within certain bounds is a question to which it is
difficult to give a general answer. If basal motion is small
compared with the deformational velocity, the SIA is
accurate to O(d2). The accuracy of the SIA is, however,
expected to depend on other parameters besides d, such as
the relative contributions of internal ice deformation and of
basal motion to the mean forward velocity [Gudmundsson,
2003].
[17] In some instances the aspect ratio becomes irrelevant

for the accuracy of calculated quantities. For glaciers in
steady state, for example, the horizontal flux at every
location is given by the integral of the mass balance rate
function over the catchment area upstream of that location.
For a given mass balance distribution, any flow model
which does not create or destroy mass will then produce
accurate flux values and identical steady state lengths,
irrespective of aspect ratios or rheological assumptions. If,
however, the mass balance distribution depends on altitude,
which is reasonable to expect, any model-dependent differ-
ences in calculated ice thicknesses will give rise to
corresponding model-dependent differences in mass balance
that will then further affect the ice thickness distribution.
This mass balance altitude feedback effect can thus be
expected to amplify any initial model-dependent differences
in calculated glacier lengths and ice thicknesses. This
illustrates the importance of doing model runs both with
and without a mass balance altitude feedback. Furthermore,
if a mass balance altitude feedback is included, the depen-
dence of mass balance on altitude must be realistic.
[18] Calculations without a mass balance feedback are

only of interest when done for glaciers not in steady state. If
a glacier is far from steady state, the accuracy of the SIA
can, for a given slip ratio (ratio of basal motion to defor-
mational velocity), be expected to depend primarily on the
aspect ratio. (How far a glacier is from steady state can be
quantified through a comparison of the terms of the conti-
nuity equation relating specific mass balance rate _b, flux

gradients @xq, and rate of surface altitude change @tz. If
@tz � _b everywhere, the specific mass balance is closely
balanced by flux gradients and the glacier can be considered
to be close to a steady state.) Here we estimate model errors,
not related to mass balance altitude feedback, by following
the transient evolution of different blocks of ice character-
ized through an initial span-to-thickness ratio (modeling
suite 1). To ensure that the ice blocks are never in steady
state, the mass balance distribution is set to zero every-
where. Our primary interest is in quantifying differences in
the rate of advance as a function of time. As the block of ice
spreads out on a horizontal plane, its thickness decreases,
and the aspect ratio becomes smaller. On the basis of this,
one expects the rates of advance as calculated by a SIA and
a full-system model to become progressively more similar
with time. However, at any given time the SIA does not
hold at the snout. Should the rate of advance be determined
by local conditions at the snout only, model-dependent
differences can therefore be expected to persist forever.
As explained in detail in section 3.1, our findings are that
apart from a relatively short initial period of time (on the
order of a few tens of years (d = 1) to a few years (d = 0.2,
0.1)), both SIA and the full-system models do give rise to
progressively similar rates of advance.
[19] The other situation considered here pertains to gla-

ciers that are close to steady state and that have an altitude-
dependent mass balance distribution (modeling suite 2). For
an altitude-dependent mass balance distribution an identical
thickness distribution is a sufficient condition for a SIA and
a full-system model to produce identical steady state flux
values. It is clear that the errors in ice thicknesses as
calculated by the SIA may, in turn, be considered to be
caused by aspect ratios that are too large. However, the
aspect ratio alone does not control the size of the modeling
errors. For a given aspect ratio, one can expect the differ-
ences in glacier lengths calculated by SIA and full-system
models to increase with the strength of the mass balance
altitude feedback. Furthermore, calculated thicknesses are
also linearly related to the value of the rate factor (A). As its
value is not accurately known, A effectively becomes a
tunable model parameter that can be used to improve
agreement between observed and calculated thickness dis-
tributions. Here we do not try to give a complete assessment
of SIA modeling errors as a function of aspect ratio and the
strength of the mass balance feedback effect, nor do we
attempt to give a full answer to what extent model-depen-
dent differences can be masked by varying the value of the
rate factor. Rather, our approach here is to focus on
situations that can be considered typical for alpine glaciers
and to conduct case studies of small, medium, and large
alpine glaciers using realistic mass balance distributions.

3.1. Modeling Suite 1: Geometry Evolution
Experiments

[20] The lateral spread of the rectangular blocks bears a
strong similarity to the self-similar solution of Halfar
[1981]. As the Halfar problem is stable with respect to
perturbations in surface shape that preserve volume, the
profiles will settle down to the Halfar solution with time. A
self-similar problem does, by its very nature, not have
definable length scales. The height and the width evolve
as (h(x, t)/hc(t))

(1+1/n) + (l(x, t)/s(t))(2+1/n) = 1, where hc(t) is
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the center height and s(t) is the span. For a given center
height a timescale can be defined for the Halfar solution as
the time since the ice cap may have evolved from an initial
delta function of a given strength [Nye, 2000]. This time-
scale is clearly not of interest here. As the problem does not
have definable length and timescales, rather than using
dimensional variables, we normalize the results using the
initial height and typical glacier surface velocities. Both
spatial dimensions are normalized with the initial thickness
of the block. The time is, somewhat arbitrarily, normalized
with the ratio of thickness to the analytical solution of the
deformational velocity for an infinite slab (analytical solu-
tion identical to shallow ice approximation) on a slope
having an angle of 3�. For typical values of the rate factor
A for temperate ice, one dimensionless time unit (T )
corresponds to several decades. For rock glaciers, which
are thinner and have much smaller surface velocities than

typical alpine glaciers, the corresponding conversion factor
is on the order of 1000 years.
[21] The transient evolution of rectangular blocks with

initial heights h0 and widths l0 for three different initial
aspect ratios d = h0/l0 = 1, 0.2, and 0.1 (Figure 1a) were
calculated. Depending on the aspect ratios, the number of
elements vary so that for d = 1, 20 � 20 elements are used,
for d = 0.2, 10 � 50 elements are used, and for d = 0.1, 10 �
100 elements are used. Owing to the symmetry of the
problem, only one half of the block was modeled.
3.1.1. Surface Evolution
[22] Figure 1 shows surface geometries at four different

times as calculated with both the full-system model and the
SIA model. For clarity, additional time steps are shown in
Figure 2 for the block with the initial aspect ratio of d = 1.
[23] In Figure 2a, it can be seen how the full-system

solution predicts the central part to initially sink down faster
than the edges. With time, the amplitude of the surface
depression becomes smaller, while the elevation minimum
moves progressively toward what, at the start of the calcu-
lation, was the upper right-hand corner point. The surface
depression eventually coalesces with the corner point and
disappears. As is expected for a steep glacier margin, the
horizontal velocity increases with depth over some distance,
creating a zone of extrusion flow.
[24] A noticeable property of the full-system solution not

shared by the SIA solution is that the corner point remains a
visible feature for some time. The corner point can, for

Figure 1. Surface evolution of three rectangles with
different aspect ratios as calculated with a full-system
model (solid lines) and a zeroth-order model (dash-dotted
lines). (a) Initial surfaces at t = 0 and t = 0.02. (b–d)
Surfaces at t = 0.22, 1.22, and 5.22, respectively. The times
are nondimensional (see text). Note the different spatial
scales.

Figure 2. Surface evolution of a rectangle with an initial
aspect ratio of 1 calculated with (a) a full-system model and
(b) a zeroth-order model. The nondimensional time step
between each plotted surface is 0.004 (see text). The thick
solid lines and the dash-dotted lines correspond to the
surface in Figure 1a.
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example, still be seen at t = 0.22 (Figure 1b). At the corner
point the boundary conditions require all stresses to be zero
at the start of the calculation. For subsequent time steps the
stresses acting on the corner are still low, and therefore the
approximate shape of the corner point is preserved for some
time (Figure 1). The SIA is known to lead to too short decay
times at wavelengths comparable with and smaller than the
mean ice thickness [Gudmundsson, 2003], and for that
reason, the corner point disappears faster in the SIA model
than it does in the full-system model.
[25] Figures 2a and 2b show the transient evolution of the

d = 1 rectangle as calculated by the full-system and the SIA
models, respectively. Note that the spatial scales are the
same in both figures. A comparison of Figures 2a and 2b
illustrates some of the key model-dependent differences.
The surface shapes and velocities are qualitatively different,
with the full-system surface being concave, whereas the SIA
gives a convex surface shape. In the SIA, flow velocities are
always directed in the direction of the steepest slopes.
Surface troughs and hollows can therefore only exist for a
limited amount of time as they must eventually get filled up
with ice. For this reason, one generally expects surfaces
calculated using the SIA to be convex. The SIA cannot
produce an increase in forward velocities with depth and
therefore no extrusion flow is seen in Figure 2b.
3.1.2. Rate of Advance
[26] At the start of the calculation the slope at the upper-

right corner point is discontinuous. The velocities calculated
with the SIA at that point depend, however, on the local ice
thickness and surface slope. In the particular numerical
implementation of the SIA used here (which is a standard
finite difference approach often used in modeling of ice
masses) the flux and slope are calculated by using centered
differences at a staggered grid with a semi-implicit forward
step in time. For a given spatial discretization, with flux and
slope calculated at a staggered grid, a finite value is
obtained for the surface slope at the corner point, and
consequently, a finite velocity is obtained at that point as
well. However, this velocity depends on the particular grid
spacing used, approaching infinity as the grid spacing
shrinks to zero. At the first time step of the SIA model,
this corner is the only point of the surface with a nonzero
velocity. During subsequent steps the velocities become
nonzero to the left and the right of the corner point at a
rate that is dependent on the size of the time step and the
exact discretization scheme used. Clearly, the velocities
around the corner point are not only wrong by an arbitrary
amount at the start of the calculation but also do not fulfill
grid size independence, which is a basic requirement for a
correct numerical solution. One might therefore expect that
not only the velocities at the snout, as calculated using the
SIA, but also the rate of advance of the snout will be
incorrect.
[27] By comparing the position of the snout obtained by

both models in Figure 1 and by comparing the slopes of the
curves in Figure 3, it becomes clear that this is, however,
not the case. Figure 1 shows that early in the calculation, the
front positions calculated with the SIA model are farther to
the right than those of the full-system model. As time
proceeds, these differences, however, become progressively
smaller. In Figure 1d, these differences are 9% (3.5 times
the SIA grid sizes) for d = 1, 3.5% (2.1 times SIA grid sizes)

for d = 0.2, and 2.5% (2.3 times the SIA grid sizes) for d =
0.1.
[28] As the rectangles spread out, their aspect ratios go

asymptotically to zero and with them the errors of the SIA
model. Both models converge toward the same geometry,
which can be seen as a consequence of the stability of the
Halfar solution with respect to perturbations in the surface
profile that conserve volume [e.g.,Halfar, 1981;Hindmarsh,
1990; Nye, 2000]. Comparing Halfar’s analytical solution
for the surface profile with the SIA surface profile shows
that the differences drop almost immediately below 1%
(e.g., at T = 0.004 for d = 1) over most of the model domain.
Differences of more than a few tenths percent are only
observed at the very margin, and the differences become
smaller with time. For the full-system model, deviations in
surface profile from the Halfar solution are, at every time
step, larger than those of the SIA model. This is to be
expected as the Halfar solution is derived by assuming the
flux to be a local function of thickness and slope. For T
larger than �3.2 and d = 1 the difference in the central
surface height (x = 0) between the two models is <2%. For
d = 0.2 and d = 0.1 thedifference becomes <2% for T > 1.4
and 0.4, respectively (Figure 1).
[29] Figure 3 shows the position of the snout as a function

of time. The slopes of the curves give rates of advance.
There is some initial offset between curves calculated with
the SIA model and the full-system model. This offset is
caused by differences in calculated rates of advance at the
very beginning of each model run. Although not easy to see
in Figure 3, the curves converge with time.
[30] The horizontal velocity component along the surface

at different times is shown in Figure 4 for the three different
values of d and for both the full-system and the SIA models.
Near the front, surface velocities calculated with the two
numerical models are significantly different at all times.
This is to be expected. At the snout, surface slopes tend to
infinity and with it the velocities as calculated using the
SIA. Again, the reason why the SIA model does not
produce infinite velocity is because of the finite distance
between the nodes of the numerical grid. Hence, although
the overall surface shapes and the rate of advance of the
front position are insensitive to the different sets of assump-
tions on which the two numerical models are based, the
surface velocities at the front remain different. For the block
with d = 1, Figure 4 shows that the two velocity profiles

Figure 3. Front position as a function of time for different
initial aspect ratios (A = 1, B = 0.2, C = 0.1) and for both the
full-system model (solid lines) and the SIA model (dotted
lines).
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(SIA and full-system) are most similar in the central area.
Apart from the region next to the snout, both sets of
velocities become progressively more similar with time
for all initial aspect ratios (Figure 4).

3.2. Modeling Suite 2: Advance and Retreat of No-Slip
Alpine-Type Glaciers

[31] The numerical experiments with rectangular blocks
discussed in section 3.1 showed that for all initial aspect
ratios the surface geometry, the front position, and the
advance velocity became progressively more similar as
both models were integrated forward in time. The question
now arises as to whether including mass balance altitude
feedback and using more realistic glacier geometries
changes the situation significantly.
[32] As a first step, model runs are performed using a

x-dependent mass balance distribution. Thus, there is no

altitude mass balance feedback and the modeled steady
state front positions must be equal for both models. This
position can be determined analytically, allowing the
accuracy of the numerical models to be estimated.
[33] In a second, and more interesting, step the evolution

of three differently sized alpine glaciers are calculated with
a realistic mass balance altitude function. The mass balance
rate function is of the form

_b zð Þ ¼
aacc zs � ELAð Þ when zs > ELA

aabl zs � ELAð Þ when zs 	 ELA

;

8<
: ð4Þ

where ELA is the equilibrium line altitude and aabl and aacc
are the mass balance gradients below and above the
equilibrium line, respectively. The values for the mass
balance gradients are set to aacc = 2.8 � 10�3 a�1 and aabl =
6.7 � 10�3 a�1. These particular values are derived from
mass balance data from Griesgletscher for the observation
period of 1994–1995 [Herren and Hoelzle, 1991] but are
also rather typical of other alpine glaciers and other time
periods [e.g., Oerlemans, 2001, pp. 41–44]. The ELA is
arbitrarily set at 2801 m above sea level (asl). The
equilibrium line altitude is then perturbed, and the transient
evolution of the glaciers is followed in detail until a new
steady state is established. The transient response to
spatially confined mass balance perturbations acting over
a limited period of time is also investigated.
3.2.1. Model Setting
[34] The three prototype glaciers correspond in terms

of lengths l, mean slopes, and absolute heights to a small
(1 km 	 l < 5 km), a medium-sized (5 km 	 l < 10 km), and
a large (l 
 10 km) valley glacier, respectively, following
the glacier length classification of Herren et al. [1999] for
Swiss glaciers (Figure 5). Grosser Aletschgletscher has
been chosen to represent a large glacier with a maximum
altitude of 4140 m asl, a length of 24.7 km, and a mean
slope of 6.1�. Griesgletscher has been chosen to represent a
medium-sized glacier with a maximum altitude of 3360 m
asl, a length of 6.2 km, and a mean slope of 9.0�. Finally,
Ghiacciaio del Basodino is used to represent a small glacier
with a maximum altitude of 3220 m asl, a length of 1.6 km,
and a mean slope of 26.0� [Müller et al., 1976].
[35] The three chosen glaciers are located in three differ-

ent valleys in the central Swiss Alps. Despite some expected
differences in local climate, the different glacier lengths are
presumably mainly related to variations in bed slope
[Schmeits and Oerlemans, 1997; Oerlemans, 2001]. Thus
we assume that all three model glaciers are exposed to the
same climatic conditions, and we use the same mass balance
rate function for all three glaciers. The bed topography is
parameterized using two differently inclined planes. The
steep upper plane (45�) is of short horizontal distance (1/20
of the maximum length) and corresponds to a headwall
which frames the upper bound of the glaciers. The lower
plane is inclined by 4.5� for the large glacier, by 5.5� for the
medium-sized glacier, and by 23.5� for the small glacier
(Figure 5). This leads to an average slope for each glacier
corresponding closely to that of the prototype.
[36] For each glacier the model calculation starts from a

steady state situation calculated using an initial ELA of
2801 m asl (hereinafter referred to as initial steady state).

Figure 4. Surface velocities (thick lines) and surface
profile (thin lines, note different spatial scales) as a function
of distance at different times, calculated with a full-system
model (solid lines) and the SIA model (dash-dotted lines)
for three different initial aspect ratios. The center of each
model is at x = 0, but for clarity, not all profiles are shown in
their entirety.
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Advance and retreat are caused by shifting the ELA by
±100 m. In all experiments with the full-system model the
number of elements is kept constant (10 � 160). The sizes
of the elements vary logarithmically, with the smallest
elements close to the margins.
3.2.2. Reaction Ignoring Mass Balance
Altitude Feedback
[37] In the absence of a mass balance altitude feedback

the relationship between the change in length �l and a
given perturbation in the mass balance rate �_b is indepen-
dent of rheology and dynamics of flow. For example, for a
linear variation in mass balance rate _b (x) with horizontal
distance x the relation is �_blo + _b(lo) �l = 0, where �_b is
the uniform shift in mass balance rate, lo is the original
position of the terminus, and _b(lo) is the nonperturbed mass
balance rate at the original terminus position [Nye, 1960].
There is no such relationship between the perturbation in
mass balance rate and the resulting perturbation in volume.
The volume perturbation can only be calculated by making
some assumptions about glacier flow, rheology, and bedrock
geometry.
[38] For both models, calculated front positions agreed

with the analytical solution (3287 m). Errors for the SIA
model were within the grid resolution of 10 m. As an
example, for the medium-sized glacier, differences between
calculated and correct length were 7 and 0.1 m for the SIA
and the full-system models, respectively.
[39] Figure 6 shows the length and volume changes for

the medium-sized glacier for both an advance and a retreat.
The initial steady state volume of the full-system model
was �4.1% larger than the volume of the SIA model.
The cumulative volume change was, however, essentially
identical. There is a slight asymmetry in length and volume

change with respect to retreat and advance (Figure 6) which
is related to the mass balance rate distribution not being a
strictly linear function of distance. Here the mass balance
distribution is described with two linear functions linked at
ELA (equation (4)). If the mass balance rate distribution
were a linear function of distance, the perturbation in length
would be twice the horizontal shift in ELA and symmetric
with respect to retreat and advance.
3.2.3. Reaction Including Altitude Mass Balance
Feedback
[40] Now an altitude-dependent mass balance function is

used for both numerical models. First, the initial steady
states for an ELA at 2801 m asl were calculated using both
models for all three glaciers. Starting from these initial
steady states, the advances and retreats to new steady states
were then determined.
3.2.3.1. Initial Steady State
[41] The initial steady state geometries calculated by the

full-system model are generally thicker than those calculated
with the SIA model (Table 1). The difference between the
initial full-system and the initial SIA steady state surface at
the SIA grid points is shown in Figure 7. The largest differ-
ences in surface shapes between the two models are found
where the errors of the SIA can be expected to be largest,
which is along the upper steeper slope and at the front. These
differences in the surface are largest for the small glacier and
smallest for the large glacier. As a fraction of their
corresponding thicknesses, these model-dependent differen-
ces can be considered to be insignificant for both the
medium-sized and the large-sized glaciers (3.8% and 1.6%,
respectively) but significant for the small glacier (17.0%).
These model-dependent differences in initial steady state

Figure 5. Initial SIA steady state geometries of the three
‘‘prototype’’ alpine glaciers. The ELA was set at 2801 m
above sea level: (a) the small, (b) the medium-sized, and
(c) the large glacier are shown using identical scalings.

Figure 6. (a) Cumulative length and (b) volume changes
of the medium-sized glacier as functions of time and as
calculated using a full-system (solid lines) and a SIA (dash-
dotted lines) model with no mass balance altitude feedback.

F01007 LEYSINGER VIELI AND GUDMUNDSSON: ESTIMATING GLACIER FLUCTUATIONS

7 of 14

F01007



volume and length are caused by an overall increase in ice
thickness in the full-system model needed to overcome
horizontal stresses. In the SIA model the flux depends only
on the local surface slope and the local thickness, whereas in
the full-system model the overall glacier geometry can, to
some extent, affect the local flux through transmission of
horizontal stresses. In the vicinity of the snout, horizontal
stresses act to hinder the motion. As a consequence, ice
thicknesses become larger as compared with those of the SIA
model. Because of the mass balance altitude feedback, the
increased overall thickness leads to an increased total glacier
length. Small additional differences are due to the different
meshing techniques of the two models. The full-system
model uses an adaptive grid that moves with the surface.
The front position is therefore not bound to a set of spatially
fixed nodal points, as in the SIA model. The errors in
terminus positions of the SIA model are comparable to the
grid spacing. Those grid size effects on calculated front
positions could be estimated rather easily by using a number
of meshes having different grid sizes. Grid spacing was thus
kept small enough for the purpose of the model intercom-
parison. No subgrid tracking of the terminus [e.g., Lam and
Dowdeswell, 1996] was attempted, but doing so would not
have affected our conclusions nor have had any significant
impact on computing time.
3.2.3.2. Advance and Retreat
[42] By shifting the ELA accordingly, the glaciers were

forced to either advance or retreat. In contrast to the altitude
feedback-independent case discussed in section 3.2.2, we
can now, in principle, expect some model-dependent differ-
ences in cumulative length and volume changes. The
calculated cumulative length and volume changes are
shown in Figures 8 and 9 for both models. Differences in
calculated lengths larger than one grid size of the SIA model
are only obtained for the small glacier (2 grid cells, 1.2% of
the glacier length). Figure 9 shows the difference in cumu-
lative volume change. Again, only for the small glacier can
significant volume differences be seen (�17.5% of the final
volume). Where differences are found, the SIA model
produces a larger advance and a shorter retreat than the
full-system model (Figure 8a).
[43] As a fraction of the original steady state length, the

cumulative length change is largest for the medium-sized
glacier and smallest for the large glacier. This is also
reflected in the fractional volume changes (Figures 8 and
9, right vertical axis).
[44] The relative length and volume changes for the

advance and the retreat from the initial steady states are
shown in Table 2. For an advance the relative volume
change is slightly larger than for a retreat. This difference
between volume gain and volume loss for the same absolute

shift in ELA is model-dependent and turns out to be larger
for the SIA model than for the full-system model. In
numbers, these differences are 18%, 13%, and 5% for the
small, medium, and the large glacier, respectively, when
calculated with the SIA model. Using the full-system
model, the corresponding numbers are 10%, 13%, and 4%.
[45] Following the evolution of the front position and the

volume with time (Figures 8 and 9), we see that for both
models, ignoring the initial phase, the rate of advance and
retreat and the rate of volume change of the medium-sized
and large-sized glaciers are identical (Figures 10b and 10c).
For the small glacier, however, a significant model-depen-
dent difference in volume change rate is observed over most
of the adjustment period (Figure 10a). For this glacier the
inclusion of horizontal stresses in the force balance leads to
elevation changes that, when combined with the mass
balance altitude rate function, causes noticeable differences
in rates of advance and retreat (see Figures 8a and 9a). For
all three prototypes the volume decrease rates are higher
than the volume increase rates.
[46] The time span needed for a glacier to find a new

steady state after a change in mass balance (Figures 8 and 9)
is quantified by the (asymptotic) response time, which can
be defined as the time constant in an exponential asymptotic
approach to a final steady state after a sudden change in
climate to a new constant climate [Jóhannesson, 1997]. The
volume e folding time is the time it takes for the glacier
volume perturbation �V to reach e�1 (retreat) or 1 � e�1

(advance) of its final steady state value, i.e.,�V =�V1(1�
e�t/tV), where �V1 is the volume perturbation in the limit
t ! 1. In general, the e folding time and the asymptotic

Figure 7. Difference in initial steady state geometries
calculated by the two models shown for (a) the small
glacier, (b) the medium-sized glacier, and (c) the large
glacier. For the full-system model the surface has been
calculated at the grid points of the SIA model. A positive
difference corresponds to a greater ice thickness for the full-
system model. The location of the break in the bed slope is
shown as a dash-dotted line.

Table 1. Differences in Length and Volume for the SIA Results

Compared With the Full-System Results With an Altitude-

Dependent Mass Balance

Glacier Size

Length Difference

Volume
Difference, %Percent

SIA Grid
Sizes

Grid
Size, m

Small �2.6 �3.7 10 �18.5
Medium �1.2 �1.6 40 �4.1
Large �0.6 �1.5 80 �1.6
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response time will not be identical. We estimated both the e
folding time and the asymptotic response time but found the
e folding time to be easier to determine as the change in
volume and length as a function of time was often far from
being exponential. In the following, if not otherwise stated,
the ‘‘response’’ times are e folding times.
[47] Because of mass conservation, the glacier volume

must always immediately start to change following an
abrupt shift in mean cumulative mass balance. The glacier
length, on the other hand, may only start to react to mass
balance changes after an initial time lag (the length time
lag). In all model runs the length time lag was always much
shorter than the length response time, and no attempt was
made to determine it accurately or to subtract the length
time lag from the e folding time.
[48] In Table 3 the e folding times of each glacier are

listed for an advance and a retreat and for both the full-
system and the SIA models. Table 3 shows that the volume
response time (tVn) is shorter than the length response time
(tLn) for all three glaciers, in agreement with the findings of

Schmeits and Oerlemans [1997] for their one-dimensional
SIA flow line model of Unterer Grindelwaldgletscher. For a
retreat, these differences in volume and length response
times are even bigger.
[49] Ignoringmassbalancealtitude feedback, Jóhannesson

et al. [1989a, 1989b] and Jóhannesson [1997] give a

Figure 8. Cumulative length changes of all three proto-
type glaciers as functions of time calculated using a full-
system (solid lines) and a SIA (dash-dotted lines) model
with mass balance altitude feedback: (a) small, (b) medium-
sized, and (c) large glacier.

Figure 9. Cumulative volume changes of all three
prototype glaciers as functions of time calculated using a
full-system (solid lines) and a SIA (dash-dotted lines) model
with mass balance altitude feedback: (a) small, (b) medium-
sized, and (c) large glacier.

Table 2. Length and Volume Changes for Both the Full-System

(FS) and the SIA Model After an Advance and a Retreat Relative

to the Initial SIA Steady State Position LSIA and Volume VSIA,

Respectively

Glacier Size Model

�L/LSIA �V/VSIA

Advance Retreat Advance Retreat

Small FS 0.278 �0.279 0.490 �0.440
SIA 0.289 �0.268 0.439 �0.362

Medium FS 0.374 �0.382 0.598 �0.520
SIA 0.379 �0.386 0.594 �0.516

Large FS 0.124 �0.125 0.183 �0.175
SIA 0.128 �0.124 0.184 �0.174
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theoretical estimate of the volume response time tV, which
is given by

tVj ¼ �hmax= _bt ; ð5Þ

where hmax represents the maximum thickness of the glacier
and _bt represents the average mass balance for the region

exposed by a retreating glacier or covered by an advancing
glacier. Both the numerical and the theoretical Jóhannesson
volume response times are shortest for the small-sized glacier
and longest for the medium-sized glacier (Tables 4 and 5).
[50] The (numerical) volume response times determined

from the results of the numerical models are, however,
significantly different from those (theoretical) volume re-
sponse times predicted by equation (5). This is not surprising.
The derivation of equation (5) ignores the mass balance
altitude feedback. Including mass balance feedback will
always lead to increased reaction times as any adjustment
in glacier geometry must lead to new, additional changes in
mass balance that require a further adjustment in glacier
shape.
[51] Harrison et al. [2001] defined a volume timescale

(tVh), which explicitly includes the effect of surface eleva-
tion on mass balance rate to characterize the glacier
response to climate. They find that

tVh
 1

� _be
H
þ _Ge

; ð6Þ

where _Ge is the weighted average of the specific balance
rate gradient, _be is the specific balance on the bedrock
surface and averaged over the entire exposed/covered
region (defined by Elsberg et al. [2001, equations (9) and
(10)]), and H = �V/�A is the thickness scale.
[52] The timescale tVh has the same interpretation as tVj

but with the significant difference that tVh accounts explic-
itly for the effect on balance rate of the changing surface
elevation of the glacier via the _Ge term [Harrison et al.,
2001]. The dependence of the mass balance rate on surface

Table 3. Numerical Response Times in Years for Volume tVn and
Length tLn Calculated for an Advance and a Retreat With Both the

Full-System (FS) and the SIA Model for All Three Prototype

Glaciers

Small Medium Large

FS SIA FS SIA FS SIA

tVn
Advance 36 33 133 136 75 76
Retreat 27 23 105 105 66 66

tLn
Advance 49 42 158 158 98 94
Retreat 43 39 145 150 93 98

Table 4. Numerical and Theoretical Response Times for Volume

(tVn, tVj, and tVh) Calculated for an Advance With the Full-System

Model for All Three Prototype Glaciersa

Small Medium Large

tVn 36 133 75
tVj
H = hmax 32 72 52
H = �V/�A 41 93 66
tVh
H = hmax 40 125 76
H = �V/�A 54 209 110
aTimes are in years. By respective author (Jóhannesson et al. [1989a],

Jóhannesson et al. [1997], and Harrison et al. [2001]), suggested
theoretical response times are in boldface.

Figure 10. Volume change rate for the advance and the
retreat as a function of time for (a) the small glacier, (b) the
medium-sized glacier, and (c) the large glacier, calculated
with both the full-system model (solid lines) and the SIA
model (dash-dotted lines). The right vertical axis gives the
integrated specific mass balance rate (dotted lines).

Table 5. Numerical and Theoretical Response Times for Volume

(tVn, tVj, and tVh) Calculated for a Retreat With the Full-System

Model for All Three Prototype Glaciersa

Small Medium Large

tVn 27 105 66
tVj
H = hmax 29 69 51
H = �V/�A 33 77 62
tVh
H = hmax 36 122 75
H = �V/�A 43 148 99
aTimes are in years. By respective author (Jóhannesson et al. [1989a],

Jóhannesson et al. [1997], and Harrison et al. [2001]), suggested
theoretical response times are in boldface.
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elevation has a major effect on the response and leads to
longer timescales than those calculated by Jóhannesson et
al. [1989a, 1989b]. Oerlemans [2001] has suggested a
response time for glacier length including mass balance
feedback which bears strong similarities to the Harrison
timescale [Oerlemans, 2001, equation (9.15)] and finds that
including mass balance feedback may easily double or triple
the response time.
[53] This effect of surface elevation on the response time

can be shown by calculating both Harrison’s and Jóhannes-
son’s theoretical response times with the same averaged
specific mass balance _be = � _bt and the same thickness scale
H. To investigate the significance of the chosen thickness
scale, we calculate both timescales with H = �V/�A as
chosen by Harrison et al. [2001] and H = hmax as chosen by
Jóhannesson [1997]. In our case, H = �V/�A is 10–30%
larger than H = hmax. The theoretical response times, calcu-
lated for both an advance and a retreat from the initial steady
state, obtained from the two numerical models for all three
glaciers are shown in Tables 4 and 5, along with the
numerical response times. Comparing the numerical re-
sponse times with the ones from Jóhannesson [1997] calcu-
lated withH = hmax and the ones from Harrison et al. [2001],
calculated with H = �V/�A, we find that the Jóhannesson
[1997] response times are generally smaller and that the
Harrison et al. [2001] response times are generally larger
than the numerical response times. Closer investigation of
the response times shows that the advance and the retreat,
except for the small glacier, are best described byHarrison et
al. [2001] response time tVh with the thickness scale H =
hmax. The small glacier is best described by Jóhannesson’s
[1997] response time tVj with H = hmax. The Harrison et al.
[2001] response times calculated withH =�V/�A tend to be
larger than the numerical volume response times but show
good agreement with the length response times for the small
and the large glacier (Table 3). Note that a change in
thickness scale has a larger effect on tVh than on tVj. We
find that ignoring the altitude dependency of the mass
balance (using an x-dependent mass balance function) results
in response times similar to, albeit somewhat shorter than,
the theoretical estimate given by equation (5).
[54] By comparing the numerical response times

(Tables 3, 4, and 5) for the advance and the retreat, it can
be seen that, with one exception, the response times are
shorter for the retreat than for the advance. This is in
agreement with the results discussed above and shown in
Table 2 and Figure 10. The theoretical response times
calculated both with H = hmax show only negligible differ-
ences between a retreat and an advance.
[55] From Table 3 we see that both the SIA and the full-

system models give similar volume response times tVn, with
the exception of the small glacier, where significant model-
dependent differences are observed. The small glacier
shows that numerical response times tVn calculated from
the SIA model are 8% smaller for the advance and 15%
smaller for the retreat than those obtained from the full-
system model. For the small glacier the theoretical response
times are compared to the numerical response times
obtained from the full-system model. The theoretical
Jóhannesson [1997] response time tVj calculated with H =
hmax (Tables 4 and 5) for the small glacier results in
response times which are 10% smaller for the advance

and 8% larger for the retreat than the numerical response
times (14% and 22% larger when calculated with H =
�V/�A). The theoretical Harrison et al. [2001] response
time tVh with H = �V/�A results in 52% (advance) and
56% (retreat) larger response times than those obtained by
the numerical method (12% and 33% smaller when calcu-
lated with H = hmax). This example shows that the response
times depend not only on the chosen formulation of
timescale but also on the thickness scale H. For the two
larger glaciers the response time tVn is insensitive to
differences between the full-system and the SIA model.
This supports the result of Greuell [1992] that the effect of
longitudinal stress gradients on the response times is small.
3.2.4. Short-Term Mass Balance Perturbation
[56] In the previous set of experiments we investigated

model-dependent differences in the calculated response of
alpine glaciers when the ELA is abruptly shifted. Those step
changes in mass balance were large. Small-scale fluctuations
are superimposed on the large-scale fluctuations of the climate
signal. The question arises, How do the two models compare
when the evolution of a short-term mass balance perturba-
tion is calculated? To investigate this, we now consider
perturbations in the mass balance distribution that are
confined to a local area and are of limited temporal duration.
[57] In a first experiment a perturbation is added to the

standard altitude-dependent mass balance function for the
first 5 years. An example of a spatially localized mass
balance perturbation �_b is a Gaussian-shaped bulge:

�_b ¼ Bexp � 1

2

x� xo

s

� �2
� �

: ð7Þ

The mean position of the perturbation peak (xo) is assumed
to be in the middle of the accumulation area. B is the
amplitude and s is the width of the perturbation. As
before, the model runs start from a steady state config-
uration. At the beginning of the model run the mass
balance perturbation �_b is added to the altitude-dependent
mass balance. The calculations were carried out for the
small and the large glacier using B = 4 m a�1 and s = 5%
of the initial steady state glacier length. Figure 11 shows
the resulting evolution of volumes and front positions.
[58] For the small glacier the maximum in volume and

length is reached 6.5 and 9 years earlier in the SIA model
than in the full-system model, respectively (Figure 11). This
result may be due to the fact that at spatial scales that are
short compared with the mean ice thickness, harmonic
surface undulations decay much faster in a SIA model than
in a full-system model [Gudmundsson, 2003].
[59] For the large glacier, both models showed almost

identical temporal volume and length changes (Figure 11c
and 11d). Using a smaller amplitude of 2 m a�1 and a larger
half width of 10% gave similar results.
[60] In a second experiment in which the ELAwas lowered

temporarily by 250 m for 5 years, both models produced
essentially identical transient changes in volumes and lengths
for both glaciers. This finding demonstrates nicely that for
spatially uniform perturbations in mass balance forcing the
SIA appears sufficiently accurate to calculate the effects of
short-term climatic variations on alpine glaciers.
[61] Recapitulating, we find that for localized surface

disturbances the overall adjustment is slower when calcu-
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lated by the full-system model than by the SIA model. On
the other hand, for glacier-wide changes in mass balance
such as those resulting from a uniform shift in ELA the
temporal behavior is essentially model-independent. Both of
these findings can be understood in terms of the differences
between the relaxation spectrum of the SIA model and the
full-system model. Localized surface disturbances decay
faster in a SIA model than in a full-system model. This is
to be expected. By linearizing both models, it can be shown
[Gudmundsson, 2003] that these models give rise to decay
times that differ by several orders of magnitude at short
spatial scales, with the SIA model giving estimates for the
decay timescale that are too short.

4. Discussion

[62] The two models differ in their treatment of the
mechanics of glacier flow. The SIA leads to considerable
simplifications of the underlying set of equations, and the
picture of glacier mechanics that emerges from that approx-
imation is simple. The full-system model, on the other hand,
gives a full description of the mechanics of glacier flow for
the particular set of assumptions about basal conditions and
rheological properties of ice used here.
[63] The first suite of experiments with the rectangles

showed that despite the velocities at the snout being very
different for the two models (Figure 4), and despite the
SIA model velocities not being independent of grid size
(tending toward infinity as the grid size goes to zero),
the front position given by the SIA agrees well with the
position calculated with a full-system model (Figure 1).
Furthermore, the model-model comparison shows that
the advance rates of the snout, calculated with the two
numerical models, are almost identical (Figure 3). The
second modeling suite demonstrates that this observed

model independence of the advance and retreat rates is also
valid for most realistic alpine glacier geometries.
[64] This model independence of the snout position and

advance and retreat rates can be understood in terms of mass
continuity. Although at any particular point in time the rate
of advance of the snout may depend on the details of the
velocity profile and the shape of the surface at the snout, the
mean advance of the snout over extended time periods must
ultimately be related to the vertically integrated mass flux
some distance behind the front. Particularly when ice
masses are close to steady state, one would therefore expect
length changes to be related to the integrated imbalance in
mass fluxes along the whole surface of the glacier and not to
depend on the details of the flow field at the snout. As
shown in this paper, for both models the calculated rates of
advance and retreat are almost identical, although their
description of flow dynamics close to the snout is funda-
mentally different. With respect to the reaction of the
glaciers to shifts in ELA, the choice of the model is
important only for the small glacier and even then only
when an altitude-dependent mass balance function is used.
[65] In this study, any possible basal motion has been

ignored, and we can only speculate how including it would
lead to differences between the two numerical models
considered. Increased basal sliding leads to enhanced spatial
transmission of stress gradients [Gudmundsson, 2003].
Since the SIA model does not account for the effects of
horizontal stress transmission, this suggests that model-
dependent differences will become increasingly important
as the slip ratio (ratio between mean sliding and mean
deformational velocity) becomes larger. For alpine glaciers
a moderate slip ratio of about 1 seems to be a typical value
[Gudmundsson et al., 1999; Gudmundsson, 2003]. For Haut
Glacier d’Arolla (Switzerland), Pattyn [2002] finds that
introducing basal sliding does not lead to any significant
differences between a higher-order and a zero-order model
for the one particular glacier geometry studied. Pattyn
[2002] used an altitude-independent mass balance distribu-
tion, and for that reason, no differences in steady state
glacier lengths were to be expected.
[66] For any calculation of the reaction of glaciers to

changes in climate a model describing the rate of mass
exchange at the surface is needed in addition to a model
describing the mechanics of glacier flow. Given the insig-
nificant differences between the two mechanical models
with regard to rates of advance and retreat, the question now
arises if the description of glacier mechanics is less impor-
tant than the description of mass balance.
[67] Away of giving a precise meaning to this question is

to consider whether the rheological parameters of one of
the models could possibly be changed in such a way as to
make the predictions of that model identical to those of the
other. If that can be done, the simpler model of the two
(SIA model) will lead to predictions just as accurate as the
more complex one (full-system model), and there is no
need to introduce the additional level of complexity. This
would, however, imply that the rheological parameters
become model-dependent quantities, in which case their
values will no longer reflect the true rheology of glacier ice.
This is clearly a drawback, but given the way numerical
models are, in practice, currently tuned, this is not a major
concern.

Figure 11. (a and c) Volume and (b and d) length changes
as a function of time after a small mass balance perturbation
has been added to the accumulation area during the first
5 years of model runtime. Figures 11a and 11b show results
for the small glacier, and Figures 11c and 11d show results
for the large glacier. The changes calculated with the full-
system model are shown with solid lines, and the ones with
the SIA model are shown with dash-dotted lines.
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[68] We could also ask what changes in ELA are needed
to produce the observed model-dependent changes in gla-
cier lengths. Both the rate factor A = 2 � 10�24 s�1 Pa�3

and ELA = 2801 m were changed by amounts of �A or
�ELA needed for the SIA model to reach the same
steady state length as the full-system model. The required
change in the flow parameter �A is approximately �58.5%
(�1.17 � 10�24 s�1 Pa�3) for the small, �12.5% (�0.25 �
10�24 s�1 Pa�3) for the medium-sized, and �8.5%
(�0.17 � 10�24 s�1 Pa�3) for the large glacier. The shift
�ELA is approximately �8 m for the small, �3.2 m for
the medium-sized, and �3.6 m for the large glacier. Given
the uncertainties in estimated values for the rate factor
for temperate ice (factor of 2–3), typical uncertainties in
determination of ELA (tens of meters), and the annual
natural fluctuation of ELA (on the order of hundreds of
meters), these numbers allow us to conclude that the
uncertainty in the rate factor, and especially the uncertainty
in the mass balance, are much larger than the uncertainties
introduced by the model assumptions. This supports the
conclusion of Greuell [1992] that steady state simulations
of real glaciers are expected to suffer more from the
uncertainty in surface mass balance than from the assump-
tions of the flow model [e.g., Oerlemans, 2001].
[69] Although the aspect ratios (d) of glaciers are

considerably larger than for ice sheets, the effects of
horizontal stress transmission on the frontal advance speed
of glaciers are small. The transient evolution of small-scale
features (comparable to or smaller than mean thickness)
are, on the other hand, significantly different in these two
models. Gudmundsson [2003] showed that at short spatial
scales the decay times of both models differ by several
orders of magnitude, with the SIA model giving too short
estimates for the decay timescale. This difference in the
decay times is reflected in the model-dependent response
in volume and front positions following a spatially con-
fined perturbation in mass balance over a limited period of
time (Figure 11). The slower short-scale relaxation in the
full-system model is the main reason why the upper-right
corners of the rectangular blocks decay so much more
slowly in the full-system model than in the SIA model
(Figure 1).

5. Conclusions

[70] Length fluctuations of alpine glaciers over timescales
of more than a few years can be modeled with sufficient
accuracy using the SIA approximation. There is no need
to resort to higher-order or full-system models for this
purpose. Differences in response times calculated with a
SIA and a full-system model are on the order of a few
years. As expected, including mass balance altitude feed-
back increases response times, but response times for both
advance and retreat remain on the order of decades to
hundreds of years. Recent analytical models seem to over-
estimate the effect of mass balance altitude feedback on
response times.
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