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ABSTRACT
The thermal history of the intracluster medium (ICM) is complex. Heat input from cluster

mergers, from active galactic nuclei (AGN) and from winds in galaxies offsets and may even

prevent the cooling of the ICM. Consequently, the processes that set the temperature and density

structure of the ICM play a key role in determining how galaxies form. In this paper, we focus

on the heating of the ICM during cluster mergers, with the eventual aim of incorporating this

mechanism into semi-analytic models for galaxy formation.

We generate and examine a suite of non-radiative hydrodynamic simulations of merg-

ers in which the initial temperature and density structure of the systems are set using re-

alistic scaling laws. Our collisions cover a range of mass ratios and impact parameters,

and consider both systems composed entirely of gas (these reduce the physical processes

involved), and systems comprising a realistic mixture of gas and dark matter. We find

that the heating of the ICM can be understood relatively simply by considering evolution

of the gas entropy during the mergers. The increase in this quantity in our simulations

closely corresponds to that predicted from scaling relations based on the increase in cluster

mass.

We examine the physical processes that succeed in generating the entropy in order to un-

derstand why previous analytical approaches failed. We find the following. (i) The energy

that is thermalized during the collision greatly exceeds the kinetic energy available when the

systems first touch. The smaller system penetrates deep into the gravitational potential before

it is disrupted. (ii) For systems with a large mass ratio, most of the energy is thermalized in the

massive component. The heating of the smaller system is minor and its gas sinks to the centre

of the final system. This contrasts with spherically symmetric analytical models in which ac-

creted material is simply added to the outer radius of the system. (iii) The bulk of the entropy

generation occurs in two distinct episodes. The first episode occurs following the collision of

the cores, when a large shock wave is generated that propagates outwards from the centre. This

causes the combined system to expand rapidly and overshoot hydrostatic equilibrium. The

second entropy generation episode occurs as this material is shock heated as it recollapses.

Both heating processes play an important role, contributing approximately equally to the final

entropy. This revised model for entropy generation improves our physical understanding of

cosmological gas simulations.
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1 I N T RO D U C T I O N

The structure of the X-ray emitting gas that is seen in galaxy

groups and clusters is still not understood. This gas (the intraclus-

ter medium, hereafter ICM) dominates the baryonic mass content of

clusters and is material which is left over from galaxy formation. As

such its properties present an important clue to the galaxy formation

process. If the processes that set its temperature and density struc-

ture could be understood they should provide valuable constraints

on galaxy formation models. However, linking together models for

galaxy formation and accurate numerical methods capable of trac-

ing the hydrodynamic evolution of the ICM has proved difficult. If

cooling is neglected, the emission properties of clusters can be cal-

culated in a robust manner (e.g. Evrard, Metzler & Navarro 1996);

however, such simulations cannot form galaxies and thus omit a fun-

damental component of the physics. On the other hand, if cooling

is included in the simulations, the results are not stable to changes

in numerical resolution unless an effective form of heating is intro-

duced to limit the cooling rate in small or early haloes (e.g. Balogh

et al. 2001; Borgani et al. 2006). Many different ‘feedback’ mech-

anisms have been tried to oppose the cooling instability. Examples

include galaxy winds and thermal energy injection (e.g. Springel

& Hernquist 2003), delayed cooling (e.g. Kauffmann et al. 1999),

preheating of intergalactic gas (e.g. Evrard & Henry 1991; Kaiser

1991), thermal conduction (e.g. Benson et al. 2003; Dolag et al.

2004) and heating by active galactic nuclei (AGN) (e.g. Dalla

Vecchia et al. 2004; Sijacki & Springel 2006). These schemes have

all met with various levels of success, but have not yet achieved

a simultaneous match to the observed galaxy luminosity function,

stellar mass fraction and temperature and density structure of the

ICM. One factor slowing the development of these theoretical mod-

els is the lack of understanding of the physical processes at work in

the simulations. Because it is so difficult to quantify the likely effect

of introducing new processes, the models must be developed on a

largely trial and error basis.

An alternative approach is to develop a semi-analytic model of

the thermal history of the ICM, in which the complex physics is

encapsulated in a small number of semi-empirical equations. This

approach has been very successful in improving our understanding

of galaxy formation (e.g. Cole et al. 2000; Springel et al. 2005;

Bower et al. 2006). The semi-analytic approach has been tried in

several studies (e.g. Wu, Fabian & Nulsen 2000; Bower et al. 2001;

Benson et al. 2003), but the results have been limited because the

techniques for setting the gas distribution in the haloes have been

ad hoc. What is needed is to take a step back, and to better un-

derstand the results of simple gas hydrodynamic models. A better

physical understanding of how entropy of the ICM is set in these

simulations would equip us with the techniques needed to attack the

much greater physical complexity of the problem when cooling and

galaxy formation are included. This is the subject of this paper.

The starting point for the next generation of semi-analytical ap-

proaches to the ICM should be to describe the physical state of the

gas in terms of its entropy distribution function. Entropy is a power-

ful concept for understanding the density and temperature structure

of clusters, and was initially introduced as a means of quantifying the

departures of cluster structures from the simple scalings expected

for their mass and temperature distributions (Evrard & Henry 1991;

Kaiser 1991; Bower 1997; Balogh, Babul & Patton 1999; McCarthy

et al. 2003). By knowing the entropy distribution of the gas, we can

determine the density and temperature profiles of the ICM within a

given dark matter gravitational potential (e.g. Voit et al. 2002). This

process requires that an outer boundary condition is set (e.g. by

computing the external pressure due to infalling gas), but the details

of the boundary condition have only a weak effect on the profile.

Discussing clusters in the language of entropy is extremely pow-

erful, since the gas responds adiabatically to slow changes in the

gravitational potential. Furthermore, the buoyancy of the ICM en-

sures that a relaxed system will have an ordered structure with the

lowest entropy gas located in the deepest part of the gravitational

potential. Only cooling and shock heating or mixing events alter

the entropy distribution of the gas: cooling lowers the gas entropy,

while shock heating and mixing can only raise it. Cooling in clus-

ters is already well understood and can be modelled with simple

semi-analytic techniques (e.g. McCarthy et al. 2004). However, we

need to understand how entropy is generated during cluster growth

to self-consistently model the cosmological formation of structure

in a semi-analytic way.

Therefore, what sets the entropy distribution in clusters? Previous

papers have looked at how entropy is generated in smoothly infalling

gas (Cavaliere, Menci & Tozzi 1998; Abadi, Bower & Navarro 2000;

Tozzi & Norman 2001; Dos Santos & Doré 2002; Voit et al. 2003).

For a spherically symmetric smooth shell, it is possible to determine

the infall velocity and density of this material at the cluster virial

radius. The bulk infall velocity is converted into internal thermal

energy at a shock surrounding the cluster. The entropy generated

in the shock can be computed from the Rankine–Hugoniot shock

jump conditions. Modelling the growth of clusters in this way pro-

duces realistic entropy profiles, however, the normalization of the

entropy is somewhat too high, so that the model predicts clusters

with average densities ρgas, that are lower than observed (see Voit

et al. 2003).

However, the smooth accretion approximation is not valid in a

cold dark matter (CDM) dominated universe since most of the mass

accreted by clusters has previously collapsed into smaller virialized

mass concentrations (e.g. Lacey & Cole 1993; Rowley, Thomas &

Kay 2004; Cohn & White 2005). This leads to a problem for the pic-

ture above since the entropy generated drops rapidly if the accreted

material is already dense and warm prior to the accretion shock. Im-

portantly, if this deficit is present at every step in a system’s merger

history, the problem becomes greatly compounded over time. This

effect is far larger than the overestimate of the cluster entropy ob-

tained in the smooth accretion case. Modelling a realistic structure

in the accreted material leads to systems that are much denser and

more luminous in X-rays than observed systems. This issue is dis-

cussed by Voit et al. (2003).

Recently, considerable progress has been made in simulating the

growth of clusters using purely numerical techniques (e.g. Borgani

et al. 2004; Kravtsov, Nagai & Vikhlinin 2005). The numerical simu-

lations clearly show that ρgas ≈ f bρ tot (where fb is the cosmic baryon

fraction and ρ tot is total baryon + dark matter density) at large radii,

in agreement with observations (e.g. McCarthy et al. 2006; Vikhlinin

et al. 2006). This result holds for a wide range of simulation param-

eters and is largely insensitive to numerical technique or resolution

(Frenk et al. 1999). The agreement between simulations and obser-

vations indicates that we do not yet have an adequate understanding

of the lumpy accretion process, since analytic attempts to model

this process yield results in strong discord with the observations.

Our immediate aim is to improve our understanding of these simu-

lations. Clearly, the approximate methods we wish to develop will

not replace direct simulations, but they do provide an essential tool

for understanding their results, for estimating the impact of limited

numerical resolution, and for exploring the vast parameter space

of heating mechanisms used in galaxy formation models. In sub-

sequent papers, we will apply this understanding to improve the
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treatment of gas heating in semi-analytic codes galaxy formation

models (e.g. Cole et al. 2000; Bower et al. 2006). By introducing

our models for the shock heating of the ICM, we will be able to self-

consistently model additional heating from supernovae and AGN.

At present, the best efforts to track the impact of AGN heating in

semi-analytic models (e.g. Bower et al. 2001) cannot follow prop-

erly the development of entropy and use an ad hoc description based

on energy conservation.

In this paper, we address the problem of lumpy accretion by fo-

cusing on idealized simulations of merging systems. We consider

simple two-body collisions and explore how the entropy of the fi-

nal system is generated. In setting up our two-body collisions, we

remain as faithful as possible to the results of cosmological simula-

tions. We initialize our systems with structural properties guided by

the results of recent cosmological simulations and explore a wide

range of representative mass ratios and orbits. These simulations

show that the spherical accretion model previously considered is

a poor representation of the true physical process in hierarchical

cosmological models. We show that the kinetic energy of the infall

lumps is much greater than previously estimated. Furthermore, we

show that, if the mass ratio of the accretion event is large, only a

small fraction of the kinetic energy is dissipated in the smaller com-

ponent. Most of the heating effect is felt by the larger system. Our

simulations allow us to present a much improved physical model

for entropy generation in clusters.

The present paper is outlined as follows. In Section 2, we present

the details of our simulation setup, including a discussion of the

initial structural conditions of our systems, the adopted orbital pa-

rameters of the mergers, and other characteristics of the simulations.

In Section 3, we analyse the entropy history of the systems during

the merging process and qualitatively compare it with the standard

spherical accretion model. In Section 4, we present an analytic model

that encapsulates the essential physics of the merging process in our

idealized simulations. Finally, in Section 5, we summarize and dis-

cuss our findings.

2 S I M U L AT I O N S E T U P A N D M E T H O D S

The baryons in virialized systems formed in non-radiative cos-

mological simulations approximately trace the dark matter with

ρgas ≈ f bρ tot. Any reasonable model of shock heating ought to re-

produce this basic result. However, as outlined in Section 1, it has so

far proved quite difficult to construct a physical analytic model that

can successfully pass this test. Exploration of idealized two-body

mergers could provide the key insights necessary to achieve this

goal. These idealized mergers should be representative of typical

mergers in cosmological simulations and should themselves repro-

duce the propagation of (near) self-similarity. However, this is by

no means a guaranteed result. First, idealized approaches such as

those adopted below may be too simplistic to mimic closely enough

the typical merger event in cosmological simulations. For example,

the degree to which the self-similarity of systems formed in non-

radiative cosmological simulations is sensitive to the exact initial

conditions of the systems (i.e. structural properties) or to the prop-

erties of the merger orbits is unclear. There are few studies in the

literature to date that examine the dependence of the properties of

the baryons on the detailed merger history of a system. On the other

hand, the adopted resolution of our idealized mergers is typically

better than that of cosmological simulations. Therefore, it is pos-

sible that we may resolve phenomena that are not yet adequately

resolved in cosmological simulations. In either case, the reproduc-

tion of self-similarity in our idealized simulations is not an automatic

result. Below, we explore under what conditions self-similarity is

achieved in our idealized merger simulations.

The following sections present a description of our simulation

setup and methods. This discussion goes into some detail and the

reader who is mainly interested in the results of the simulations may

wish to skip ahead to Section 3.

2.1 Initial conditions

We make use of the public version of the parallel TREESPH code

GADGET-2 (Springel 2005) for our merger simulations. The La-

grangian nature of this code makes it ideal for tracking the entropy

evolution of specific sets of particles (or in principle even on a parti-

cle by particle basis) over the course of the simulations. By default

the code implements the entropy-conserving SPH scheme of Springel

& Hernquist (2002). This is ideal for our purposes since the code

explicitly guarantees that the entropy of a gas particle will be con-

served during any adiabatic process. Thus, we are assured that any

increase in this quantity is rooted in physics.

We perform a series of binary merger simulations involving sys-

tems ranging in mass from 1014 M� � M200 � 1015 M� with the

mass of the primary system (henceforth, we refer to the ‘primary’

system as the more massive of the two systems) in all collisions set

by default to M200 = 1015 M�. (M200 is defined in Section 2.1.1.)

Thus, we simulate collisions characterized by mass ratios ranging

from 10:1 to 1:1. Although we have experimented with a variety

of mass ratios in this range, we present the results for simulations

with mass ratios of 10:1, 3:1 and 1:1 only, but note that these yield

representative results. Even though we have chosen to focus on the

high end of the mass spectrum, the results should also be appli-

cable to mergers involving lower mass systems (e.g. galaxies) so

long as the mass ratio is similar. This is by virtue of the fact that

gravity, which is scale-free, is completely driving the evolution of

the systems. One of the reasons for choosing to focus on clusters is

that gravitational processes dominate their final properties (X-ray

observations demonstrate that non-gravitational processes such as

cooling and AGN feedback influence the very central regions only

of massive clusters; see e.g. McCarthy et al. 2006). Therefore, we

expect that our idealized merger simulations will be directly appli-

cable to the bulk of the baryons in real clusters, although we leave

a comparison with X-ray (and/or SZ effect) observations for future

work. As outlined in Section 1, our primary goal is to develop a

physical description of entropy generation in mergers.

2.1.1 Gas-only models

We have set up and run collisions of systems composed purely of

gas. Of course, observations demonstrate that dark matter dominates

by mass the baryons in galaxies, groups and clusters and is of fun-

damental importance in the process of structure formation. In this

respect, it might be expected that the gas-only merger simulations

will have limited applicability. On the other hand, we anticipate that

these idealized collisions will be considerably more straightforward

to interpret than the gas + dark matter (hereafter, gas+DM) simu-

lations (described below), given that the former have only a single

phase to consider. If a physical understanding of the gas-only runs

can be achieved then this could be quite helpful for understanding

the role of dark matter in the combined runs. In fact, it is demon-

strated in Section 3 that the gas+DM collisions exhibit what may

be regarded as fairly minor deviations from the results of the gas-

only runs. Thus, we find the gas-only simulations are potentially an
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excellent tool for elucidating the key physical processes in mergers

of massive systems.

The systems are constructed to initially be structural copies of

one another. In particular, the gas is assumed to have a NFW density

profile (Navarro, Frenk & White 1997):

ρ(r ) = ρs

(r/rs)(1 + r/rs)2
, (1)

where ρs = Ms/(4πr3
s ) and

Ms = M200

ln(1 + r200/rs) − (r200/rs)/(1 + r200/rs)
. (2)

In the above, r200 is the radius within which the mean density

is 200 times the critical density, ρcrit, and M200 ≡ M(r200) = (4/3)

πr3
200 × 200 ρcrit.

To define the density profile for a halo of mass M200, we must set

the scale radius, rs. The scale radius is often expressed in terms of a

concentration parameter, c200 ≡ r200/rs. There are numerous stud-

ies that have examined the trend between concentration parameter

and mass in pure dark matter cosmological simulations (e.g. Eke,

Navarro & Steinmetz 2001). The fact that there is a trend at all im-

plies that the dark matter haloes in these simulations are not strictly

self-similar. However, the mass dependence of the concentration

parameter is weak, varying by only a factor of 2 or so from indi-

vidual galaxies to galaxy clusters (with lower mass haloes being

more concentrated). A fixed concentration parameter of c200 = 4, a

value typical of galaxy clusters simulated in a �CDM concordance

cosmology, is adopted for all of our systems.

In order to completely specify the properties of the gas, we must

choose an entropy profile and an outer boundary condition. As out-

lined in Section 1, the gas entropy is probably the most useful quan-

tity to track during the simulations. In order to specify the entropy

profiles of the systems, it is assumed that the gas is initially in hy-

drostatic equilibrium:

dP(r )

dr
= − G M(r )

r 2
ρgas(r ). (3)

The entropy,1 K, is then deduced through the equation of state P =
Kρ5/3

gas . A boundary condition must be supplied before equation (3)

can be solved and we specify a value for the pressure of the gas at

r200, where we truncate the gas profiles (unless stated otherwise).

There is some freedom in our choice of the pressure at the edge of

the system. However, for physically reasonable values of P(r200),

there is in fact very little difference between the resulting profiles.

For the bulk of the gas, we find that the requirement of hydrostatic

equilibrium forces K(Mgas) into a near power-law distribution with

an index of approximately 1.3. This can be understood by noting

that at intermediate radii the NFW profile is approximated well by

an isothermal profile (i.e. ρ ∝ r−2), which has an entropy profile

characterized by dlog K/dlog Mgas = 4/3. To ensure that our initial

systems are structural copies of one another and to ease the com-

parison between the initial and final systems later on, a value of

P(r200) that establishes this near pure power-law entropy distribu-

tion all the way out to the system’s edge is selected. In real systems,

the hot diffuse baryons are supposedly confined by the ram pres-

sure of infalling material. Experimenting with a physical model for

this ram pressure, Voit et al. (2002) have demonstrated that groups

1 We adopt this common redefinition of entropy, which is related to the

standard thermodynamic specific entropy via a logarithm and an additive

term that depends only on fundamental constants.

and clusters are indeed expected to have near power-law entropy

distributions out to large radii.

The analytic profiles must be discretized into individual particles

for input into the GADGET-2 code. In particular, the initial particle

positions, velocities and internal energies (per unit mass) must be

specified.

For the initial particle positions, we start by generating a glass

using the ‘MAKEGLASS’ compiler option of GADGET-2. Basically, a

Poisson distribution of particles is generated and is then run with

GADGET-2 using − G in place of G for Newton’s constant. We allow

the simulation to run for ≈1000 time-steps to ensure that the glass

achieves a uniform distribution. This uniform distribution is then

morphed into the mass profile that corresponds to the density profile

given in equation (1). This is done by selecting a point inside the

distribution of particles, which we have taken to be the centre of

mass, ranking all of the particles according to the distance from this

point, and then moving each particle radially such that the desired

mass profile is achieved.

For the particle velocities, the baryons are initially assumed to be

at rest in their hydrostatic configuration.

The specific internal energy, I, defined as I = (3/2)P/ρgas, of each

particle is assigned by using the particle’s distance from the centre

of the halo and interpolating within the analytic profiles derived

above.

Lastly, we surround the systems with a low-density medium with

a pressure set to P(r200). This medium is dynamically negligible and

is simply put in place to confine the gas particles near the system’s

edge. Without a confining medium as much as 20 per cent of the

system’s mass can leak beyond r200.

2.1.2 Gas+DM models

For the systems containing both gas and dark matter a slightly dif-

ferent procedure is used to construct the systems. First, we set up

systems composed entirely of dark matter. The density profiles of the

systems are given by equation (1). However, for reasons described

below, we extend the dark matter well beyond r200, to an overdensity

of 25 (for our adopted concentration r25 ≈ 2.44r200). As in the gas-

only setup, a glass particle distribution is morphed into the desired

mass profile. Unlike the gas, however, the dark matter particles have

no thermal pressure and must be assigned appropriate velocities in

order to maintain this mass profile. To achieve this, we solve the

Jeans equation (see Binney & Tremaine 1987)

d
[
σ 2

r (r )ρ(r )
]

dr
= − G M(r )

r 2
ρ(r ) (4)

for the velocity dispersion profile, σr (r), of the systems. Equation (4)

implicitly assumes that the orbits of the dark matter particles are

purely isotropic.2

To solve equation (4), it is assumed that virial equilibrium holds

at the edge of the dark matter halo (see e.g. Ricker & Sarazin 2001);

i.e.

σr (r25) =
√

G M25

3r25

. (5)

2 Cosmological simulations demonstrate that pure isotropy is violated in the

outer regions of clusters. However, given that our (hydrostatic) gas-only

simulations yield results that are remarkably consistent with our gas+DM

simulations (see Section 3.2), this implies that the resulting structural prop-

erties of our systems are not sensitive to how the initial (pre-merger) mass

profiles are maintained.
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0.1 1

0.1

1

Figure 1. Testing the local Maxwellian approximation for the primary sys-

tem. The dashed blue curve shows the initial mass profile extended out to

r25. The solid red curve shows the resulting equilibrium mass profile after

running the dark matter halo in isolation for 50 Gyr (i.e. many dynamical

times). Over the range the 0.1 � r/r200 � 1.0 the initial and final mass

profiles follow each other closely.

We have also experimented with the boundary condition thatσ 2
r (r)

ρ(r) → 0 as r → ∞ and obtained very similar results within r25.

Henceforth, results are presented for the runs that make use of the

boundary condition given by equation (5).

Each of the three velocity components for a dark matter particle

are assigned a random value picked from a Gaussian distribution

with width equal to the 1D velocity dispersion, σr , at that radius.

However, it is known that this local Maxwellian approximation does

not result in a system that is initially in equilibrium (though it is not

far removed from one). Of most concern is that a sharp truncation

of the system at some finite radius3 results in a significant amount

of the mass near this radius seeping out to much larger distance.

Thus, the resulting equilibrium mass profile can be significantly dif-

ferent from that which was originally intended. In fact, this happens

at all radii but in the system’s interior the flux of particles moving

to larger radii is offset by particles moving inwards (which were

originally at larger radii). This obviously cannot happen near the

system’s edge where there are no particles originally at larger radii

(and moving inwards) to replace those moving away from the sys-

tem’s centre. One way to overcome this problem is to apply a smooth

tapering of the density profile beyond the system’s edge and com-

pute the distribution function of the particles as opposed to making

the Maxwellian assumption (e.g. Kazantzidis, Magorrian & Moore

2004; Poole et al. 2006). However, we adopt a more simplistic, but

still effective, method for overcoming this problem. In particular, as

mentioned above, the initial dark matter profile is extended well be-

yond r200, out to r25. The aim is to ensure that within r200, our region

of interest, there is a large enough influx of particles to maintain the

desired mass profile.

The pure dark matter haloes are run in isolation for many dy-

namical times. In Fig. 1, we show that by extending the dark matter

3 Note that some sort of truncation is necessary since the mass profile cor-

responding to equation (1) diverges at large radii.

halo out to r25, the resulting equilibrium mass profile for the pri-

mary system traces the initial (intended) profile within r200 quite

well. A slight deviation is apparent for r < 0.1r200, which is due to

limited mass resolution. However, we explicitly demonstrate in the

Appendix that this deviation has negligible consequences for our

equal mass mergers. In the case of our unequal mass mergers, the

secondary systems are resolved with fewer particles and therefore

the deviation at small radii is slightly larger in these systems. How-

ever, as we demonstrate in Section 4.2 and discuss further in the

Appendix, the vast bulk of the energy is thermalized in the more

massive primary system. Therefore, as long as the primary system

is well resolved the properties of the final merged system should be

robust. This is what likely accounts for the fact that the properties

of massive virialized systems formed in non-radiative cosmologi-

cal simulations are robust to relatively large changes in numerical

resolution (see e.g. Frenk et al. 1999).

A drawback of extending the halo out to much larger radii is that

a significant fraction of the mass is located outside the region of

interest (thus, we potentially waste a good deal of computational

effort). In order to mitigate this issue, we take the equilibrium con-

figuration after running the dark haloes in isolation and simply clip

particles that lie beyond r50. We have run the clipped haloes for a

further 10 Gyr and verify that the mass profiles within r200 is vir-

tually unaffected. This clipped equilibrium configuration is used to

set up our initial gas+DM systems. We keep the current positions

and velocities for our initial values for the dark matter particles in

the combined runs. For the gas particles, we also use the positions

of the dark matter particles (that is, for those particles that lie within

r200) but reflect them through the centre of mass so that the gas par-

ticles do not lie directly on top of the dark matter particles. The gas

particle velocities are set to zero and the internal energy densities

are determined by placing the gas in hydrostatic equilibrium within

the total gravitational potential. As in the gas-only models described

above, a pressure boundary condition is selected such that K(Mgas)

is nearly a pure power law out to r200.

The above procedure implies that we will have equal numbers

of gas and dark matter particles in our combined runs within r200

(i.e. double the number of particles used in the isolated dark matter

run within that radius). In order to conserve mass, so that the equi-

librium state for the dark matter is still valid, we reassign the dark

matter particle masses to (1 − f b) times that used in the isolated

run while the gas particles are assigned a mass of fb times the dark

matter particle mass in the isolated run. Here fb is the ratio of gas

mass to total mass within r200, which is set to the universal value of

�b/�m = 0.02 h−2/0.3 = 0.136.

The end result of the above procedure is that the gas traces the

dark matter, both phases are initially in equilibrium, and within

r200 both phases have a form that is very nearly the intended NFW

distribution. As in the gas-only models, we surround the gas+DM

systems with a low density pressure-confining gaseous medium.

2.2 Merger orbits and other simulation characteristics

We follow the approach of Poole et al. (2006) and use the results

of cosmological simulations to help specify the orbital properties

of our idealized merger simulations. In particular, we turn to the

study of Benson (2005; but see also Tormen 1997; Vitvitska et al.

2002; Wang et al. 2005; Khochfar & Burkert 2006). Benson (2005)

used a large collection of N-body simulations carried out by the

VIRGO Consortium to study the distribution of orbital parameters

of substructure falling on to massive (primary) haloes. Particular

emphasis was given to the 2D distribution of the relative radial and
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tangential velocities of the substructure as they passed through a

spherical shell with a radius set to r = (1 ± 0.2) rvir, where rvir is

the virial radius of the primary halo. As anticipated, the peak of the

distribution corresponds to approximately the circular velocity of

the primary halo at the virial radius (see his fig. 2). In particular,

v ≡ (v2
r + v2

t )1/2 ≈ 1.1 vc(rvir), where vr and vt are the relative ra-

dial and tangential velocities, respectively. For the individual com-

ponents, the peak of the distribution is approximately centred on

vr ≈ 0.9 vc(rvir) and vt ≈ 0.65 vc(rvir) and it is clear that there is a

correlation between vr and vt. However, as pointed out by Benson

(2005), the centring of the peak also depends on the total mass of

systems (see his fig. 4). In particular, the orbits of mergers involv-

ing massive systems are more radial and less tangential than those

of mergers involving low-mass haloes, presumably because more

massive structures tend to form at the intersections of large-scale

filaments. Unfortunately, the sample was not large enough to fully

quantify this mass dependence.

For the purposes of the present study, we adopt the following

set of orbital parameters, which are representative of the results

of Benson (2005). Unless stated otherwise, a fixed relative total

velocity corresponding to the circular velocity of the primary at

r200, ≈ 1444 km s−1, is adopted initially for all of our simulations.4

This is slightly lower than the mean value found by Benson (2005),

but consistent at the 1σ level. For the gas+DM simulations, we

examine three different orbits for each mass ratio, corresponding

to vt = 0, vt = vr/4 and vt = vr/2. We refer to these as the ‘head

on’, ‘small impact parameter’ and ‘large impact parameter’ runs,

respectively. In practical terms, this implies vt ≈ 0.243 vc,p(r200)

and vt ≈ 0.447 vc,p(r200) for the latter two. This choice spans the

lower half of the vt/vr distribution for massive haloes seen in fig. 4 of

Benson (2005). For the gas-only simulations, which we run simply

to help coax out the key physics during mergers, we simulate head

on collisions only [i.e. vr = vc,p(r200) and vt = 0].

Each of the simulations is initialized with the gaseous components

of the primary and secondary systems just barely touching. Thus,

the initial separation, d0, is just the summation of r200 for the primary

and r200 for the secondary. For the gas+DM simulations, this implies

that there is initially some overlap of dark matter haloes of the

primary and secondary systems, which extends beyond the gaseous

component. A complete summary of the adopted orbital parameters

of all of our simulations is presented in Table 1. Note that for a fixed

mass ratio d0 differs slightly between the gas+DM and the gas-only

simulations. This difference arises owing to the slight deviation

of the mass profiles in the gas+DM simulations from the intended

NFW distribution. Finally, the simulations have been set up such that

the physical and centre-of-mass (of the entire system) coordinates

and velocities are identical, where we have approximated the initial

configuration as two point masses.

We have carried out a mass resolution study of one of our simula-

tions (see the Appendix). Based on this study we adopt the follow-

ing conditions. The primary systems in our default runs have 50 000

gas particles within r200. This is the case for both the gas-only and

gas+DM runs and implies the gas particle mass is 2 × 1010 M� in

the former and f b(2 × 1010 M�) = 0.272 × 1010 M� in the latter. In

the gas+DM runs, the primary systems have ≈76 500 dark matter

particles within r50 and 50 000 within r200 with a dark matter particle

4 We note that the circular velocity at r200 differs by only a small amount

from the circular velocity at the virial radius, which is what Benson actually

compares his velocities to. This just reflects the fact that the NFW mass

profile gives rise to a nearly flat circular velocity profile at large radii.

Table 1. Merger orbital parameters.

Mass ratio Sim. type d0 vr vt

(kpc) (km s−1) (km s−1)

1:1 Gas-only 4126 1444 0

3:1 Gas-only 3494 1444 0

10:1 Gas-only 3021 1444 0

1:1 Gas+DM 4342 1444 0

1:1 Gas+DM 4342 1400.9 350.2

1:1 Gas+DM 4342 1291.6 645.8

3:1 Gas+DM 3658 1444 0

3:1 Gas+DM 3658 1400.9 350.2

3:1 Gas+DM 3658 1291.6 645.8

10:1 Gas+DM 3170 1444 0

10:1 Gas+DM 3170 1400.9 350.2

10:1 Gas+DM 3170 1291.6 645.8

mass of (1 − f b)(2 × 1010 M�) = 1.728 × 1010 M�. These particle

masses are held fixed for the secondary systems as well (thus, they

contain fewer particles than the primary).

For the gravitational softening length, we adopt a fixed physical

size of 10 kpc for both the gas and dark matter particles. (We have

also experimented with softening lengths of 5 and 20 kpc and found

the differences in the entropy evolution to be negligible.) We use a

fairly standard set of SPH parameters, including a viscosity param-

eter, αvisc, of 0.8, a Courant coefficient of 0.1, and the number of

SPH smoothing neighbours, Nsph, is set to 50 ± 2.

Finally, each simulation is run for a duration of 13 Gyr, i.e. ap-

proximately a Hubble time. Particle data are written out in regularly

spaced intervals of 0.1 Gyr.

3 S I M U L AT I O N R E S U LT S

Below we present a detailed discussion of the entropy evolution

of our simulations. The reader who is mainly interested in a gen-

eral understanding of this progression may wish to skip ahead to

Section 3.3, which presents a summary of our findings.

3.1 Gas-only simulations

3.1.1 Entropy evolution

We start by considering the evolution of the entropy in the gas-only

merger simulations. Plotted in Fig. 2 is the evolution for the 1:1

merger subdivided into spherical shells. Immediately apparent is

the high degree of symmetry in the 1:1 merger. In all four regions

the 25th, 50th and 75th percentiles follow each other quite closely.

In addition, with the exception of the outermost ring, it is evident

that the particles in both systems have achieved a nearly conver-

gent state by the end of the simulation. Of course, it is possible

to continue running the simulation to determine exactly what the

convergent state of the outermost regions will be. However, since

we have already run the simulation for a Hubble time this implies

that the outer regions of systems formed from similar mergers in

cosmological simulations will also not have had sufficient time to

completely virialize by the present day. Since one of our aims is

to understand the results of such simulations, we limit the dura-

tion of our simulations to 13 Gyr. Below we will compare this final

configuration with a scaled up copy of the initial systems.

Some discussion of how the particles in each system actually

get their entropy is warranted. To help aid the discussion, we plot

in Fig. 3 a sequence of snapshots of the 1:1 merger with particles
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Figure 2. Entropy evolution in the 1:1 gas-only merger. The red and blue

lines/hatched regions represent the primary and secondary systems, respec-

tively. The upper and lower bounds of the hatched regions represent the 75

and 25th percentiles, respectively, while the central (thick) lines represent

the median. The panels show the evolution of the entropy of particles sep-

arated according to their initial position in the cumulative gas mass profile.

Since the cumulative gas mass profile is a monotonic function of radius, the

panels also separate the particles according to initial distance from the centre

of their respective haloes.

t = 0 Gyr t = 1 Gyr t = 2 Gyr

t = 3 Gyr t = 4 Gyr t = 5 Gyr

t = 7 Gyr t = 9 Gyr t = 11 Gyr

Figure 3. Fractional change in particle entropy as a function of time for

the 1:1 gas-only merger. Shown are particles in a slice through the centre of

thickness 250 kpc (i.e. |z| < 125 kpc). Particles are colour coded according

to the fractional change in entropy since the last simulation output (0.1-Gyr

ago). Black points are for a fractional change of less than 2 per cent, blue are

for a 2–10 per cent change, cyan are for a 10–20 per cent change, green are

for a 20–30 per cent change, yellow are for a 30–40 per cent change and red

are for a >40 per cent change. For clarity the surrounding pressure-confining

medium is not displayed. Each panel is 10 Mpc on a side.

colour coded according to the fractional change in entropy since the

previous simulation output. The general progression of the merger

can be described as follows. Since the two systems are initially

just barely touching and have a relative velocity of vc,p(r200), they

begin interacting as soon as the simulation starts. In particular, two

large shock fronts are quickly established as the systems approach

one another (see the panel corresponding to t = 1 Gyr in Fig. 3).

However, there is very little increase in the entropy of the particles

in any of the four regions plotted in Fig. 2 until after the cores

of the two systems collide at t ≈ 2 Gyr into the simulation. The

implication is that the initial shocks are actually quite weak (as the

colour coding in Fig. 3 would also indicate). A plausible explanation

for this behaviour comes when one compares the sound speed of the

gas, cs, defined as

cs ≡
√

∂P

∂ρ
=

√
γ P

ρ
=

√
5

3

kbT

μmp

(6)

with the initial relative velocity of the merger. Since the initial rel-

ative velocity of the merger is set to the circular velocity, we are

effectively comparing the sound crossing time of a system with its

dynamical time. The condition of hydrostatic equilibrium ensures

that the gas temperature will be such that these two time-scales are

comparable. In this case, we find the mean sound speed of the sys-

tems is ≈1200 km s−1. Compared to the initial relative velocity (see

Table 1), this implies an initial Mach number of only M ≈ 1.2.

Therefore, we should expect only mild shock heating to occur dur-

ing the early stages of the merger (as observed in Fig. 2). However,

as we illustrate in Section 4, by the time the cores collide the relative

velocity can approach or exceed nearly three times the initial value,

effectively bringing the merger into the strong shock regime.

Following the collision of the cores, a large shock wave is gener-

ated. This shock quickly propagates outwards, heating the gas that

was initially predominantly on the far side of each system and has

not yet finished falling in (see the panels corresponding to t = 2

and 3 Gyr in Fig. 3). In fact, this shock wave, combined with the

expansion of the shocked high pressure/density gas near the core

of the merged system, succeeds in reversing the infall of the mate-

rial. This outflow of gas proceeds nearly adiabatically for a period

of time that is dictated by the initial distance of the particle from

its system’s centre. For example, for the outermost ring plotted in

Fig. 2 this period of adiabatic expansion occurs from t ≈ 2.5 Gyr for

a duration of nearly 3.5 Gyr. Gas particles initially located close to

the centre of their respective system do not spend such a large time

in this outflow phase, as they end up being more deeply embedded

within in the merged system’s potential well.

The outflowing gas eventually halts and begins to reaccrete on

to the core of the merged system. Although the gas accretes from

virtually all directions, the symmetry of the 1:1 merger is such that

the accretion happens preferentially along and perpendicular to the

original collisional axis. This occurs for a significant period of time,

until the merged core has achieved a near spherical symmetry. Fol-

lowing this, gas continues to accrete at the outskirts of the system

but does so in a more or less spherical fashion. As evidenced from

Figs 2 and 3, the gas is slowly being shock heated during this period

of reaccretion. The character of this episode of entropy production

therefore differs significantly from the first abrupt episode follow-

ing core collision. However, as Fig. 2 indicates, both episodes are

of comparable importance in terms of setting the final state of the

gas. Finally, we note that the late time (nearly spherical) accretion

of material is what gives rise physically to the continued increase of

entropy in the outermost regions of the system until the end of the

simulations (e.g. as in the bottom right-hand panel of Fig. 2).
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Figure 4. Entropy evolution in the 3:1 (left-hand panel) and 10:1 (right-hand panel) gas only mergers. The red and blue lines/hatched regions represent the

primary and secondary systems, respectively. The upper and lower bounds of the hatched regions represent the 75 and 25th percentiles, respectively, while

the central (thick) curves represent the median. The panels show the evolution of the entropy of particles separated according to their initial position in the

cumulative gas mass profile. Since the cumulative gas mass profile is a monotonic function of radius, the panels also separate the particles according to initial

distance from the centre of their respective haloes.

An interesting question is whether or not much mixing occurs as

a result of the merging process. We have tested this by tracking not

only the entropy evolution of individual particles but also their spa-

tial distributions. Interestingly, even though the shock heating of the

systems occurs in an ‘inside-out’ fashion, we see very little evidence

for mixing. For example, particles that were initially located near

the centres of the two (pre-merger) haloes (i.e. particles that initially

have relatively low entropies) end up being located near the centre

of the final merged system, whereas the large-radii (high entropy)

particles end up occupying the outer regions of the final system.

A plausible explanation for this behaviour is that the initial Mach

number distribution of the particles varies relatively weakly with ra-

dius. This can be understood by considering the initial temperature

profiles. The condition of hydrostatic equilibrium results in initial

temperature profiles that vary by less than a factor of 2 from the

cluster centre to its periphery. This then implies the Mach number

distribution varies by less than a factor of 21/2 over the entire system.

Therefore, to a large degree, one expects (and the simulations bear

this out) that most of the particles will be shock heated to a similar

degree. As a result, convective mixing is minimal. This agrees well

with the idealized cluster merger simulations of Poole et al. (2006).

The entropy evolution of the 3:1 and 10:1 gas-only mergers is

plotted in Figs 4(a) and (b), respectively. In a qualitative sense, both

the primary and secondary systems in these mergers behave in a

similar manner to the systems in the 1:1 case. For example, they

both generate two relatively weak shock fronts early on, with the

secondary driving a bow shock into the primary and vice versa. As

in the 1:1 case, they exhibit two main periods of entropy produc-

tion, the first being associated with a strong shock approximately

when their cores collide and the second being associated with an ex-

tended period of reaccretion shocks. Furthermore, we also see little

evidence for mixing in the 3:1 and 10:1 mergers. Of course there are

some differences between the three sets of simulations in detail. For

example, because the sound speed of the gas in the secondary in the

10:1 collision is smaller than that in the 1:1 case, the initial Mach

number for the secondary is higher. Consequently, the initial bout of

shock heating before the cores collide is relatively more important

for the secondary in high mass ratio mergers.

It is clear from a comparison of Figs 2 and 4(a), (b) that the higher

the mass ratio of the merger the more strongly heated the secondary

is relative to the primary. This again may be tied to the fact that as one

decreases the mass of the secondary its characteristic temperature

decreases resulting in a decreased sound speed and an increased

Mach number. It is also expected if the preservation of self-similarity

is achieved by heating both the secondary and the primary up to same

level. To explain, K = P/ρ5/3
gas ∝ T/ρ2/3

gas , but self-similarity means

that all systems have the same internal mass structure and therefore

the characteristic entropy depends only on the temperature of the

system. The virial theorem relates the temperature of a system with

its mass via M ∝ T3/2, and therefore the characteristic entropy of a

system scales simply as

K ∝ M2/3. (7)

Initially, therefore, the ratio of the secondary’s characteristic en-

tropy to that of the primary is Ks/Kp = (Ms/Mp)2/3. Therefore, the

secondary requires extra heating to overcome its initial deficit com-

pared to that of the primary if self-similarity is achieved by heating

both systems to the same level.

3.1.2 Final configurations

How do the final entropy distributions of the gas-only mergers com-

pare with self-similar expectations? Fig. 5 presents this comparison

for the 1:1 gas-only merger both in traditional radial coordinates

(left-hand panel) and in physical gas mass coordinates (right-hand

panel). In Fig. 5(a), we compare the initial entropy radial profile of

the primary system with the final radial profile of the total merged

system. We also show a self-similarly scaled up version of the pri-

mary’s initial entropy profile, achieved by scaling the entropy co-

ordinate up by (Mtot/Mp)2/3 = 22/3 and the radial coordinate by
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Figure 5. Comparison of the resulting entropy distributions from the 1:1 gas-only merger with self-similar expectations. Left-hand panel: comparison of radial

profiles. The short-dashed red curve represents the initial entropy profile of the primary, the long-dashed magenta curve represents a self-similarly scaled up

version of this profile and the solid green curve represents the final entropy profile of the total merged system. Right-hand panel: comparison of Lagrangian

gas mass profiles. The short-dashed red, long-dashed blue and solid green curves represent the final K(Mgas) distributions of the primary, secondary and total

merged systems, respectively. The horizontal dotted line represents the self-similar scaling.

(Mtot/Mp)1/3 = 21/3. Fig. 5(a) shows that the scaled up version of

the primary’s initial entropy profile follows the final entropy profile

of the merged system over approximately two decades in radius.

This indicates that, by and large, the 1:1 gas-only merger has scaled

self-similarly through the merger. However, deviations are clearly

visible, particularly at large radii. These are discussed in more detail

below.

The entropy distributions of observed systems are most com-

monly presented in radial coordinates (e.g. Piffaretti et al. 2005;

Donahue et al. 2006; Pratt, Arnaud & Pointecouteau 2006), and so

it is useful to present theoretical models in such units if the goal

is to explain the properties of observed systems. However, our im-

mediate goal in this paper is to develop a physical shock heating

model. For this purpose, the entropy distributions are best presented

in Lagrangian (gas mass) coordinates. In Fig. 5(b), therefore, we

plot the final K(Mgas) distributions5 for the merged system and for

the primary and secondary individually for the 1:1 gas-only merger.

The gas mass coordinate has been normalized by the total gas mass

in the systems (in this case 1015 M� for the primary and secondary

and 2 × 1015 M� for the final merged system). The entropy co-

ordinate has been scaled to the self-similar expectations; i.e. the

initial K(Mgas) distribution of the primary scaled up by a factor of

(Mtot/Mp)2/3. (Equivalently, we could use the initial entropy distri-

bution of the secondary scaled up by a factor of [Mtot/Ms]
2/3.) Per-

haps the simplest way to achieve this state is by having the primary

and secondary systems individually obey self-similarity following

the merger. In this case, we would expect the final distribution of

the particles belonging to the primary to be (Mtot/Mp)2/3 times the

initial distribution, while the secondary’s final distribution would be

a factor of (Mtot/Ms)
2/3 larger than its initial distribution.

5 The physical meaning of the K(Mgas) distribution is most straightforwardly

thought of in terms of its inverse, Mgas(K), which is the total mass of gas

with entropy lower than K.

If self-similarity is strictly obeyed, then the solid green curve in

Fig. 5(b), which represents the final K(Mgas) distribution for the

merged system, should lie on the horizontal dotted line. Fig. 5(b)

shows that, without any fine tuning of the simulations, the central

80 per cent of the gas mass of the final merged system lies within

approximately 10 per cent of the self-similar result. As expected, the

symmetry of the 1:1 case is such that both the primary and secondary

individually obey self-similarity as well.

Beyond Mgas/Mgas,tot ≈ 0.8 or so there is an apparent entropy ex-

cess relative to the self-similar expectation. Below, in Section 3.1.3,

we demonstrate that this effect is artificial and its origin can be

attributed to the (unrealistic) abrupt truncation of the gaseous atmo-

spheres of our idealized systems at r200. Fortunately, as demonstrated

below, this effect is limited to the outermost regions of our systems

only.

The K(Mgas) distributions for the 3:1 and 10:1 gas-only mergers

are plotted in Figs 6(a) and (b), respectively. In both cases, the final

merged system is quite close to the self-similar result for the central

∼70 per cent of gas mass. Beyond this the edge effect discussed

below kicks in. Thus, the 3:1 and 10:1 cases both qualitatively and

quantitatively resemble the 1:1 case. Interestingly, however, the path

through which the final merged systems in the 3:1 and 10:1 cases

achieve self-similarity is by overheating the primary and underheat-

ing the secondary, not by both obeying self-similarity individually.

This implies that some of the infall energy initially associated with

the secondary system went into thermalizing the gas of the primary

system. We return to this point later.

Finally, it is interesting in and of itself that the gas-only simula-

tions obey self-similarity. This implies that the reason the baryons

trace the dark matter in cosmological hydrodynamic simulations is

not simply because the baryons are just following the orders of the

gravitationally dominant dark matter. In the absence of dark matter

the baryons would apparently still obey self-similarity. We revisit

this result in Section 5.4.
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Figure 6. Comparison of the resulting K(Mgas) distributions from the 3:1 (left-hand panel) and 10:1 (right-hand panel) gas-only merger with self-similar

expectations. The short-dashed red, long-dashed blue and solid green curves represent the primary, secondary and total systems, respectively. The horizontal

dotted line represents the self-similar scaling.

3.1.3 Excess entropy at large radii

The resulting K(Mgas) distributions of all our idealized merger sim-

ulations (including the gas+DM mergers discussed below) show

evidence for deviations from self-similarity beyond Mgas/Mgas,tot ≈
0.8 or so. Is this effect real or artificial? We hypothesize that this

effect is artificial and is caused by the (unrealistic) abrupt truncation

of our idealized systems at some finite radius. In particular, one ex-

pects a SPH-based code to systematically underestimate the density

of the gas particles near the edge of the truncated systems. This, in

turn, will have the effect of overestimating the entropy boost these

particles receive in shock heating events.

To test the above, we try a simple modification to the 1:1 gas-only

merger simulation. In particular, we extend the initial gas profiles

out to an overdensity of 100 (i.e. r100) and rerun the simulation.

The point is to see if initially extending the gaseous atmospheres

to larger radii will have the effect of quenching the (overefficient)

entropy production in particles near r200. To make a fair comparison

between the extended and default runs, in setting up the extended

gas systems we choose the pressure at r100 such that P(r200) is identi-

cal to that in our default run. This way we ensure that within r200 the

systems in both our default and extended runs are identical before

being read into GADGET-2. An additional consideration is that of the

infall velocity. Since the systems are more massive when extended

(for our adopted concentration M100 ≈ 1.26M200), the initial gravita-

tional potential energy between the systems is larger (more negative)

than that for our default run (despite the fact that the centres of the

extended systems are initially separated by a larger distance; d0 =
2r100). Thus, if the infall velocity when the centres are separated by

2r200 is to be vc,p(r200) (as in the default run), a lower initial infall

velocity is required. We calculate this velocity by assuming the sys-

tems may be approximated as point masses, which should be valid

during the early stages of the merger.

In Fig. 7, we compare the final K(Mgas) distributions for the

merged systems (normalized to the self-similar result) in the de-

fault and extended runs. For the central 40 per cent of gas mass, the

K(Mgas) distributions are similar. However, beyond this point differ-
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Figure 7. Testing the origin of excess entropy at large radii. Shown are

the results of the 1:1 gas-only merger where the gaseous atmospheres have

initially been truncated at r200 (i.e. the default setup) and at r100. Extending

the gaseous atmospheres to larger radii results in a more accurate density

determination near r200 which, in turn, mitigates the overefficient entropy

production seen at large radii in the default run.

ences become readily apparent. Interestingly, for the run where the

initial gas profiles were extended to r100, the final K(Mgas) distribu-

tion remains close to the self-similar result all the way out to M200.

Beyond this point, a deviation from self-similarity is seen, as in the

default run. However, since within M200 (or, equivalently, r200) the

systems in the extended and default runs are initially identical, we

must conclude that the deviation from self-similarity seen at large

in Fig. 5 (and similar figures) is indeed artificial and its origin is
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linked to a poor (SPH) estimate of the true gas density near the edges

of the idealized systems.

Fortunately, the central regions of the default run are not signifi-

cantly affected by how we treat the edge and therefore it is this region

that we focus on when comparing to self-similar expectations or our

analytic models. In particular, when constructing physical analytic

models that describe our simulations in Section 4, we restrict our

focus to radii corresponding to Mgas/Mgas,tot < 0.8.

3.2 Gas+DM simulations

3.2.1 Entropy evolution

In Fig. 8, we plot the evolution of the entropy with time for the

head on 1:1 gas+DM simulation. Several differences are apparent

between the evolution in this figure and that of the 1:1 gas-only

simulation plotted in Fig. 2. For example, the gas+DM run shows

evidence for a small amount of entropy production right from the

start of the simulation, whereas the gas-only run does not (at least

not within the central regions). This difference may be attributed to

the different methods used for constructing the initial conditions. In

an azimuthally averaged sense, both the gas-only and gas+DM runs

have, for our purposes, nearly identical initial conditions. However,

because the initial gas particle positions in the gas+DM run were

assigned based on the positions of dark matter particles (see Sec-

tion 2.1.2), small local inhomogeneities are initially present in these

runs. As a result, the gas is not in perfect hydrostatic equilibrium

and the systems undergo a slight readjustment when the simulation

starts. Fortunately, the amount of entropy generated in this read-

justment is small compared to the entropy produced in the merger

shock heating and can be safely ignored. This is demonstrated below

when we make an explicit comparison of the gas-only and gas+DM

results.

1

1.5

2

2.5

0 5 10

1

1.5

2

0 5 10

Figure 8. Entropy evolution in the head on 1:1 gas+DM merger. The red

and blue lines/hatched regions represent the primary and secondary systems,

respectively. The upper and lower bounds of the hatched regions represent

the 75 and 25th percentiles, respectively, while the central (thick) lines rep-

resent the median. The panels show the evolution of the entropy of particles

separated according to their initial position in the cumulative gas mass pro-

file. Since the cumulative gas mass profile is a monotonic function of radius,

the panels also separate the particles according to initial distance from the

centre of their respective haloes.

t = 0 Gyr t = 1 Gyr t = 2 Gyr

t = 3 Gyr t = 4 Gyr t = 5 Gyr

t = 7 Gyr t = 9 Gyr t = 11 Gyr

Figure 9. Fractional change in particle entropy as a function of time for

the head on 1:1 gas+DM merger. Shown are particles in a slice through the

centre of thickness 250 kpc (i.e. |z| < 125 kpc). Particles are colour coded

according to the fractional change in entropy since the last simulation output

(0.1-Gyr ago). Black points are for a fractional change of less than 2 per cent,

blue are for a 2–10 per cent change, cyan are for a 10–20 per cent change,

green are for a 20–30 per cent change, yellow are for a 30–40 per cent

change and red are for a >40 per cent change. For clarity, the surrounding

pressure-confining medium is not displayed. Each panel is 10 Mpc on a side.

The most important changes between Figs 2 and 8 relate to the

properties of the second (proper) period of entropy generation. In

particular, the second phase of heating, which was associated with a

series of reaccretion shocks in the gas-only runs, begins earlier, rises

more steeply and contributes more to the final state of the system

(particularly in the central regions) in the gas+DM run than in the

gas-only run. What is the origin of this behaviour?

To help answer this question, we plot in Fig. 9 a series of snap-

shots colour coded according to the fractional change in entropy

since the last simulation output (see Fig. 3 for the analogous plot

for the gas-only run). The evolution is quite similar to that of the

gas-only run early on. However, noticeable differences are present

between the two at intermediate times (t ∼ 4–5 Gyr). In particular,

in the gas+DM run it is apparent that a second fast moving shock

wave has been generated. This shock wave propagates outwards

in a nearly spherical fashion and resembles that of the first shock

created when the cores collided. The origin of this second shock

can be linked to the collisionless nature of the dark matter, which

allows the dark matter cores to pass through one another, while the

gas cores collide. Since the dark matter dominates the gas by mass,

and the dark core is able to drag significant quantities of gas into

the other hemisphere and away from the overall system’s centre of

mass. As a result, some of the gas undergoes a second period of

collapse, collides with gas infalling from the other hemisphere and

produces the shock.6 It is demonstrated later that the extra energy

6 In fact, the dark matter cores oscillate back and forth a number of times, each

time dragging gas away from the overall system’s centre and consequently

generating more shocks. However, these additional shocks are extremely

weak and generate virtually negligible amounts of entropy.
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t = 2 Gyr t = 4 Gyr t = 6 Gyr t = 10 Gyr

Figure 10. Fractional change in particle entropy as a function of time for the 1:1 gas+DM mergers. Top: head on case. Middle: small impact parameter case.

Bottom: large impact parameter case. Particle colour coding is the same as in Fig. 9. Each panel is 6 Mpc on a side.

t = 2 Gyr t = 4 Gyr t = 6 Gyr t = 10 Gyr

Figure 11. Spatial distributions of particles originally belonging to the primary (red) and secondary (blue) systems for the 1:1 gas+DM mergers. Top: head on

case. Middle: small impact parameter case. Bottom: large impact parameter case. For clarity, the secondary particles are plotted on top of the primary particles.

Each panel is 6 Mpc on a side.

required for this second shock is derived from tapping the dark mat-

ter component (see e.g. Fig. 21). Following this second shock, there

is an extended period of reaccretion that proceeds in a similar fash-

ion to that in the gas-only run. It is the combination of this second

shock and the reaccretion phase that is responsible for the increased

importance of the second major phase of entropy production in

Fig. 8.

The head on 3:1 and 10:1 gas+DM mergers also show the same

qualitative trends. However, the head on case is special and, there-

fore, the final state of such collisions may not be representative of

typical mergers in cosmological simulations. On the other hand,

cosmological simulations suggest that groups and clusters acquire

the bulk of their mass by substructure falling in along filaments.

Therefore, the head on scenario will not be as far removed from the

typical merger event as in the case of collisions between galaxies.

However, it is still important to quantify the differences between the

head on and non-zero impact parameter cases.

In Figs 10–15, we compare snapshots showing the spatial distri-

butions of the primary and secondary particles and also the fractional

change in entropy since the last simulation output for the all of the

gas+DM merger simulations. We omit the panel showing the initial

particle positions at t = 0, since they are the same for the three dif-

ferent orbital cases (thus, the energy to be thermalized is the same

for all three cases). In these figures, the centre of each panel cor-

responds to the overall centre of mass, with the secondary system

initially approaching from the left and the primary from the right.
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t = 2 Gyr t = 4 Gyr t = 6 Gyr t = 10 Gyr

Figure 12. Fractional change in particle entropy as a function of time for the 3:1 gas+DM mergers. Top: head on case. Middle: small impact parameter case.

Bottom: large impact parameter case. Particle colour coding is the same as in Fig. 9. Each panel is 6 Mpc on a side.

t = 2 Gyr t = 4 Gyr t = 6 Gyr t = 10 Gyr

Figure 13. Spatial distributions of particles originally belonging to the primary (red) and secondary (blue) systems for the 3:1 gas+DM mergers. Top: head on

case. Middle: small impact parameter case. Bottom: large impact parameter case. For clarity, the secondary particles are plotted on top of the primary particles.

Each panel is 6 Mpc on a side.

In the non-zero impact parameter runs, the secondary’s initial mo-

tion is towards the upper right, while the primary is initially moving

towards the lower left.

The general progressions of the 1:1 non-zero impact parameter

cases, presented in Figs 10 and 11, are as follows. In the small impact

parameter case (where vt = vr/4 initially), the cores graze each

other after t ≈ 2 Gyr of infall. As a result, the cores are temporarily

spared from significant shock heating. However, the systems are

gravitationally bound and cannot avoid a major collision for long. In

short order, the cores cease moving apart and begin falling inwards

nearly radially, setting up an almost head on secondary collision

(at t ≈ 4 Gyr) that greatly heats the core gas. Additional small shocks

are generated by the back and forth sloshing of the dark matter cores,

but in general their contribution to the entropy production is minor.

As in the cases examined above, an extended period of reaccretion

then ensues. In this case, the bulk of the accretion first happens

preferentially along and perpendicular to the axis of the secondary

(near head on) collision. Qualitatively, the large impact parameter

case proceeds much the same way. The main differences are as

follows. The larger impact parameter means that the gas cores go

virtually unheated during the first pericentric passage, as the cores

of the two systems completely miss one another. The larger impact

parameter also implies the amount of time spent between the first

and second pericentric passages will be longer. Furthermore, the

secondary collision is not directly head on in this case, meaning

that some of the gas actually undergoes a third pericentric passage
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t = 2 Gyr t = 4 Gyr t = 6 Gyr t = 10 Gyr

Figure 14. Fractional change in particle entropy as a function of time for the 10:1 gas+DM mergers. Top: head on case. Middle: small impact parameter case.

Bottom: large impact parameter case. Particle colour coding is the same as in Fig. 9. Each panel is 6 Mpc on a side.

t = 2 Gyr t = 4 Gyr t = 6 Gyr t = 10 Gyr

Figure 15. Spatial distributions of particles originally belonging to the primary (red) and secondary (blue) systems for the 10:1 gas+DM mergers. Top: head on

case. Middle: small impact parameter case. Bottom: large impact parameter case. For clarity, the secondary particles are plotted on top of the primary particles.

Each panel is 6 Mpc on a side.

before settling. In both the small and large impact parameter cases,

significant angular momentum is imparted to the gas and large,

nearly circular, bulk motions remain present until the end of the

simulations.

Figs 12–15 are completely analogous plots for the 3:1 and 10:1

cases. In both head on collisions, the secondary essentially acts like a

bullet, driving a large shock into the gas of the primary system and is

able to easily penetrate all the way to the core of the primary. In fact,

unlike the head on 1:1 case, the core of the secondary in the 3:1 and

10:1 cases is able to remain somewhat intact even after a collision

with the core of the primary. As a result, there is actually a period

where the cores pass through one another. However, the tidal forces

exerted on the secondary’s core significantly stretch it along the col-

lision axis. A second head on collision between the cores of the two

systems then occurs. At the same time, the sloshing back and forth

of the dark matter cores is generating small shocks. The small and

large impact parameter 3:1 and 10:1 cases show evidence for even

more complicated behaviour, with multiple collisions occurring and

shock waves propagating in various directions simultaneously.

3.2.2 Final configurations

Given the wide variety of behaviours seen in Figs 10–15, one might

reasonably expect that the resulting gas properties of the various

mergers to be significantly different from one another. However,

an analysis of the final entropy distributions indicates otherwise.

Plotted in Figs 16(a), (b) are the final K(Mgas) distributions for the

various 1:1 mergers. In Fig. 16(a), it is demonstrated that the bulk of
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Figure 16. The resulting K(Mgas) distributions for the 1:1 gas+DM mergers. Left-hand panel: comparison of the final entropy distributions for the primary

(short-dashed red), secondary (long-dashed blue) and total (solid green) systems for the three different orbital cases. Right-hand panel: comparison of the

final entropy distributions of the total systems in the gas+DM mergers for the head on (solid red), small impact parameter (short-dashed green) and large

impact parameter (long-dashed blue) systems and the gas-only head on merger (dot–dashed magenta). The horizontal dotted line represents the self-similar

scaling.

the gas in the primary, secondary and total systems nearly maintain

self-similarity. However, it is apparent that the small and large im-

pact parameter cases show evidence for excess heating of the core

gas relative to the head on case. This is illustrated most clearly in

Fig. 16(b), which compares the K(Mgas) distributions for the total

systems of the three different gas+DM simulations. This plot shows

that the cases with non-zero impact parameter heat the core at the ex-

pense of the outer regions of the systems. However, it is remarkable

that only the central ∼20 per cent of the gas mass show significant

deviations from the head on case given the large modifications to

the initial orbital parameters. It is worth noting that non-radiative

cosmological simulations also show evidence that the gas departs

from a pure hydrostatic NFW profile in cores of systems (e.g. Frenk

et al. 1999; Voit, Kay & Bryan 2005). Therefore, some deviation

from self-similarity in our simulations might be expected.

Also plotted in Fig. 16(b) is the K(Mgas) distribution for the 1:1

gas-only merger. Outside the central regions, it traces the distribu-

tion of the head on gas+DM simulation remarkably well. The two

distributions begin to deviate from one another for Mgas/Mgas,tot <

0.4 or so. The excess heating in the gas+DM can plausibly be at-

tributed to energy exchange between the gas and the dark matter

(see e.g. Lin et al. 2006). In Section 4, we show that typically 5–

10 per cent of the dark matter’s energy is transferred to gas. This en-

ergy exchange occurs during the period when the dark matter cores

of the primary and secondary are oscillating back and forth.

In Figs 17(a), (b) we compare the final K(Mgas) distributions for

the various 3:1 mergers. Fig. 17(a) shows that the bulk of the gas for

the total systems in all three orbit cases nearly obey self-similarity.

As in the gas-only mergers discussed in Section 3.1, self-similarity

is achieved by overheating the primary and underheating the sec-

ondary. Similar to the 1:1 gas+DM mergers discussed immediately

above, the 3:1 mergers also show evidence for departures from self-

similarity for the central 20 per cent or so of the total gas mass.

A comparison of the final distributions for the total systems in

Fig. 17(b) illustrates this more clearly. Interestingly, even the head

on 3:1 case shows evidence for strong central heating. In fact, the

head on case appears to be even slightly more efficient at heating the

core than the case characterized by a large impact parameter. (How-

ever, we note that in the large impact parameter case there is still

some residual heating occurring at the end of the simulation, so in

the long run it may be the more efficient of the two.) A comparison

of the entropy distributions of the head on gas+DM and gas-only

mergers again highlights the fact that the two differ from each other

only in the very central regions.

Finally, in Figs 18(a), (b) we show the same set of plots for the 10:1

gas+DM mergers. The trends in these plots follow those discussed

above for the 1:1 and 3:1 mergers. The only difference that we would

mention is that the 10:1 cases exhibit a much lesser degree of central

heating than the simulations discussed previously.

3.3 Summary of simulation results

In the next section, we develop a physically motivated analytic

model that attempts to encapsulate the key physics of the merg-

ing process just described. However, before presenting this model

we summarize the results of our simulations as follows.

(i) Both the primary and secondary systems gain the bulk of their

final entropy through two distinct episodes. The first episode is asso-

ciated with a strong, quickly propagating shock wave that is gener-

ated approximately when the cores of the two systems collide. The

second episode of heating occurs over an extended period of time.

In the gas-only simulations, this second phase is driven entirely by

a series of reaccretion shocks. In the gas+DM simulations, it is

driven by a combination of reaccretion shocks and energy transfer

from the dark matter to the gas, with the reaccretion shocks playing

the dominant role.

(ii) In all of our simulations, the contributions of the first and

second episodes of entropy production to the final distribution are

comparable.
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Figure 17. The resulting K(Mgas) distributions for the 3:1 gas+DM mergers. Left-hand panel: comparison of the final entropy distributions for the primary

(short-dashed red), secondary (long-dashed blue) and total (solid green) systems for the three different orbital cases. Right-hand panel: comparison of the

final entropy distributions of the total systems in the gas+DM mergers for the head on (solid red), small impact parameter (short-dashed green) and large

impact parameter (long-dashed blue) systems and the gas-only head on merger (dot–dashed magenta). The horizontal dotted line represents the self-similar

scaling.
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Figure 18. The resulting K(Mgas) distributions for the 10:1 gas+DM mergers. Left-hand panel: comparison of the final entropy distributions for the primary

(short-dashed red), secondary (long-dashed blue) and total (solid green) systems for the three different orbital cases. Right-hand panel: comparison of the

final entropy distributions of the total systems in the gas+DM mergers for the head on (solid red), small impact parameter (short-dashed green) and large

impact parameter (long-dashed blue) systems and the gas-only head on merger (dot–dashed magenta). The horizontal dotted line represents the self-similar

scaling.

(iii) We find that the bulk of the gas in our simulations matches

the self-similar result to within 10 per cent. Deviations from self-

similarity are seen at large radii in both the gas-only and gas+DM

simulations. This is almost certainly due to a truncation effect in our

idealized setup (see Section 3.1.3). Deviations from self-similarity

are also seen at small radii in the gas+DM simulations (which are

real) and are at least partially due to energy exchange between the

gas and dark matter. Some deviation might be expected at small

radii, as the gas in systems formed in non-radiative cosmological

simulations also shows departures there from a pure hydrostatic

NFW distribution.

(iv) With the obvious exception of the symmetric 1:1 case, self-

similarity of the final merged system is achieved by overheating the

gas in the primary while underheating the gas in the secondary. This

implies that some of the infall energy initially associated with the

secondary has gone into heating the primary.
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Our simulations therefore differ markedly from the standard

spherical smooth accretion model where the ICM is built up one

shell at a time from the inside out and where each shell is shocked

a single time as it enters the virial radius. It seems remarkable that

these two very physically different scenarios yield structural prop-

erties that are as similar as they are. However, as discussed in detail

by Voit et al. (2003), the spherical accretion model fails to match the

results of cosmological simulations when it is modified to account

for more realistic ‘lumpy’ accretion. The reason for this failure is

that increasing the density but keeping the total energy to be ther-

malized fixed results in decreased entropy production in the shock.

However, our simulations show that significant shock heating does

not occur until core collision. As a result, there is significantly more

infall energy available for thermalization. To a large extent, this

boost offsets the otherwise reduced level of entropy owing to the

increased density of infalling gas in the lumpy model relative to the

smooth accretion model.

4 D I S C U S S I O N : U N D E R S TA N D I N G T H E
R E S U LT S

4.1 A simple single-shock model

We have demonstrated that our idealized merger simulations ap-

proximately preserve self-similarity, as seen in non-radiative cos-

mological simulations. As a result, we are now in a position to try to

develop a physical analytic model for the entropy evolution of the

primary and secondary systems in our idealized simulations. Taking

our cue from the study of Voit et al. (2003), we consider a simple

model whereby gas with some initial density ρ1 and entropy K1 is

moving with a velocity vin in the system’s centre-of-mass frame. If

this velocity is supersonic it will generate a shock front. Assuming

that the post-shock gas is at rest in the centre-of-mass frame (i.e.

that all of the energy associated with vin is thermalized), then the

shock propagates with a velocity vshock into the gas in the centre-

of-mass frame. In the rest frame of the shock, the gas therefore has

a velocity v1 = vin + vshock, and the post-shock gas has a velocity

v2 = vshock. The pre-shock (upstream) conditions are related to the

post-shock (downstream) conditions via the well-known Rankine–

Hugoniot jump conditions (e.g. Shu 1992):

ρ2

ρ1

= v1

v2
= (γ + 1)M2

1

(γ − 1)M2
1 + 2

, (8)

P2

P1

= 1 + 2γ
(
M2

1 − 1
)

γ + 1
, (9)

T2

T1

= [1 + γ
(

2M2
1 − 1

)
]
[
2 + (γ − 1)M2

1

]
(γ + 1)2M2

1

, (10)

whereM1 ≡ v1/cs is the Mach number. Equations (8) and (9) can be

used to yield the jump condition relating pre-shock and post-shock

entropy:

K2

K1

=
(

5M2
1 − 1

4

)(
4M2

1

M2
1 + 3

)−5/3

, (11)

where we have used γ = 5/3. Therefore, one can calculate the final

entropy distribution if the Mach number of the shock is known. Un-

fortunately, it is non-trivial to measure the Mach number of a shock

directly from the simulations. Shock heating is implemented in SPH

simulations via an artificial viscosity term which significantly broad-

ens the shocks both spatially and temporally. This prevents one from

easily applying equations (8)–(11) to individual SPH particles (see

Pfrommer et al. 2006). Another difficulty is that the Mach num-

ber is expressed in terms of pre-shock velocity in the rest frame of

the shock. Therefore, application of these equations to individual

particles would require one to carefully track the evolution of the

shock itself during the simulation. To avoid these difficulties, we

use equation (8) to instead express the Mach number in terms of the

difference between the pre-shock and post-shock velocities:

v1 − v2 = vin = 3

4

(
1 − 1

M2
1

)
v1. (12)

Rearranging and replacing v1 by M1cs, we obtain

vin = 3

4

(
M2

1 − 1

M1

)
cs = 3

4

(
M2

1 − 1

M1

)(
5

3
K1ρ

2/3
1

)1/2

. (13)

Therefore, given the initial entropy and density distributions of

the gas and the velocity of the gas in the centre-of-mass frame, it is

possible to solve the quadratic equation (13) for the Mach number of

each particle. Deriving the final entropy distribution is then simply

a matter of plugging these Mach numbers into equation (11). Of

course in our idealized merger simulations we know precisely what

the initial entropy and density profiles of the systems are, but what

velocity do we pick for vin? Various possibilities exist, but vin should

not exceed the relative velocity of the cores as they are about to

collide (i.e. when the gravitational energy between the two systems

has been maximally converted to infall energy). In fact, the velocity

will have to be quite a bit lower than this since, for example, in the

1:1 case using the maximum relative velocity for the gas in both

systems would require twice as much energy as there is available to

be thermalized. Unfortunately, given the complicated nature of the

simulations, the correct value of vin could fall any where between

zero and this upper bound. Previous analytic studies (e.g. Voit et al.

2003) adopted the infall velocity at the virial radius. However, it is

evident from Section 3 that significant shock heating does not occur

in our simulations until the cores of the two systems nearly collide.

As a result, the infall velocity will be much larger than assumed in

those analytic studies. Furthermore, it is also clear that energy is

being exchanged between the primary and the secondary systems

(for example, even in the 10:1 case the secondary is capable of

driving a shock that significantly heats virtually all of the gas in the

primary). This makes it even more difficult to assess a priori what is

the appropriate value of vin to assign for the primary and secondary

systems.

We sidestep this problem by inverting the question: i.e. given

the initial entropy and density profiles, what velocity is required to

explain the final entropy distribution? To answer this question we

simply try a range of different values for vin and assess which gives

the best match to the final entropy distribution. This velocity can be

cast in terms of a requirement for the total amount of energy that

must have been thermalized in order to explain the final entropy

distribution. In Section 4.2, we examine whether or not there is

enough bulk energy available to explain our findings.

Although the simulated systems undergo two periods of entropy

production, we start by trying to use the single-shock model outlined

above to explain the observations. In principle this model, which just

uses continuity and conservation equations to link upstream and

downstream conditions, can effectively describe physical situations

that are more complex than a single shock. Therefore it is the natural

starting point for our investigation.

We start by first examining the gas-only simulations, which

make a useful benchmark for the more realistic gas+DM runs. In
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Figure 19. Comparison of the final entropy distribution of the primary in the 1:1 (left-hand panel) and 3:1 and 10:1 (right-hand panel) gas-only simulation

with our simple analytic shock heating model. The thick red curve represents the simulation result. The dashed curves represent the simple analytic model

(equations 11 and 13) for choices of vin/vc,p(r200) ranging from 0.75 to 2.00 in steps of 0.25 (bottom to top).

Figs 19(a) and (b), the final entropy distributions of the primary and

secondary systems in the 1:1, 3:1 and 10:1 gas-only mergers are

compared with the simple analytic shock heating model proposed

above. For the analytic model, the upstream values of the entropy

and density are taken from the initial conditions of the simulations

(see Section 2). We try several different values of vin for both the

primary and secondary systems, each corresponding to a unique pre-

diction for the final entropy distribution of both systems. All curves

plotted in Figs 19(a) and (b) have been normalized to the self-similar

expectation. In the discussion that follows, we exclude the high en-

tropy tail at large values of Mgas/Mgas,tot from consideration. The

Section 3.1.3 shows that this tail results from the truncation of our

idealized haloes.

Figs 19(a) and (b) show that a centre-of-mass velocity ranging

approximately from 0.9 < vin/vc,p(r200) < 1.25 is required to ex-

plain the final entropy distributions of the primary systems in the

three runs. The secondary systems require slightly lower velocities

ranging from 0.75 < vin/vc,p(r200) < 1.25. For both the primary and

secondary systems, there is a trend with the mass ratio of the merger,

in the sense that the higher the mass ratio the lower the required ve-

locity is to explain their final entropy distributions. It is worth noting,

however, that no single choice of vin can explain the entire K(Mgas)

profiles for the primary and secondary systems. In particular, if the

analytic model is normalized to explain the intermediate regions of

the entropy profiles (say 0.3 < Mgas/Mgas,tot < 0.6), it systematically

underpredicts the level of the lowest entropy gas (Mgas/Mgas,tot <

0.2) compared to the simulations. Nevertheless, the bulk of the gas

in the primary and secondary systems can be adequately modelled

by a fairly small range of velocities.

An identical set of plots is presented in Figs 20(a), (b) for the

gas+DM simulations. Note that significantly higher velocities are

required to explain the final entropy distributions of the primary

and secondary systems in the gas+DM simulations. In particu-

lar, the primary systems typically require velocities ranging from

1.35 < vin/vc,p(r200) < 1.80, while the secondaries typically require

1.00 < vin/vc,p(r200) < 1.80 (see Table 2). Even though the systems

in the gas+DM simulations require significantly higher velocities

than those in the gas-only simulations this does not necessarily im-

ply that the energetic requirements of gas+DM mergers exceed

those of the gas-only mergers. It should be kept in mind that for a

system of mass M200 there is simply much more gas that requires

heating in the gas-only simulations (the baryon to total mass ratio

of the gas-only simulations is ≈7 times larger than the gas+DM

simulations). Below we compare the energy required by the simple

shock heating model to match level of entropy production seen in

the idealized simulations with our best estimates of the amount of

energy available.

4.2 Energy considerations

If we assume that the simple shock heating model provides a rea-

sonable description of what is taking place in the simulations, the

velocity vin can be used to estimate the total amount of energy that

was thermalized in producing the final entropy distributions. Con-

veniently, vin is defined such that the post-shock gas is at rest in the

centre-of-mass frame, so the total thermalized energy is just

ET,tot = ET,p + ET,s = 1

2
Mgas,pv

2
in,p + 1

2
Mgas,sv

2
in,s. (14)

Typically, this results in values ranging from approximately

2–6 × 1064 erg for the gas-only mergers and 0.5–2 × 1064 erg for

the gas+DM mergers. Therefore, even though the gas+DM merg-

ers require higher velocities to preserve self-similarity, their energy

requirements are lower than those of the gas-only simulations. As

mentioned above, this is simply because there is more gas that re-

quires heating in the gas-only simulations.

Interestingly, even though the energetic requirements are differ-

ent between the two types of simulations, the way the energy is

distributed does not appear to be. In particular, in both types of

simulations the thermalization of the primary’s gas dominates the

thermalization energy budget with 50, ≈80 and ≈95 per cent of

the total energy in the 1:1, 3:1 and 10:1 mergers, respectively (see
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Figure 20. Comparison of the final entropy distribution of the primary in the 1:1 (left-hand panel) and 3:1 and 10:1 (right-hand panel) gas+DM simulation

with our simple analytic shock heating model. The thick red curve represents the simulation result. The dashed curves represent the simple analytic model

(equations 11 and 13) for choices of vin/vc,p(r200) ranging from 0.75 to 2.00 in steps of 0.25 (bottom to top).

Table 2. Single-shock model velocity/energy requirements.

Mp/Ms Sim. type vin,p vin,s ET,p/ET,tot

[vc,p(r200)] [vc,p(r200)]

1:1 Gas-only 1.25 1.25 0.50

3:1 Gas-only 1.25 1.00 0.82

10:1 Gas-only 0.9 0.75 0.94

1:1 Gas+DM 1.8 1.8 0.50

3:1 Gas+DM 1.65 1.35 0.82

10:1 Gas+DM 1.35 1.00 0.95

Table 2). The following analytic relationship yields a remarkably

good fit to our simulated mergers (including those involving mass

ratios not presented in this paper):

ET,p

ET,s

≈
(

Mp

Ms

)5/4

. (15)

Interestingly, this is quite close to the case where the primary

and secondary thermalize each other’s infall energy, i.e. ET,p/ET,s =
Mp/Ms. We also note that this type of scaling is naturally achieved if

each gas particle thermalizes the same fraction of the total available

energy. This interesting result deserves further investigation, which

we take up in the next paper of this series.

An important consistency check of the simple shock heating

model is to test whether or not there is enough energy available

to meet the requirements of the model. Having too much energy

available is not necessarily a problem, since there are numerous

ways the available energy could be tapped (e.g. some could go into

bulk kinetic circular motions of the gas or into the dark matter in the

case of the gas+DM simulations). However, if there is not enough

energy available, the only possibility is that the model is incorrect

or, at best, incomplete.

With this in mind, we calculate the energy available to be thermal-

ized in our idealized mergers. We do so via two different methods,

with both yielding similar results. The first method, which we refer

to as the ‘simulation method’, takes advantage of the excellent en-

ergy conservation of the GADGET-2 simulations. The total energy of

the gas is

Etot,gas(t) = EKgas (t) + EUgas (t) + EIgas (t), (16)

where EKgas (t), EUgas (t) and EIgas (t) are the kinetic, potential and

internal (thermal) energies of the gas at time t. Etot,gas(t) is conserved

in the gas-only simulations to better than 1 per cent. Therefore, we

can write

EKgas (t) + EUgas (t) + EIgas (t) = EKgas0 + EUgas0 + EIgas,0, (17)

where EKgas,0, EUgas,0 and EIgas,0 are the values of the three different

energies at the start of the simulation. The total energy that is avail-

able to be thermalized at time t is just the initial (centre-of-mass)

kinetic energy plus the change in the gravitational potential energy

ET,tot(t) = EKgas,0 − [EUgas (t) − EUgas,0] (18)

which is relatively trivial to measure in the simulations. This energy

estimate can be compared directly with the simple shock heating

model estimate in equation (14).

However, the above treatment is strictly only valid for the gas-only

simulations. In the gas+DM simulations, energy can be exchanged

between the gas and the dark matter. However, we can take advantage

of the fact that the summation of the total energy of the gas and the

total energy of the dark matter is conserved in these simulations.

Thus, for the gas+DM simulations we modify equation (18) to read

ET,tot = EKgas,0 + [EUgas (t) − EUgas,0] − EDM↔gas(t), (19)

where

EDM↔gas(t) ≡ [EKDM
(t) + EUDM

(t)]

− [EKDM,0 + EUDM,0] (20)

is the energy exchanged between the gas and dark matter.

In principle, this energy exchange can go either way, but in general

we find that the dark matter loses energy to the gas. In Fig. 21, we
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Figure 21. Evolution of the total energy of the dark matter in the gas+DM

simulations. The energy has been normalized to its initial value. Since

the systems are bound the total energies are negative. Thus, a value of

Etot,DM(t)/Etot,DM(t = 0) greater than unity implies that energy has been

lost to the gas, while a value less than unity means energy has been extracted

from the gas. The green dot–dashed curve in the 1:1 panel is for the highest

resolution simulation in the mass resolution study in the Appendix.

plot the evolution of the energy associated with the dark matter in the

gas+DM simulations (see caption). By the end of the simulations,

we find that the dark matter in the 1:1, 3:1 and 10:1 mergers has

lost approximately 7–10, 7–9 and 2–3 per cent, respectively, of its

energy to the gas. Interestingly, this estimate does not depend much

on the adopted orbital parameters, nor the mass resolution of the

simulation. We will return to this issue of energy exchange below.

The second method that we use to calculate the energy available

to be thermalized, which we refer to as the ‘analytic method’, is

as follows. If we assume that the primary and secondary remain

completely intact from their initial setup until the point when the

centres of the two systems coincide, it is straightforward to calculate

the total energy to be thermalized. Neglecting the thermal energy

of the systems (which remains fixed with time by construction), the

total energy of the gas in the centre-of-mass frame is

Etot,gas = 1

2
μv2

rel + Ugas,ps(rps), (21)

where μ ≡ Mgas,p Mgas,s/(Mgas,p + Mgas,s) is the reduced mass, vrel

is the initial relative velocity between the primary and secondary

systems, rps is the separation of their centres and Ugas,ps is the gravi-

tational potential energy. Assuming that the primary and secondary

systems are rigid and ignoring the potential energy of the systems

due to themselves (which, again, does not change by construction),

the potential energy of interaction between the two systems is

Ugas,ps(rps) = 1

2

∫
φp dMgas,s + 1

2

∫
φs dMgas,p

= 1

2

∫
ρgas,sφp d3V + 1

2

∫
ρgas,pφs d3V , (22)

where φ, the gravitational potential, is defined as

φ(x) ≡ −G

∫
ρ(x ′)

|x ′ − x | d3V ′.
(23)

Approximating the systems as point masses initially, when there

is little or no overlap between them, the potential energy of the gas

is just

Ugas,ps(rps = d0) = −1

2

G

d0

[Mp Mgas,s + Mp,gas Ms]

= − G fb Mp Ms

d0

, (24)

where the second line is true only if both the primary and secondary

systems have the same baryon fraction.

Therefore, the total energy of the gas is

Etot,gas = 1

2
μ[vc,p(r200)]2 − G fb Mp Ms

d0

. (25)

The maximum energy available to be thermalized occurs when

the centres of the primary and secondary coincide. We can there-

fore calculate the maximum energy available to be thermalized by

subtracting the potential energy when the systems coincide (cal-

culated by evaluating equation 22) from the total energy given in

equation (25).

In Figs 22(a), (b), we compare the simple shock heating model’s

energy requirements (see Table 2) with the energy available to be

thermalized as estimated by both the simulation and analytic meth-

ods described above. We focus first on the gas-only results plotted in

Fig. 22(a). The solid curves represent the amount of energy available

to be thermalized as estimated with the simulation method. The peak

of the curves are reached at t ≈ 1.5–1.8 Gyr, i.e. just slightly before

the cores of the primary and secondary collide. The amplitude of

the peak is within a few tens of per cent of the maximum energy

estimated via the analytic method (dotted line). This agreement in-

dicates that our estimate of the maximum energy available for ther-

malization is robust and also demonstrates that one can estimate this

energy reasonably well using simple analytic modelling. A compar-

ison to the dashed line, which represents the energy requirement

of the simple shock heating model described in Section 4.1, yields

interesting results. Apparently, the 1:1 gas-only merger has suffi-

cient energy available to accommodate the shock heating model’s

requirements. Therefore, the simple model provides a viable expla-

nation for this collision. For the 3:1 gas-only merger there is a very

small deficit of energy. However, in the case of the 10:1 gas-only

merger, both the simulation method and analytic method estimates

of the maximum amount of energy there is to be thermalized fall

short of the required amount by roughly a factor of 2.

Moving on to the gas+DM simulations in Fig. 22(b), we find that

there is insufficient energy available in any of the simulations to

accommodate the requirements of the simple shock heating model

(although the 1:1 is close). This is the case even when we account

for the energy exchange between the gas and the dark matter. Thus,

even though both the gas-only and gas+DM simulations preserve

self-similarity, they do not give a consistent answer when compared

to the simple analytic model. However, there are some similarities

between the two in terms of their comparison with the analytic

model. For example, both show a similar trend with mass ratio, in the

sense that agreement gets worse for higher mass ratios. Furthermore,

the energy shortfall is less than about a factor of 3 for all of the

simulations we have performed. Thus, while the simple analytic

model fails to explain the results, it does not fail by a huge margin.

This motivates us to consider modifications of the model.
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Figure 22. Comparison of the shock heating model’s energy requirements with the maximum energy available to be thermalized in the gas-only (left-hand

panel) and gas+DM (right-hand panel) simulations. In the panels on the right, the short-dashed red curves represent the results of the simulation method shifted

up by Etot,DM(t = 13 Gyr) − Etot,DM(t = 0), i.e. by the total amount of energy lost by the dark mark to gas by the end of the simulation. For comparison, the

dot–dashed blue lines represent the gas-only simulations, which have been renormalized by multiplying the energy by the baryon fraction of the gas+DM

systems.

4.3 A double-shock model

In Section 3, we found that there are actually two major periods

of entropy production experienced by the primary and secondary

systems in our merger simulations. We now seek to modify the

simple shock heating model presented in Section 4.1 to account for

this behaviour. The relevant question is, for a fixed amount of energy

to be thermalized, is a double-shock model capable of generating

more entropy than a single-shock model? In the case where the

post-shock conditions, as dictated by the jump conditions, simply

become the pre-shock conditions for the second shock, we find that

the answer is ‘no’. In general, we find that as one increases the

number of shocks over which the energy is to be thermalized, the

resulting final entropy decreases.

However, it quickly becomes apparent from an examination of

the simulations that the properties of the gas evolve significantly

between the end of the first shock and the onset of the second. In

particular, there is a period of adiabatic expansion between the two

shocks which likely arises as a result of the fact that not all the ki-

netic energy was thermalized in the first shock.7 The net result is that

the typical density of the gas is significantly reduced between the

shocks and can even drop below its pre-merger value (see Fig. 23).

Furthermore, the drop is largest for the highest mass ratio mergers,

precisely where we find the largest energy deficits between the sim-

ulations and the single-shock model. Dropping the density between

the shocks will have the effect of increasing the amount of entropy

generated in the second shock relative to the case where there is no

adiabatic expansion between the shocks. More importantly, is the

decrease in density between shocks large enough to generate more

entropy than the single-shock model? To answer this question, we

7 The expansion could also be partially due to a readjustment of the gas

towards a new hydrostatic configuration. Note, however, that this cannot be

the whole story since no further shock heating would be expected in this

case. A period of reaccretion is required.

0

0.5

1

1.5

2

2.5

0 5 10

0

1

2

3

4

0 5 10

Figure 23. Evolution of the median density for particles that were located

within the spherical shell 0.25 � Mgas/Mgas,tot � 0.75 initially. The solid

red, dashed green and dot–dashed blue curves represent the 1:1, 3:1 and 10:1

mergers, respectively. For the gas+DM simulations only the head on results

are plotted. Note for the primary systems that the density drops below its

initial (pre-merger) value between the end of the first shock and the onset of

the second shock at t ∼4 Gyr. For the secondary systems the density increases

(except for the 1:1 case), as expected. However, only a small fraction of the

total energy is thermalized in the secondary.

have compared the single- and double-shock models head to head

for an idealized parcel of gas with an initial density ρ init and an

initial entropy Kinit. In particular, in Fig. 24 we plot three sets of

curves representing three different comparisons, each characterized

by a different total amount of energy to be thermalized. The total

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 497–522
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Figure 24. A comparison of the entropy generated by the single- and double-

shock heating models. Horizontal dotted lines show the predictions of the

single-shock heating model for (shock frame) Mach numbers of 1.5, 2.5 and

3.5 (bottom to top). The solid curves show the predictions of the double-

shock model as a function of the density between the two shocks. Note that

if the density drops below ≈40 per cent of its pre-merger value then the

double-shock model generates more entropy than the single-shock model

for a fixed amount of energy to be thermalized.

energies have been chosen such that, in the single-shock model, the

(shock frame) Mach numbers are 1.5, 2.5 and 3.5 (bottom to top).

For the single-shock model, the Mach number is all that is required

to predict the ratio of final to initial entropy (see equation 11). The

three horizontal dotted lines in Fig. 24 represent the predictions of

the single-shock model.

For the double-shock model, we use the entropy and density evo-

lution plots of the simulations as guides. Examination of the evolu-
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Figure 25. Final entropy predicted by the double-shock model as a function of the density ρ1→2 between the two shocks for the gas-only (left-hand panel) and

gas+DM (right-hand panel) simulations. The solid red, dashed green and dot–dashed blue curves represent the 1:1, 3:1 and 10:1 mergers, respectively. The

entropy has been normalized to the expected self-similar result, while the density has been normalized to its initial pre-merger value. The vertical dotted lines

show the minimum density estimated from Fig. 23 at t ≈ 4 Gyr.

tion of the entropy of our mergers (e.g. see Figs 2, 4 and 8) indicates

that the first and second shocks contribute comparable amounts of

entropy to the final state. To the first order, therefore, we surmise

that the first and second shocks thermalize comparable amounts of

energy (i.e. for the purposes of this toy model, we assume each shock

thermalizes half of the total energy.) Between the first and second

shocks, there is a period of adiabatic expansion during which the

density drops to some value ρ1→2. Using the new density and en-

tropy, we can solve for thermal energy of the gas (or, equivalently

the sound speed). The ratio of the thermal energy to the remaining

energy to be thermalized (i.e. half the initial energy) sets the Mach

number of the second shock which, in turn, allows us to compute

the final entropy.

In Fig. 24, the solid curves show the predicted trend between fi-

nal entropy and density between the two shocks for double-shock

model. A comparison between the single- and double-shock mod-

els demonstrates that if the density drops below about 40 per cent

of its initial pre-merger value then the double-shock model does

indeed generate more entropy than the single-shock model. This

is quite promising since Fig. 23 demonstrates that the primary sys-

tems, which dominate the thermalization budget, have their densities

reduced to at least this level (and lower for the 3:1 and 10:1 cases).

Given these results, we test the model further by tailoring the

total energy to be thermalized (and, therefore, the Mach numbers)

to match our merger simulations more closely. In particular, we

assume the total energy is taken to be the peak of the solid curves

plotted in Figs 22(a), (b) corresponding to the ‘simulation method’

estimate. For simplicity, we further assume that each gas particle

thermalizes the same amount of energy. Therefore, for example, the

primary system thermalizes Mp/[Mp + Ms] times the total energy.

As above, the Mach numbers are set by computing the ratios of

thermal energy to energy to be thermalized for the first and second

shocks.

In Figs 25(a), (b) we plot the final entropy predicted by the double-

shock model for the primary systems in our simulations. The entropy

has been scaled to the self-similar result while ρ1→2, the density

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 497–522
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between the two shocks, has been scaled to the initial pre-merger

density. We use the vertical dotted lines, which are meant to represent

the density minimum between the shocks seen in Fig. 23 (at t ≈
4 Gyr), to select the appropriate predicted entropy.

A comparison of the predicted entropy in Figs 25(a), (b) with

that of the primary in our simulations in Figs 5–6 (gas-only) and

Figs 16(a), 17(a) and 18(a) (gas+DM) demonstrates that in all

cases, including the 10:1 mergers, the double-shock model can re-

produce the simulation results to within 10 per cent. Furthermore,

we have found that this result is not very sensitive to the way in which

we have distributed the energy over the two shocks. For example,

we obtain very similar results if the second shock thermalizes any-

where between 20–80 per cent of the total energy, as opposed to

half.

The double-shock heating model therefore appears to provide a

simple framework for understanding the typical level of entropy

generated in our mergers. In Section 5.3, we present a point-by-

point algorithm that the reader can use to apply the double-shock

model.

5 C O N C L U S I O N S

We have presented a series of simulations aimed at exploring the

generation of entropy during cluster mergers. The results show that

the entropy generated is remarkably robust. We show that the gen-

eration of entropy is largely independent of the impact parameter

of the collision, and that similar results are obtained for simulations

only involving gas and for mergers of systems that contain a cos-

mological mixture of gas and dark matter. The resulting entropy

profiles also depend little on the resolution of the simulation, once

more than ∼104 particles are placed in each halo. These results hint

that a general principle is at work, and that the generation of entropy

can be understood as a general process that converts the gravitational

potential energy released during the collapse of the system into the

thermal energy of the ICM. Based on this reasoning, it should be

possible to develop a simple model for the evolution of the entropy

distribution as clusters grow in mass through mergers by examining

the potential energy released in the collapse and the efficiency with

which this is converted into thermal energy.

5.1 Equal mass mergers

We explore mergers of systems with a variety of mass ratios. In each

case, we find that the entropy generated is approximately sufficient

to place the final system on the same entropy scaling relation that

was used to generate the original system. During equal mass mergers

symmetry ensures that both systems are heated to the same degree.

For the bulk of the gas, the power-law slope of the resulting entropy

profile changes little compared to the original (see e.g. Fig. 5a) and

the degree of heating raises the normalization of the entropy profile

by ≈22/3. As a result the final entropy distribution is scaled so that

the final system is a self-similar copy of the original.

The exact process by which this entropy is generated is far from

simple. The two clusters are in contact with each other at the start

of the simulation, however, their infall velocity is not sufficiently

high compared to the sound speed to generate a strong shock. The

system becomes highly compact along the infalling axis with com-

pressed material tending to flow out along the orthogonal plane. A

strong shock is not generated until the cores of the two systems

are superposed. At this point, a strong shock is generated, propa-

gating rapidly out from the central regions. However, not all of the

available infall energy is thermalized in this first shock. Some of it

remains in kinetic form and succeeds in driving a period of adiabatic

expansion. Eventually, however, the remaining energy is thermal-

ized in a series of shocks as material is reaccreted by the merger

remnant.

The generation of entropy thus shows two distinct peaks. The

first corresponds to the strong shock generated as the cores collide,

the second corresponding to the reaccretion of material that tried

initially to escape from the system.

The delay to the initial shock in this system plays an important

role in determining the entropy generated. Because the system col-

lapses prior to the first shock, considerably greater binding energy

is available to be thermalized. Superposing the initial mass distribu-

tions provides a good estimate of the available binding energy, and

modelling this energy as being thermalized in a single strong shock

provides a reasonable approximation to the entropy generated in the

equal mass mergers.

5.2 Unequal mass mergers

For mergers between unequal mass haloes, the generation of entropy

is distributed unequally. Visually, we see that the smaller component

remains essentially intact as it plunges into the centre of the main

system (see e.g. Figs 13 and 15). We find that, although the kinetic

energy of the collapsing system is primarily localized in the smaller

mass system, this energy is largely thermalized in the more massive

progenitor. As a result, the heating of the more massive progenitor

exceeds what is predicted by the self-similar scaling relation

K ∝ M2/3,

while the heating of the less massive component falls short of that

needed for self-similarity. Despite this, the over- and underheating

of the components combine is such a way that the final system comes

close to following the self-similar relation. We provide an analytic

fit to the ratio of the energy dissipated in the two components in

equation (15). This is close to assuming that the energy is exchanged

between the primary and secondary components.

Thus we find that the mergers tend to produce scaled up copies

of the original systems. This is good news since we started with

systems having properties close to those of observed clusters, and

we chose cosmologically likely values for the infall velocities. Our

simulations show that the normalization of this entropy profile is

not a coincidence. Given the infall velocity distribution expected in

a CDM universe this profile is a stable configuration.

As with the 1:1 merger case, we can estimate the energy that is

available to be thermalized by tracking the evolution of the potential

energy. This energy significantly exceeds the initial kinetic energy of

initial system, showing that the long survival time of the secondary

is responsible for much of the entropy generation. However, we

find that a single shock model for the thermalization of this energy

underpredicts the entropy generated, particularly in the case of the

10:1 mass ratio. In order to match the entropy generation we find

that it is necessary to model the two shock process that is seen in

the simulations. A key ingredient of the entropy generation is the

drop in the gas density as the system responds to the first shock.

As the remaining binding energy is thermalized in this more diffuse

medium, the entropy generation is more efficient.

5.3 An algorithm for computing shock heating

A good way to summarize the findings of this paper is to sketch

out an algorithm for computing the entropy generated during the

merger. Future papers will present the results from implementing
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this within cosmological merger trees. We summarize the algorithm

as follows.

(i) Calculate the energy available for thermalization. Cosmolog-

ical simulations suggest that the secondary (less massive) system

crosses the virial radius of the primary system with a total (rela-

tive) velocity of approximately the circular velocity of the primary

system at that radius. The total energy is therefore given by equa-

tion (25). (Note that a similar energy estimate can be derived by

calculating the potential energy between the systems at turnaround,

when the relative kinetic energy is zero.) The energy available for

thermalization can then be obtained by subtracting from this the

potential energy between the systems when their centres coincide

(see Section 4.2).

(ii) Distribute this energy in appropriate proportions to the pri-

mary and secondary systems. Our simulations indicate that the bulk

of the energy is thermalized in the more massive primary system.

Equation (15) provides a fit to how the energy should be divided up

as a function of mass ratio.

(iii) If the merger is 1:1 (or very nearly so), calculation of the

post-shock properties is now straightforward. The energy estimated

above can be converted into an estimate for the (centre-of-mass)

velocity, vin, for both systems. This, in turn, may be converted into

an estimate of the (shock frame) Mach number (see equation 13).

Calculation of the post-shock properties is then simply a matter of

evaluating the Rankine–Hugoniot jump conditions (equations 8–

11).

(iv) If the mass ratio is different from unity, distribute the energy

over two shocks. Our simulations suggest that the two shocks con-

tribute comparably to the final entropy (see Figs 2, 4 and 8; note

also that as the mass ratio approaches unity, the double shock model

converges to the single shock result). To the first order, therefore,

one can assume the shocks each thermalize half of the total energy

estimated in steps (i) and (ii) above (note, however, that the results

are not very sensitive to exactly how the energy is distributed over

the two shocks). For the first shock, one can calculate the post-shock

conditions as in step (iii). Next, assume the systems adiabatically

expand and the density drops to approximately 20 per cent of its

pre-merger value for the primary system and to some appropriate

value for the secondary system (see Fig. 23). Using the post-shock

entropy from the first shock, this new density, and the appropriate

value for vin (i.e. which corresponds to the remaining half of the

total thermalization energy), one can calculate the Mach number of

the second shock (equation 13). The final post-shock conditions are

then determined as usual via the jump conditions.

5.4 What next?

These simulations have allowed us to develop a good understand-

ing of how entropy is generated during cluster mergers. We have

provided an algorithm that encapsulates this physical process. The

practical application of this is to be able to predict the evolution

of the entropy profiles of groups and clusters as they grow in mass

in a CDM universe. In future papers, we will consider this in de-

tail. In particular, we will focus on the problem of explaining the

self-similar growth of clusters seen in hydrodynamical simulations.

The key application of our results is to understand how perturba-

tions in the entropy distribution of clusters propagate through the

merging hierarchy. The entropy profile is modified both by cool-

ing, which lowers the entropy of the system, and non-gravitational

heating (e.g. from supernovae, AGN outflows, thermal conduction),

which raises it. In addition to the inclusion of merger rates derived

from numerical simulations, this aim requires us to validate the

heating model developed here using simulations of merging clus-

ters with ‘perturbed’ initial entropy profiles (i.e. where gas does not

trace dark matter). Among others, we will explore common phys-

ically motivated examples of entropy modification include shift-

ing and truncating the distributions (e.g. Babul et al. 2002; Voit

et al. 2002). This study is currently underway (McCarthy et al., in

preparation).

Aside from such practical applications, there is remaining aca-

demic work to be done as well. In the current study we have pre-

sented a detailed exploration of how entropy is generated in merger

shock heating events. However, why the entropy is generated in this

fashion needs further clarification. For example, an interesting result

of our study is that the gas-only mergers preserve self-similarity. It

is well-known that dark matter-only simulations also approximately

preserve self-similarity through the hierarchy (e.g. NFW). Why it

should be that the gas, which exchanges energy with itself through

shock heating, and the dark matter, which exchanges energy with

itself through phase mixing and violent relaxation, both give rise

to the same equilibrium state is not immediately obvious (see e.g.

Faltenbacher et al. 2006). Presumably, this is the result of both the

gas and dark matter adhering to the virial theorem, but demonstrat-

ing this explicitly is non-trivial. Another interesting result is that the

simplest of shock heating models, a single-shock model, does not

provide an adequate description of mergers characterized by large

mass ratios. What fundamental factor determines how many shocks

are necessary to completely thermalize the available energy? One

possibility is that the system is following the course of maximum

entropy generation. For example, we have found that if the density

drop between shocks is determined by the amount of kinetic energy

remaining to be thermalized (i.e. the leftover kinetic energy fixes

the degree of adiabatic expansion between shocks), the maximum

amount of entropy generated almost corresponds to the case where

the total energy is thermalized equally over two shocks. This also

appears to be roughly the route the simulated systems are following.

These and other basic matters require further attention.
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A P P E N D I X A : M A S S R E S O L U T I O N S T U DY

Given that our simulations are non-radiative, the number of par-

ticles required to accurately capture the evolution of the systems

Table 3. Mass resolution study.

Sim. label Ngas Ndm mgas mdm

(M�) (M�)

Lowest res. 104 1.5 × 104 2.7 × 1010 1.7 × 1011

Low res. 3.3 × 104 5.1 × 104 8.2 × 109 5.2 × 1010

Medium res. 105 1.5 × 105 2.7 × 109 1.7 × 1010

High res. 3 × 105 4.6 × 105 9.1 × 108 5.8 × 109

Highest res. 106 1.5 × 106 2.7 × 108 1.7 × 109
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Figure 26. Comparison of final entropy profile for the 1:1 gas+DM small

impact parameter merger simulated with various mass resolutions.

should not be particularly stringent. However, to be sure we have

carried out a mass resolution study for one of our simulations. In

particular, we have simulated the 1:1 gas+DM small impact param-

eter merger at several different mass resolutions (see Table 3 for a

summary).

In Fig. 26, we show the final entropy profiles of the merged system

for the five different mass resolution runs. Instead of radius, we use

integrated gas mass along the abscissa. Both coordinates have been

scaled to the anticipated self-similar result (see Section 3.1).

Fig. 26 shows that resulting profile is remarkably insensitive to

the adopted mass resolution. For example, there is only a 20 per

cent shift between the resulting entropy profiles of the lowest and

highest resolution simulations, even though the resolution differs

by a factor of 100 between the two. To strike a balance between

speed and accuracy, we adopt the characteristics of the medium

resolution run for all of our other simulations. As indicated by

Fig. 26, the medium resolution run yields a final entropy profile

that differs only by a few per cent from our highest resolution

run.

We point out that the increased entropy in the lowest resolution

run is likely due to an underestimate in the gas density which, in turn,

results in more efficient entropy generation in the shocks. However,

as one increases the resolution (i.e. particle number), one obtains a

more accurate density determination and, therefore, a more accurate

entropy jump. In the case of high mass ratio mergers, our simulations

C© 2007 The Authors. Journal compilation C© 2007 RAS, MNRAS 376, 497–522

 at U
niversity of D

urham
 on N

ovem
ber 27, 2014

http://m
nras.oxfordjournals.org/

D
ow

nloaded from
 

http://mnras.oxfordjournals.org/


522 I. G. McCarthy et al.

indicate that most of the energy is thermalized in the more massive

primary system. Therefore, so long as the primary system is well

resolved the results should be robust. This likely accounts for the fact

that the distribution of gas in massive virialized systems formed in

non-radiative cosmological simulations does not depend much on

resolution (e.g. Frenk et al. 1999), even though the properties of

the small systems that merge to form the massive system change

significantly with resolution.
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