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Abstract

The aim of this note is to discuss some statistical properties of the

phase separation line in the 2D low-temperature Ising model. We prove

the functional central limit theorem for the probability distributions de-

scribing fluctuations of the phase boundary in the direction orthogonal to

its orientation. The limiting Gaussian measure corresponds to a scaled

Brownian bridge with direction dependent parameters. Up to the tem-

perature factor, the variances of local increments of this limiting process

are inversely proportional to the stiffness.
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1 Introduction

Fluctuations of the phase boundary in the two-dimensional (2D) Ising ferromag-
net are known to be asymptotically Gaussian. Some interesting results in this
area can be found in the literature (see, e. g., [8, 1, 9, 5, 6]), where, however,
only vertical displacements of the phase separation line were investigated. Such
a description is natural only if one considers horizontal or “almost horizontal”
interfaces. For inclined interfaces with sufficiently large slope angles ϕ (say,
ϕ ≈ π/4) this is not more the case, and the approach becomes completely inad-
equate for “almost vertical” interfaces, since the latter tend to fluctuate mainly
in “horizontal” direction. To study fluctuations of interfaces in the direction
orthogonal to their orientation seems to be more appropriate. In fact, the for-
mulas appearing here are of the simplest form and the corresponding parameters
have a nice physical (and geometric) interpretation.

The main goal of the present paper is to discuss fluctuations of inclined Ising
interfaces in the direction orthogonal to their orientation. More precisely, we
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consider the 2D Ising ferromagnet in a box with a (symmetric) two-component
boundary conditions (see sect. 2 for formal definitions) and study the limiting
behaviour of stochastic processes corresponding to orthogonal fluctuations of the
phase boundaries. The probability distributions of these processes are shown
to satisfy the functional central limit theorem. The limiting Gaussian measure
presents the distribution of a (scaled) Brownian bridge with orientation depen-
dent parameters. As it was predicted in [2], the variances of its local increments
are inversely proportional to the stiffness1, a well-known quantity in statistical
mechanics.

Since the only condition imposed on interfaces is that of fixed endpoints, the
situation under consideration is essentially local (i. e., we describe a microscopic
piece of the phase boundary). Nevertheless, the estimates obtained below are
uniform in inclination angle ϕ, ϕ ∈ (0, π/2−∆] with any fixed ∆ > 0 (provided
only the inverse temperature β is large enough, β ≥ β0(∆)). Therefore, one can
use the same approach to study such fluctuations of macroscopical pieces of the
phase boundary.

The proof below is based on a similar result for the process of vertical fluc-
tuations of the phase boundary in the 2D Ising model [5] and uses additionally
some constructions and estimates from [7] and [6]. We show that asymptotically
as N → ∞ both processes are related by a simple change of variables.

The paper is organised as follows. Section 2 contains definitions and nota-
tions used later on. The main results are formulated in sec. 3. In sec. 4 some
technical lemmas are collected, which form the basis of proofs of the main results
in sec. 5.

2 Definitions and notations

Lattices. Let Z
2 be the two-dimensional integer lattice and

(

Z
2
)∗

be its dual,
(

Z
2
)∗

= (Z+1/2)2, both consisting of sites. These lattices are immersed into R
2

equipped with the Euclidean distance | · |, |x− y| =
√

(x1 − y1)2 + (x2 − y2)2,
where x = (x1, x2) and y = (y1, y2). A bond is any segment of unit length
connecting two neighbouring sites of the dual lattice. Let s, t be two neighbours
in Z

2; denote by f the unit segment connecting s and t. By definition, a bond
e separates these sites if the segments f and e are orthogonal and meet at their
midpoints.

Let s be any site. By definition, the diagonal at s is the straight line that
passes through s and is orthogonal to the vector (1, 1). A site s ∈ Z

2 is attached
to s∗ ∈

(

Z
2
)∗

provided they share the diagonal and |s − s∗| =
√
2/2. A site

s ∈ Z
2 is attached to a bond e if s is attached to one end of e (see Fig. 1b)

below).
For a set V ⊂ Z

2, |V | denotes its cardinality and ∂V is its outer boundary,

∂V =
{

s ∈ Z
2 \ V : ∃t ∈ V with |t− s| = 1

}

.

1i. e., the radius of curvature of the Wulff shape at the corresponding point
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Configurations. For V ⊂ Z
2 denote by ΩV = {−1, 1}V the set of all possible

configurations σ = σV in V . In the case V = {s} the configuration σV is reduced
to the spin at the site s and is denoted simply by σs.

Fix any V ⊂ Z
2. A configuration σ = σZ2\V in the complement Z

2 \ V is
called a boundary condition (for V ). Two kinds of boundary conditions will be
used below: the constant plus boundary condition σ+,

σ+
t = 1, for all t = (t1, t2) ∈ Z

2, (2.1)

and the two-component boundary condition σϕ, ϕ ∈ (−π/2, π/2),

σϕ
t =

{

1, if t2 > t1 tanϕ,
−1, otherwise.

(2.2)

Contours. Let σ be a configuration in a set V ⊂ Z
2 and σ be a boundary

condition. The boundary Γ(σ, σ) of the configuration σ under the boundary
condition σ is the collection of all bonds separating the sites in Z

2 with different
values of spins. Then any site s∗ of the dual lattice is the meeting point of an
even number of such bonds. If four bonds meet at their common vertex we
split them up into two pairs of linked bonds according to the rule of ”rounding
of corners” in Fig. 1a). Then the boundary Γ(σ, σ) splits up into connected
components to be called contours.

→ ☎✝ q

q

q

q

q q

qq

a) b)

Figure 1: a) the rule of ”rounding of corners”; b) sites attached to vertical and
horizontal bonds.

Phase boundary. Let VNM ⊂ Z
2 denote the box

VNM =
{

t = (t1, t2) ∈ Z
2 : |t1| < N, |t2| < M

}

, M,N > 1. (2.3)

Fix any ϕ ∈ (−π/2, π/2) and consider the boundary condition σϕ from (2.2).
Then the boundary ΓVNM

(σ, σ) ≡ ΓNM (σ, σ) of σ can be decomposed into
certain amount of contours all of which but one being closed and a unique open
contour being called the phase boundary (or the phase separation line). In the
case M > N(tanϕ + ε) with some fixed ε > 0 (the condition to be assumed
everywhere below) the phase boundary forms a polygon connecting the points

3



(−N, [−N tanϕ] + 1/2) and (N, [N tanϕ] + 1/2). Let T ϕ
NM denote the set of all

polygons S that are phase boundaries for configurations σ ∈ ΩVNM
under the

boundary condition σϕ. If S ∈ T ϕ
NM , one says also that S is a phase boundary

in VNM consistent with the boundary condition σϕ.
Gibbs measures. Let V be a finite subset of Z2 and σ be a boundary con-

dition. The Gibbs distribution PV,β(·|σ) in V with the boundary condition σ is
the probability measure in ΩV given by

PV,β(σ|σ) = Z(V, β, σ)−1 exp
{

−βH(σ|σ)
}

, σ ∈ ΩV , (2.4)

where the hamiltonian H(σ|σ) is defined by

H(σ|σ) = −
∑

s, t ∈ V,
|s− t| = 1

σsσt −
∑

s ∈ V, t ∈ ∂V,
|s− t| = 1

σsσt, (2.5)

the partition function Z(V, β, σ) is

Z(V, β, σ) =
∑

σ∈ΩV

exp
{

−βH(σ|σ)
}

, (2.6)

and β > 0 denotes the inverse temperature. In what follows we will always
assume that β is sufficiently large and (sometimes) drop the subscript β from
the notations.

Ensembles of phase boundaries. Let VNM be the box defined in (2.3) and
σϕ be the boundary conditions fixed above. Denote by PN,M,β(·|σϕ) the Gibbs
distribution in ΩNM = {−1, 1}VNM defined as in (2.4)–(2.6). This Gibbs mea-
sure induces the probability distribution Pϕ

N,M (·) in the set T ϕ
NM of all phase

boundaries in VNM consistent with the boundary condition σϕ,

Pϕ
N,M (S) = PN,M,β

({

σ ∈ ΩNM : Γ(σ, σϕ) ∋ S
}
∣

∣

∣
σϕ

)

, S ∈ T ϕ
NM .

Let VN∞ be the vertical strip (cf. (2.3))

VN∞ =
{

t = (t1, t2) ∈ Z
2 : |t1| < N

}

, N > 1. (2.7)

Denote by T ϕ
N∞ the set of all phase boundaries in VN∞ consistent with the

boundary condition σϕ. Since |VN∞| = ∞, the corresponding Gibbs distribution
in ΩN∞ = {−1, 1}VN∞ is not defined; nevertheless, for sufficiently large β the
probability distribution Pϕ

N,∞(S), S ∈ T ϕ
N∞, could be still defined (for details,

see [6]). In what follows we will refer to this distribution as to the ensemble
of phase boundaries in the vertical strip VN∞ (consistent with the boundary
conditions σϕ).

Finally, let us introduce the ensemble of phase boundaries in Z
2 consis-

tent with the boundary condition σϕ from (2.2). To do this, observe that the
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boundary of the configuration σϕ itself consists of one infinite contour Sϕ
∞. Let

∆(Sϕ
∞) ⊂ Z

2 be the set of all sites attached to bonds from Sϕ
∞. By definition,

VN = VN∞ ∪
(

Z
2 \∆(Sϕ

∞)
)

,

i. e., the set VN consists of all sites in Z
2 that are not attached to Sϕ

∞ outside
VN∞. Let T ϕ

N denote the set of all contours in VN compatible with Sϕ
∞ outside

the vertical strip VN∞ (in other words, every contour S ∈ T ϕ
N is generated

by some configuration σ ∈ {−1, 1}VN and therefore passes through the points
(−N + 1/2, [−N tanϕ] + 1/2) and (N − 1/2, [N tanϕ] + 1/2) to be called the
beginning and the ending points of S respectively). The same arguments as
above show that the probability distribution Pϕ

N (S), S ∈ T ϕ
N , is well defined

provided β is sufficiently large.
Surface tension. Let VNM be the box from (2.3) and Z(VNM , β, σ) denote

the partition function with the boundary condition σ (recall (2.6)). For any
fixed ϕ ∈ (−π/2, π/2) the unit vector n = nϕ = (− sinϕ, cosϕ) is orthogonal
to the graph of the straight line t2 = t1 tanϕ in R

2. By definition, the surface
tension in the direction of n is given by

τβ(ϕ) = τβ(nϕ) = lim
N→∞

lim
M→∞

cosϕ

2βN
log

Z(VNM , β, σ
+)

Z(VNM , β, σϕ)
, (2.8)

where the boundary conditions σϕ and σ+ are defined by (2.2) and (2.1) respec-
tively.

Another quantity of interest, which will play an important role in the fol-

lowing, is the stiffness, τβ(ϕ) +
d2

dϕ2 τβ(ϕ). It is known ([2]), that the stiffness in
the Ising model is positive for all subcritical temperatures.

Free energy. The surface tension τβ(ϕ) is closely related to another im-
portant function, the so-called free energy F (H) = Fβ(H). This function is
determined for all complex H satisfying the condition ([7, §4.8])

|ℜH| < 2− δ/β, (2.9)

where δ > 0 is any fixed constant, the inverse temperature β is sufficiently
large, β ≥ β0(δ), and ℜH stands for the real part of H. The free energy F (H)
is analytical in H satisfying (2.9); for real H it is a strictly convex function. Let
F ∗(·) be the Legendre transformation of F (·),

F ∗(x) = sup
H

(

Hx− F (H)
)

.

Then the following duality relation holds

τβ(ϕ) =
1

β
F ∗(β tanϕ) cosϕ. (2.10)

Additional notations. For a real number x denote by [x] its integral part
and by {x} = x− [x] its fractional part. C [a, b] stands always for the space of
continuous functions on the segment [a, b].
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3 Results

Fix some2 ϕ ∈ (0, π/2) and consider the set T ϕ
NM of the phase boundaries

described above. As it was shown in [5] the typical vertical deviation of S ∈ T ϕ
NM

from the segment connecting the initial and the ending points of S is of order√
N . The aim of the present note is to study fluctuations of the phase boundary

in the direction orthogonal to its orientation (for all three ensembles defined
above). We prove that the corresponding distributions converge in C [0, l], l =
1/ cosϕ, to a certain Gaussian measure. This limiting measure presents the
distribution of some scaled Brownian bridge on [0, l] with orientation dependent
scaling factor determined in terms of the stiffness. The proof below is similar to
that in the case of the one-dimensional Solid-On-Solid model ([10]) and is based
on the related result from [5] and some estimates from [7] and [6].

We start with the following definition. Fix any two numbers ϕ ∈ (0, π/2)
and α ∈ (0, 1), and consider arbitrary phase boundary S ∈ T ϕ

N∞. As it was
mentioned before, the typical polygon S is oriented along the line y = x tanϕ
in R

2, namely S is “close” to the segment LN of this line with the ending points
(−N,−N tanϕ) and (N,N tanϕ). Put

Jα =
{

1, 2, . . . , [Nα]− 1
}

. (3.1)

Then the points rj = (xj , xj tanϕ), xj = (2j/[Nα] − 1)N , j ∈ Jα, form the
partition of the segment LN into [Nα] congruent parts.

For any point rj ∈ LN , denote by nj(x) the normal line to LN at rj ,

nj(x) =
xj − x

tanϕ
+ xj tanϕ = −x cotϕ+

2xj
sin 2ϕ

. (3.2)

The line nj(x) intersects any phase boundary S at some number of points; choose
two extremal of them, the most upper and the most lower one, and denote their
abscissas by x̃+j = x̃+j,N and x̃−j = x̃−j,N correspondingly, x̃+j ≤ x̃−j . Let ζ̃±N (s),
s ∈ [0, l], be the continuous random processes such that

ζ̃±N (sj) =
xj − x̃±j√
N sinϕ

, sj =
jl

[Nα]
=
l

2

(xj
N

+ 1
)

, j ∈ Jα, (3.3)

and which are linearly interpolated elsewhere (we put by definition ζ̃±N (0) =

ζ̃±N (l) = 0). Observe that
∣

∣ζ̃+N (jl/[Nα])
∣

∣

√
N presents the distance between rj

and the most upper common point of the graph of nj(x) and the phase boundary

S. Clearly, the distributions ν̃±N,∞ of the processes ζ̃±N (s) in C [0, l] are uniquely

determined by the probability measure Pϕ
N,∞(·) in T ϕ

N∞.
The main result of the present paper is given by the following

2Due to the symmetry the cases ϕ > 0 and ϕ < 0 are identical; the situation with ϕ = 0
corresponds to the vertical fluctuations of the horizontal phase boundary and was already
considered in [9].
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Theorem 1 The distribution ν̃+N,∞ of the process ζ̃+N (s) converges weakly in
C [0, l] to the distribution of the process

ζ̃(s) =
wl,0(s)

√

β
(

τ(ϕ) + τ ′′(ϕ)
)

, s ∈ [0, l], (3.4)

where wl,0(s) = w(s)− s
l
w(l) denotes the Brownian bridge on [0, l] and τ(ϕ) is

the surface tension defined in (2.8). The same is true for the distribution ν̃−N,∞

of ζ̃−N (s). Finally, the process ζ̃+N (s)− ζ̃−N (s) vanishes in probability as N → ∞.

The statistical properties of the phase boundaries from the sets T ϕ
NM and

T ϕ
N have the same limiting behaviour. Namely, one proves the following result.

Theorem 2 Let ν̃±NM and ν̃±N be the measures constructed as described above
from the distributions Pϕ

N,M (·) in T ϕ
NM and Pϕ

N (·) in T ϕ
N correspondingly. Then

all the statements of Theorem 1 hold true for ν̃±NM and ν̃±N .

4 Preliminaries

We collect here some technical results to be used in the proofs of Theorems 1
and 2. In what follows we will always assume that for some fixed ∆ > 0

0 ≤ ϕ ≤ π

2
−∆. (4.1)

4.1 SOS-approximation

Let S ∈ T ϕ
N be any fixed phase boundary in Z

2 consistent with the boundary
conditions σϕ from (2.2). For m = −N + 1, . . . , N − 1, the contour S is said to
be regular in mth column if the set

S ∩
{

y = (y1, y2) ∈ R
2 : y1 = m

}

consists of one point. In the opposite case this set contains at least three points
(clearly, this number is always odd) and we say that the overhang takes place
in this column.

At zero temperature (β = ∞) every phase boundary S has the smallest
possible length, and therefore it is regular in any column m, |m| ≤ N − 1 (and
is restricted to the vertical strip, i. e., S ∈ T ϕ

N∞). For positive temperatures
(β < ∞) this is not more the case due to appearance of overhangs, but the
small temperature picture (β large) could be still considered as an excitation of
the zero-temperature one. Thus, it is naturally to compare the original phase
boundary S to some SOS-like (i. e., regular in any column m, |m| ≤ N − 1)
approximating polygon.

Assume first that some S ∈ T ϕ
N∞ is fixed and for any integer k, |k| ≤ N − 1,

define
g+N (k) = max {t2 : (k, t2) ∈ S} , (4.2)
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✁
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S
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✁
✁✕

S−

Figure 2: Approximating polygons

i. e., (k, g+N(k)) is the most upper point of the polygon S in kth column (by
definition, we put also g+N (x) = [x tanϕ] + 1/2 if x = ±N). Consider the
collection of all unit horizontal segments centered at the points to (k, g+N(k))
and connect their endpoints by vertical segments. As a result, one obtains the
continuous (regular in any column m, |m| ≤ N − 1) polygon S+ connecting
the points (−N +1/2, [−N tanϕ] + 1/2) and (N − 1/2, [N tanϕ] + 1/2). (More
formally S+ could be defined as the union of the horizontal segments connecting
the points (k−1/2, g+N (k)) and (k+1/2, g+N (k)), k = −N+1, . . . , N−1, and the
vertical segments with the endpoints (k− 1/2, g+N(k− 1)) and (k− 1/2, g+N(k)),
k = −N + 1, . . . , N ; see Fig. 2.)

For any j ∈ Jα (recall (3.1)), consider the line nj(x) orthogonal to LN at rj
(recall (3.2)) and denote by (x̄+j , nj(x̄

+
j )), x̄

+
j = x̄+j,N , the most upper common

point of this straight line and the upper approximating polygon S+.
In a similar way, starting from the quantities

g−N (k) = min {t2 : (k, t2) ∈ S} (4.3)

one defines the lower approximating polygon S− and its most lower point
(x̄−j , nj(x̄

−
j )) on the normal line nj(x). Observe that the boundary S is a subset

of the figure bounded by S+ ∪ S− (i. e., the dotted area in Fig. 2). As a result,
one obtains the relation

x̄+j ≤ x̃+j ≤ x̃−j ≤ x̄−j . (4.4)
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The use of introducing the approximating polygons S+ and S− is clarified
by the following statement which is a variant of Proposition 4.15 from [7] and
could be proved by the same method. For any ϕ ∈ [0, π/2) denote by Aϕ

N,∞(k, ρ),
|k| ≤ N − 1, ρ > 0, the set

{

S ∈ T ϕ
N∞ : g+N (k, S) ≥ k tanϕ+ (N − |k|)ρ or

g−N (k, S) ≤ k tanϕ− (N − |k|)ρ
}

.

Lemma 4.1 ([7]) Assume that ϕ satisfies (4.1) and Aϕ
N,∞(k, ρ) be as defined

above. Then there exist positive constants β0 = β0(∆), ρ0 = ρ0(∆), N0 =
N0(∆), a = a(∆, β), c = c(∆, β), and C = C(δ, β) such that for all β ≥ β0 and
N ≥ N0 one has

Pϕ
N,∞

(

Aϕ
N,∞(k, ρ)

)

≤ C
√
N exp {−(N − |k|)G(ρ)} , (4.5)

where

G(ρ) =

{

aρ2, if |ρ| ≤ ρ0,

aρ20 + c|ρ− ρ0|, if |ρ| > ρ0.
(4.6)

Remark 4.1.1 All the constructions described above could be done also for S ∈
T ϕ
N with the only difference that in this case such a polygon S is not necessarily

a subset of the figure bounded by S+ and S− (and thus the relation like (4.4)
is not more valid). Nevertheless, the analogue of the formulated Lemma for the
sets Aϕ

N (k, ρ) of phase boundaries S ∈ T ϕ
N is also true. In fact, Proposition 4.15

in [7] was proved for sets like Aϕ
N (k, ρ).

Corollary 4.2 Fix any ε > 0. Then there exist positive constants β0 = β0(∆),
Ci = Ci(∆, β, ε), i = 1, 2, such that for all β ≥ β0, j ∈ Jα, and N sufficiently
large one has

Pϕ
N,∞

(

|x̄±j − xj | > N (1+ε)/2
)

≤ C1 exp {−C2N
ε} .

In particular, the random variable xj − x̄±j /Nvanishes in probability as N → ∞
(uniformly in j ∈ Jα).

Finally, let us estimate the difference x̄±j − x̃±j . To this end, fix any S ∈ T ϕ
N∞

and consider the set {m1, . . . , ml}, −N = m0 < m1 < . . . < ml < ml+1 = N ,
of all m such that S is regular in column m. Cutting S by any vertical line
y1 = mi, i = 1, . . . , l, one splits the polygon S into l + 1 pieces S1, . . . , Sl+1

to be called animals (note that the definition of an animal in [7, Chap. 4] is
more general than the definition here, nevertheless, all animals defined above
are animals in the sense of [7]). For any i = 1, . . . , l+1, the segment [mi−1, mi]
presents the horizontal projection of the animal Si and is called the base of Si.
The key observation here is that for any j both numbers x̄+j and x̃+j belong to
the base [mi−1, mi] of some animal Si. As a result,

|x̄+j − x̃+j | ≤ mi −mi−1 (4.7)

with some i = i+(j). A similar estimate holds for x̄−j − x̃−j as well.
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Lemma 4.3 There exist positive constants h0 = h0(∆), β0 = β0(∆), and C =
C(∆, β) such that for all β ≥ β0 and sufficiently large N

Eϕ
N,∞ exp

{

h

∣

∣x̄±j − x̃±j
∣

∣

sinϕ

}

≤ C (4.8)

uniformly in |h| ≤ h0, j ∈ Jα, and ϕ satisfying (4.1). As a result, for any fixed
ε > 0 one has

Pϕ
N,∞

(

∣

∣x̄±j − x̃±j
∣

∣ ≥ Nε sinϕ
)

≤ C exp
{

−h0Nε
}

(4.9)

uniformly in j ∈ Jα.

Proof. For any fixed ϕ ∈ (0, π/2 − ∆] estimate (4.8) follows from (4.7) and
the analogue of Corollary 7.5 in [6]. To check the uniformity in ϕ, observe
that |x̄±j − x̃±j | cotϕ gives the difference of ordinates of points (x̄±j , nj(x̄

±
j )) and

(x̃±j , nj(x̃
±
j )). This quantity is bounded from above by the number of vertical

bonds of the corresponding animal Si(j), i = i±(j). It remains to recall the
remark after Lemma 7.3 in [6] and to observe the uniform positiveness of 1/ cosϕ
for |ϕ| ≤ π/2−∆. ✷

Fix now any S ∈ T ϕ
N and construct the upper and the lower approximating

polygons S± using the quantities g±N (k), |k| ≤ N , from (4.2) and (4.3). As
before, determine the set {m1, . . . , ml}, −N < m1 < . . . < ml < N , of all
m such that S is regular in column m and apply the animal decomposition
{

S1, . . . , Sl+1

}

to S. Since the extremal animals S1 and Sl+1 are not necessarily

located in the vertical strips
{

y ∈ R
2 : y1 ∈ [−N,m1]

}

and
{

y ∈ R
2 : y1 ∈

[ml, N ]
}

respectively, the inequality (4.4) is no longer valid. Define

m0 = max
{

k ≤ −N : S(k) = ∅
}

, ml+1 = min
{

k ≥ N : S(k) = ∅
}

with S(k) denoting the set of common points of S and the vertical line y1 = k,

S(k) = S ∩
{

y = (y1, y2) ∈ R
2 : y1 = k

}

. (4.10)

Again we have the property x̃±j , x̄
±
j ∈ [mi−1, mi] for all j ∈ Jα and i = i±(j) ∈

{1, . . . , l + 1}; therefore, (4.7) is valid for all such j. Taking into account Re-
mark 4.1.1 one deduces the following statement.

Lemma 4.4 All the results listed in Corollary 4.2 and Lemma 4.3 are valid for
the distributions Pϕ

N (·) in T ϕ
N as well.

4.2 Processes of vertical fluctuations

We discuss here the vertical fluctuations of the phase boundary S. To be specific
we suppose that S ∈ T ϕ

N∞, though all considerations will be also true for the
ensembles T ϕ

NM and T ϕ
N .
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Fix arbitrary S ∈ T ϕ
N∞ and for any integer k, |k| ≤ N , determine the

quantities g+N (k) as in (4.2). Let g+N (x), x ∈ [−N,N ], be the piecewise linear
interpolation of the values g+N (k). Consider the random polygonal function

θ+N (t) =
1

2

(

g+N
(

(2t− 1)N
)

− g+N (−N)
)

, t ∈ [0, 1],

and denote by µ+
N = µ+

N,∞ the corresponding measure in C [0, 1] induced by the

probability distribution Pϕ
N,∞(·) in T ϕ

N∞. Finally, let θ∗,+N (t), t ∈ [0, 1], be the
(upper) process of vertical fluctuations,

θ∗,+N (t) =
1√
N

(

θ+N (t)−NbN t
)

, bN =
g+N (N)− g+N (−N)

2N
, (4.11)

and let µ∗,+
N denote its distribution in C [0, 1].

In a similar way, starting from the quantities g−N (k) (recall (4.3)), one defines

the (lower) process of vertical fluctuations θ∗,−N (t), t ∈ [0, 1], with the distribu-

tion µ∗,−
N in C [0, 1].

Proposition 4.5 ([5]) Let F (·) denote the free energy and H̄ = H̄(ϕ) solve
the equation F ′(H̄) = β tanϕ. Then the sequence of measures µ∗,+

N converges
weakly in C [0, 1] to the distribution µ̄ of the process

θ̄(t) =
1

β

√

F ′′(H̄)w1,0(t), t ∈ [0, 1], (4.12)

where w1,0(t) denotes the Brownian bridge on [0, 1]. The same is true for the
measures µ∗,−

N . Moreover, for any sequence αN of real numbers such that αN →
0 as N → ∞ one has the convergence

αN

(

θ+N (t)− θ−N (t)
)

→ 0 (4.13)

in probability as N → ∞.

Since bN → b ≡ tanϕ as N → ∞, the distributions of the random processes
N−1θ±N (t) converge weakly in C [0, 1] (and in probability) to the distribution
concentrated on the deterministic function e(t) = bt, t ∈ [0, 1]. Its graph γ is
a segment having the slope angle ϕ, tanϕ = b. For any t ∈ [0, 1] the quantity
s = s(t) = t/ cosϕ presents the length of the segment on the graph γ of e(t) with
the endpoints (0, 0) and (t, bt); denote the inverse mapping s 7→ ts = s cosϕ by
t(s). The quantity l = s(1) = (cosϕ)−1 gives the total length of γ.

Simple geometrical considerations imply the estimate

max
{

∣

∣y − g+N (x)
∣

∣ : y ∈ S+(x)
}

≤ 1

2

∣

∣

∣
g+N ([x+ 1])− g+N ([x])

∣

∣

∣
,

where S+(x) is defined similarly to (4.10). Clearly, the same inequality holds
for g−N (·) and S−. The following statement presents the key estimate used in
the proof of (4.13). Though it was not stated explicitly in [5], its proof can be
established by a literal repetition of that of Lemma 7.3 in [6]. (A close result
can be found in [4].)
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Lemma 4.6 There exist positive constants h0 = h0(∆), β0 = β0(∆), and C =
C(∆, β) such that for all β ≥ β0 and sufficiently large N

Eϕ
N,∞ exp

{

h|g+N (k + 1)− g+N (k)|
}

< C

uniformly in |h| ≤ h0, k = −N, . . . , N − 1, and ϕ satisfying (4.1).

As a direct implication, one deduces

Corollary 4.7 For any ε > 0 one has

Pϕ
N,∞

(

∣

∣

nj(x̄
±
j )− g±N (x̄±j )

∣

∣ ≥ Nε
)

≤ C exp
{

−2h0N
ε
}

uniformly in j ∈ Jα.

5 Proof of Theorems 1 and 2

This section is devoted mainly to the proof of Theorem 1. Basically it consists
of three steps. First, we compare the values ζ̃±N (sj) of the process of interest

(recall (3.3)) to the values θ∗,±N (t̄±j ) of the process of vertical fluctuations (recall
(4.9)) at the points

t̄±j =
1

2

( x̄±j
N

+ 1
)

, j ∈ Jα, (5.1)

and show that as N → ∞ the difference

ζ̃±N (sj)− θ∗,±N (t̄±j ) cosϕ

vanishes in probability (uniformly in j ∈ Jα). Then, taking into account Corol-
lary 4.2, we deduce the uniform in j ∈ Jα convergence

θ∗,±N (t̄±j )− θ∗,±N (tj) → 0

in probability as N → ∞ on every compact set in C [0, 1], where (cf. (5.1))

tj =
1

2

(xj
N

+ 1
)

=
j

[Nα]
, j ∈ Jα, (5.2)

and check that the family of random variables θ∗,±N (tj), j ∈ Jα, has correct
finite dimensional distributions, i. e., those prescribed by Theorem 1. Based
on this, we prove the convergence of all finite-dimensional distributions of the
processes ζ̃±N (s), s ∈ [0, l], to that of ζ̃(s) from (3.4). Finally, we establish
the weak compactness of the sequences of distributions ν̃+N,∞ and ν̃−N,∞. In
what follows, we consider mainly the upper processes (and intersection points).
Generalization to the lower case is straightforward.

We start with the following geometric observation (see Fig. 3 below). Let OC
be the graph of the normal line nj(x) to the “orientation line” OA of the phase

12
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Figure 3:

boundary S at the point O(xj, bxj). Consider the points B, C, and D having
the following coordinates: B(x̄+j , g

+
N(x̄+j )), C(x̄

+
j , nj(x̄

+
j )), and D(x̃+j , nj(x̃

+
j )).

Finally, define the point A(x̄+j , bx̄
+
j ) as the vertical projection of the points B

and C on the “orientation line” OA of S. Recalling (3.3), we rewrite

ζ̃+N (sj) =
xj − x̃+j√
N sinϕ

=
nj(x̃

+
j )− nj(xj)√
N cosϕ

, j ∈ Jα.

Now, elementary calculations lead to the relation

ζ̃+N (sj) = θ∗,+N (t̄+j ) cosϕ+
x̄+j − x̃+j√
N sinϕ

+
nj(x̄

+
j )− g+N (x̄+j )√

N
cosϕ, (5.3)

where the following identity was used (cf. (4.11)):

θ∗,+N (t̄+j ) =
g+N (x̄+j )− x̄+j tanϕ

√
N

.

Lemma 5.1 There exist positive constants β0 = β0(∆), c = c(∆), and C =
C(∆, β) such that for all β ≥ β0 and any ε > 0 one has

Pϕ
N,∞

(

max
j∈Jα

∣

∣ζ̃+N (sj)− θ∗,+N (t̄+j ) cosϕ
∣

∣ > N−(1/2−ε)
)

< C exp
{

−cNε
}

uniformly in natural N .
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Proof. In view of relation (5.3) the statement of the lemma follows directly
from Lemma 4.3 and Corollary 4.7. ✷

Consider the random processes (cf. (4.11))

ζ±N (s) ≡ θ∗,±N (s cosϕ) cosϕ (5.4)

and denote their distributions in C [0, l] by ν±N,∞.

Lemma 5.2 The sequences of measures ν±N,∞ converge weakly in C [0, l] to the
distribution of the random process (recall (3.4))

ζ̃(s) =
wl,0(s)

√

β
(

τ(ϕ) + τ ′′(ϕ)
)

, s ∈ [0, l],

where wl,0(s) stands for the Brownian bridge in [0, l] and τ(ϕ) is the surface
tension from (2.8). Moreover, for any sequence of real numbers αN such that
αN → 0 as N → ∞ one has

αN

√
N
(

ζ+N (s)− ζ−N (s)
)

→ 0

in probability as N → ∞.

Proof. Recall that F ′(H̄) = β tanϕ. Therefore,

τ(ϕ) + τ ′′(ϕ) = βF ∗′′(

β tanϕ
)

cos−3 ϕ =
β

F ′′(H̄) cos3 ϕ
, (5.5)

where the first equality follows from relation (2.10) and the second one is implied
by the duality relations for the Legendre transformation (see, e. g.,Property A.1
in [6]). Changing the variables t 7→ s in (4.12) one immediately deduces the
claim of the lemma from Proposition 4.5 and relation (5.5). ✷

Remark 5.2.1 Definition (5.4) induces the one-to-one correspondence ψ be-
tween C [0, 1] and C [0, l], ψ : f(t) 7→ g(s) = f(s cosϕ) cosϕ. Observe that ψ
introduces a bijection between compact sets in these spaces.

Proof of Theorem 1. First, let us check that for every ε > 0

Pϕ
N,∞

(

max
j∈Jα

|θ∗,+N (t̄+j )− θ∗,+N (tj)| ≥ ε
)

→ 0 (5.6)

as N → ∞, where t̄+j and tj are defined in (5.1) and (5.2) respectively. To this
end, choose arbitrary η > 0 and fix any compact set K ⊂ C [0, 1] such that

µ∗
N

(

C [0, 1]\K
)

<
η

2
(5.7)
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for all N ≥ N0 with sufficiently large N0 (such K always exists due to the weak
compactness of the sequence µ∗,+

N ; recall Proposition 4.5). According to Arzelà’s
theorem [3, App. 1], all f ∈ K are equicontinuous,

lim
δ→0

sup
f∈K

sup
t′,t′′∈[0,1],|t′−t′′|<δ

∣

∣f(t′)− f(t′′)
∣

∣ = 0. (5.8)

Let δ > 0 be such that sup|t′−t′′|<δ

∣

∣f(t′)− f(t′′)
∣

∣ < ε for all f ∈ K. Then,

{

max
j∈Jα

∣

∣θ∗,+N (t̄+j )− θ∗,+N (tj)
∣

∣ ≥ ε
}

⊂
{

θ∗,+N (·) ∈ C [0, 1]\K
}

∪
⋃

j∈Jα

{

∣

∣t̄+j − tj
∣

∣ ≥ δ
}

(5.9)
and (5.6) follows directly from (5.9), (5.7), (5.1), (5.2), and Corollary 4.2. Con-
sequently, in view of Lemma 5.1, definition (5.4), and the simple relation

ζ̃+N (sj)− ζ+N (sj) = ζ̃+N (sj)− θ∗,+N (t̄+j ) cosϕ+
(

θ∗,+N (t̄+j )− θ∗,+N (tj)
)

cosϕ,

the inequality

Pϕ
N,∞

(

max
j∈Jα

∣

∣ζ̃+N (sj)− ζ+N (sj)
∣

∣ ≥ ε/2
)

< η/4 (5.10)

holds for any positive ε and η provided only N ≥ N0 = N0(∆, ε, η) > 0 and
β ≥ β0(∆) > 0. In the remaining part of the proof we will assume that N ≥ N0

with such N0.
Next, let us prove the convergence of finite-dimensional distributions of the

random process ζ̃+N (s) to that of ζ̃(s) from (3.4). Due to Lemma 5.2 it is enough
to prove that

sup
s∈[0,l]

∣

∣ζ̃+N (s)− ζ+N (s)
∣

∣ → 0 (5.11)

in probability as N → ∞. To do this, fix arbitrary ε > 0, η > 0 and consider
any compact set K ⊂ C [0, 1] satisfying (5.7). For s ∈ [0, l], denote by ρ1,
ρ2 ∈

{

jl/[Nα], j ∈ Jα
}

the numbers such that s ∈ [ρ1, ρ2] and |ρ1−ρ2| = l/[Nα].
Let λ = λ(s) ∈ [0, 1] be such that s = λρ1 + (1 − λ)ρ2. Now, find δ̄ > 0 with
the property

sup
t′,t′′∈[0,1],|t′−t′′|<δ̄

∣

∣f(t′)− f(t′′)
∣

∣ < ε/2 (5.12)

uniformly in f ∈ K (recall (5.8)). Without loss of generality one may assume
that δ̄ and N0 fixed above are related via δ̄[(N0)

α] > 1. According to the
definition of ζ̃+N (·), one has

ζ̃+N (s) = λζ̃+N (ρ1) + (1− λ)ζ̃+N (ρ2). (5.13)

Now, taking into account (5.4), rewrite

∣

∣ζ̃+N (s)− ζ+N (s)
∣

∣ ≤ λ
∣

∣ζ̃+N (ρ1)− ζ+N (ρ1)
∣

∣+ (1− λ)
∣

∣ζ̃+N (ρ2)− ζ+N (ρ2)
∣

∣

+ λ
∣

∣ζ+N (ρ1)− ζ+N (s)
∣

∣+ (1− λ)
∣

∣ζ+N (ρ2)− ζ+N (s)
∣

∣.
(5.14)
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Then, the simple inclusion
{

∣

∣ζ̃+N (s)− ζ+N (s)
∣

∣ ≥ ε
}

⊂
{

∣

∣ζ̃+N (ρ1)− θ∗,+N (ρ1 cosϕ) cosϕ
∣

∣ ≥ ε/2
}

∪
{

∣

∣ρ1 − s
∣

∣ ≥ δ̄
}

∪
{

∣

∣ζ̃+N (ρ2)− θ∗,+N (ρ2 cosϕ) cosϕ
∣

∣ ≥ ε/2
}

∪
{

∣

∣ρ2 − s
∣

∣ ≥ δ̄
}

∪
{

θ∗,+N (·) ∈ C [0, 1] \ K
}

,

and relations (5.7), (5.10), (5.12)–(5.14) imply that for N under considerations

Pϕ
N,∞

(

sup
s∈[ρ1,ρ2]

∣

∣ζ̃+N (s)− ζ+N (s)
∣

∣ ≥ ε
)

< η.

Observing that the last estimate is independent of [ρ1, ρ2], one immediately
deduces (5.11).

Finally, it remains to establish the weak compactness of the measures ν̃+N,∞.
According to Theorem 8.2 from [3], one has to prove that for any ε > 0 and
η > 0 there exist δ > 0 and N1 such that for all N ≥ N1

Pϕ
N,∞

(

sup
s′,s′′∈[0,1],|s′−s′′|<δ

∣

∣ζ̃+N (s′)− ζ̃+N (s′′)
∣

∣ ≥ ε
)

≤ η. (5.15)

To do this, we observe that

∣

∣ζ̃+N (s′)− ζ̃+N (s′′)
∣

∣ ≤
∣

∣ζ̃+N (s′)− ζ+N (s′)
∣

∣+
∣

∣ζ+N (s′)− ζ+N (s′′)
∣

∣+
∣

∣ζ+N (s′′)− ζ̃+N (s′′)
∣

∣,

and therefore

Pϕ
N,∞

(

sup
|s′−s′′|<δ

∣

∣ζ̃+N (s′)− ζ̃+N (s′′)
∣

∣ ≥ ε
)

≤ Pϕ
N,∞

(

sup
|s′−s′′|<δ

∣

∣ζ+N (s′)− ζ+N (s′′)
∣

∣ ≥ ε/3
)

+ 2Pϕ
N,∞

(

sup
s∈[0,l]

∣

∣ζ̃+N (s)− ζ+N (s)
∣

∣ ≥ ε/3
)

.

Now, (5.15) follows from the weak compactness of the sequence ν+N (recall
Lemma 5.2), relation (4.11), and the last inequality.

The weak convergence of ν̃+N,∞ is proved. Clearly, the same arguments are

applicable to ν̃−N,∞. Finally, the claim about the convergence

ζ̃+N (s)− ζ̃−N (s) → 0

in probability as N → ∞ follows from (5.11), its analogue for the lower process,
and Lemma 5.2. �

Proof of Theorem 2. According to the assumption that M > N(tanϕ+ε) with
some ε > 0, the claim of the theorem for the measures ν̃±NM follows directly
from Theorem 1 and Lemma 4.1.
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Since all the statements in sect. 4 are valid also for the distribution Pϕ
N (·)

in T ϕ
N , the proof in the case ν̃±N distributions is a literal repetition of that of

Theorem 1. �
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