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Abstract 

Sphingolipids are important components of eukaryotic membranes, particularly the 

plasma membrane, and are involved in a diverse array of signal transduction processes. 

In the Eukaryota the biosynthetic pathway for the formation of these lipid species is 

largely conserved. However, in contrast to mammals which produce sphingomyelin 

(SM), several pathogenic fungi and protozoa synthesize inositol phosphorylceramide 

(IPC) as the primary phosphosphingolipid. This process is catalyzed by the enzyme IPC 

synthase, a recognized target for anti-fungals encoded by the AUR1 gene in yeast. 

Recently, functional orthologues of the AUR1p have been identified in a group of insect 

vector-borne pathogenic protozoa, the Kinetoplastida, which are responsible for a range 

of so-called neglected diseases. Of these the Trypanosoma brucei species are the 

causative agents of human African trypanosomiasis in many of the most under-

developed regions of Africa. The available treatments for these diseases are limited, of 

decreasing efficacy, and often demonstrate severe side-effects. Against this background 

the T. brucei sphingolipid synthase, an orthologue of the yeast AUR1p, may represent a 

promising target for novel anti-protozoals. Our studies identify an isoform of this protein 

as a novel bi-functional enzyme capable of catalyzing the synthesis of both IPC and SM, 

both known to be present in the parasite. Furthermore, the synthase is essential for 

parasite growth and can be inhibited by a known anti-fungal at low nanomolar levels in 

vitro. Most notably this drug demonstrates trypanocidal activity against cultured 

bloodstream form parasites. Thus, the T. brucei sphingolipid synthase represents a valid 

and promising drug target. 
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Footnote 

Since the initial submission of this work to Molecular and Biochemical Parasitology a 

paper has been published in Molecular Microbiology identifying and characterising the 

same family of enzymes in Trypanosoma brucei:  

Sutterwala S.S., Hsu F.F., Sevova E.S., Schwartz K.J., Zhang K., Key P., Turk J., 

Beverley S.M., Bangs J.D. Developmentally regulated sphingolipid synthesis in African 

trypanosomes (2008) 70:281-296. 
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1. Introduction 

Trypanosoma brucei species are protozoan parasites of the order Kinetoplastidae and 

the etiological agents of both human African trypanosomiasis (HAT, sleeping sickness), 

and diseases of economically important animals (e.g. nagana in cattle) [1]. These 

diseases are endemic in much of sub-Saharan Africa, with HAT causing a burden of 

approximately 1.6 million disability adjusted life years (http://www.who.int/tdr/). This 

distribution across some of the most under developed regions of the world is coupled 

with a paucity of effective therapies, with those available being either too expensive (e.g. 

eflornithine) or exhibiting catastrophic side-effects (e.g. melarsoprol). Together with the 

leishmaniases (caused by the related Leishmania species) HAT has been described as 

an emerging or uncontrolled disease. Therefore, there is an urgent need for new, 

validated drug targets and anti-HAT compounds to combat a disease causing in excess 

of 50,000 deaths per annum [2]. 

Sphingolipids are a diverse group of amphipathic lipids that perform essential functions 

in eukaryotes. For example, the unmodified sphingolipid ceramide acts as a secondary 

signalling molecule [3] and more complex species are implicated in the formation and 

function of signal transduction complexes [4, 5]. The primary phosphosphingolipid 

species in mammalian species, including humans, is sphingomyelin (SM). SM is formed 

by the transfer of the phosphorylcholine head group from phospholipid 

phosphatidylcholine (PC) to ceramide, a reaction catalyzed by SM synthase [6]. In 

contrast fungi, plants and at least some protozoa produce inositol phosphorylceramide 

(IPC) as their primary phosphosphingolipid [7]. In these organisms IPC synthase 

catalyzes the transfer of phosphorylinositol from phosphatidylinositol (PI) to ceramide [8-
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10]. IPC synthase has long been established and studied as a target for novel anti-

fungals [11, 12]. More recently this enzyme has come under scrutiny as a potential 

target for anti-protozoals [13]. With the recent identification and characterization of the 

Leishmania IPC synthase (LmIPCS; [10]) it has become possible both to validate this 

protozoan activity as a drug target and, furthermore, begin to investigate potential 

inhibitors, including those known to act against the fungal IPC synthase. Four closely 

related orthologues of LmIPCS are apparent in the T. brucei database [10], and mass 

spectrometry of isolated fractions has revealed that whilst the predominant 

phosphosphingolipid in pathogenic bloodstream form parasites is SM [14]; insect stage, 

procyclic T. brucei also contain IPC [15].  

Here we describe the characterization of the African trypanosome, T. brucei, 

sphingolipid synthase 4 (TbSLS4) which demonstrates itself to be a novel bi-functional 

enzyme with the ability to catalyze the biosynthesis of both IPC and SM, thus reflecting 

the sphingolipid profile of the parasite. Importantly, the IPC synthase activity of TbSLS4 

is acutely sensitive to the well characterized specific fungal inhibitor aureobasidin A [11, 

12] and pathogenic bloodstream form T. brucei are rapidly killed at sub-micromolar 

concentrations of this drug. Furthermore, down-regulation of TbSLS1-4 using inhibition 

RNA (RNAi) in bloodstream form parasites demonstrated that the enzyme activity is 

essential for growth thus validating it as a target for the development of new anti-HAT 

therapies.   
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2. Materials and methods  

2.1. Functional identification of the Trypanosoma brucei sphingolipid synthase 

A common, conserved AUG start codon was predicted for all 4 TbSLS isoforms by 

examination of the genome sequence (www.genedb.org). Subsequently, TbSLS1 

(Tb09211.1030) and TbSLS4 (Tb09211.1000) were amplified with Pfu polymerase 

(Promega) from T.  brucei strain Lister 427 genomic DNA using primer pairs 

(homologous sequence underlined):  

TbSLS1 - CCGGAATTCATGATTAGTTACCCTTTCTTCTCCC and 

CCGCTCGAGTCATACCTCGTTAGTTGATAC 

TbSLS4 – CCGGAATTCATGATTAGTTACCCTTTCTTCTCCC and 

CCGCTCGAGTCACACATACGCCCCACATTTAAAC; 

The PCR products were subsequently cloned into the yeast expression vector pRS426 

MET [16] to give pRS426 TbSLS1 and pRS426 TbSLS4. These, together with pRS426 

AUR1, pRS426 human sphingomyelin synthase 1 and 2 (HsSMS1 and 2) and empty 

vector (pRS426), were used to transform the YPH499–HIS–GAL–AUR1 S. cerevisiae 

strain [10]. Transformants were selected on non-permissive SD medium (0.17% Bacto 

yeast nitrogen base, 0.5% ammonium sulphate and 2% dextrose) or permissive SGR 

medium (0.17% Bacto yeast nitrogen base, 0.5% ammonium sulphate, 4% galactose 

and 2% raffinose) containing the appropriate nutritional supplements at 30°C. 
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2.2. Metabolic labelling and analyses 

Yeast were grown to exponential phase in SD or SGR as indicated and 2.5 OD600 units 

incubated in 1 ml of SD or SGR supplemented with 5 µM of NBD C6-ceramide 

(Invitrogen) conjugated to fat-depleted bovine serum albumin (Sigma-Aldrich) for 120 

minutes at 30°C. Yeast were harvested by centrifugation and washed twice with 

phosphate buffered saline. Chloroform/methanol (0.4 ml; 1:1 v/v) was added and cells 

were disintegrated with glass beads. The pellet was re-extracted with 

chloroform/methanol/water (10:10:3) and the lipid fraction isolated by phase separation. 

After drying in a rotavapor (Eppendorf Concentrator 5301) reaction products were re-

suspended in 20 µl of 10:10:3 and cell mass equivalents fractionated using HPTLC silica 

plates (Merck) and the eluent system chloroform:methanol:aqueous 0.25% KCl 

(55:45:10). Imaging and quantification was carried out using a FLA3000 scanner 

(Fujifilm) and AIDA Image Analyzer® software (version 1.3). Vero cells were labelled and 

processed for use as controls and standards as previously described [10]. 

Sphingomyelinase (Bacillus cereus; Sigma Aldrich) was used to identify sphingomyelin 

in the NBD C6-ceramide lipids extracted from the complemented yeast as previously 

described [17]. Briefly, YPH499–HIS–GAL–AUR1 S. cerevisiae complemented with 

pRS426 TbSLS4 (in SD) or transformed with pRS426 HsSMS2 or empty vector (in 

permissive SGR, or for a limited period SD) were grown to exponential phase. After 

adjustment to an optical density of 0.5 OD600 in 5 ml of either SD or SGR, cells were 

labelled for 16 hours with 2 µM of NBD C6-ceramide conjugated to fat-depleted bovine 

serum albumin as previously described [6]. Labelled lipid fractions from these were 

prepared and dried as above with 50 µg of sphingomyelin (Sigma Aldrich), and 
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resuspended, with sonication in a water bath, in 600 µl of 20 mM Tris-HCL (pH7.4), 10 

mM MgCl2 and 0.05% (w/v) Triton X-100. Subsequently, samples (300 µl) were 

incubated with or without 2 units of Bacillus Cereus sphingomyelinase (Sigma Aldrich) at 

37°C for 120 minutes. Equivalent lipid extracts were fractionated and analyzed as 

above. 

2.3. In vitro assay of TbSLS4 activity 

Microsomal membranes from exponentially growing YPH499–HIS–GAL–AUR1 pRS426 

TbSLS4, pRS426 LmIPCS or pRS426 AUR1 [10] were prepared as previously 

described [18] and the isolated membrane fraction re-suspended in storage buffer (50 

mM Tris/HCl pH 7.4, 20% (v/v) glycerol, 5 mM MgCl2) with Complete® EDTA-free 

Protease Inhibitor Cocktail (Roche Applied Science) at a protein concentration of 10 

mg/ml. The microsomal membranes were subsequently washed in 2.5% CHAPS (w/v; 

Sigma Aldrich; 4 °C, 60 minutes), isolated by centrifugation (150000 g, 4 °C and 90 

min), re-suspended in storage buffer at 10 mg/ml and stored at −80 °C until use. 

The assay mix contained 100 µM donor substrate (bovine liver PI, PC or PE, Avanti 

Polar Lipids), 10 µg of microsomes, 100 mM Tris HCl, 10 mM EDTA, 6 mg/ml BSA and 

5 µM NBD C6-ceramide [19]. Following incubation at 30 °C for 60 minutes the reaction 

was quenched by the addition of 150 µl of chloroform:methanol:water (10:10:3). After 

biphasic separation the organic layer was removed, processed, quantified and analyzed 

as above.  

For inhibition experiments the reaction mix was pre-incubated for 30 minutes with 

appropriate quantities of aureobasidin A (Takara) before the addition of NBD C6-

ceramide.  



 9 

2.4. Parasite culture 

Bloodstream form T. brucei strains Lister 427 and its engineered variant, Single Marker 

Bloodstream form (SMB, T7RNAP::TETR::NEO; [20]) were maintained in vitro at 37°C 

with 5% CO2
 in HMI-9 medium supplemented with 10% FCS and, for SMB, 2.5 µg/ml 

G418.  

2.5. Inhibition RNA (RNAi) of TbSLS 

An 165 base pair sequence fragment common to all four TbSLS open reading frames 

was amplified from genomic DNA using Pfu polymerase and primer pair (homologous 

sequence underlined): CATAGATCTAGAGGTTCCATACACTGTG and  

CATAGATCTAGACGAGAGGCAACGATGC 

This PCR product was cloned into the RNAi vector p2T7 [21] and, following linearization, 

10 µg transfected into SMB T. brucei and transformants selected using 2 µg/ml 

phleomycin (Sigma Aldrich). Following induction with 1 µg/ml doxycycline cell growth 

was determined at 24 hour intervals by light microscopy using an Improved Neubauer 

Haemocytometer. 

48 hours post-induction total RNA was isolated (RNeasy, Qiagen) and RT-PCR was 

performed (SuperScript II, Invitrogen) using the primer pairs: 

TbSLS: AAACTGTACCTTCTTCACCG and CGAGAGGCAACGATGC; 

Tb β tubulin: GGAGCGCATCAATGTGTAC and CAGGCAGCAGGTGACGCCG 

2.6. T.  brucei susceptibility to aureobasidin A 

T. brucei Lister 427 were cultured in the presence of various concentrations of 

aureobasidin A. Growth was analyzed at 24 hour intervals as above. 
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3. Results and discussion 

3.1. Identification and characterization of the T. brucei sphingolipid synthase 

Four tandem gene sequences (Tb09211.1030, Tb09.211.1020, Tb09.211.1010 and 

Tb09.211.1000; here annotated TbSLS1-4 to reflect their 5’ to 3’ order) were previously 

identified in the T. brucei genome database (www.genedb.org) as sequence orthologues 

of the inositol phosphorylceramide synthase (LmIPCS) from the related kinetoplastid 

parasite, Leishmania [10]. The predicted open reading frames encode 4 closely related 

trans-membrane proteins with more than 90% identity and 94% similarity. Most variation 

occurs at the carboxy-termini, a region predicted to lie on the cytosolic side of the 

membrane away from the active site at the Golgi lumen, with another variable domain 

close to and within the second predicted trans-membrane domain [10]. One of the 

predicted T. brucei sphingolipid synthase isoforms (Tb09.211.1000; TbSLS4) was the 

focus of this study. In addition, the isoform most distant from TbSLS4 with respect to the 

internal variable domain (Tb09.211.1030; TbSLS1) was also subjected to preliminary 

analyses.  

The auxotrophic mutant Saccharomyces cerevisiae strain, YPH499-HIS-GAL-AUR1, 

has the essential AUR1 IPC synthase gene under the control of a galactose inducible 

promoter. Therefore it is unable to grow in the presence of the repressor glucose, a 

phenotype that is rescued by the ectopic expression of LmIPCS [10]. Similarly, TbSLS4 

and TbSLS1 expression complemented the YPH499-HIS-GAL-AUR1 mutant yeast line 

indicating that they are also functional orthologues of the yeast AUR1 gene (figure 1). 

The yeast IPC synthase (AUR1) also complemented this mutant line. Significantly, 

neither HsSMS1 nor HsSMS2 complemented the YPH499-HIS-GAL-AUR1 yeast (data 
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not shown) indicating that sphingomyelin synthase activity alone is not sufficient to 

rescue the mutant. 

To understand the function of the T. brucei sphingolipid synthase, the auxotrophic 

YPH499-HIS-GAL-AUR1 yeast cells complemented with either TbSLS4, TbSLS1 or 

yeast AUR1 were metabolically labelled with fluorescent NBD C6-ceramde, a substrate 

for sphingolipid synthases, including those from the kinetoplastids [10]. Under the 

conditions described, the AUR1 complemented S. cerevisiae auxotrophic mutant 

synthesized IPC as the only labelled product. In contrast, both TbSLS4 and TbSLS1 

complemented mutant yeast were shown to synthesize two major labelled lipid species. 

One of these co-migrated with SM, the other with IPC. The latter at levels equivalent to 

those produced in the AUR1 complemented yeast (figure 2A). In addition, TbSLS4 

complemented yeast synthesized a third species which co-migrated with an unknown 

lipid (X) produced by labelled mammalian cells (Vero). As a control YPH499-HIS-GAL-

AUR1 cells harbouring an empty vector (pRS426) were cultured in both permissive 

(SGR) and non-permissive (SD) media. Both lines grew equivalently in both media for 

16 hours and for a further 8 hours after dilution to an optical density 0.3 OD600, and 

remained viable (by plating on permissive media, data not shown). Labelling of these 

dividing cells with NBD C6-ceramde in their respective media under the same conditions 

as above demonstrated that in non-permissive SD no labelled IPC is produced, 

indicating the down-regulation of AUR1p (figure 2B). 

TbSLS4 was chosen for further study due to the relative predominance of the SM-like 

species in the labelled complemented yeast. Unlike IPC, SM is known to be present in 

the pathogenic bloodstream form of the parasite [14]. The labelled SM-like species (and 
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the unknown X) proved to be susceptible to sphingomyelinase (which breaks down SM 

into phosphorylcholine and ceramide) when lipid extracts were treated with this enzyme, 

thereby confirming its identity (figure 3A). In contrast the IPC produced was insensitive 

to this enzyme treatment. Extracts from the auxotrophic mutant expressing HsSMS2, 

which produce an equivalent quantity of labelled SM under permissive conditions (SGR), 

acted as a control for SMase activity.  

Together these data suggest that TbSLS4 is a novel bi-functional enzyme acting as both 

a SM and an IPC synthase. This is consistent with previous analyses which 

demonstrated that the parasite harbours both SM [14] and IPC phosphosphingolipids 

[15]. 

3.2. In vitro analyses of TbSLS4 activity 

To further investigate the function of TbSLS4, microsomal material was isolated from the 

TbSLS4 and AUR1 complemented yeast as described and used in an in vitro assay 

utilising the common acceptor substrate NBD C6-ceramide and the candidate donor 

substrates bovine liver PI, PC and phosphatidylethanolamine (PE; a potential substrate 

for ethanolamine phorphorylceramide synthesis [22]). Notably, when assayed, the yeast 

AUR1 crude microsomal material showed significant IPC synthase turnover, but 

demonstrated little significant increase in this on the addition of the donor substrate PI. 

As expected, no detectable SM synthesis was observed with or without the addition of 

PC (figure 4A). In order to clearly assign enzyme function this assay was refined 

according to data obtained from the analysis of LmIPCS (Mina et al. in preparation). In 

brief, microsomal fractions were washed with ice-cold 2.5% 3-[3-(cholamidopropyl) 

dimethylammonio]-1-propane sulfonate (CHAPS) to remove endogenous (i.e. yeast) 
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substrates. This facilitated analyses of the effect of adding exogenous substrate to the 

reaction – in this case the candidate donor substrates (PI, PC or PE) plus the known 

acceptor substrate NBD C6-ceramide. Without the addition of the donor substrate the 

CHAPS-washed AUR1 microsomes, compared to the crude unwashed sample, 

demonstrated a relatively low level of IPC synthase turnover and, as expected no 

evidence of SM synthase function (figure 4A, Crude and Washed). Importantly, the 

addition of PI or PC had no discernable effect on enzyme turnover in the washed 

sample indicating that the yeast IPC synthase is either substrate specific (and unable to 

utilise bovine PI) or that the detergent treatment had disrupted the protein (figure 4A, +PI 

and +PC Washed). In contrast, assay of identically treated TbSLS4 microsomes showed 

that the addition of PI led to a large (more than 12-fold) increase in the formation of IPC 

(figure 4B, +PI). This demonstrated that TbSLS4 functions as an IPC synthase, an 

activity not attributable to background AUR1 expression. 

Surprisingly given the identification of SM as a TbSLS4 product above (figure 3A), 

bovine PC – a potential donor substrate for a SM synthase - had no significant effect on 

enzyme activity (figure 4B, +PC). The addition of PE was similarly ineffectual (figure 4B, 

+PE).  However, when PC or PE were added simultaneously as molar equivalents with 

PI to the assay system, the quantity of IPC produced decreased 4 and 2-fold 

respectively. This suggested that both PC and PE bind competitively with PI to the same 

region of the enzyme (figure 4B, +PI+PC and +PI+PE). 

Taken together these results indicate that TbSLS4 functions as an IPC synthase but 

also binds PC (and PE) and can participate in the synthesis of SM. The lack of in vitro 

SM synthase activity in the presence of exogenous PC is surprising and may relate to 
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substrate specificity (see yeast AUR1 and bovine PI, figure 4A, Washed). One possibility 

is that TbSLS4, in this assay, is unable to utilize bovine liver PC. This donor substrate is 

a mixed natural product with predominantly C36:2 PC. In contrast, S. cerevisiae, where 

both TbSLS4 and TbSLS1 function as SM synthases, predominantly possesses C32:2 

and C34:2 PC [23]. Perhaps TbSLS favours these relatively short acyl groups? 

However, T. brucei procyclic and bloodstream forms harbour significant quantities of 

C36, C38 and C40 PC species [14, 24, 25], indicating that any substrate selectivity is 

perhaps due more subtle structural differences. In support of this, although TbSLS4 can 

utilise bovine liver PI (predominantly C38:4) efficiently as a substrate for IPC synthesis, 

procyclic form parasites (known to synthesize IPC [15]) harbour only trace levels of the 

C38:4 PI [14]. 

3.3. Inhibition of TbSLS4 using a known anti-fungal agent 

IPC synthase is a recognized target for anti-fungal drugs and the natural product 

aureobasidin A is a widely utilized and specific experimental inhibitor [26]. This drug also 

specifically inhibits the activity of Leishmania LmIPCS, a TbSLS orthologue, albeit at a 

concentration several orders of magnitude higher than those for the S. cerevisiae 

enzyme [10].  

To establish the efficacy of aureobasidin A against the T. brucei enzyme the previously 

described in vitro assay was employed using CHAPS-washed TbSLS4 microsomes with 

NBD C6-ceramide and bovine PI as receptor and donor substrates respectively. As a 

control identically prepared LmIPCS microsomes were assayed in the same manner. 

Given the inactivity of the yeast enzyme in this assay system it was not possible to 

include this as a further control. The synthesis of labelled IPC was used as a measure of 
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IPC synthase turnover. From this assay it was evident that the T. brucei enzyme is 

acutely sensitive to the drug (figure 5A). Following reanalysis of the linear portion of the 

curve (0 – 0.5 nM aureobasidin A), the turnover was calculated to be 50% inhibited 

(IC50) by 0.42 nM aureobasidin A. TbSLS4 turnover was undetectable at a concentration 

of 50 nm aureobasidin A. In contrast, the IC50 for LmIPCS inhibition by aureobasidin A 

was more than 200,000 times higher, with precipitation of the drug at concentrations 

above 100 µM (figure 5B) preventing the determination of an absolute value. 

3.4. Validation of TbSLS as a target of anti-protozoals 

Using a sequence fragment common to all four TbSLS isoforms an RNAi construct was 

prepared in the p2T7 vector [21] and used to specifically inhibit TbSLS expression in 

cultured bloodstream form T. brucei (SMB). Non-induced TbSLS RNAi cells grew in a 

similar manner to control SMB parasites carrying empty vector with or without the 

doxycycline. In contrast, doxycycline induction of TbSLS RNAi saw the parasites cease 

division and led to some cell death as scored by light microscopy. RT-PCR, using β 

tubulin as a control, confirmed the specificity of the TbSLS mRNA inhibition (figure 6).  

This genetic approach validated TbSLS as an essential enzyme for pathogenic 

bloodstream form parasite growth. Given the in vitro data shown above in which 

aureobasidin A was demonstrated to inhibit TbSLS4, the efficacy of this natural 

compound was tested against cultured bloodstream form T.  brucei (Lister 427; figure 7). 

When the concentration of aureobasidin A was 1 µM cell growth was completely 

inhibited and the parasites were scored as dead by light microscopy after 24 hours. The 

EC50 of aureobasidin A against the parasites was estimated from these data as being 
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below 250 nM. However, it is the trypanocidal activity of this compound at higher 

concentrations that is of most significance. 
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3.5. Summary 

Previous studies using pharmacological and genetic inhibition of the first step in 

sphingolipid biosynthesis, catalysed by serine palmitoyltransferase, showed that this 

pathway is essential for the viability of both bloodstream and procyclic forms of T. brucei 

[17, 27]. This is in contrast to the related protozoan parasite Leishmania major where 

this enzyme, though essential for sphingolipid biosynthesis, is non-essential for both 

viability and pathogenesis [28, 29]. These studies indicate that sphingolipid biosynthesis 

could be a viable drug target in the African trypanosomes. 

The sphingolipid biosynthetic pathway is largely conserved across the Eukaryota. 

However, whilst animal cells synthesize the phosphosphingolipid SM, yeast and plants, 

plus at least some protozoa, produce IPC [7]. The IPC synthase of pathogenic fungi has 

long been validated and studied as a drug target [11], and the recent identification of a 

functional orthologue in the protozoan Kinetoplastids, the causative agents of several 

so-called neglected diseases, has led to its consideration as a target for anti-protozoal 

agents [10]. In this study we confirm that 2 of the 4 closely related T. brucei orthologues 

(TbSLS4 and 1) of the Leishmania IPC synthase (LmIPCS) are also functional 

orthologues of the S. cerevisiae enzyme encoded by AUR1. However surprisingly, 

unlike the Leishmania enzyme (and AUR1) TbSLS4 and 1 are able to catalyze the 

synthesis of both IPC and SM, which reflects the known sphingolipid content of T. brucei 

cells [15]. In an in vitro assay system utilizing TbSLS4 complemented AUR1 mutant 

yeast microsomes, it was demonstrated that the T. brucei enzyme was able to function 

as an IPC synthase. Although PC (and PE) was demonstrated to be a competitive 

binder with respect to PI, SM synthase activity could not be constituted possibly due to 
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some level of specificity with respect to the donor substrate PC. Clearly, substrate 

specificity and the mechanism of action of TbSLS4 warrant further investigation to 

disentangle the detected IPC synthase function from the apparent SM synthase activity. 

Determination of the kinetic parameters of TbSLS4 would facilitate this, for example with 

respect to determining the binding constants for the apparent competitive IPC synthase 

inhibitors - PC and PE. In this respect it should be noted that the T. brucei enzyme is 

unlike its orthologues from the other kinetoplastid parasites where both the Leishmania 

(figure 5B) and T. cruzi enzymes (Casbon and Denny, unpublished) demonstrate only 

IPC synthase activity in the in vitro system employed here. It is also clearly important to 

fully analyse the other 3 TbSLS isoforms to determine their function. 

The known yeast and fungal IPC synthase inhibitor, aureobasidin A, has previously 

been shown to be active against the related kinetoplast, Leishmania species, inhibiting 

growth, but not affecting viability, in culture [30]. However, it has been demonstrated that 

the L. major IPC synthase is refractory to aureobasidin A (figure 5B) and that its affect 

against this species in culture is non-specific [28]. A similar situation has been observed 

with respect to the causative agent of Chagas disease, T. cruzi [19]. In contrast, this 

study showed that aureobasidin A demonstrated a high level of efficacy against TbSLS4 

turnover in vitro, with an IC50 of 0.42 nM. In light of these results demonstrating the 

ability of a known inhibitor to affect enzyme activity, it was important to validate TbSLS 

as a potential target of anti-trypanosome drugs. Simultaneous RNAi of all four closely 

related isoforms of TbSLS demonstrated that this enzyme is essential for growth and so 

represents a new, much needed anti-protozoal target. Furthermore, aureobasidin A 
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proved highly effective and trypanocidal against cultured bloodstream form T. brucei, 

with a sub-micromolar EC50. 

Together these data raise the possibility of the discovery of a new generation of lead 

inhibitors directed against TbSLS, ultimately leading to novel drugs for the treatment of 

human African trypanosomiasis. 
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Figure legends 
 

Figure 1 

Transformation with pRS426 TbSLS4 and pRS426 TbSLS1, as well as pRS426 AUR1 

(the S. cerevisiae IPC synthase), rescues the auxotrophic mutant YPH499-HIS-GAL-

AUR1 allowing it to grow in the presence of glucose (SD media). YPH499-HIS-GAL-

AUR1 pRS426 (empty vector) does not grow in the presence of glucose (SD), however 

all lines are viable in the absence of glucose and the presence of galactose (SGR). 
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Figure 2 

A. Metabolic labelling of YPH499-HIS-GAL-AUR1 yeast IPC synthase (AUR1) 

complemented yeast with NBD C6-ceramide in glucose-containing media (SD) 

showed that they synthesize only labelled IPC. In contrast the same mutant line, 

labelled under the same conditions, but complemented with TbSLS4 or TbSLS1 

synthesized 2 predominant sphingolipid species, one of which co-migrated with 

IPC, the other with SM. In addition, in TbSLS4 complemented yeast a minor 

labelled species (X) was evident which co-migrated with an unknown detected in 

labelled mammalian cell (Vero) extracts, in which the predominant complex 

sphingolipid is SM.  

B. The yeast IPC synthase (AUR1) is down-regulated in YPH499-HIS-GAL-AUR1 

cells transformed with empty vector (pRS426) when incubated in non-permissive, 

glucose-containing media (SD). This is demonstrated by the lack of detectable 

IPC in yeast metabolically labelled with NBD C6-ceramide in SD under the same 

conditions as above. In galactose-containing, glucose-free media (SGR) the 

synthesis of IPC is clearly evident. 

 

NBD C6-ceramide labelled lipid extracts fractionated by HPTLC, representative of at 

least 3 independent experiments. O, origin; IPC, inositol phosphorylceramide; SM, 

sphingomyelin; Cer, ceramide (migrating at the front); X, unknown sphingolipid. All 

lipid extracts normalised with respect to cell mass. 
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Figure 3 

A. Sphingomyelinase (SMase) treatment of lipids extracted from YPH499-HIS-GAL-

AUR1 complemented with TbSLS4, grown in glucose-containing media (SD) and 

labelled with NBD C6-ceramide, demonstrated that the predicted sphingomyelin 

species is SMase sensitive, as is unknown X. In contrast the predicted IPC is 

insensitive. As a control, YPH499-HIS-GAL-AUR1 expressing human SM 

synthase 2 (HsSMS2, grown in permissive SGR media) was utilized as they 

produce equivalent quantities of labelled SM to the TbSLS4 line.  

B. The yeast IPC synthase (AUR1) is down-regulated in YPH499-HIS-GAL-AUR1 

cells transformed with empty vector (pRS426) incubated in non-permissive SD 

under the same conditions as the SMase treated samples. This is demonstrated 

by the lack of detectable IPC in yeast metabolically labelled with NBD C6-

ceramide in SD. In galactose-containing, glucose-free media (SGR) the synthesis 

of IPC is clearly evident. 

 

NBD C6-ceramide labelled lipid extracts fractionated by HPTLC, representative of at 

least 3 independent experiments. O, origin; IPC, inositol phosphorylceramide; SM, 

sphingomyelin; Cer, ceramide (migrating at the front); X, unknown sphingolipid. All 

lipid extracts normalised with respect to cell mass. 
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Figure 4 

Detergent-washed microsome extracts from YPH499-HIS-GAL-AUR1 TbSLS4 yeast 

demonstrate IPC synthase enzyme turnover on the addition of the donor substrate PI 

and acceptor substrate NBD C6-ceramide, but no further production of other sphingolipid 

species on the addition of alternative donors PC and PE. 

A. The addition of bovine liver PI led to a marginal increase in IPC production in 

unwashed (Crude) AUR1 microsomes when compared to the control (-). In 

CHAPS-treated microsomes (Washed) IPC synthase (AUR1) turnover was 

minimal without donor substrate (-) and unchanged by the addition of either PI or 

PC as donors. This demonstrated that the yeast IPC synthase (AUR1) was 

unable to utilise these donor substrates under the experimental conditions. 

B. In contrast, assay of TbLS4 microsomes (CHAPS-treated, as the Washed sample 

in A) demonstrated a greater than 12-fold increase in IPC over a sample without 

donor substrate (-) on the addition of PI. PC and PE had no demonstrable effect 

on enzyme turnover. However, both inhibited IPC synthesis when added together 

with PI at equivalent molar quantities: PC by approximately 4-fold and PE by 

approximately 2-fold. 

 

NBD C6-ceramide labelled lipid extracts fractionated by HPTLC and quantified as 

described, standard deviation of 3 independent experiments shown. 

AFU, arbitrary fluorescence units; IPC, inositol phosphorylceramide; SM, sphingomyelin; 

-, no donor substrate added; PI, bovine liver phosphatidylinositol; PC, bovine liver 

phosphatidylcholine; PE, bovine liver phosphatidylethanolamine. 
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Figure 5 

The fungal IPC synthase inhibitor aureobasidin A is active against TbSLS activity. 

A. TbSLS4 IPC synthase turnover determined using the described in vitro assay in 

the presence of aureobasidin A (AbA). The IC50 was calculated from the linear 

portion of the curve as being 0.42 nM. 

B. Leishmania major IPC synthase turnover was confirmed to be relatively refractory 

to AbA [10]. The IC50 was in excess of 100 µM, more than 200 000 times greater 

than that for TbSLS4. 

Turnover, as determined by IPC production, was scored as 100% in the absence of the 

inhibitor. 

 

Figure 6 

TbSLS is an essential enzyme in bloodstream form T. brucei. 

A. Inhibition RNA of TbSLS. Cell counts over a 48 hour period:  Mock transfected 

cells non-induced;  Mock tranfected cells induced by 1 µg/ml doxycline; ♦ 

TbSLS RNAi cells non-induced;  TbSLS RNAi cells induced by 1 µg/ml 

doxycline. Error bars for standard deviation over three replicates are shown. 

B. RT PCR using total RNA isolated from TbSLS RNAi parasites with or without 

doxycycline induction (Doxy). RT, reverse transcriptase. βTUB, β tubulin control. 
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Figure 7 

Aureobasidin A is trypanocidal against bloodstream form T. brucei. Cell counts over 72 

hours with:  1 µM aureobasidin A (AbA);  250 nM AbA; ♦ control. Error bars for 

standard deviation over three replicates are shown. 



 31 

Figure 1 

 

 



 32 

Figure 2 

 

 



 33 

Figure 3 

 

 



 34 

Figure 4 

 

 



 35 

Figure 5 

 

 



 36 

Figure 6 

 

 



 37 

Figure 7 

 

 


