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Abstract

We discuss statistical properties of random walks conditioned by fixing
a large area under their paths. We prove the functional central limit theo-
rem (invariance principle) for these conditional distributions. The limiting
Gaussian measure coincides with the conditional probability distribution
of certain time-nonhomogeneous Gaussian random process obtained by
an integral transformation of the white noise. From the point of view of
statistical mechanics the studied problem is the problem of describing the
fluctuations of the phase boundary in the one-dimensional SOS-model.
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1 Introduction

The problem of description of shapes of phase boundaries is a well-known prob-
lem of statistical mechanics. From the mathematical point of view it is equiv-
alent to the investigation of the asymptotical behaviour of the corresponding
sequence of probability measures describing the statistical properties of these
boundaries (see the recent book [10] for a discussion of related questions in the
case of the two-dimensional Ising model). The simplest variant of this prob-
lem arises in the one-dimensional Solid-On-Solid (SOS) model and has a nice
probabilistic interpretation.
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Consider a one-dimensional random walk S0 = 0, Sk =
∑k

i=1 ξi, k ≥ 1, where
ξ1, ξ2, . . . are independent identically distributed random variables having finite
exponential moments. Assume that the variables ξi are integer-valued and the
greatest common divisor of their values having non-vanishing probabilities is
equal to 1. The random variable

ηn =

n−1∑

k=0

Sk

presents the area under the trajectory S0, S1, . . . , Sn of this random walk. Fix
a real number q such that for some ε > 0 and all n the probabilities of events
{ηn > n2(q + ε)} and {ηn < n2(q − ε)} do not vanish. Assume also that for
all sufficiently large natural values n the events {ηn = [n2q]} have positive
probabilities (here [n2q] denotes the integral part of the number n2q).

Let xn(t), t ∈ [0, 1], n = 1, 2, . . ., be the paths of the random process such
that

xn

(k
n

)
= Sk, k = 0, 1, 2, . . . , n,

and xn(t) are linear on the intervals [ kn ,
k+1
n ]. Define the conditional process

θn(t) ≡
(
xn(t)

∣∣ ηn = [n2q]
)
.

The probability distributions of the normalized conditional processes n−1θn(t)
converge weakly to the probability distribution concentrated on some determin-
istic function ē(t). The limiting curve ē(t) is interpreted as the shape of the
phase boundary in the one-dimensional SOS-model. The formulated result is
known in the literature on mathematical physics [5]. From the probabilistic
point of view it is a direct corollary from the known results of the sample paths
large deviations theory (see,e.g., [8, Chap. 5]).

The limiting curve ē(t) can be calculated using the algorithm known in
the physical literature as the Wulff construction [21]. To do this one needs
to determine the surface tension (an angle-dependent function which can be
explicitly calculated in our situation), then integrate it along any smooth curve
e(t), t ∈ [0, 1], with e(0) = 0, and finally, to minimize the value of this integral in

the set of all such functions e(t) with the fixed value of the integral
∫ 1

0
e(t) dt = q.

It is expected that a similar construction is also applicable to a wide class
of more involved and physically more natural situations but the problem of a
mathematical justification of the Wulff construction in such situations became
essentially more difficult. In the case of the two-dimensional Ising model at a
sufficiently small temperature this problem was solved in the book [10]. Recently
Ioffe ([15, 16]) extended this result to all subcritical temperatures.

The aim of the present paper is to study the asymptotics of fluctuations

θ∗n(t) ≡ n−1/2
(
θn(t)− nē(t)

)

of the random process θn(t). We prove that the probability distributions of
the processes θ∗n(t) converge weakly to some Gaussian measure µ in the space
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C[0, 1] of continuous functions on the segment [0, 1]. The limiting measure µ
presents the conditional distribution of certain inhomogeneous Gaussian process
ξ(t) with independent increments conditioned by vanishing the value of integrals

along its trajectories, η =
∫ 1

0
ξ(t) dt = 0.

To prove our main theorem we need to study the asymptotics of probabil-
ities more accurately than it is usually done in the classical large deviations
theory. Although there exist some interesting papers with the refinements of
classical theory (see [2] and references there) we could not find a possibility to
apply those general results to our situation. Instead of this we use a more ele-
mentary approach based on the multidimensional limit theorems for the tilted
random variables (i.e., the variables obtained from the original ones via Cramèr
transformation of their distributions).

There is another and physically even more natural variant of the problem,
when the second end of the boundary is also fixed, i.e., when the process θn(t)
is additionally conditioned by a condition like θn(1) = 0. The results and the
proofs for this modified variant of the problem are similar.

Combining the approach developed in the present paper with the methods
of the book [10] one can obtain similar results for the fluctuations of the phase
boundary in the Ising model but this is a topic for separate considerations.

2 Formulation of results

Let integer-valued random variables ξ1, ξ2, . . . be independent and have the
same probability distribution P(·) with finite expectation and variance 1

E ξ ≡ a, D ξ ≡ E (ξ − E ξ)2 = σ2 > 0. (2.1)

Suppose that the greatest common divisor of the values of variable ξ having
non-vanishing probabilities is equal to 1. Denote by Dξ the set of real h such
that

L(h) ≡ ln E exp{hξ} < ∞. (2.2)

Assume that the set Dξ is an interval (can be infinite or semi-infinite one)
containing some neighbourhood of the origin.

Consider the random walk S0 = 0, Sk =
∑k

i=1 ξi, . . . generated by ran-
dom variables ξi. For any natural number n define a random polygonal func-
tion xn(t), t ∈ [0, 1]:

xn(t) ≡ S[nt] + {nt}ξ[nt]+1, (2.3)

where [a] denotes the integral part of a real number a and {a} = a − [a] is its
fractional part. Denote

Yn =
1

n
(S0 + S1 + . . .+ Sn−1) =

n∑

j=1

(
1− j

n

)
ξj . (2.4)

1Here and in the following E and D denote the operators of mathematical expectation and
of variance corresponding to their probability distribution.
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Clearly, Yn presents the ”area under the graph” of the piecewise constant func-
tion of t ∈ [0, 1) which equals Si on the interval [i/n, (i+ 1)/n). Our aim here
is to investigate the asymptotical behaviour of random paths xn(t) with fixed
”large” value of Yn.

We start with the following definition.

Definition 2.1 Let the random variable ξ be as described above. For any
h ∈ Dξ we consider the random variable ξh with the (h-)tilted probability

distribution Ph(·),
Ph(ξ = k) = P(ξh = k) ≡ exp

{
kh− L(h)

}
P(ξ = k), (2.5)

where L(·) is the logarithmic moment generating function from (2.2). This
transformation of probabilities is called the Cramèr transformation.

Note that for every h from the interior D◦
ξ of the interval Dξ we have

E ξh = L′(h), D ξh = L′′(h) > 0. (2.6)

Moreover, the function L(h) is analytical in some complex neighbourhood U(D◦
ξ )

of the open interval D◦
ξ .

Definition 2.2 A real number r is called ξ-admissible if there exist h ∈ D◦
ξ

such that
E ξh = r.

Comparing the last equality with (2.6) one can see that the set of all ξ-
admissible numbers coincides with the interval (R,R) where

R = inf{L′(h) : h ∈ D◦
ξ}, R = sup{L′(h) : h ∈ D◦

ξ}.

In other words, (R,R) is the image of D◦
ξ under the strictly increasing mapping

h 7→ L′(h).
Let LYn

(h) be the logarithmic moment generating function corresponding to
the random variable Yn,

LYn
(h) ≡ lnE exp

{
hYn

}
=

n∑

j=1

L
((

1− j

n

)
h
)
, (2.7)

where the second equality above is due to the mutual independence of the vari-
ables ξi. Observe that the function LYn

(h) is strictly convex in Dξ and analytical
in the neighbourhood U(D◦

ξ ) defined above. Denote also

LY,∞(h) ≡ lim
n→∞

1

n
LYn

(h) =

∫ 1

0

L(hx) dx. (2.8)

Consider any sequence nqn of real numbers such that n2qn are integer and
qn → q 6= a/2 in such a way that

qn − q = o
( 1√

n

)
as n → ∞. (2.9)
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Definition 2.3 Any sequence nqn satisfying (2.9) is called Yn-regular if the
following conditions hold:

a) for any natural n the probability P(Yn = nqn) is positive;
b) for any natural n the value nqn is Yn-admissible, i. e., there exists a

solution h = h0
n ∈ D◦

ξ of the equation

d

dh
LYn

(h)
∣∣∣
h=h0

n

= nqn; (2.10)

c) there exists a solution h̄ = h̄(q) ∈ D◦
ξ of the equation

d

dh
LY,∞(h)

∣∣∣
h=h̄

=

∫ 1

0

xL′(h̄ x) dx = q. (2.11)

For future references we fix some Yn-regular sequence nqn. Then the random
process

θn(t) ≡
(
xn(t)

∣∣Yn = nqn
)

(2.12)

is well defined.
Note that the variable Yn has the mean value EYn = a(n− 1)/2 and the

variance DYn = σ2(n − 1)(2n − 1)/6n of order n. Therefore, the condition
2q 6= a corresponds to the situation of large values of Yn. Moreover, in view of
the strict monotonicity of the function L′

Y,∞(·) in D◦
ξ the condition

d

dh
LY,∞(h)

∣∣∣
h=h̄

= q 6= a

2
=

d

dh
LY,∞(h)

∣∣∣
h=0

(2.13)

implies h̄ 6= 0. Define

eh̄(t) ≡
(
L(h̄)− L(h̄− h̄t)

)
/h̄ (2.14)

and consider normalized fluctuations of paths θn(t) around neh̄(t),

θ∗n(t) ≡
1√
n

(
θn(t)− neh̄(t)

)
. (2.15)

Let µ∗
n denotes the measure in the space C[0, 1] of continuous functions on the

segment [0, 1] induced by the probability distribution of the process θ∗n(t). The
following statement presents the main result of this paper.

Theorem 2.1 Let a sequence ξ1, ξ2, . . . of integer-valued random variables and
a sequence qn be as described above.

Then the sequence of measures µ∗
n converges weakly to some Gaussian mea-

sure µ∗ in C[0, 1]. The limiting measure µ∗ coincides with the conditional dis-
tribution of the random process ξ(t), t ∈ [0, 1], obtained by the integral transfor-
mation of the white noise dwx,

ξ(t) ≡
∫ t

0

(
L′′(h̄− h̄x)

)1/2
dwx, (2.16)
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conditioned by fixing the value

η ≡
∫ 1

0

ξ(t) dt = 0. (2.17)

Remark 2.1.1 The limiting conditional Gaussian process θ(t) =
(
ξ(t)

∣∣η = 0
)

has zero mean and its correlation function R0(t, s) = E θ(t)θ(s) can be easily
calculated (see, e.g., [20, Chap. 2]),

R0(t, s) =

∫ s∧t

0

L′′(h̄(1− x)
)
dx

−

∫ 1

1−s

xL′′(h̄x
)
dx

∫ 1

1−t

xL′′(h̄x
)
dx

∫ 1

0

(1− x)2L′′(h̄(1− x)
)
dx

,

(2.18)

where s ∧ t = min(s, t).

Remark 2.1.2 Definition (2.15) and Theorem 2.1 together imply the law of large
numbers for θn(t): distributions of random processes n−1θn(t) converge weakly
in C[0, 1] to the distribution concentrated on the (deterministic) function eh̄(·).

Remark 2.1.3 Using the inequalities for dual functions (see Property A.3 in
Appendix below) one can easily obtain the estimates for moderate and large
deviation probabilities of the process θn(t). Then arguments similar to those
used in Theorems 5.2 and 5.4 below together with relations (5.5) and (2.9) give
the following estimate

1

n
E
(
xn(t)

∣∣Yn = nqn
)
− eh̄(t) = o

( 1√
n

)
.

As a result, the random process

θ
∗
n(t) ≡

1√
n

(
θn(t)− E θn(t)

)
, t ∈ [0, 1],

has the same asymptotical behaviour as θ∗n(t).

Plan of the proof of Theorem 2.1. First we consider the process

Xn(t) ≡ S[nt], t ∈ [0, 1].

For every natural number k and any set of real numbers si, 0 < s1 < s2 < . . . <
sk ≤ 1 we form a random vector

Ωn ≡
(
Yn, Xn(s1), . . . , Xn(sk)

)
∈ Rk+1. (2.19)

Then for every Mn = (m0
n, m

1
n, . . . , m

k
n) with nm0

n, m
1
n, . . . , m

k
n ∈ Z1 we have

P
(
Xn(s1) = m1

n, . . . , Xn(sk) = mk
n

∣∣Yn = m0
n

)
=

P(Ωn = Mn)

P(Yn = m0
n)

, (2.20)
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where P(·|·) denotes the conditional probability (provided the probability of the
condition does not vanish).

To estimate the numerator and the denominator of the last fraction in the
case of m0

n = nqn (see (2.12)) we build new random variables Yn,h and Ωn,H

using the Cramèr transformation with parameters h and H of the original dis-
tributions of Yn and Ωn and then prove the corresponding local central limit
theorems for these random variables. This makes possible to evaluate the asymp-
totics of conditional probabilities (2.20) by using the normal approximation for
these tilted random variables. As a result, we obtain the central limit theorem
for the finite-dimensional distributions of the conditional random process

Θn(t) ≡
(
Xn(t)

∣∣Yn = nqn
)
. (2.21)

Noting that the interpolated conditional random process (recall (2.12))

θn(t) ≡
(
xn(t)

∣∣Yn = nqn
)

is obtained from the process Θn(t) by adding the random variables uniformly
bounded in probability as n → ∞ we conclude that the finite-dimensional dis-
tributions of the process θ∗n(t) tend to the same limiting distributions as for
Θ∗

n(t) defined similarly to (2.15).
Finally, we establish the weak compactness of the sequence of measures µ∗

n

in C[0, 1] by proving the inequality

E |θ∗n(t)− θ∗n(s)|4 ≤ C|t− s|7/4

with some constant C > 0 uniformly in n and all t, s ∈ [0, 1]. It remains to
apply Theorem 2.2 from [12, Chap. 9].

The detailed proof of Theorem 2.1 is given in §4–6 of this paper. ✷

The explicit limit formula (2.14) for the function eh̄(t) can be explained by
using well-known facts from the theory of large deviations. Let C0 denotes the
space of all absolutely continuous functions f(t), t ∈ [0, 1], such that f(0) = 0.
Define

I(f) =

∫ 1

0

L∗(f ′(t)
)
dt, f ∈ C0, (2.22)

where L∗(x) is the Legendre transformation 2

L∗(x) = sup
h

(
xh− L(h)

)

of the logarithmic moment generating function L(h) from (2.2) and f ′(t) is the
derivative of the function f . The functional (2.22) is known in the literature as
the rate function of the sample paths large deviation principle for the random
walk S0 = 0, Sk =

∑k
i=1 ξi, k ≥ 1, (see, e.g., [8, Chap. 5]). The infimum of this

2Here and in the following we omit restrictions near the signs like upper bounds, sums,
integrals etc. when the appropriate operation is going over the whole set of possible values of
parameters, summation indices, integration variables respectively.
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rate function governs the asymptotics of large deviation probabilities for the
considered random walk. The direct check assures us that the function eh̄(t)
from (2.14) gives the solution of the following variational problem

I(f) → inf; f ∈ C0,

∫ 1

0

f(t) dt = q. (2.23)

Observe however that results concerning the paths large deviation principle are
usually formulated in the so-called integral form when the integral condition
Yn ≥ nqn is considered instead of the local one, Yn = nqn. Nevertheless, these
results are valid also in our case since the local condition Yn = nqn can be
understood as a limiting case of the integral one, nqn ≤ Yn ≤ n(qn + ǫ), when
first n → ∞ and then ǫց0.

A similar result holds also in the case of non-lattice random variables. Name-
ly, let ξ1, ξ2, . . . be a sequence of independent identically distributed random
variables satisfying conditions (2.1) and (2.2). Assume that these variables have
a bounded continuous probability density. Define the random polygon xn(t),
t ∈ [0, 1], and the area Yn by (2.3) and (2.4) respectively. Then the variables
xn(t) and Yn also have bounded continuous probability densities.

Fix any sequence of real numbers qn satisfying (2.9) with 2q 6= a. We call
this sequence Yn-regular if the density of Yn does not vanish at the point nqn
and conditions b), c) of Definition 2.3 hold true. Then for every natural number
k and any set of real numbers si, 0 < s1 < s2 < . . . < sk ≤ 1 the mutual con-
ditional probability densities of the random variables xn(s1), xn(s2), . . . , xn(sk)
under the condition Yn = nqn are well defined. Now we can define the con-
ditional random process (2.12) as the random process with finite dimensional
distributions having these conditional densities.

Theorem 2.2 Let a sequence ξ1, ξ2, . . . of random variables having a bounded
continuous probability density and a sequence qn be as described above. Then
the statement of Theorem 2.1 holds true.

Remark 2.2.1 The condition of the existence of a continuous probability density
used in this theorem is essential since otherwise there are no natural definition of
the conditional distributions under the condition {Yn = nqn}. The results of this
paper can also be extended to a more wide class of non-lattice random variables,
if we change the condition {Yn = nqn} to the condition {|Yn−nqn| < εn} where
εn = o(n1/2) as n → ∞.

Plan of the proof of Theorem 2.2. The proof of this theorem is very similar to
that of Theorem 2.1. The only essential difference is that we need now to prove
the corresponding local central limit theorems for the probability densities of
random elements Yn,h and Ωn,H instead of the probabilities of their values. But
since such theorems for densities are very similar to their analogs in the discrete
case (see, e.g., [18]) we omit the proof of Theorem 2.2. ✷

As mentioned in §1 there is another interesting variant of the main problem
when one considers the conditional distributions of random walks xn(t) with
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fixed value of area Yn and value xn(1) = Sn at the terminating point. Problems
of this kind arise in statistical mechanics (see, f.e., [5], [17]) in the context of
the so-called SOS-models (see discussion of this and related questions in §3 of
the present paper). We formulate the corresponding results.

Consider the random vector Λn = (Yn, Sn) and denote its logarithmic mo-
ment generating function by LΛn

(H), H = (h0, h1),

LΛn
(H) ≡ ln E exp

{
h0Yn + h1Sn

}
=

n∑

j=1

L
((

1− j

n

)
h0 + h1

)
.

Let DΛn
be the set

{
H = (h0, h1) ∈ R2 : LΛn

(H) < ∞
}
. Similarly to (2.8)

define

LΛ,∞(H) ≡ lim
n→∞

1

n
LΛn

(H) =

∫ 1

0

L
(
(1− x)h0 + h1

)
dx.

Clearly, LΛ,∞(H) is finite for all H from the set

DΛ =
{
H = (h0, h1) : h1, h0 + h1 ∈ D◦

ξ

}
.

Let An = (nqn, nbn) be any sequence of real numbers such that n2qn and
nbn are integer and n−1An → A = (q, b), 2q 6= b, in such a way that

n−1An − A = o
( 1√

n

)
as n → ∞. (2.24)

Definition 2.4 Any sequence An satisfying (2.24) is called Λn-regular if the
following conditions hold:

a) for any natural n the probability P(Λn = An) is positive;
b) for any natural n the pair An is Λn-admissible, i. e., there exists a solution

H = Hn ∈ DΛ of the equation

∇HLΛn
(H)

∣∣∣
H=Hn

= An;

c) there exists a solution Ĥ = Ĥ(A) ∈ DΛ of the equation

∇HLΛ,∞(H)
∣∣∣
H=Ĥ

= A. (2.25)

In the last two equalities ∇H denotes the gradient with respect to H = (h0, h1).

Fix any Λn-regular sequence An. Then the random process

θ̂n(t) ≡ (xn(t) | Λn = An)

is well defined. Determine the quantities ĥ0 = ĥ0(q, b) and ĥ1 = ĥ1(q, b) from
the following system of two equations (cf. (2.25)):





∫ 1

0

L′(ĥ1 + yĥ0

)
dy = b,

∫ 1

0

y L′(ĥ1 + yĥ0

)
dy = q.

(2.26)
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Using convexity property of L(·) it is possible to prove that there exists a unique
pair of such quantities (see, e. g., [14, Appen.]). Moreover, they satisfy the

condition ĥ0 6= 0 and so one can define the function

êĥ0,ĥ1
(t) ≡

∫ t

0

L′(ĥ1 + (1− y)ĥ0

)
dy

=
(
L
(
ĥ1 + ĥ0

)
− L

(
ĥ1 + (1− t)ĥ0

))
/ĥ0.

(2.27)

(Note that the integral expression in (2.27) was obtained earlier in [5], although
the simple formula in the last part of (2.27) was not presented there.) Consider

normalized fluctuations of the paths θ̂n(t) around the function nêĥ0,ĥ1
(t),

θ̂∗n(t) ≡
1√
n

(
θ̂n(t)− nêĥ0,ĥ1

(t)
)
,

and denote by µ̂∗
n the corresponding measure in the space C[0, 1].

Theorem 2.3 Let a sequence ξ1, ξ2, . . . of integer-valued random variables and
sequences qn and bn be as described above.

Then the sequence of measures µ̂∗
n converges weakly to some Gaussian mea-

sure µ̂∗ in C[0, 1]. The limiting measure µ̂∗ coincides with the conditional prob-

ability distribution of the random process ξ̂(t), t ∈ [0, 1], obtained by the integral
transformation of the white noise dwx,

ξ̂(t) ≡
∫ t

0

(
L′′(ĥ1 + (1− x)ĥ0)

)1/2
dwx, t ∈ [0, 1],

conditioned by the conditions

η̂ ≡
∫ 1

0

ξ̂(t) dt = 0 and ξ̂(1) = 0.

Remark 2.3.1 Note, that the equations (2.26) can be rewritten in the equivalent
form 




1

ĥ0

(
L(ĥ1 + ĥ0)− L(ĥ1)

)
= b,

1

ĥ0

L(ĥ1 + ĥ0)−
1

ĥ2
0

∫ ĥ0

0

L(ĥ1 + y) dy = q

obtained in [17, Theorem 3] in a similar situation.

Proof of Theorem 2.3 follows the same scenario as that of Theorem 2.1. For
details see [14, Chap. 1]. ✷

Observe that the function êĥ0,ĥ1
(·) presents the solution of the following

variational problem (cf. (2.23))

I(f) → inf; f ∈ C0,

∫ 1

0

f(t) dt = q, f(1) = b. (2.28)
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Clearly, a result similar to Theorem 2.3 holds also in the non-lattice case
under the conditions analogous to that of Theorem 2.2. But since our ”Formu-
lation of results” is rather long yet, we will not make it longer and leave the
details for the reader.

3 Physical interpretation

The situation considered in the present paper is known in statistical physics as 1-
dimensional SOS-model (Solid-On-Solid model), which is the simplest interface
model. In view of its simplicity the 1D SOS-model is used for investigating the
properties of phase boundaries and so it was studied in the literature (see, e.g.,
[6], [5], [17]). Our aim here is to discuss formulated results from the physical
point of view.

Let us recall some notions needed (cf. [1], [6]). The SOS-model consists of the
interfaces without overhangs and therefore its configurations of the horizontal
length N are represented by sets of heights {ri}Ni=0, r0 = 0. The energy of the
configuration R = {ri}Ni=0 is determined by the Hamiltonian

HN (R) =
N−1∑

i=0

U(ri+1 − ri),

where U(·) is a real-valued function. There are many possible natural choices for
U(·) (see, e.g., [6] for a list of examples). For the sake of simplicity we restrict
ourselves to the case of integer-valued heights ri (though the generalization to
the non-integer case is straightforward).

Introducing a positive parameter β called an inverse temperature and as-
suming the finiteness of the partition function

ZN,β =
∑

r1∈Z1

. . .
∑

rN∈Z1

e−βHN (R)

we define the Gibbs probability distribution in the ensemble of surfaces {ri}Ni=0

by
PN,β(R) = Z−1

N,βe
−βHN (R).

Rewriting the last expression in terms of jumps ki ≡ ri − ri−1, i = 1, . . . , n,
we see that this Gibbs distribution coincides with the probability distribution
of random walk r0 = 0, rj =

∑j
i=1 ki, j ≥ 1, generated by the sequence of

independent (integer-valued) jumps ki having the same distribution

Pβ(k) =
e−βU(k)

Zβ
, where Zβ =

∑

k∈Z1

e−βU(k), (3.1)

i.e., with the situation considered in the present paper.
Consequently, theorems formulated in §2 describe the statistical properties

of the interfaces in 1D SOS-model: Theorem 2.3 studies the interfaces with fixed
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endpoints and the area under the interface, Theorem 2.1 describes the similar
situation but with the free right end, and Theorem 2.2 generalizes the previous
situation to the case of non-integer values ri.

There is a well-known general approach in statistical mechanics called the
Wulff construction [21], which is used for describing the asymptotical shapes of
interfaces. It is based on a fundamental notion of the surface tension and consists
in minimizing the total surface tension along interfaces with given constraints.

To discuss it more explicitly we fix a sequence of real numbers bN such that
bN → b = tanϕ (with ϕ ∈ (−π/2, π/2)), nbN is an integer number, and consider
the constrained interfaces RbN = {ri}Ni=0 satisfying the condition rN = NbN .
Denote the corresponding partition function by ZN,β(NbN ),

ZN,β(NbN ) =
∑

RbN

e−βHN (RbN
).

The quantity (see, e. g., [17])

T (ϕ) = −cosϕ

β
lim

N→∞

lnZN,β(NbN )

N
(3.2)

is called the surface tension of the inclined interface with the slope angle ϕ. The
last limit can be evaluated explicitly if we assume in addition that for all ε in
some neighbourhood of the origin the following sum is finite

Zβ(ε) =
∑

k∈Z1

eεke−βU(k) < ∞.

(Note that this condition holds true in all situations listed in [6]). Then the
known Cramèr theorem (see, e.g., [9], [7], [4]) is applicable and one obtains

T (ϕ) = −cosϕ

β

(
lim

N→∞

lnPN,β(rN = NbN )

N
+ lnZβ

)

=
cosϕ

β

(
L∗
β(tanϕ)− Lβ(0)

)
,

(3.3)

where L∗
β(·) is the Legendre transformation of the function Lβ(·) ≡ lnZβ(·).

Observe, that instead of the integral form of the Cramèr theorem describing the
asymptotics of the probability PN,β(rN ≥ NbN ) we use here the local one (for
PN,β(rN = NbN )), which is also true (see, e.g., [11]).

Consider the space C0 of all absolutely continuous functions f(t), t ∈ [0, 1],
such that f(0) = 0. Every f ∈ C0 is rectifiable and so it is possible to introduce
the natural parameterization along the graph γ(f) of the function f(·) denoting
by s = s(t) the arc length from the starting point (0, 0) of γ(f) till the point
(t, f(t)). Let ϕs and ds denote the slope angle of the tangent and the length
element at the point s under this parameterization. The Wulff functional is
defined by

W(f) ≡
∫

γ(f)

T (ϕs) ds, (3.4)

12



where T (·) is the surface tension introduced in (3.2).
Consider the collection of one-dimensional SOS interfaces satisfying the re-

strictions from Theorem 2.3. According to the Wulff principle the limiting shape
eq,b(t) of the phase boundary under such constraints presents the solution of the
following variational problem:

W(f) → inf; f ∈ C0,

∫ 1

0

f(t) dt = q, f(1) = b. (3.5)

On the other hand, the Wulff functional W(·) and the rate function I(·) for
the sample paths large deviation principle defined as in (2.22) for the random
walk with the single step distribution given by (3.1) are closely related. Namely,
substituting (3.3) into (3.4) and changing the variables one easily obtains the
relation

W(f) =
1

β

∫ 1

0

L∗(f ′(t)
)
dt− Lβ(0)

β
=

1

β
I(f)− Lβ(0)

β

that immediately implies the equivalence of variational problems (2.28) and
(3.5). Consequently, the function êĥ0,ĥ1

(t) from (2.26)–(2.27) coincides with

the Wulff shape eq,b(t) (i. e., the solution of (3.5)) and thus one comes to the
following conclusion: in the case of 1D SOS-model the Wulff principle

coincides with the standard approach of large deviation theory.
One can expect that with the appropriate definition of the surface tension

the Wulff principle is applicable to much more general situations. As it was
mentioned in §1, the Wulff principle has been proved for the two-dimensional
ferromagnetic Ising model ([10], [15, 16]). Its mathematical justification for two-
dimensional SOS-models describing the surfaces separating three-dimensional
phases is a very difficult open mathematical problem.

4 Limit Theorems for Tilted Distributions

Let ξ1, ξ2, . . . be a sequence of i. i. d. random variables introduced in §2 and
Yn be the area from (2.4), Yn =

∑n
j=1

(
1− j

n

)
ξj . For any h ∈ Dξ consider the

tilted variable Yn,h with the distribution

P
(
Yn,h = x

)
= exp

{
xh− LYn

(h)
}
P
(
Yn = x

)
, (4.1)

where LYn
(·) is the logarithmic moment generating function for the random

variable Yn and x is a real number of the kind m/n with integer m. Clearly,
the mean value and the variance of Yn,h can be calculated from the equalities

EYn,h =
d

dh
LYn

(h), DYn,h =
d2

dh2
LYn

(h). (4.2)

The probability of interest P(Yn = x) can be expressed as

P (Yn = x) = exp
{
− (xh− LYn

(h))
}
P (Yn,h = x) . (4.3)
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Therefore, if for given x one can evaluate the probability P(Yn,h = x) from the
left hand side of (4.1) explicitly, say can prove the local limit theorem for it,
then the classical large deviation estimate in the strong form ([11, sec. 2]) for
the probability P(Yn = x) will be available. Note that the left hand side in
(4.3) does not depend on h and so one is free to choose any possible value of
h. As usually in the large deviation theory the best value h(x) of the tuning
parameter h can be determined from the condition

EYn,h = x

that prescribes to choose such a tilted distribution first moment of which co-
incides with x. Recall that due to Definition 2.3 b) in the case x = nqn such
h = h0

n always exists. Observe also that in view of the first relation in (4.2) the
function h 7→ xh− LYn

(h) in the exponent in (4.3) attains its maximum at the
point h = h(x), i. e., equals the value of the Legendre transformation of LYn

at
the point x,

L∗
Yn

(x) ≡ sup
h

(
xh− LYn

(h)
)
. (4.4)

In this case (4.3) boils down to

P (Yn = x) = exp
{
−L∗

Yn
(x)
}
P
(
Yn,h(x) = x

)
. (4.5)

Consider now the Yn-regular sequence nqn fixed in §2. Without loss of
generality we may assume that the limiting value q of qn satisfies the condition
2q > a which in its turn implies h̄ > 0 (recall (2.13)). For future references we
fix a segment K ⊂ D◦

ξ such that

[
0, h̄
]
⊂ K◦, (4.6)

where K◦ denotes the interior of K.
In what follows we will need the estimates on the rate of convergence of h0

n

calculated from (2.10) to h̄. For this reason we observe that convergence of the
kind (2.8) is valid for all derivatives. Moreover, for any k = 0, 1, . . . one has

1

n

dk

dhk
LYn

(h) =
dk

dhk
LY,∞(h) +O(n−1), (4.7)

where the estimate O(·) is uniform in h from any fixed compact subset of D◦
ξ .

Then, applying the last relation to k = 1 and h = h0
n and using the implicit

function theorem for L′
Y,∞(·) one easily obtains

h0
n − h̄ = O(qn − q) +O(n−1), (4.8)

where the remainder terms O(n−1) and O(qn − q) are uniform in h̄ ∈ K and
qn ∈ L′

Y,∞(K◦) respectively. Here L′
Y,∞(K◦) denotes the image of K◦ under the

map L′
Y,∞(·). Consequently, h0

n → h̄ as n → ∞ and without loss of generality

we may assume that every number h0
n belongs to the interior K◦ of the compact

set K ⊂ D◦
ξ .
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Analogous constructions can be drawn for the random vector Ωn from (2.19),

Ωn = (Yn, S[ns1], S[ns2], . . . , S[nsk]),

defined for any fixed integer number k = 0, 1, . . . and a collection S of real
numbers s1, s2, . . ., sk satisfying the condition 0 < s1 < s2 < . . . < sk ≤ 1. For
any vector H = (h0, h1, . . . , hk) ∈ Rk+1 we put

LΩn
(H) ≡ lnE exp {(H,Ωn)} =

n∑

j=1

L(hj,n), (4.9)

where (·, ·) is the usual inner product in Rk+1,

hj,n = hj,n(H) ≡
(
1− j

n

)
h0 +

k∑

l=1

hl χ{j≤[nsl]}, (4.10)

and χ{j≤[nsl]} denotes the indicator function of the relation {j ≤ [nsl]}. Put

DΘn
≡
{
H ∈ Rk+1 : LΩn

(H) < ∞
}
.

The sets DΘn
depend essentially on n and on the collection S. However, any of

these sets contains the following region

Dk+1 ≡
{
H ∈ Rk+1 : −d < h0 < h̄+ d, |hl| < d, l = 1, 2, . . . , k

}
, (4.11)

provided the constant d = d(k, h̄,K) > 0 is sufficiently small. Moreover, we
can choose d in such a way that for any H ∈ Dk+1 all hj,n, n = 1, 2, . . .,
j = 1, 2, . . . , n, defined in (4.10) belong to the set K◦. For future references we
fix such d.

Similarly to (4.1) we consider the random vector Ωn,H with the tilted dis-
tribution

P (Ωn,H = M) = exp
{
(M,H)− LΩn

(H)
}
P (Ωn = M) , (4.12)

with M = (m0, m1, . . . , mk) ∈ Rk+1 such that the numbers nm0, m1, . . . , mk

are integers. Then the vector EΩn,H of mean values and the covariance matrix
CovΩn,H can be found from (cf. (4.2))

EΩn,H = ∇HLΩn
(H), CovΩn,H = HessLΩn

(H), (4.13)

where ∇H denotes the gradient and HessLΩn
(H) is the Hessian matrix (the

matrix of the second derivatives) of LΩn
as a function of the variables h0, . . . , hk.

Consider also the Legendre transformation (cf. (4.4))

L∗
Ωn

(M) ≡ sup
H

(
(M,H)− LΩn

(H)
)
.

If vectors H and M satisfy the condition

M = ∇HLΩn
(H),
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then one obtains (cf. (4.5), (A.1))

P (Ωn = M) = exp
{
−L∗

Ωn
(M)

}
P (Ωn,H = M) . (4.14)

The functions n−1LΩn
(H), n ≥ 1, are analytical and uniformly bounded

provided H belongs to some complex neighbourhood U(Dk+1) of the set Dk+1

from (4.11). As in (2.8) we define

LΩ,∞(H) ≡ lim
n→∞

1

n
LΩn

(H) =

∫ 1

0

L
(
h̃(x)

)
dx,

where (cf. (4.10))

h̃(x) = (1− x)h0 +

k∑

l=1

hl χ{x<sl} (4.15)

with χ{x<sl} denoting the indicator function of the set {x < sl}. Note that
the analog of (4.7) is also true here with the estimate O(n−1) uniform in H ∈
U(Dk+1).

Define the matrix

Bn(H) ≡ 1

n
HessLΩn

(H) =
∥∥∥b(n)l,m

∥∥∥
k

l,m=0
. (4.16)

In view of the analog of (4.7) for the functions LΩn
(H) one easily obtains the

relation
Bn(H) = B(H) +O(n−1), (4.17)

where the matrix B(H) = ‖bl,m‖kl,m=0 has the elements

bl,m =
∂2

∂hl∂hm
LΩ,∞(H) (4.18)

and the term O(n−1) in (4.17) is uniform in H ∈ U(Dk+1). For any vector
T = (t0, t1, . . . , tk) ∈ Rk+1 define the quadratic form

Bn,H(T) =
∑

l,m=0,1,...,k

tltmb
(n)
l,m

=
1

n

n∑

j=1

L′′(hj,n)
((

1− j

n

)
t0 +

k∑

l=1

χ{j≤[nsl]}tl
)2

≥ 0
(4.19)

and the quadratic form

BH(T) =
∑

l,m=0,1,...,k

tltmbl,m

=

∫ 1

0

L′′(h̃(x)
)(

(1− x)t0 +

k∑

l=1

χ{x<sl}tl
)2

dx ≥ 0.

(4.20)

Clearly, the strict convexity of L(·) (recall (2.6)) implies the strict positive def-
initeness of the symmetric matrices Bn(H) and B(H), H ∈ Dk+1, (in the case
of Bn(H) at least for all sufficiently large n, n ≥ n0(S)).
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Theorem 4.1 Let a sequence of vectors Hn ∈ Dk+1 be given such that Hn →
H ∈ Dk+1 with Dk+1 defined in (4.11). Put

Ω∗
n =

1√
n

(
Ωn,Hn

− EΩn,Hn

)
. (4.21)

Then the distribution of the vector Ω∗
n tends weakly to the distribution of the

Gaussian random vector Θ with zero mean and covariance matrix B(H).

Remark 4.1.1 The distribution of the random vector Θ is nondegenerate. We
denote its density by pH(X), X ∈ Rk+1, and its characteristic function by
ΦH(T),

ΦH(T) = exp
{
−1

2

(
B(H)T,T

)}
, T ∈ Rk+1. (4.22)

Proof. Fix any T = (t0, t1, . . . , tk) ∈ Rk+1. Using the Taylor expansion for the

logarithm of the characteristic function Φ̂n(·) of the vector Ω∗
n we get

ln Φ̂n(T) = LΩn

(
Hn + in−1/2T

)
− LΩn

(Hn)−
i√
n

(
T,EΩn,Hn

)

= −1

2

(
Bn(Hn)T,T

)
+Rn,

(4.23)

where the matrix Bn(·) is determined in (4.16) and the remainder term Rn

equals

Rn = − i

6n3/2

k∑

l,m,p=0

tltmtp
∂3

∂hl∂hm∂hp
LΩn

(
Hn + iωn−1/2T

)

with some ω = ω(Hn, T ), 0 ≤ ω ≤ 1. The uniform boundedness of the family
of analytical functions n−1LΩn

(H), n = 1, 2, . . ., H ∈ U(Dk+1), implies the
uniform boundedness of their third derivatives. Consequently, Rn = O(n−1/2)
as n → ∞ uniformly in T from any fixed compact set in Rk+1. Finally, (4.17)
implies the relation

lim
n→∞

ln Φ̂n(T) = −1

2

(
B(H)T,T

)
= lnΦH(T) (4.24)

which finishes the proof. ✷

Our next step consists in the evaluation of the probabilities P(Ωn = Mn)
and P(Yn = m0

n) entering the right-hand side of (2.20).
Fix any integer k ≥ 0 and assume that a sequence of vectors Hn ∈ Rk+1,

Hn = (h0
n, h

1
n, . . . , h

k
n), satisfy the assumption of Theorem 4.1. According to

the choice of the value d in (4.11) all points hj,n = hj,n(Hn), j = 1, 2, . . . , n;
n = 1, 2, . . ., calculated as in (4.10) belong to K◦ (see (4.6)). Without loss
of generality (taking d slightly smaller if necessary) we may assume also that

h̃(x) ∈ K◦ (recall (4.15)) for any x ∈ [0, 1].
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Denote

Mk+1
n =

{(
m0, m1, . . . , mk

)
∈ Rk+1 :

{
nm0, m1, . . . , mk

}
⊂ Z1

}
. (4.25)

Let Mn = (m0
n, m

1
n, . . . , m

k
n) be any sequence of vectors such that Mn ∈ Mk+1

n

for all n. Put (cf. (4.13))
En = EΩn,Hn

and define the vector Xn ∈ Rk+1 by

Xn =
1√
n
(Mn − En) . (4.26)

Theorem 4.2 Let k ≥ 0 be any integer number and vectors Hn be as in Theo-
rem 4.1. Then uniformly in Mn ∈ Mk+1

n one has

n
k+3

2 P (Ωn,Hn
= Mn)− pH(Xn) → 0 as n → ∞, (4.27)

where pH(·) is the density of the Gaussian random vector Θ with the character-
istic function ΦH(T) from (4.22).

The following corollary specifies the statement of Theorem 4.2 in the one-
dimensional case. Let nqn be the Yn-regular sequence fixed in §2, h0

n and h̄ be
the solutions of (2.10) and (2.11) correspondingly. Denote

b2 = b2(h̄) ≡
∫ 1

0

L′′(h̄(1− x)
)
(1− x)2 dx.

For any real x ∈ M1
n (recall (4.25)) put z = (x− nqn) /

√
n.

Corollary 4.3 Uniformly in x ∈ M1
n one has

n3/2P
(
Yn,h0

n
= x

)
− 1√

2πb
e−z2/2b2 → 0 as n → ∞. (4.28)

To prove Theorem 4.2 we need the following simple observation.

Lemma 4.4 Fix any real numbers δ, δ0, 0 < δ ≤ δ0 ≤ 1/16. Denote by Oδ(m),
m ∈ Z1, the δ-neighborhood of the integer number m in the real line R1 and put

Oδ =
⋃

m∈Z1

Oδ(m). (4.29)

Consider an arithmetic progression a0, a1, . . ., an of the length n + 1 with the
step v and denote by Nδ the number of elements ai located outside of the set
Oδ. Then the following statements hold true.

A. If 8δn−1 ≤ |v| ≤ 1/2, then

Nδ ≥
(1
2
− 4δ0

)
n− 3. (4.30)
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B. Let |v| ≤ 8δn−1 and assume additionally that the element a0 is located
outside of the set Oδ at a positive distance ρ from it, ρ = dist (a0,Oδ) > 0.
Then

Nδ ≥ ρ

2δ0 + ρ
n. (4.31)

Proof. A. First observe that at most
[
|an− a0|

]
+2 ≤ |v|n+2 intervals Oδ(m)

can contain the points ai. Moreover, every intervalOδ(m) contains no more than[
2δ|v|−1

]
+1 elements of the progression. Hence, the number Mδ = n+1−Nδ

of the points ai belonging to the set Oδ satisfies the following inequality

Mδ ≤ (|v|n+ 2)(2δ|v|−1 + 1) = 2δn+ 4δ|v|−1 + |v|n+ 2. (4.32)

To estimate the right-hand side of (4.32) we consider two possibilities:
a). If 1/2 ≥ |v| ≥ 2/n, then 4δ|v|−1 ≤ 2δn, |v|n ≤ n/2, and so Mδ ≤

(4δ + 1/2)n+ 2.
b). If 2/n ≥ |v| ≥ 8δ/n, then 4δ|v|−1 ≤ n/2, |v|n ≤ 2, and so Mδ ≤

(2δ + 1/2)n+ 4.
Obtained inequalities together with the definition of Mδ imply (4.30).
B. Note that |v|n ≤ 8δ ≤ 1/2. Three cases are possible.
a). If |v|n ≤ ρ, then Nδ = n+ 1.
b). If ρ < |v|n < ρ+ 2δ, then Nδ ≥

[
ρ/|v|

]
+ 1 ≥ ρ/|v| ≥ ρn/(2δ0 + ρ).

c). If ρ + 2δ ≤ |v|n ≤ 1/2, then at most one interval Oδ(m) can contain
points ai and so Mδ ≤

[
2δ/|v|

]
+ 1 ≤ 2δ/|v|+ 1. Consequently, Nδ ≥ n+ 1−(

2δ/|v|+1
)
≥ ρn/(2δ + ρ). Collecting all three estimates one obtains (4.31). ✷

Proof of Theorem 4.2 Assume first that k ≥ 1.
For any h ∈ K (recall (4.6)) we denote by ϕh(t) the characteristic function

of the random variable ξh defined in (2.5),

ϕh(t) ≡ E exp{itξh} = exp
{
L(h+ it)− L(h)

}
.

Let us collect some properties of the function ϕh(t) which will be used in
the following. First of all, for any h ∈ K and t ∈ R1

|ϕh(t)| ≤ ϕh(0) = 1. (4.33)

Since the probability distribution of the random variable ξh is concentrated on
the integer lattice Z1, the function ϕh(t) is a 2π-periodical function of t, i. e.,
ϕh(t+ 2π) ≡ ϕh(t) for every h ∈ K. Then, for any δ, 0 < δ < π, there exists a
constant C = C(K, δ) > 0 such that for every h ∈ K and any t, δ ≤ t ≤ 2π − δ,
one has

|ϕh(t)| ≤ e−C . (4.34)

And finally, there exists a constant α = α(K) > 0 such that for all h ∈ K and
any t, |t| ≤ π, the following inequality holds

|ϕh(t)| ≤ exp
{
−αt2L′′(h)

}
. (4.35)
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The last two inequalities follow easily from the known properties of the charac-
teristic functions of lattice random variables and from the compactness of the
set K.

Using relations (4.9) and (4.10) we rewrite the characteristic function Φn(T)
of the vector Ωn,Hn

in terms of functions ϕh(t),

Φn(T) = E exp
{
i
(
T,Ωn,Hn

)}
=

n∏

j=1

ϕhj,n
(tj,n) , (4.36)

where the numbers tj,n are calculated from T =
(
t0, t1, . . . , tl

)
via (cf. (4.10))

tj,n ≡
(
1− j

n

)
t0 +

k∑

l=1

tlχ{j≤[nsl]}. (4.37)

Note that (recall (4.23))

Φ̂n(T) = Φn(n
−1/2T) exp

{
− i√

n
(T,EΩn,Hn

)
}

(4.38)

is the characteristic function of the random vector Ω∗
n defined in (4.21).

Using the well-known inversion formula for the Fourier transformation and
definition (4.22) we rewrite the left-hand side

Rn = n
k+3

2 P (Ωn,Hn
= Mn)− pH(Xn)

of (4.27) in the form

Rn =
1

(2π)k+1

∫

A

Φ̂n(T)e−i(T,Xn) dT

− 1

(2π)k+1

∫

Rk+1

ΦH(T)e−i(T,Xn) dT,
(4.39)

where

A =
{
T = (t0, t1, . . . , tk) ∈ Rk+1 : |t0| ≤ πn3/2, |tl| ≤ π

√
n, l = 1, 2, . . . , k

}
.

Following the standard proof of the local limit theorem (see, e.g., [13, §43]) we
evaluate the left-hand side of (4.39) as the sum of four terms,

(2π)
−(k+1)

(J1 + J2 + J3 + J4) ,

where, for some positive constants A and ∆,

J1 =

∫

A1

∣∣Φ̂n(T)− ΦH(T)
∣∣ dT, A1 = [−A,A]k+1,

J2 =

∫

A2

ΦH(T) dT, A2 = Rk+1 \A1,

Jp =

∫

Ap

∣∣Φ̂n(T)
∣∣ dT, p = 3, 4,
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with

A3 =
{
T ∈ Rk+1 : |tl| ≤ ∆

√
n, l = 0, 1, . . . , k

}
\A1,

A4 = A \ (A1 ∪A3) .
(4.40)

Fix an arbitrary ε > 0. We will show in the following that for a convenient
choice of the constants A = A(ε) and ∆ = ∆(S) one has the bounds Ji < ε/4,
i = 1, 2, 3, 4, for all sufficiently large n. This will imply the assertion of the
theorem. It remains to evaluate all Ji.

First of all, due to Central Limit Theorem 4.1, for every finite A > 0 one
obtains the convergence J1 → 0 as n → ∞.

Secondly, it is evident that

J2 =

∫

A2

Φ(T) dT → 0 as A → ∞. (4.41)

To estimate J3 we fix any T ∈ A3 and put

∆ =
π

k + 1
. (4.42)

Then all the numbers tj,n defined in (4.37) satisfy the condition |tj,n| ≤ π
√
n.

Hence, evaluating each factor in (4.36) by the help of (4.35) one obtains the
bound (recall (4.38), (4.19) and (4.20))

∣∣Φ̂n(T)
∣∣ ≤ exp

{
−αBn,Hn

(T)
}
≤ exp

{
−αcBH(T)

}
,

where the last inequality follows from estimate (4.17), the convergence Hn →
H and the positive definiteness of the quadratic forms Bn,Hn

(T) and BH(T)
provided c > 0 is sufficiently small. As a result,

J3 =

∫

A3

∣∣Φ̂n(T)
∣∣ dT ≤

∫

A2

exp {−αcBH(T)} dT → 0 as A → ∞.

To evaluate J4 put

δ =
1

17(k + 1)2
. (4.43)

For any T ∈ A4 denote by Nn(T) the number of indexes j = 1, 2, . . . , n such
that τj,n /∈ Oδ (recall (4.29)), where

τj,n ≡ 1

2π
√
n
tj,n. (4.44)

Using (4.33) and (4.34) to estimate factors in the representation (4.36) one has

∣∣Φ̂n(T)
∣∣ =

n∏

j=1

∣∣∣ϕhj,n

( 1√
n
tj,n

)∣∣∣ ≤ exp
{
−CNn(T)

}
.
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Our aim here is to prove that for T ∈ A4 and all sufficiently large n

Nn(T) ≥ βn, (4.45)

were β > 0 is a constant depending only on the set S = (s1, s2, . . . , sk). Then

J4 =

∫

A4

∣∣Φ̂n(T)
∣∣ dT ≤ (2π)k+1n

k+3

2 exp
{
−Cβn

}
→ 0

as n → ∞ and we obtain the needed estimate for J4.
It remains only to prove (4.45). First observe that in view of its definition

(see (4.44) and the relation (4.37)) the sequence τj,n, j = 1, 2, . . . , n, splits into
k + 1 arithmetic progressions (k progressions if sk = 1) with the same step v,

τj,n − τj−1,n = v = − t0
2πn3/2

(4.46)

for [nsl] < j ≤ [nsl+1], l = 0, 1, . . . , k + 1. Here we put s0 = 0, sk+1 = 1.
Fix any T ∈ A4. It follows from the definition (4.40) that for any T ∈ A4

there exists a number l ∈ {0, 1, . . . , k} such that |tl| > ∆
√
n. Let lT denotes the

minimal such l. Two cases are possible: lT = 0 and lT > 0.
Consider first the case lT = 0. Then ∆

√
n < |t0| ≤ πn3/2 and so, in view of

(4.42) and (4.46), the step v satisfies the condition

1

2
≥ v >

∆

2πn
=

1

2n(k + 1)
.

On the other hand, at least one of the progressions mentioned above consists of
no less than [(n+ 1)/(k + 1)] elements. Then for all sufficiently large n one has
the inequality v [(n+ 1)/(k + 1)] ≥ 8δ and so Lemma 4.4.A can be applied. As
a result, for all sufficiently large n

Nn(T) ≥
(1
2
− 4

17(k + 1)2

)[n+ 1

k + 1

]
− 3 ≥ n

4(k + 1)
. (4.47)

In the case lT > 0 the statement B of Lemma 4.4 is applicable. Indeed, put
jl = [nslT ] and consider the difference (recall (4.44), (4.37))

R = τjl,n − τjl+1,n =
1

2π
√
n

( t0
n

+ tlT

)
.

(for sk = 1, lT = k we put τn+1,n = 0.) Using the inequalities |t0| ≤ ∆
√
n and

∆
√
n < |tlT | ≤ π

√
n it is easy to verify that for all sufficiently large n

6δ ≤ |R| < 3/5 < 1− 6δ.

Consequently, at least one of the points τjl,n, τjl+1,n (τn,n in the case sk = 1,
lT = k) is located outside of the set Oδ on the distance ρ ≥ 2δ.
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To apply the statement B of Lemma 4.4 it remains to observe that for the
fixed set S there exists a constant γ = γ(S) > 0 such that for all sufficiently
large n the length of every progression obtained above is no less than γn. Hence,

Nn(T) ≥ ρ

2δ + ρ
γn ≥ γ

2
n. (4.48)

Obviously, (4.47) and (4.48) imply (4.45).
Collecting all the estimates of the integrals Jp obtained above we finish the

proof for k ≥ 1.
The case k = 0 can be treated in the same way with obvious simplifications

in the formulas (4.10), (4.42), (4.43), and in the evaluation of J4. ✷

Observe that in the arguments above the Gaussian density pH(·) can be
replaced by the density of zero-mean Gaussian distribution with the covariance
matrix Bn(Hn) (recall (4.23), (4.24)). In particular, one has

Corollary 4.5 There exist positive constants n0, c0 and C0 such that for all
n ≥ n0

c0
n

(
L′′
Yn

(h0
n)
)−1/2 ≤ P

(
Yn,h0

n
= nqn

)
≤ C0

n

(
L′′
Yn

(h0
n)
)−1/2

, (4.49)

where h0
n is determined from (2.10).

For the future references we make also the following simple observation.

Corollary 4.6 Let all Xn in (4.26) be uniformly bounded. Then in the condi-
tions of Theorem 4.2 one has

P (Ωn,Hn
= Mn) = n− k+3

2 pH(Xn)(1 + o(1)),

where the estimate o(1) is uniform in such Xn. In particular, this probability
is positive for all sufficiently large n, n ≥ n0, and therefore there exist positive
constants ci, Ci, i = 1, 2, such that uniformly in such Xn and n ≥ n0 one has

c2 ≤ c1pH(Xn) ≤ n
k+3

2 P (Ωn,Hn
= Mn) ≤ C1pH(Xn) ≤ C2. (4.50)

5 Convergence of Finite-Dimensional Distribu-

tions

We prove here the convergence of finite-dimensional distributions of the random
process θ∗n(t) from (2.15) to the corresponding distributions of the conditional
random process θ(t) =

(
ξ(t)

∣∣η = 0
)
(recall (2.16), (2.17)). To do this we check

such a convergence for the random process Θ∗
n(t) (cf. (2.15), (2.21), (2.14))

Θ∗
n(t) ≡

1√
n

(
Θn(t)− neh̄(t)

)
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and prove the convergence Θ∗
n(t)− θ∗n(t) → 0 in probability as n → ∞.

As before, let nqn be the Yn-regular sequence fixed in §2, h0
n and h̄ be the

solutions of equations (2.10) and (2.11) correspondingly. Then the sequence of
vectors

H0
n ≡

(
h0
n, 0, . . . , 0

)
∈ Rk+1 (5.1)

converges to the vector (recall (4.8))

H0 ≡
(
h̄, 0, . . . , 0

)
∈ Rk+1 (5.2)

and all H0
n belong to the region Dk+1 from (4.11).

Denote (recall (4.13), (4.9) and (2.10))

E0
n ≡ EΩn,H0

n
= (nqn, e

1
n, . . . , e

k
n). (5.3)

It follows from (4.13), (4.9) and (4.10) that

ein = en(si) ≡
∂

∂hi
LΩn

(H)
∣∣∣
H=H0

n

=

[nsi]∑

j=1

L′
((

1− j

n

)
h0
n

)
. (5.4)

Similarly to (4.7) we find that

1

n
en(si) =

∫ si

0

L′(h0
n − h0

nt) dt+O(n−1),

where the estimate O(n−1) is uniform in K (recall (4.6)). Moreover, the ana-
lytical dependence of the function eh(s) =

(
L(h) − L(h− hs)

)
/h on h in some

neighbourhood of h̄ as well as relation (4.8) imply that

1

n
en(si) = eh̄(si) + siO(h0

n − h̄) + siO(n−1)

= eh̄(si) + siO(qn − q) + siO(n−1),
(5.5)

where the estimates O(·) are uniform in si ∈ [0, 1].
Consider an arbitrary vector Mn ∈ Mk+1

n of the kind

Mn =
(
nqn, m

1
n, . . . , m

k
n

)
(5.6)

and define xi
n = n−1/2(mi

n − ein), i = 1, . . . , k. Denote by pk(·) the probability
density of the Gaussian random vector Θ =

(
η, ξ1, . . . , ξk

)
with the character-

istic function ΦH0(T) (recall (4.22), (5.2)). Then

p̃k(x
1, . . . , xk|0) ≡ pk(X

0)

p0(0)
, X0 = (0, x1, . . . , xk), (5.7)

gives the probability density of the conditional distribution
(
ξ1, . . . , ξk|η = 0

)
.

Lemma 5.1 Let xi
n be uniformly bounded. Then

P
(
Θn(s1) = m1

n, . . . ,Θn(sk) = mk
n

)
= n− k

2 p̃k(x
1
n, . . . , x

k
n|0) (1 + o(1)) (5.8)

as n → ∞; the estimate o(1) is uniform in such xi
n.
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Proof. It follows from (5.1), (5.6), (4.9), (4.10) and (2.7) that

(
Mn,H

0
n

)
= nqnh

0
n, LΩn

(
H0

n

)
= LYn

(
h0
n

)
.

Hence, applying (4.12) to M = Mn and H = H0
n and using (4.1) with x = nqn

and h = h0
n we obtain

P(Ωn = Mn)

P(Yn = nqn)
=

P(Ωn,H0
n
= Mn)

P(Yn,h0
n
= nqn)

.

In view of (4.27) with H = H0, Hn = H0
n, (4.28) with hn = h0

n, x = nqn, and
the definition of pk(·) we rewrite the last ratio in the form

P(Ωn,H0
n
= Mn)

P(Yn,h0
n
= nqn)

= n− k
2
pk(X

0
n)

p0(0)
(1 + o(1)) , (5.9)

where the estimate o(1) is uniform in the case of uniformly bounded xi
n. Finally,

substituting (5.7) into (5.9) we get (5.8). ✷

Theorem 5.2 Fix any natural k, a set of real numbers 0 < t1 < t2 < . . . <
tk ≤ 1 and denote (cf. (2.15))

Θ∗
n(t) =

1√
n

(
Θn(t)− neh̄(t)

)
, (5.10)

where the process Θn(t) is defined in (2.21).
Then the distribution of the random vector

(
Θ∗

n(t1), . . . ,Θ
∗
n(tk)

)
tends weakly

to the Gaussian distribution with the probability density p̃k(·|0) from (5.7). This
limiting distribution coincides with the corresponding finite-dimensional distri-
bution of the measure µ∗ from Theorem 2.1.

Proof. In view of (5.5) and (2.9) one has en(t) − neh̄(t) = o
(√

n
)
uniformly

in t ∈ [0, 1] and so it is enough to prove the statement of the theorem for the
random vector

1√
n

(
Θn(t)− en(t)

)
.

For T = (t1, . . . , tk) put Θn(T) ≡
(
Θn(t1), . . . ,Θn(tk)

)
. If x = (x1, . . . , xk) ∈

Rk, y = (y1, . . . , yk) ∈ Rk, we will write y ≥ x instead of {y1 ≥ x1, . . . , yk ≥
xk}. Denote also (cf. (5.3))

en = (e1n, . . . , e
k
n).

According to Theorem 2.2 from [3, Chap. 1] it is sufficient to prove the
asymptotical smallness of the difference

Rn = P
(
y
√
n ≤ Θn(T)− en ≤ z

√
n
)
−
∫

y≤x≤z

p̃k(x|0) dx (5.11)
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for every y, z ∈ Rk, y ≤ z.
To do this we recall that the estimate o(·) in (5.8) is uniform in x belonging

to every fixed compact set in Rk and so one can rewrite

P
(
y ≤ Ωn(T)− en√

n
≤ z
)
=

∑

m∈Zk :y
√
n≤m−en≤z

√
n

P (Ωn(T) = m)

= (1 + o(1))
∑

x :x=(m−en)/
√
n,

m∈Zk, y
√
n≤m−en≤z

√
n

p̃k(x|0)n−k
2 .

(5.12)
It remains to observe that the last sum in (5.12) presents the Riemannian sum
for the integral expression in (5.11).

To prove the last assertion of the theorem we note that in view of definitions
(2.16) and (2.17) one easily obtains

η ≡
∫ 1

0

∫ t

0

(
L′′(h̄− h̄x)

)1/2
dwxdt =

∫ 1

0

(1− x)
(
L′′(h̄− h̄x)

)1/2
dwx

and so

E ξ(t) ξ(s) =

∫ s∧t

0

L′′(h̄− h̄x) dx,

E ξ(t) η =

∫ t

0

(1− x)L′′(h̄− h̄x) dx,

E η η =

∫ t

0

(1− x)2L′′(h̄− h̄x) dx.

Since the last expressions coincide with the appropriate elements of the covari-
ance matrix B(H0) of the Gaussian random vector Θ =

(
η, ξ1, . . . , ξk

)
with

the characteristic function ΦH0(T) (recall (4.18), (4.15), (4.22), (5.2)) the last
assertion of the theorem follows from the first part of the theorem, definition
(5.7) and well-known properties of conditional distributions [20, Chap. 2]. ✷

To study the finite-dimensional distributions of the process θn(t) from (2.12)
we observe that due to (2.15), (5.10), (2.12), (2.21), and (2.3) one has

θ∗n(t)−Θ∗
n(t) =

{nt}√
n

(
ξ[nt]+1 | Yn = nqn

)
. (5.13)

Since ξ[nt]+1 depends weakly from Yn for large n it is naturally to expect that
the last expression vanishes in probability as n → ∞. The next lemma contains
the key result in this direction.

Lemma 5.3 Fix any number ρ > 0 such that the real 2ρ-neighbourhood K2ρ of
the segment K lies inside the set D◦

ξ . Then there exist constants C = C(K2ρ) > 0
and n0 = n0({qn}) such that uniformly in n ≥ n0 and j = 1, . . . , n the following
inequality holds

E
(
eρ|ξj | | Yn = nqn

)
< C. (5.14)
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Proof. Let a be any number such that P(ξ = a) > 0. Then

P (ξj = a|Yn = nqn) =
P (Yn = nqn|ξj = a)

P (Yn = nqn)
P(ξj = a).

We prove below that for all sufficiently large n the following inequality holds

P (Yn = nqn|ξj = a)

P (Yn = nqn)
≤ C exp

{(
1− j

n

)
ah0

n + ρ|a|
}
, (5.15)

where h0
n gives the solution of (2.10) and C > 0 is some absolute constant. Then

for all integer a one has

P (ξj = a|Yn = nqn) ≤ C exp
{(

1− j

n

)
ah0

n + ρ|a|
}
P (ξj = a)

and so (5.14) follows easily from the inequality

E
(
eρ|ξj | | Yn = nqn

)
≤ C

+∞∑

k=−∞
exp
{(

1− j

n

)
kh0

n + 2ρ|k|
}
P (ξj = k)

and the inclusion
[
(1− j/n)h0

n − 2ρ, (1− j/n)h0
n + 2ρ

]
⊂ K2ρ.

It remains to verify estimate (5.15). Defining

Ỹn = Ỹn(j) ≡ Yn −
(
1− j

n

)
ξj , nq̃n ≡ nqn −

(
1− j

n

)
a

we obtain
P (Yn = nqn|ξj = a) ≡ P

(
Ỹn = nq̃n

)
. (5.16)

The logarithmic moment generating function L
Ỹn

(·) of the random variable Ỹn,

L
Ỹn

(h) ≡ lnE exp
{
hỸn

}
= LYn

(h)− L
((

1− j

n

)
h
)
, (5.17)

satisfies the relation of the kind (4.7) with the estimate O(n−1) that is uniform
in j = 1, . . . , n and h belonging to any fixed compact subset of D◦

ξ . Therefore,

determining h̃0
n from the equation

d

dh
L
Ỹn

(h)
∣∣∣
h=h̃0

n

= nqn (5.18)

one easily gets (recall (2.10))

d

dh
LY,∞(h)

∣∣∣
h=h0

n

− d

dh
LY,∞(h)

∣∣∣
h=h̃0

n

= O(n−1).

As a result, the implicit function theorem gives the estimate h̃0
n − h0

n = O(n−1)
as n → ∞ which is uniform in j = 1, . . . , n. Thus,

∣∣h̃0
n − h0

n

∣∣ ≤ ρ/2 (5.19)
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for all sufficiently large n.
The convergence h̃0

n − h0
n → 0 as n → ∞ and the analog of (4.7) for L

Ỹn
(·)

mean that the asymptotical behaviour of Ỹn is close to that of Yn, i. e., all the
statements of §4 hold true for Ỹn. In particular, the probability P

(
Ỹn = nqn

)
is

positive for all sufficiently large n. Then (recall (2.10), (5.18), (A.1), and (5.17))

L∗
Yn

(nqn)− L∗
Ỹn

(nqn) = h0
nnqn − LYn

(h0
n)− h̃0

nnqn + L
Ỹn

(h̃0
n)

=
(
h0
n − h̃0

n

)
nqn + LYn

(h̃0
n)− LYn

(h0
n)− L

((
1− j

n

)
h̃0
n

)

and therefore this expression is bounded uniformly in j = 1, . . . , n. Finally,
(4.5) and (4.50) together imply the inequality

P
(
Ỹn = nqn

)

P
(
Yn = nqn

) ≤
exp
{
−L∗

Ỹn

(nqn)
}
C̃2n

−3/2

exp
{
−L∗

Yn
(nqn)

}
c2n−3/2

≤ C3

which in view of (5.16) gives for all sufficiently large n the estimate

P (Yn = nqn|ξj = a)

P (Yn = nqn)
≤ C3

P
(
Ỹn = nq̃n

)

P
(
Ỹn = nqn

) . (5.20)

To evaluate the last fraction we apply analog of (4.5) for Ỹn to obtain

P
(
Ỹn = nq̃n

)

P
(
Ỹn = nqn

) = exp
{
L∗
Ỹn

(nqn)− L∗
Ỹn

(nq̃n)
}P
(
Ỹn,h̃0

n
= nq̃n

)

P
(
Ỹn,h̃0

n
= nqn

) . (5.21)

Observe that (5.18) and (A.3)–(A.4) imply

L∗
Ỹn

(nq̃n)− L∗
Ỹn

(nqn) ≥
d

dx
L∗
Ỹn

(nqn) (nq̃n − nqn) = h̃0
n

(
1− j

n

)
a (5.22)

and so it remains to evaluate the last fraction in (5.21).
Let first |a| ≤ D

√
n with some constant D > 0. Then the analog of (4.50)

for Ỹn imply

P
(
Ỹn,h̃0

n
= nq̃n

)

P
(
Ỹn,h̃0

n
= nqn

) ≤ C̃2n
−3/2

c̃2n−3/2
= C4. (5.23)

In the case |a| ≥ D
√
n we find a constant C5 such that

P
(
Ỹn,h̃0

n
= nq̃n

)

P
(
Ỹn,h̃0

n
= nqn

) ≤ 1

c̃2n−3/2
≤ C5e

ρ|a|/2 (5.24)

for all n. Finally, the estimates (5.20)–(5.24) and (5.19) together imply (5.15).
✷
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Theorem 5.4 Fix any natural k, a set of real numbers 0 < t1 < . . . < tk ≤ 1
and consider the process θ∗n(t) from (2.15).

Then the distribution of the random vector
(
θ∗n(t1), . . . , θ

∗
n(tk)

)
tends to the

Gaussian distribution with the density p̃k(·|0) defined in (5.7).

Proof. Denote

Υn =
(
Θ∗

n(t1), . . . ,Θ
∗
n(tk)

)
, υn =

(
θ∗n(t1), . . . , θ

∗
n(tk)

)
.

In view of the result of Theorem 5.2 it is enough to show that the difference
Υn − υn vanishes in probability as n → ∞.

Let C1 = C1(ρ) > 0 be a constant such that |x| ≤ C1 exp{ρ|x|} for all real x.
Then (5.13) and (5.14) imply the estimate

E
∣∣θ∗n(t)−Θ∗

n(t)
∣∣ ≤ 1√

n
E
(
|ξ[nt]+1| | Yn = nqn

)
<

CC1√
n

ց 0 as n → ∞

and so the difference θ∗n(t) − Θ∗
n(t) vanishes in probability as n → ∞. Clearly,

the same is true for Υn − υn. ✷

6 Weak compactness of the sequence µ
∗
n

To complete the proof of the Theorem 2.1 it remains to prove the weak com-
pactness of the sequence of measures µ∗

n. We obtain it here as an implication
of Theorem 2.2 from [12, Chap. 9] which presents a sufficient condition for the
weak compactness of sequences of measures in C[0, 1]. The following statement
verifies the assumption of the mentioned theorem.

Theorem 6.1 There exists a constant C > 0 such that

E |θ∗n(t)− θ∗n(s)|4 ≤ C|t− s|7/4

uniformly in all n ≥ n0 and all segments [s, t] ⊆ [0, 1], s < t.

The remaining part of this section is devoted to the proof of Theorem 6.1.
Two cases, ∆ ≡ |t− s| ≤ n−8/9 and ∆ > n−8/9, are treated separately.

Lemma 6.2 There exists a constant C′ > 0 such that for all n ≥ n1 and all
[s, t] ⊆ [0, 1], ∆ ≤ n−8/9, the following inequality holds true

E |θ∗n(t)− θ∗n(s)|4 ≤ C′|∆|7/4. (6.1)

Proof. Denote ēj,n ≡ L′((1− j/n)h0
n

)
and consider the function (cf. (5.4))

en(t) =

[nt]∑

j=1

ēj,n + {nt}ē[nt]+1,n. (6.2)
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According to estimates (5.5) and (2.9) one has the following relation

en(t)− neh̄(t) = to(
√
n) as n → ∞

that is uniform in t ∈ [0, 1]. Consequently, it is enough to prove the assertion of
the lemma for the random process

θ∗∗n (t) ≡ 1√
n

(
θn(t)− en(t)

)
. (6.3)

Observe that due to Jensen inequality for the function y = x4,

( l∑

i=1

ai

)4
≤ l3

l∑

i=1

a4i , (6.4)

and Lemma 5.3 one has the estimate

E
(
|ξj − ēj,n|4

∣∣Yn = nqn
)
≤ 8C4E

(
eρ|ξj | | Yn = nqn

)
+ 8
∣∣ēj,n

∣∣4 < C5 (6.5)

provided n is sufficiently large. Here the constant C4 is such that the inequality
|x|4 ≤ C4 exp{ρ|x|} holds for all real x.

Define
nt ≡

[
nt
]
, ns ≡

[
ns
]
. (6.6)

For nt = ns the assertion of the lemma follows easily from the observation

θ∗∗n (t)− θ∗∗n (s) =
{nt} − {ns}√

n

(
ξns

− ēns,n|Yn = nqn
)

=
√
n∆
(
ξns

− ēns,n|Yn = nqn
)
,

(6.7)

relation (6.5), and the condition n∆ ≤ 1. Otherwise nt > ns and we consider
two cases, ∆ ≤ 1

n
and ∆ > 1

n
, separately. The following formula is the starting

point in our reasoning (recall (6.3), (6.2), (2.12), and (2.3))

θ∗∗n (t)− θ∗∗n (s) =

nt+1∑

j=ns+1

α
(n)
s,t (j)√

n

(
ξj − ēj,n|Yn = nqn

)
, (6.8)

where

α
(n)
s,t (j) =





{nt}, if j = nt + 1,
1, if ns + 1 < j < nt + 1,
1− {ns}, if j = ns + 1,
0, otherwise.

(6.9)

Let ∆ ≤ 1
n . Then nt = ns + 1 and one easily obtains (cf. (6.5))

E |θ∗n(t)− θ∗n(s)|4 ≤ 8C5
(1− {ns})4

n2
+ 8C5

{nt}4
n2

≤ 8C5n
2|t− s|4 ≤ 8C5|t− s|2

(6.10)
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for all sufficiently large n. In the second inequality above we use the simple
relation a4 + b4 ≤ (a+ b)4 and the equality 1− {ns}+ {nt} = n∆.

In the case ∆ > 1
n we use Jensen inequality (6.4), the expansion (6.8), the

estimate |α(n)
s,t (j)| ≤ 1, and the simple observation nt+1−ns < 2+n∆ ≤ 2+n1/9

following from (6.6) and the condition ∆ ≤ n−8/9 to obtain

E
∣∣θ∗n(t)− θ∗n(s)

∣∣4 ≤ (nt + 1− ns)
3

n2

nt+1∑

j=ns+1

E
((

ξj − ēj,n
)4|Yn = nqn

)

≤ C5
(n∆+ 2)7/4(2 + n1/9)9/4

n2
≤ C′|t− s|7/4

(6.11)
for all sufficiently large n. Combining (6.7), (6.10), and (6.11) we get (6.1). ✷

Lemma 6.3 There exists a constant C′′ > 0 such that for all n ≥ n2 and all
[s, t] ⊆ [0, 1], ∆ > n−8/9, one has

E |θ∗n(t)− θ∗n(s)|4 ≤ C′′|∆|2. (6.12)

Proof. As before, it is enough to prove (6.12) for the random process θ∗∗n (·)
from (6.3). Define the random variable ζn (recall (6.9)),

ζn ≡ xn(t)− xn(s) =

nt+1∑

j=ns+1

α
(n)
s,t (j)ξj,

and consider the random vector Λn =
(
Yn, ζn/

√
∆
)
. Let LΛn

(H), H = (h0, h1),
be its logarithmic moment generating function,

LΛn
(H) ≡ ln E exp

{
(H,Λn)

}
=

n∑

j=1

L
((

1− j

n

)
h0 +

α
(n)
s,t (j)√
∆

h1

)
. (6.13)

For H0
n = (h0

n, 0) with h0
n determined from (2.10) denote

E∆
n ≡ ∇HLΛn

(H)
∣∣∣
H=H0

n

= (nqn, e∆), (6.14)

where

e∆ ≡ ∂

∂h1
LΛn

(H)
∣∣∣
H=H0

n

=

nt+1∑

j=ns+1

α
(n)
s,t (j)√
∆

ēj,n.

Observe that in view of the estimate

E
(θ∗∗n (t)− θ∗∗n (s)√

∆

)4
≤
∑

k≥0

(k + 1)4P
(∣∣ζn − e∆

√
∆
∣∣

√
n∆

> k
∣∣Yn = nqn

)
(6.15)
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it is sufficient to prove the finiteness of the last sum for all n ≥ n2. We prove
below the following estimate

P
(
|ζn − e∆

√
∆| > k

√
n∆
∣∣Yn = nqn

)
≤ gn(k),

where for some positive constants C1, C2, α1, α2 and δ

gn(k) =

{
C1 exp{−α1k

2}, if |k| ≤ δ
√
n∆,

C2 exp{−α2n
1/10|k|}, if |k| > δ

√
n∆.

(6.16)

Then the convergence in (6.15) follows immediately.
To prove estimate (6.16) we consider the vector (cf. (6.14))

Z∆
n ≡ (nqn, e∆ + k

√
n) = E∆

n + (0, k
√
n) (6.17)

and determine Hn = Hn(k) = (h̄0
n(k), h̄

1
n(k)) from the condition

∇HLΛn
(H)

∣∣∣
H=Hn

= Z∆
n , (6.18)

It follows from (6.13) and the implicit function theorem that provided k in
(6.17) is of order

√
n∆ the quantities h̄0

n(k)− h0
n and h̄1

n(k)
√
∆ are of order ∆.

Therefore, there exist δ = δ(ρ) > 0 and n3 > 0 such that for all k, |k| ≤ δ
√
n∆,

and n ≥ n3 the following inequalities hold true

∣∣h̄0
n(k)− h0

n

∣∣ ≤ ρ∆,
∣∣h̄1

n(k)
∣∣ ≤ ρ

√
∆. (6.19)

Consequently, if ρ is the same as in Lemma 5.3, then the function LΛn
(Hn) as

well as all its derivatives are uniformly bounded. For future references we fix
such value δ(ρ).

Assuming that ζn − e∆
√
∆ ≥ 0 (in the opposite case the estimates are

similar) we rewrite

P
(
ζn > e∆

√
∆+ k

√
n∆
∣∣Yn = nqn

)

=
P
(
Yn = nqn, ζn > e∆

√
∆+ k

√
n∆
)

P(Yn = nqn)

=
e−L∗

Λn
(Z∆

n )

e−L∗

Yn
(nqn)

P
Hn

(
Yn = nqn, ζn > e∆

√
∆+ k

√
n∆
)

P(Yn,h0
n
= nqn)

,

(6.20)

where Hn was determined in (6.18), h0
n in (2.10) and P

Hn
(·, ·) denotes the tilted

distribution of Λn (cf. (4.12)) with the fixed value H = Hn.
Our aim here is to evaluate the last expression in (6.20). Let first |k| ≤

δ
√
n∆. It follows from (6.13), (6.14), (2.10) and duality relations (A.1) that

L∗
Λn

(E∆
n ) = L∗

Yn
(nqn) and ∂1L

∗
Λn

(E∆
n ) = 0, (6.21)
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where ∂1L
∗
Λn

(E∆
n ) denotes the derivative of the function L∗

Λn
(x0, x1) with re-

spect to x1. Hence, applying (A.5) one obtains

L∗
Λn

(Z∆
n )− L∗

Yn
(nqn) =

∫ k
√
n

0

(
k
√
n− y

)
∂1

2L∗
Λn

(nqn, e∆ + y) dy. (6.22)

To bound the derivative ∂1
2L∗

Λn
(·) from below we determine Hy

n =
(
h0,y
n , h1,y

n

)

from the condition

∇HLΛn
(H)

∣∣∣
H=H

y
n

= Ey
n ≡

(
nqn, e∆ + y

)
,

where |y| ≤ |k|√n ≤ δ
√
n∆. The same estimates as in §4 (see (4.19)) prove that

the matrix HessLΛn
(Hy

n) is positively definite provided n is sufficiently large.
Then

0 < det HessLΛn
(Hy

n) ≤
∂2

∂h0
2LΛn

(Hy
n)

∂2

∂h1
2LΛn

(Hy
n)

and applying duality relation (A.1) one obtains

∂2

∂x1
2 L∗

Λn
(Ey

n) =

∂2

∂h0
2LΛn

(Hy
n)

det HessLΛn
(Hy

n)
≥
( ∂2

∂h1
2LΛn

(Hy
n)
)−1

≥ C3

n
,

since for all Hy
n under consideration the derivative ∂2

∂h1
2LΛn

(Hy
n) is bounded

from above. Substituting the last estimate into (6.22) one gets

L∗
Λn

(Z∆
n )− L∗

Yn
(nqn) ≥

C3

n

∫ k
√
n

0

(
k
√
n− y

)
dy =

C3k
2

2
(6.23)

provided |k| ≤ δ
√
n∆.

In the opposite case, |k| ≥ δ
√
n∆, we apply Property A.2 to obtain

L∗
Λn

(Z∆
n )− L∗

Λn
(E∆

n ) ≥
C3

2
δ
√
n∆|k| ≥ C3δn

1/10

2
|k|. (6.24)

It remains only to estimate the last fraction in (6.20). Consider first the case
|k| < δ

√
n∆. Let LY

n,Hn
(h) be the logarithmic moment generating function of

the first component Yn,Hn
of the tilted random vector Λn,Hn

,

LY
n,Hn

(h) ≡ ln
( ∑

k0∈Z1

ehk0P
Hn

(Yn = k0)
)
= LΛn

(h̄0
n + h, h̄1

n)− LΛn
(h̄0

n, h̄
1
n).

In view of the choice δ > 0 in (6.19) the quantity n−1L′′
Y
n,Hn

(h) is bounded

from below by infh∈K2ρ
L′′(h) for all sufficiently large n. Therefore, all the

considerations of §4 are true for Yn,Hn
and so (cf. (4.49))

P
Hn

(
Yn = nqn

)
≤ C0

n

( ∂2

∂h0
2
LΛn

(Hn)
)−1/2

.
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As a result, one obtains (recall (6.21))

P
Hn

(
Yn = nqn

)

P(Yn,h0
n
= nqn)

≤ C0

c0

(
d2

dh2LYn
(h0

n)
∂2

∂h0
2LΛn

(Hn)

)1/2

≤ C4, (6.25)

where the last inequality follows from the boundedness of n−1L′′
Yn

(h) in K◦.

In the opposite case, |k| ≥ δ
√
n∆, one easily gets (recall (4.50))

P
Hn

(
Yn = nqn

)

P(Yn,h0
n
= nqn)

≤ 1

P(Yn,h0
n
= nqn)

≤ n3/2

c2
≤ C5 exp{

C3δn
1/10

4
|k|}. (6.26)

Finally, (6.16) follows from (6.23)–(6.26) with C1 = C4, C2 = C5, α1 = C3/2,
and α2 = C3δ/4. ✷

The assertion of Theorem 6.1 follows immediately from Lemmas 6.2 and 6.3.

Proof of Theorem 2.1 The statement of Theorem 2.1 is a simple implication of
Theorems 5.2, 5.4, 6.1, and Theorem 2.2 from [12, Chap. 9]. ✷

Appendix

We collect here some properties of convex functions used above.

Property A.1 Let f(·) be a strictly convex twice continuously differentiable
real function defined in a region U ⊂ Rm (m ≥ 1) and f∗(p) be its Legendre
transformation, f∗(p) ≡ supx

(
(x, p) − f(x)

)
, p ∈ Rm. Assume that the values

x ∈ U and p ∈ Rm are related via ∇f(x) = p. Then the following relations hold

f∗(p) = (x, p)− f(x),

∇f∗(p) = x,

Hess f∗(p) =
(
Hess f(x)

)−1
.

(A.1)

Observe that in the considered case the matrix Hess f(x) of the second
derivatives f(x) as a function of x ∈ Rm is strictly positive definite at x.

This duality property of the Legendre transformation can be verified directly
or induced from the known facts ([19, Chap. 5]).

Property A.2 Let fγ , γ ∈ Γ, be a family of convex functions satisfying the
condition fγ(x) ≥ fγ(0) = 0. Assume that for some b > 0 and all x, |x| ≤ D,
with some positive D the following inequality holds true

fγ(x) ≥ bx2.

Then for all x, |x| ≥ D, one has

fγ(x) ≥ bD|x|.
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Proof. Evidently. ✷

Finally, we prove here the following property of the Legendre transforma-
tion. Let fn(·) be a sequence of strictly convex twice continuously differentiable
functions defined in some δ-neighbourhood Uδ(x∗) of the point x∗ ∈ R1. As-
sume that there exists a strictly convex twice continuously differentiable real
function f(·) defined in Uδ(x∗) such that

dk

dxk
fn(x) =

dk

dxk
f(x) +O(n−1), k = 0, 1, 2, (A.2)

where the estimate O(·) is uniform in some fixed segment K ⊂ Uδ(x∗). Let pn
be a sequence of real numbers such that pn−p = o(n−1/2) as n → ∞ for some p
and for any natural n there exists the solution xn of the equation f ′

n(xn) = pn
belonging to the interior K◦ of the compact set K. Suppose also that the limiting
point x of the sequence xn also belongs to K◦. Let f∗

n(·), f∗(·) be the Legendre
transformations of the functions fn(·) and f(·) correspondingly.

Property A.3 There exist positive constants D0 = D0({pn},K) and α = α(K)
such that:

a) for all real s satisfying the condition |s| < D0 one has

f∗
n(pn + s) ≥ f∗

n(pn) + xns+ αs2. (A.3)

b) for any D = Dn, 0 < D ≤ D0, and any s, |s| ≥ D, one has:

f∗
n(pn + s) ≥ f∗

n(pn) + xns+ αD|s|. (A.4)

In the proof of Property A.3 we will use the following simple formula that can
be verified directly using the integration by parts. Let f ∈ C2(a, b), x0 ∈ (a, b)
and f ′(x0) = 0. Then for any x ∈ (a, b) one has

f(x)− f(x0) =

∫ x

x0

(x− y)f ′′(y) dy. (A.5)

Proof. Let K1 ⊂ K◦ be the smallest segment containing all the sequence xn

and its limit as well. Clearly, the difference K◦ \ K1 consists of two intervals.
Every function f ′

n(·) is strictly increasing in K◦, therefore for any n the image
f ′
n(K◦ \ K1) also consists of two intervals. Denote by D′ the length of minimal
of them (over all n). Observe that (A.2) implies the estimate D′ > 0. We put
D0 = D′/2. Then for any s, |s| ≤ D0, and any n one has

pn + s ∈
{
f ′
n(x) : x ∈ K◦}.

Denote gn(s) = f∗
n(pn + s) − f∗

n(pn) − xns. Since every f ′
n(·) is strictly

increasing the equation f ′
n(yn) = pn + r has a unique solution yn = yn(r) for

any r, |r| ≤ D0, and so (A.1) implies

g′′n(r) = f∗′′

n (pn + r) =
(
f ′′
n (yn)

)−1 ≥ inf
n

inf
x∈K◦

(
f ′′
n (x)

)−1
= 2α,
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where in view of (A.2) the constant α is positive. Applying (A.5) we obtain

gn(s) =

∫ s

0

(s− r)g′′n(r) dr ≥ 2α

∫ s

0

(s− r) dr = αs2

which coincides with (A.3). Finally, relation (A.4) follows easily from (A.3) and
Property A.2. ✷
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