
On the Stability of Dynamic Diffusion Load Balancing∗

Petra Berenbrink†

Simon Fraser University
School of Computing Science

Tom Friedetzky
University of Durham

Department of Computer Science

Russell Martin‡

University of Liverpool
Department of Computer Science

Abstract

We consider the problem of dynamic load balancing in arbitrary (connected) networks on
n nodes. Our load generation model is such that during each round, n tasks are generated on
arbitrary nodes, and then (possibly after some balancing) one task is deleted from every non-
empty node. Notice that this model fully saturates the resources of the network in the sense that
we generate just as many new tasks per round as the network is able to delete. We show that
even in this situation the system is stable, in that the total load remains bounded (as a function
of n alone) over time. Our proof only requires that the underlying “communication” graph be
connected. (It of course also works if we generate less than n new tasks per round, but the major
contribution of this paper is the fully saturated case.) We further show that the upper bound
we obtain is asymptotically tight (up to a moderate multiplicative constant) by demonstrating
a corresponding lower bound on the system load for the particular example of a linear array
(or path). We also show some simple negative results (i.e., instability) for work-stealing based
diffusion-type algorithms in this setting.

1 Introduction

The use of parallel and distributed computing is established in many areas of science, technology,
and business. One of the most crucial parameters of parallel machines is the efficient utilization of
resources. Of greatest importance here is an even distribution of the workload among the processors.
In particular applications exposing some kind of “irregularity” require the use of a load balancing
mechanism.

A well known and much studied load balancing approach is the so-called diffusion load bal-
ancing, first introduced by Cybenko and Boillat ([11], [10]). The algorithm works in synchronized
rounds. The basic idea is that in every round, every processor p balances load with all its neighbors
(independently, i.e., pair-wise). Let `p be the load of p and `q the load of some of p’s neighbor
q, and let dp denote the degree of the vertex p. One popular method in the discrete setting has
p transferring max{0, b(`p − `q)/(max{dp, dq} + 1)c} tasks to q in a given round. Some of many
advantages of diffusion-type algorithms are the locality (no global knowledge regarding the overall
∗A preliminary version of this paper entitled “Dynamic diffusion load balancing” was published in Proc. 32nd

International Colloquium on Automata, Languages and Programming (ICALP’05), Lecture Notes in Computer Science
3580, Springer-Verlag, pp. 1386–1398.
†Supported by NSERC Discovery Grant 250284-2002.
‡Supported by EPSRC grant “Discontinuous Behaviour in the Complexity of Randomized Algorithms.”

1

load situation, or, in fact, anything except the strict neighborhood of any vertex is needed), its
simplicity, and its neighborhood preservation (tasks tend to stay close to the processors where they
are generated, which may help to maintain small communication overhead).

The diffusion load balancing algorithm has been thoroughly analyzed for static scenarios, where
each processor has some initial number of tasks, and the objective is to distribute this load evenly
among the processors as quickly as possible. Much work has been done under the assumption that
every edge is only allowed to forward one task per round [15, 17, 21] or when a constant number of
tasks can be passed by each processor [16]. We refer to these scenarios as token distribution prob-
lems. In addition, [12, 14] have studied the diffusion algorithm where tasks can be split arbitrarily,
while [13] assumes that they are indivisible. Muthukrishnan, Ghosh, and Schultz [19] examined
first- and second-order schemes for “coarse” load balancing (the goal being to reduce large dis-
crepancies between the loads on vertices). Rabani, Sinclair, and Wanka [22] also considered the
problem of coarse balancing. They model the load balancing process by a suitable Markov chain,
and show this model is accurate until a certain threshold discrepancy is reached.

In contrast to the static case of load balancing and token distribution, in the dynamic setting
during each round new tasks are generated (in some manner) on the set of processors, load is
balanced amongst neighbors, then tasks are deleted from non-empty processors.

Much past work has studied the dynamic token distribution problem. Muthukrishnan and
Rajaraman [20] studied a dynamic version where processors can forward a single task in each
round. They assume an adversarial load generation model. The adversary is allowed to generate
and to delete tokens from the network in every round. The simple and elegant algorithm they
consider is due to [1]: A node sends a task to its neighbor if the load difference between them is
at least 2∆ + 1, where ∆ is the maximum degree of the underlying graph. They show that the
system is stable if the load change in every subset S of the nodes minus a|S| is at most (1− ε)e(S)
for ε > 0. Here e(S) is the number of outgoing edges of S and a is the change in the average load.
Their system is said to be stable if the deviation of the load of any processor from the average load
can be bounded. Muthukrishnan and Rajaraman left open the question whether the system is also
stable for ε = 0.

Anshelevich, Kempe, and Kleinberg [4] gave a positive result for token distribution when ε = 0.
They showed that under the above load generation model no processor has more than average load
±(2∆+1) ·n. Anshelevich, et al. also showed how their result can be generalized for edges that can
forward c tokens per time step. A node sends min{c, ρ} tasks to its neighbor if the load difference
is at least 2∆c+ ρ. In this setting no processor has more than average load ±(2∆ + 1)c · n as long
as the load change in every subset S of the nodes minus a|S| is at most c · e(S). Additionally,
they showed that a generalization of the algorithm is stable for two distinct types of jobs, and they
extended their results to related flow problems.

In [6, 7] Awerbuch and Leighton use a variant of the token distribution model under the as-
sumption that tokens can be split into arbitrarily sized parts. They use a “balancing” algorithm
to approximate the multi-commodity flow problem with capacitated edges. Their method is an
iterative approach where flow is queued at the vertices of the graph. In each step, the commodity
which has the largest excess is shipped from one vertex to another, and then new flow is injected
into the system. In this balancing process, edge capacities must always be respected. These edge
capacities are analogous to the restrictions on the number of tasks that can be passed over any
single edge in the token distribution problems. Furthermore, their model does not actually allow
full use of those edge capacities, which is similar to the case in [20] where ε > 0 was required to
ensure stability. The work in [2] and [5] expands the results of Awerbuch and Leighton for packet
routing, but again in these cases only a constant number of tasks can be moved across any edge in

2

a single time step.

Clearly the condition that processors can forward only a single task (or a constant number) per
edge in each round significantly restricts the number and distribution of tasks that can be generated
on (or deleted from) processors in each round and still obtain a stability result. Thus, in the results
of [20] and [4] some dependence on the quantity e(S) (or some measure of the “edge expansion”)
is to be expected.

Anagnostopoulos, Kirsch, and Upfal [3] consider the setting where there are no restrictions on
the number of tasks balanced between processors in a time step, and they allow a broad range of
injection models. Their protocol is similar to that studied in [16] for a static setting, but is not
the typical diffusion load balancing procedure. In their setting, in each step nodes are matched
randomly with adjacent neighbors and matched nodes equalize their load. Hence, every processor
is only involved in a single load balancing action. They show that the system is stable as long as at
most wnλ tasks (in expectation) are generated in a time interval of length w, where λ < 1. Their
proof method unfortunately cannot be generalized to the case of full saturation when λ = 1, which
is the main focus of this paper.

In a different approach in the dynamic setting, Berenbrink, Friedetzky, and Mayr [9] consider
a load balancing scheme that uses a “collision protocol” (see also [18]) to resolve load balancing
requests amongst lightly- and heavily-loaded processors. They show stability with this balancing
protocol and a variety of randomized task generation models where each processor receives, in
expectation, strictly less than one newly generated task per round.

1.1 Our Results

In this paper we present the first analysis of the simple diffusion scheme for the dynamic load
balancing problem that allows full saturation of the resources. We assume that n new tasks are
generated per round and, after load balancing, every non-empty processor deletes one task each
round. (With small modifications our proofs will carry through to the case when we generate at
most n tasks per round.) In contrast to [4] and [20], the newly generated tasks may be arbitrarily
distributed among the nodes of the network, regardless of any “edge expansion” type of condition
as in those models. For example, the tasks may always be generated on the same processor, or all
tasks may be generated on one processor but the processor can change from round to round, or
alternatively, the tasks may be allocated at random each round. Note that, obviously, without load
balancing the total number of tasks in the system may grow unboundedly with time (in the worst
case, we generate n new tasks per step but delete only one).

We show that the system of processors is stable under the diffusion load balancing scheme and
the generation model described above. By stable, we mean that the total load in the system does
not grow with time. In particular, we show that the total system load can be upper-bounded by
O(∆n3), where ∆ denotes the maximum degree of the network. Furthermore, we present a simple,
asymptotically matching lower bound when the network is a path.

Our technique also captures a different scenario, similar to that in [4, 20], where stability is
defined in terms of deviation of any processor’s load from the average. In this scenario we have
two separate phases, the first where tasks are generated on and/or deleted from nodes, and the
second where tasks are then balanced amongst nodes. Let L̄t(S) denote the total load of the nodes
in the set S after the task generation/deletion phase, and Lt(S) denote the total load of S after
the balancing step at time t. Assume that the generation/deletion phase satisfies the following
condition:

L̄t(S)− Lt−1(S) ≤ (avg(t)− avg(t− 1)) · |S|+ ρ for every subset S,

3

where avg(t) denotes the average system load in step t. Then the total load of S can be bounded
by |S| · avg(t) + 5∆nρ.

For both proofs of our results we use a potential function. Although the potential function we
use looks similar to the one used in [4], the proof technique is very different. The proof method
in [4] very much relies upon the restriction of their generation/deletion model, where the number
of tasks inserted into/deleted from a set S is bounded by a function of e(S), the number of edges
that join the set S to its complement S̄. This, together with the bounded capacities on the edges of
the graph, allows for a direct analysis of how the loads of sets might change in a single step of their
process. The arbitrary distribution of tasks in our generation model and the unrestricted capacity
of the edges in our network (i.e. unknown bounds on load transferred into a set S in a single step)
does not allow us to directly obtain similar results, so we need a different proof to show stability
under our model.

In the final part of our paper we discuss a different method of load balancing, one which is
commonly referred to as work stealing. In this framework, processors that are empty after task
generation will balance with processors that are not empty, but no other balancing actions are
permitted. We show that for this work-stealing protocol there are graphs for which the system
cannot be stable for a significant class of generation parameters. These results show that restricting
balancing actions to empty processors is not sufficient in general.

In contrast, Berenbrink, Friedetzky, and Goldberg [8] showed stability of a work stealing algo-
rithm under a load generation model that is similar to many of those already mentioned. They
consider a flexible distribution of n generators among the nodes of the network, where each gener-
ator is allowed to generate a task with probability strictly smaller than one. In this setting a very
simple, parameterized work-stealing algorithm achieves stability (in our sense) for a wide range of
parameters. The important point to note is that their model applies only when the set of processors
(and their communication linkages) forms a complete graph, and their results only hold for the case
where strictly less than n tasks (in expectation) are generated during any time step.

Our model is defined in the next section, and the formal definition of the diffusion approach to
load balancing is given following that.

1.2 Our Model

Our parallel system is modeled by a connected graph G = (V,E). The nodes V of the graph
model our processors P = {P1, . . . , Pn} , and the edges E model the underlying communication
structure. If two nodes are connected with each other, this means that the processors modeled by
the nodes can communicate directly. For us, this means that they are allowed to exchange tasks.
Nodes not connected by an edge have to communicate via message passing. Furthermore, let ∆
be the maximum degree of the graph. We assume that each processor maintains a queue in which
yet-to-be-processed tasks are stored. One round looks as follows:

1. n generators are arbitrarily distributed over the processors, and each generator generates one
task at the beginning of every time round. For 1 ≤ i ≤ n, let kt

i = j if generator i is allocated
to processor Pj in round t, and kt

i = 0 if the generator is not allocated to any processor in
that round.

2. Every processor balances its load with some or all its neighbors in the network (according to
a well-defined scheme for doing this operation).

3. Every non-empty processor deletes one task.

4

Let ˆ̀t
i be the load of Pi directly after the load deletion phase in round t. A system is called

stable if the number of tasks L̂t(P) =
∑n

i=1
ˆ̀t
i that are in the system at the end of round t does not

grow with time, i.e. the total load L̂t(P) is bounded by a number that might depend on n, but not
on the time t.

We will mainly focus on one load balancing method called the diffusion approach. Every pro-
cessor is allowed to balance its load with all its neighbors. As mentioned previously, we briefly
consider a second approach in Section 4 where only empty processors are allowed to take load from
their non-empty neighbors. We call this second method the work stealing approach.

Diffusion approach. We begin with a detailed description of the first approach, an integral
variant of the First-Order Diffusion scheme from [19]. Let ¯̀t

i be the load of processor Pi directly
before the load balancing phase, and `ti the load directly after the load balancing phase. Let αt

i,j

be the load that is to be sent from Pi to Pj in round t for (i, j) ∈ E (αt
i,j = 0 otherwise). Recall

that di denotes the degree of vertex i. Then αi,j and `i are calculated as follows:

αt
i,j := max

{
0,

⌊
¯̀t
i − ¯̀t

j

2 max{di, dj}

⌋}
`ti := ¯̀t

i −
∑

(i,j)∈E

αt
i,j +

∑
(j,i)∈E

αt
j,i.

To compute ˆ̀t
i, the load of processor Pi after load deletion, it remains to subtract one if `ti > 0,

thus
ˆ̀t
i := max{0, `ti − 1}.

One of the “standard” diffusion approaches divides ¯̀t
i− ¯̀t

j by max{di, dj}+1 instead of 2 max{di, dj}.
We need the change for our analysis.

We will now very briefly introduce our contributions. In Section 2, we prove Theorem 2.1, which
states that we can upper-bound the total system load by O(∆n3). This generalizes the results of
[4] to the case of unbounded edge capacities and, hence, analyzes the standard diffusion approach.
Theorem 3.2 in Section 3 provides an asymptotically matching lower bound, showing that our upper
bound is tight, up to a multiplicative constant. In Section 4 we discuss the problem of combining the
diffusion-approach with the work-stealing approach and show that certain assumptions necessarily
lead to instability.

2 Analysis of the Dynamic Diffusion Algorithm

In this section we will show that the diffusion approach yields a stable system. Moreover, we are
able to upper bound the maximum load that will be in the system by O(∆n3). Throughout, we
assume that n ≥ 2 and ∆ ≥ 2.

In order to clarify the exposition, we first recall the notation we have already defined:

• ¯̀t
i denotes the load of processor Pi after we have generated tasks at the start of round t, but

before load is balanced,

• `ti is the load of processor Pi immediately after the load balancing phase, and

• ˆ̀t
i is the load of processor Pi after the task deletion phase of round t (i.e. at the very end of

round t).

• We will also use notation like L̄t(S) =
∑

i:Pi∈S
¯̀t
i for a subset S ⊆ P, with similar definitions

for Lt(S) and L̂t(S).

5

With this notation, our main result about the diffusion approach to load balancing is

Theorem 2.1 Let n ≥ 2 denote the number of processors in the system, and an upper bound on
the number of tasks that are generated during each time round. Let ∆ ≥ 2 denote the maximum
degree of the connected graph G that specifies the communication linkages in the network. Then,
starting with an empty system, for all t ≥ 1 we have

L̂t(P) =
n∑

i=1

ˆ̀t
i ≤ 2∆n2(n+ 1).

We will prove this theorem by first giving a series of preliminary results. The proof of Theo-
rem 2.1 uses a similar potential function as the one that was used in [4] (though what follows is
very different). This idea is to prove an invariant that for all t ≥ 1, every subset S ⊆ P satisfies
the following inequality:

L̂t(S) ≤
n∑

i=n−|S|+1

i · (4∆) · n. (1)

Then, Inequality (1) will immediately imply Theorem 2.1 (by taking S = P). We will often have
occasion to refer to the right hand side of Inequality (1) for many sets, so to make our proofs that
follow easier to read, we define the following function f : {1, . . . , n} → N in this way

f(k) =
n∑

i=n−k+1

i · (4∆) · n. (2)

Definition 2.2 In what follows, we will refer to sets as being bad after load generation in round t,
or after the load balancing phase of round t, etc., meaning that the load of the set at that particular
time violates Inequality (1). For example, if we say that a set S is bad after load generation in
round t, we mean that L̄t(S) > f(|S|).

Conversely, we will also refer to a set as being good (after load generation, or load balancing,
etc.) if it satisfies Inequality (1) (at the time in question).

The first lemma states that if we consider any (non-empty) set S at the end of round t, there
must have existed a set S′ so that the load of S′ before load balancing was at least as large as the
load of S after load balancing, i.e. L̄t(S′) ≥ Lt(S) ≥ L̂t(S). The fact that might not be obvious is
that we can assert that the two sets contain the same number of processors. This is the statement
of the following lemma.

Lemma 2.3 Let ∅ 6= S ⊆ P denote an arbitrary subset of processors. There exists a set |S′| such
that

1. |S′| = |S|, and

2. L̄t(S′) ≥ Lt(S).

Proof: The claim is clear if S = P, since in this case we have Lt(P) ≥ L̂t(P) and L̄t(P) = Lt(P).
Taking S′ = P then satisfies the conclusions of the theorem.

So we suppose that S is not the entire set of processors. In this case let Sin = {v : v ∈
S and ∃w 6∈ S such that αt

wv > 0)}. In other words, Sin is the subset of S consisting of processors
that received tasks from outside of S during load balancing.

6

Case 1: Sin = ∅. This case is essentially the same as when S = P. Since no processors in S
received load from outside of S, the elements of S can only exchange load among themselves or
send load to processors outside of S. Then it is clear that L̄t(S) ≥ Lt(S), so taking S′ = S again
satisfies the desired conclusions.
Case 2: Sin 6= ∅. Let R = {w : w 6∈ S and ∃v ∈ Sin such that αt

wv > 0}. In other words, R is
the set of nodes not in S that pushed tasks into S during load balancing. The main idea of what
follows is that we are going to swap some elements of R for elements of Sin on a one-for-one basis
to find the set S′ we desire. More formally, let Lin =

∑
w∈R,v∈Sin

αt
wv denote the total flow from R

to S during load balancing. We aim to find sets Rk ⊆ R and Sk ⊆ Sin with

1. |Rk| = |Sk| = k, and

2. L̄t(Rk) ≥ Lt(Sk) + Lin + (flow from Sk to S\Sk).

Then we will take S′ = (S\Sk) ∪ Rk. Our choice of the set Rk guarantees that S′ will satisfy
L̄t(S′) ≥ Lt(S), since the elements of Rk account for all flow that enters S during load balancing,
plus all flow that passes from elements in Sk to elements in S\Sk as well.

To do this, let E1 = {(w, v) : w ∈ R, v ∈ Sin, α
t
wv > 0}. Consider an edge e1 = (w1, v1) ∈ E1

where αt
e1

is largest. From the definition of αt
w1v1

, we see that ¯̀t
w1
≥ 2 max{dw1 , dv1}αt

w1v1
+ ¯̀t

v1
.

The key observation is that by choosing the largest edge, the expression ¯̀t
w1

accounts for all possible
load that v1 could have received during load balancing, and all tasks that w1 pushes into the set S
too. Note also that the quantity ¯̀t

w1
includes the number of tasks that v1 might happen to pass to

other elements in S, since this is included in the term ¯̀t
v1

. We set R1 := {w1} and S1 := {v1}, and
E2 := E1\ ({(w1, v

′) : v′ ∈ Sin} ∪ {(w′, v1) : w′ ∈ R}).
Then, we iteratively apply this argument, namely take a largest edge e2 = (w2, v2) ∈ E2.

(Note that w2 6= w1 and v2 6= v1.) The choice of largest edge then allows us to swap w2 for
v2, again accounting for all tasks that w2 pushes into S during load balancing, all tasks that v2

receives, and any tasks that v2 passes to other elements in S. Then, we add w2 to R1, i.e. set
R2 := R1 ∪ {w2}, add v2 to S1, so S2 := S1 ∪ {v2}, and delete the appropriate set of edges from
E2. Thus, E3 := E2\ ({(w2, v

′) : v′ ∈ Sin} ∪ {(w′, v2) : w′ ∈ R}).
We continue to iterate this procedure, selecting an edge with largest αt

wv value, and performing
an exchange as before, until we finish step k with a set Ek+1 = ∅. It is possible that this procedure
terminates at a step when Rk = R or Sk = Sin (or both), or with one or both of Rk, Sk being
proper subsets of their respective sets. In any case, we have constructed sets Rk and Sk (each with
k ≤ min{|Sin|, |R|} elements), so that by taking S′ = (S\Sk) ∪ Rk, this set S′ satisfies the two
conditions of the theorem. �

From the previous lemma, we see that we have proven an inequality about the load of the sets
of highest loaded processors, before and after load balancing (which, of course, need not be equal
to each other). Thus we can conclude the following result:

Corollary 2.4 For i ∈ [n], let M̄ t
i denote a set of i largest loaded processors before load balancing

(in round t). Also let M t
i denote a corresponding set of i largest loaded processors after load

balancing. Then L̄t(M̄ t
i) ≥ Lt(M t

i).

We also conclude another result from Lemma 2.3.

Corollary 2.5 Fix i ∈ {1, . . . , n}. Suppose that every subset with i processors is good after the
load generation phase of round t. Then, after the load balancing phase (and thus after the task
deletion phase), every subset with i processors is still good. (Of course, provided that M̄ t

i is good
after load generation, we actually get the same conclusion from Corollary 2.4.)

7

Our next result tells us that if a set is made bad by load generation, then the load balancing
and deletion phases are sufficient to make that set good again.

Lemma 2.6 Suppose that at the end of round t, every set S ⊆ P satisfies (1). Further, suppose that
after the load generation phase in round t+ 1, there is some set S ⊆ P such that L̄t+1(S) > f(|S|).
Then, at the end of round t+ 1, S again satisfies Inequality (1).

Proof: If there is more than one set S such that L̄t+1(S) > f(|S|), we may apply the argument
that follows to each, so we fix one of the possible sets S. Suppose that x ∈ {1, . . . n} denotes the
number of tasks that were injected into this set during load generation in round t+ 1.

We first show that

if Pj ∈ S then ¯̀t+1
j ≥ (n− |S|+ 1)(4∆)n− x. (3)

In the case when S = {Pi} for some i (that is, |S| = 1), this statement is clear, since we must have
¯̀t
i > n(4∆)n to violate Inequality (1).

When |S| ≥ 2 we can prove (3) by contradiction. So assume that some Pj ∈ S satisfies
¯̀t+1
j < (n − |S| + 1)(4∆)n − x. Since S was good before load generation, but not after, we know

that L̄t+1(S)− f(|S|) > 0. Then, using that L̄t+1(S\Pj) = L̄t+1(S)− ¯̀t+1
j , and our assumption on

¯̀t+1
j , we conclude

L̄t+1(S\Pj) > L̄t+1(S)− (n− |S|+ 1)(4∆)n+ x

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S\Pj |)− (n− |S|+ 1)(4∆)n+ x

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S|) + x > x.

Since we injected x tasks into S during the load generation phase of round t + 1, we know that
L̄t+1(S\Pj) ≤ L̂t(S\Pj) + x. Putting this together with our last inequality above, we see that

L̂t(S\Pj) + x− f(|S\Pj |) ≥ L̄t+1(S\Pj)− f(|S\Pj |) > x

=⇒ L̂t(S\Pj)− f(|S\Pj |) > 0.

This is a contradiction to the assumption stated in the hypothesis that all sets satisfied (1) at the
end of round t. Hence, we conclude what we wanted to show, namely Inequality (3).

If S = P, then our lemma follows immediately. In this case, the lower bound in (3) is also a
lower bound on the load of each processor after the load balancing phase, i.e. `ti ≥ (4∆)n− n > 0
for all Pi (since x = n when S = P). Thus, each processor will delete one task during the deletion
phase. Since we injected at most n tasks into the system and deleted n tasks, the set S = P again
satisfies (1), and we are done.

So, we now assume that S 6= P. Then, in a similar manner as before, we can show

if Pj 6∈ S, then ¯̀t+1
j ≤ (n− |S|)(4∆)n+ n. (4)

To see this, again assume the contrary, so that some Pj 6∈ S satisfies ¯̀t+1
j > (n − |S|)(4∆)n + n.

Then we have the following inequalities

L̂t(S ∪ Pj) + n ≥ L̄t+1(S ∪ Pj) (5)
L̄t+1(S ∪ Pj)− f(|S ∪ Pj |) > L̄t+1(S)− f(|S|) + n. (6)

8

Inequality (5) holds simply because we insert n tasks into the system, and Inequality (6) follows
by breaking up the difference on the left hand side into constituent parts, and using our assumption
about ¯̀t+1

j . These inequalities together imply

L̂t(S ∪ Pj)− f(|S ∪ Pj |) + n ≥ L̄t+1(S)− f(|S|) + n (7)
L̂t(S ∪ Pj)− f(|S ∪ Pj |) ≥ L̄t+1(S)− f(|S|) > 0. (8)

The final inequality in (8) comes from our assumption that L̄t+1(S) > f(|S|). Of course, (8) violates
the hypothesis of the theorem stating that all sets satisfied Inequality (1) at the end of round t.
Hence, we obtain the upper bound on the load of elements not in S, as expressed in (4).

The rest of this lemma is a simple calculation. We first note that no load will be passed from
P\S into S during the load balancing phase because of the load differences in the processors. Then,
since our network G is connected, there must be an edge (i, j) with Pi ∈ S and Pj 6∈ S. Using our
bounds (3) and (4) for ¯̀t

i and ¯̀t
j , respectively, we find that

αt+1
ij ≥

¯̀t+1
i − ¯̀t+1

j

2 max{di, dj}
− 1 ≥ 4∆n− n− x

2∆
− 1 ≥ 2n− n

∆
− 1 ≥ 3

2
n− 1.

The last two inequalities use the facts that x ≤ n and ∆ ≥ 2. We see this final ratio is at least
n (with our assumption that n ≥ 2). Hence, during round t + 1, at most n tasks were injected
into the set S during load generation, and at least n tasks were removed from S during the load
balancing phase (and none were inserted into S during this phase). Therefore, after load balancing
(and thus also after the task deletion phase) S again satisfies Inequality (1). �

Lemma 2.6 tells us that if a set is made bad by the load generation phase, then the load balancing
and deletion phases are sufficient to make this set good. The essential task that remains to be shown
is that load balancing cannot, in some way, change a good set into a bad one. Corollary 2.5 tells
us half the story. We need a little more to cover all possible sets.

Lemma 2.7 Suppose that at all sets are good at the end of round t, but that after load generation
in round t+ 1, there exists a bad set S with |S| = i. Then after load balancing and deletion, there
exists no bad set with i processors.

Proof: Without loss of generality, we can assume that S = M̄ t
i , the largest i processors.

Lemma 2.6 tells us that S is not bad at the end of round t + 1. We therefore have to show
that we do not somehow change a good set (of i processors) into a bad set during the load bal-
ancing phase. This proof is similar in flavor to that of Lemma 2.3, except that the argument is
somewhat more delicate in this case.

Since we injected at most n tasks into the set S to change S from a good set into a bad set,
we know that L̄t+1(S) − n ≤ f(|S|). Our goal now is to show that any set S′ of i processors will
satisfy Lt+1(S′) ≤ L̄t+1(S)− n, meaning that S′ is good after load balancing.

So with this mind, fix some set S′ where |S′| = i. We assume that S′ 6= S, otherwise by
Lemma 2.6 there is nothing to prove. Define the following sets:

Scommon = S ∩ S′ Sold = S\Scommon Snew = S′\Scommon.

We note that |Snew| = |Sold| ≥ 1. From our previous argument in Lemma 2.6, we know that the
load difference (after generation, but before balancing) of any pair of processors, one from S and
one from P\S, is at least 4∆n−2n. In order to show our result, we will consider the load balancing

9

actions of round t + 1 in three stages. We first compute (and fix) the values of αt+1
i,j . Then we

proceed this way:
Stage 1. Internal load balancing actions among processors of S, and among processors of P\S.
After this stage, the load difference between a pair of processors, one from S and one from P\S is
still at least 4∆n− 2n.
Stage 2. Processors in Sold balance with those in Snew. This can only move load from Sold to Snew

because of the high load difference between processors of these two sets.
Stage 3. All remaining load balancing actions are performed. Which ones remain? Because there
are no balancing actions from Snew ⊆ P\S into Scommon ⊆ S, the only remaining ones are

(a) Scommon to Snew,

(b) Sold to P\(S′ ∪ Sold), and

(c) Scommon to P\(S′ ∪ Sold).

The balancing actions of (a) and (b) do not change the load of S′ = Scommon ∪ Snew, and those of
(c) can only decrease the load of S′. Hence, if we can show the load of S′ after Stage 2 is at most
L̄t+1(S)− n, then we get the conclusion we want.

To this end, let L1(Snew) denote the load of Snew after Stage 1, and L2(Snew) the load after
Stage 2 (and similarly for other sets Sold, S, etc.). Let A =

∑
j∈Sold,k∈Snew

αt+1
j,k denote the total

load transferred during Stage 2 from Sold to Snew, and let B denote the load that remains in Sold

after Stage 2. We note the following equations hold:

L2(S′) = L2(S) + L2(Snew)− L2(Sold)
L1(Sold) = A+B

L2(Sold) = B

L2(Snew) = L1(Snew) +A

L2(S) = L1(S)−A.

All of these equations together imply that

L2(S′) = L1(S)−A+ L1(Snew) +A−B
= L1(S) + L1(Snew)−B
= L1(S) + L1(Snew) +A− L1(Sold).

Since Stage 1 did not change the total load of S (so L1(S) = L̄t+1(S)), if we can show that

L1(Snew) +A− L1(Sold) ≤ −n (9)

we obtain our desired result. Having arrived at the crux of the problem, we now demonstrate
Inequality (9).

First note that if, in fact, there are no edges from Sold to Snew, then A = 0. In this case, if we
pair the vertices from Sold with those from Snew, then Inequality (9) follows immediately using the
fact that the load difference of processors in Sold and Snew is at least 4∆n− 2n.

Suppose there is at least one edge from Sold to Snew. Because of the load difference of processors
in Sold and Snew, we see that any edge for which αt+1

j,k is positive, we in fact have that αt+1
j,k ≥ n.

Consider the subgraph G′ that consists of processors in Sold and Snew and edges which were
used to pass load from Sold to Snew during Stage 2. Choose an edge from G′ such that the value of

10

αt+1
j,k is maximized. Assume (for simplicity) that j = 1 and k = 2. As in Lemma 2.3, we conclude

that ¯̀t+1
1 ≥ 2 max{d1, d2}αt+1

1,2 + ¯̀t+1
2 . Define A1,2 =

∑
k∈Snew

αt+1
1,k +

∑
j∈Sold

αt+1
j,2 , the total flow

out of P1 (into Snew) and into P2 (from Sold). Since αt+1
1,2 has maximum value over edges, we see

that ¯̀t+1
1 ≥ 2 max{d1, d2}αt+1

1,2 + ¯̀t+1
2 ≥ A1,2 + ¯̀t+1

2 . Hence, we see that ¯̀t+1
2 + A1,2 − ¯̀t+1

1 ≤ 0.
Indeed, if at least one of P1 and P2 has degree strictly smaller than ∆ in G′, this difference is
smaller than or equal to −n, which is what we want on the right hand side of Inequality (9)!

In either case, consider the subgraph G′′ obtained from G′ by deleting the processors P1, P2,
and all edges adjacent to them. As before, if there are no edges, we can pair the remaining
processors however we like, and then we get the desired inequality. Otherwise, if we can show that
L1(Snew\P2) + (A−A1,2)− L1(Sold\P1) ≤ −n we again have shown Inequality (9).

The point is that we can proceed in an inductive manner as before, until we either find a pair
Pj ∈ Sold, Pk ∈ Snew where Pj sent load to Pk during Stage 2 and one of Pj and Pk has degree (in
the remaining subgraph of G′) that is strictly less than ∆ (in which case ¯̀t+1

k +Aj,k − ¯̀t+1
j ≤ −n),

or we obtain a subgraph that has processors remaining, but no edges (and in this case we pair
up the remaining processors however we like, and the large load difference between processors in
the two sets gives us Inequality (9)). Whatever occurs, we can pair up processors in a one-to-one
fashion to prove Inequality (9), and thus, our lemma. �

Now we are prepared to prove our main result.

Proof: [Theorem 2.1]
We prove this theorem by induction on t. Inequality (1) holds when t = 1, for however we inject

the first n tasks into the system, all sets are good at the end of the first round.
So assume that at the end of round t, all sets are good. Fix i ∈ {1, . . . , n}. If all sets of i

processors are good after the load generation phase, then from Corollary 2.5 they are all good
at the end of round t + 1. If there is some bad set of i processors after load generation, then
Lemmas 2.6 and 2.7 show that all sets of size i are still good at the end of round t+ 1.

Finally, it is not possible that during load balancing a (good or bad) set of i processors will
lead to the creation of a bad set of j(6= i) processors. For suppose there is some bad set of j(6= i)
processors at the end of round t+ 1. Lemma 2.3 tells us that there must exist a set of j processors
that was bad before the load balancing phase, but then Lemmas 2.6 and 2.7 again tell us that there
is no bad set of j processors at the end of round t+ 1, a contradiction to our assumption that there
was a bad set of j processors at the end of the round. �

On the first glance it might look as if the our proof strategy is overly complicated and that
there is a much simpler proof. In the course of proving our result, we show that there is a gap
of 4n∆ tasks between a processor in the bad set S and a processor outside of the bad set before
balancing whenever S is bad after balancing. Hence, at least n tasks were sent away from S in
this step and the invariant could not have been violated by S. But unfortunately it is possible to
create a different bad set of processors during load balancing (possibly with a different number of
processors), and we have to discount this case too. Hence, we have to show that if we can find a
bad set after load balancing, then there was another bad set S′ before load balancing, which leads
us to a contradiction through our series of lemmas above.

3 A Matching Lower Bound

In this section we provide a simple example that asymptotically matches the upper bound from
Section 2. Fix some n ≥ 3 and consider the linear array G = (V,E) with V = {P0, . . . , Pn−1}
and E = {(Pi, Pi+1)|0 ≤ i < n − 1}. Furthermore, suppose that during every time step, n new

11

tasks are generated on processor Pn−1. The idea of the proof essentially follows from a few simple
observations, which we state without formal proof.

Observation 3.1

1. The system is periodic since it is stable and thus there is a finite number of possible con-
figurations it can be in, i.e., there is a “run-in” phase during which load is being built up
(essentially, load is being distributed from processor Pn−1 to all other processors), followed by
periodical behavior (notice that we consider a strictly deterministic system).

2. Another obvious fact is that once the system has finished the initial run-in phase, every
processor must delete one task in every round. If that were not the case, the system could not
possibly be stable (we would delete strictly fewer tasks that are generated per period, i.e., the
system load would increase by at least one during every period).

3. Suppose the period length is T . Then we see that once the system is periodic, during any
T rounds, processor Pi (i > 0) must send exactly T · i many tasks to processor Pi−1 (some
of which gets spread to the other processors Pi−2, . . . , P0), because that is just the number of
tasks that processors Pi−1, . . . , P0 delete in T rounds. In other words, on average processor
Pi sends i many tasks during any of those rounds (it does, in fact, send exactly i tasks to
processor Pi−1, thus T = 1; more about that later).

4. In our setting, load will never be sent toward processor Pn−1.

Theorem 3.2 below implies that the preceding analysis of our algorithm is tight up to a multiplicative
constant, because the line graph has maximum degree ∆ = 2, and thus we have an upper bound
of O(n3) on the system load.

Theorem 3.2 The system described above on the linear array is stable with a total steady-state
system load of Θ(n3).

Proof: We begin by showing that processor Pi will never send more than i tasks to processor
Pi−1; the proof is by induction on time. The claim is trivially true in round 1. Let αt

i = αt
i,i−1

denote the number of tasks that processor Pi sends to processor Pi−1 in round t. (We may extend
the definition to αt

n = n and αt
0 = 0 for all t.) Suppose the claim holds for some t − 1 > 1, i.e.,

αt−1
i ≤ i for all i ∈ {1, . . . , n − 1}. Let `ti denote the load of processor Pi before the balancing

step in round t, 0 ≤ i < n. From Observation 3.1 (2), for large enough values of t we have
`ti = `t−1

i + αt−1
i+1 − α

t−1
i − 1 and `ti−1 = `t−1

i−1 + αt−1
i − αt−1

i−1 − 1. Using the facts that

αt−1
i =

⌊
`t−1
i − `t−1

i−1

4

⌋
and

`t−1
i − `t−1

i−1

4
≤

⌊
`t−1
i − `t−1

i−1

4

⌋
+

3
4
,

we can conclude that

αt
i =

⌊
`ti − `ti−1

4

⌋
≤

`ti − `ti−1

4

=
(`t−1

i + αt−1
i+1 − α

t−1
i − 1)− (`t−1

i−1 + αt−1
i − αt−1

i−1 − 1)
4

=
`t−1
i − `t−1

i−1

4
+
αt−1

i+1 − 2αt−1
i + αt−1

i−1

4
≤

⌊
`t−1
i − `t−1

i−1

4

⌋
+

3
4

+
αt−1

i+1 − 2αt−1
i + αt−1

i−1

4

12

= αt−1
i +

3
4

+
αt−1

i+1 − 2αt−1
i + αt−1

i−1

4
=

2αt−1
i + αt−1

i+1 + αt−1
i−1

4
+

3
4

≤ 2i+ (i+ 1) + (i− 1)
4

+
3
4

= i+
3
4
.

From the above we know that processor Pi will never send more than i tasks to processor Pi−1

during each round (i.e. αt
i ≤ i since fractional tasks are not allowed in our model). However, in

order to obtain stability, at least i tasks on average are necessary. Thus, we can conclude that
once the system is “run-in”, processor Pi will always send i tasks to processor Pi−1, i.e., the system
is in fact periodic with period length T = 1. Clearly, there are many possible fixed points with
this property. However, since we are interested in a lower bound, we pick the one with smallest
total load, i.e., the one in which processor P0 is empty at the end of a round, receives one task
from processor P1 in the next round, deletes it, and so on. Since a load difference of 2∆i = 4i
implies i tasks being sent, this means that, directly before balancing, the load of processor Pi is∑i

j=0 4j = 2i(i + 1), and thus the total system load is
∑n−1

i=0 2i(i + 1) = (2n3 − 2n)/3. Together
with the upper bound of 2∆n2(n+ 1) = 4n2(n+ 1) from Theorem 2.1 we get the statement of the
theorem. �

4 Some Instability Results for Work Stealing

In this section we will consider a variation of our load balancing process where we may transfer tasks
to empty processors only. This approach is similar to the diffusion approach, only the computation
of the αt

i,j is different. The value of αt
i,j , the load that is sent from Pi to Pj , is larger than zero iff

Pj is empty (and Pi non-empty). This method is referred to as work stealing.

αt
i,j =

{
b

¯̀t
i

∆+1c : ¯̀t
j = 0 and Pj is adjacent to Pi

0 : otherwise

Note that the bounds below also hold when we divide by 2∆ instead of ∆+1. We use the above
definition as worst case assumption. In [8] the authors showed that simple work stealing yields
a stable system. They assumed that there are at most (1 − ε)n new tasks generated per round,
for some ε ∈ (0, 1]. The important point to note is that in [8], the processor communication links
correspond to a complete graph on n vertices. Here we will see that the work stealing method can
fail (in the sense that the total load is unbounded over time) if the graph is no longer the complete
graph.

We consider the line network. In a line, we have an edge between node Pi and Pi+1 for 1 ≤ i ≤
n− 1. Hence, the maximum degree is 2.

Observation 4.1 Assume we have n processors connected as a line and n generators are all on
processor 1. Then the diffusion work stealing system is not stable.

Proof: Let us assume the system is in a state where P2 is empty and P1 has k tasks directly
before the balancing. Then it will transfer k/3 tasks to P2 during the load balancing step. It is
easy to see that it will take at least

t =
k

3(n− 1)
+

n−2∑
i=1

i =
k

3(n− 1)
+
n2 − 4n− 3

2

13

time steps until P2 is empty again. To see that, assume that all other processors are empty. Then
it takes n − 2 steps until load will reach Pn, it takes n − 3 time steps until load will reach Pn−1,
and so on. In the meantime, the load of P1 increases by t(n− 1) tasks. Thus, the load of P1 after
t steps is at least

k − k

3
+
(

k

3(n− 1)
+
n2 − 4n− 3

2

)
(n− 1) ≥ k.

This shows that the load of P1 increases between any two consecutive balancing actions. �

In a similar manner, under adversarial injection schemes, it is easy to show that the work
stealing protocol will not be stable for many classes of graphs, even under a randomized injection
pattern. For example, we can simply define the process in a way such that the expected load of a
processor increases between two load balancing actions.
The next observation shows that already very small networks are not stable under adversarial
injections.

Observation 4.2 Assume we have a network with a pair of nodes u and v that are not connected
by an edge. Let assume that the degree of u is not larger that the degree of v, and let δ be degree
of u. Then the work stealing system is not stable under an adversarial load generation scheme that
generates δ + 2 tasks per round.

Proof: Simply allocate 2 generators on node u and one generator on every of the δ neighbors of
u. Then none of the neighbors will ever balance with u and the load of u will increase by one per
round. �

Similar to the observation above it is easy to show that the system is not stable under a wide class
of randomized injection patterns. Define the process in a way that the expected load of u increases
between two load balancing actions.

5 A Different Model for Task Generation/Deletion

In this section we define a load generation model similar to [20] and [4]. Rather than bounding
the total number of tasks that are generated per round, we bound the load change in any subset
of the processors. During each round, tasks can be added or deleted from processors, subject to
the restriction in Inequality (10) below. The processors then balance load amongst themselves as
before.

In the following, ¯̀t
i (respectively, L̄t(S)) denotes the load of processor Pi (resp. the total load

of all processors in set the S) after we have generated and deleted tasks, and `ti (resp. Lt(S)) is the
load of processor Pi (resp. the total load of all processors in the set S) immediately after the load
balancing phase. Let avg(t) be the average load of the processors in round t after load generation
and deletion, i.e. avg(t) = 1

n ·
∑n

i=1
¯̀t
i. Again, Lt(P) denotes the total system load at the end of

step t. One round looks now as follows:

1. Tasks are generated and deleted according to the following generation restriction:

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) + n for every subset S. (10)

2. Every processor balances its load with some or all its neighbors in the network using the
diffusion operation defined in Section 1.2.

14

We can show the following result.

Theorem 5.1 Let n ≥ 2 denote the number of processors in the system. Let ∆ ≥ 2 denote the
maximum degree of the connected graph G that specifies the communication linkages in the network.
Assume the load generation and deletion fulfills the generation restriction in (10). Then, starting
with an empty system, for all t ≥ 1 and all S ⊆ P we have

Lt(S) ≤ |S| · avg(t) + 5∆n3.

Furthermore, the maximum number of tasks per processor is avg(t) + 5∆n2.

Proof: The proof of this theorem follows the proof of Theorem 2.1. Here, we will concentrate
on the parts that have to be changed compared to that proof. We redefine f as follows.

f(k) =
n∑

i=n−k+1

i · (5∆) · n. (11)

Our new invariant is

Lt(S) ≤ |S| · avg(t) + f(|S|) = |S| · avg(t) +
n∑

i=n−|S|+1

i · (5∆) · n. (12)

Similar to the previous section, we call a set S bad if Lt(S) > |S|·avg(t)+f(|S|), and good otherwise.
Since Lemma 2.3, Corollary 2.5, and Corollary 2.4 only depend on the load balancing scheme and
not on the underlying load generation and deletion, they still can be applied. Because Lemma 2.6
depends on the actual load of the processors and, therefore, on the load generation model, we have
to adjust it. The new version is presented below.

Lemma 5.2 Suppose that at the end of round t, every set S ⊆ P satisfies (12). Further, suppose
that after the load generation and deletion phase in round t+ 1, there is some set S ⊆ P such that
L̄t+1(S) > |S| ·avg(t+1)+f(|S|). Then, at the end of round t+1, S again satisfies Inequality (12).

Proof: We only consider the parts of the proof that are different from the proof of Lemma 2.6.
We first show that

if Pj ∈ S then ¯̀t+1
j ≥ (n− |S|+ 1)(5∆)n+ avg(t+ 1)− n. (13)

In the case when S = {Pi} for some i (that is, |S| = 1), this statement is clear, since we must have
¯̀t+1
i > n(5∆)n+ avg(t+ 1) to violate Inequality (12).

As in Lemma 2.6, when |S| ≥ 2 we can prove (13) by contradiction. So assume that some Pj ∈ S
satisfies ¯̀t+1

j < (n−|S|+1)(5∆)n+avg(t+1)−n. Since S was good before load generation, but not
after, we know that L̄t+1(S)−f(|S|) > |S|·avg(t+1). Then, using that L̄t+1(S\Pj) = L̄t+1(S)− ¯̀t+1

j ,
and our assumption on ¯̀t+1

j , we conclude

L̄t+1(S\Pj) > L̄t+1(S)− (n− |S|+ 1)(5∆)n− avg(t+ 1) + n

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S\Pj |)− (n− |S|+ 1)(5∆)n− avg(t+ 1) + n

L̄t+1(S\Pj)− f(|S\Pj |) > L̄t+1(S)− f(|S|)− avg(t+ 1) + n > (|S| − 1) · avg(t+ 1) + n.

On the other hand, Inequality (10) tells us that

L̄t+1(S\Pj) ≤ Lt(S\Pj) + (|S| − 1) · (avg(t+ 1)− avg(t)) + n.

15

Putting this together with our last inequality above, we see that

Lt(S\Pj) + (|S| − 1) · (avg(t+ 1)− avg(t)) + n− f(|S\Pj |) ≥ L̄t+1(S\Pj)− f(|S\Pj |)
≥ (|S| − 1) · avg(t+ 1) + n

=⇒ Lt(S\Pj)− f(|S\Pj |) > (|S| − 1) · avg(t).

This is a contradiction to the hypothesis that all sets satisfied (12) at the end of round t. Hence,
we conclude what we wanted to show, namely Inequality (13).

When S = P, then our lemma follows immediately since the load of S is exactly n · avg(t+ 1).
hence, we can assume that S 6= P. Then, in a similar manner as before, we can show

if Pj 6∈ S, then ¯̀t+1
j ≤ (n− |S|)(5∆)n+ avg(t+ 1) + n. (14)

To see this, again assume the contrary, so that some Pj 6∈ S satisfies

¯̀t+1
j > (n− |S|)(5∆)n+ avg(t+ 1) + n.

Then we have the following inequalities

Lt(S ∪ Pj) + n+ (avg(t+ 1)− avg(t))(|S|+ 1) ≥ L̄t+1(S ∪ Pj) (15)
L̄t+1(S ∪ Pj)− f(|S ∪ Pj |) > L̄t+1(S)− f(|S|) + avg(t+ 1) + n. (16)

Inequality (15) is due to the generation restriction. Inequality (16) follows by breaking up the
difference on the left hand side into constituent parts, and using our assumption about ¯̀t+1

j . These
inequalities together imply

Lt(S ∪ Pj)− f(|S ∪ Pj |) + (avg(t+ 1)− avg(t))(|S|+ 1) + n

≥ L̄t+1(S)− f(|S|) + avg(t+ 1) + n (17)

Lt(S ∪ Pj)− f(|S ∪ Pj |) + (avg(t+ 1)− avg(t))(|S|+ 1)
≥ L̄t+1(S)− f(|S|) + avg(t+ 1) > 0 (18)

Lt(S ∪ Pj)− f(|S ∪ Pj |) + (avg(t+ 1)− avg(t))(|S|+ 1) ≥ |S + 1| · avg(t+ 1) (19)
L̂t(S ∪ Pj)− f(|S ∪ Pj |) ≥ |S + 1| · avg(t). (20)

Inequality in (18) comes from our assumption that L̄t+1(S) > |S| · avg(t + 1) + f(|S|). Again, we
have a contradiction and obtain the upper bound on the load of elements not in S, as expressed
in (14).

Again, we have a load difference of at least 5∆n between processors on S and processors not in
S. The rest of this lemma is a simple calculation and can be done similar to the one in Lemma 5.2.

�

Lemma 2.7 only depends on the load difference of the processors and is still valid under the
new load generation and deletion model. We have only to show that we still have

L̄t+1(S)− n ≤ |S| · avg(t+ 1) + f(|S|),

i.e. if we subtract n from the load of set S after load generation and deletion, set S is good again.
This can be done as follows. Due to the generation restriction, we know that the load generated in

16

S is upper bounded by |S| · (avg(t + 1)− avg(t)) + n. We know that Lt(S) ≤ |S| · avg(t) + f(|S|)
since S was good at the end of round t. This gives us

L̄t+1(S) ≤ Lt(S) + |S| · (avg(t+ 1)− avg(t)) + n

≤ |S| · avg(t) + f(|S|) + |S|(avg(t+ 1)− avg(t)) + n

L̄t+1(S) ≤ |S| · avg(t+ 1) + f(|S|) + n

L̄t+1(S)− n ≤ |S| · avg(t+ 1) + f(|S|).

Also, the remainder of the proof of Theorem 5.1 can be done similar to the proof of Theorem 2.1.
�

5.1 Further Extensions

We can easily generalize our results to other load generation processes, and the proofs of the
following results are much like those of Theorem 5.1.

Theorem 5.3 Let n ≥ 2 denote the number of processors in the system. Let ∆ ≥ 2 denote the
maximum degree of the graph G that specifies the communication linkages in the network. Assume
the load generation and deletion fulfills the generation restriction

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) +K.

Then, starting with an empty system, for all t ≥ 1 and all S ⊆ P we have

Lt(S) ≤ |S| · avg(t) + 5∆n2K.

Furthermore, the maximum number of tasks per processor is avg(t) + 5∆nK.

Proof: Similar to the proof of Theorem 5.1. All we have to do is to define

f(k) =
n∑

i=n−k+1

i · (5∆) ·K.

�

Furthermore, we can improve our results to a load generation model where the imbalance that
we allow to be generated in any set depends on the number of outgoing edges.

Theorem 5.4 Let n ≥ 2 denote the number of processors in the system. Let ∆ ≥ 2 denote the
maximum degree of the graph G that specifies the communication linkages in the network. Let e(S)
be the number of outgoing edges of the set S. Assume the load generation and deletion fulfills the
generation restriction

L̄t(S)− Lt−1(S) ≤ |S| · (avg(t)− avg(t− 1)) +K · e(S).

Then, starting with an empty system, for all t ≥ 1 and all S ⊆ P we have

Lt(S) ≤ |S| · avg(t) + 5∆n2K.

Furthermore, the maximum number of tasks per processor is avg(t) + 5∆nK.

17

Proof: Similar to the proof of Theorem 5.1. All we have to do is to define

f(k) =
n∑

i=n−k+1

i · (5∆) ·K.

�

Acknowledgements

The authors wish to thank the anonymous referee for valuable comments.

References

[1] W. Aiello, B. Awerbuch, B. Maggs, and S. Rao. Approximate load balancing on dynamic and asyn-
chronous networks. Proceedings of the 25th Annual ACM Symposium on Theory of Computing (STOC
1993), pp. 632–641.

[2] W. Aiello, E. Kushilevitz, R. Ostrovsky, and A. Rosen. Adaptive packet routing for bursty adversarial
traffic. J. Computer and Systems Sciences 60 (2000), pp. 482–509.

[3] A. Anagnostopoulos, A. Kirsch, and E. Upfal. Stability and efficiency of a random local load balancing
protocol. Proceedings of the 44th Annual IEEE Symposium on Foundations of Computer Science
(FOCS 2003), pp. 472–481.

[4] E. Anshelevich, D. Kempe, and J. Kleinberg. Stability of load balancing algorithms in dynamic
adversarial systems. Proceedings of the 34th Annual ACM Symposium on Theory of Computing (STOC
2002), pp. 399–406.

[5] B. Awerbuch, P. Berenbrink, A. Brinkmann, and C. Scheideler. Simple routing strategies for adversar-
ial systems. Proceedings of the 42nd Annual IEEE Symposium on Foundations of Coumputer Science
(FOCS 2001), pp. 158–167.

[6] B. Awerbuch and T. Leighton. A simple local control algorithm for multi-commodity flow. Proceedings
of the 34th Annual IEEE Symposium on Foundations of Computer Science (FOCS 1993), pp. 459–468.

[7] B. Awerbuch and T. Leighton. Improved approximation algorithms for the multi-commodity flow
problem and local competitive routing in dynamic networks. Proceedings of the 26th Annual ACM
Symposium on Theory of Computing (STOC 1994), pp. 487–496.

[8] P. Berenbrink, T. Friedetzky, and L.A. Goldberg. The natural work-stealing algorithm is stable. SIAM
J. Computing 32 (2003), pp. 1260–1279.

[9] P. Berenbrink , T. Friedetzky, and E.W. Mayr. Parallel continuous randomized load balancing. Pro-
ceedings of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA’98),
pp.192–201.

[10] J.E. Boillat. Load balancing and Poisson equation in a graph. Concurrency: Practice and Experiences
2 (1990), pp. 289–313.

[11] G. Cybenko. Dynamic load balancing for distributed memory multiprocessors. J. Parallel and Dis-
tributed Computing 7 (1989), pp. 279–301.

[12] R. Diekmann, A. Frommer, and B. Monien. Efficient schemes for nearest neighbor load balancing. J.
Parallel Computing 25 (1999), pp. 789–812.

[13] R. Elsässer and B. Monien. Load balancing of unit size tokens and expansion properties of graphs.
Proceedings of the 15th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA
2003), pp. 266–273.

[14] R. Elsässer, B. Monien, and R. Preis. Diffusion schemes for load balancing on heterogeneous networks.
Theory of Computing Systems 35 (2002), pp. 305–320.

18

[15] B. Ghosh, F.T. Leighton, B.M. Maggs, S. Muthukrishnan, C.G. Plaxton, R. Rajaraman, A.W. Richa,
R.E. Tarjan, and D. Zuckerman. Tight analyses of two local load balancing algorithms. Proceedings
of the 27th Annual ACM Symposium on Theory of Computing (STOC 1995), pp. 548–558.

[16] B. Ghosh and S. Muthukrishnan. Dynamic load balancing by random matchings. J. Computer and
Systems Science 53 (1996), pp. 357–370.

[17] F.M. auf der Heide, B. Oesterdiekhoff, and R. Wanka. Strongly adaptive token distribution. Algo-
rithmica 15 (1996), pp. 413–427.

[18] F.M. auf der Heide, C. Scheideler, and V. Stemann. Exploiting storage redundancy to speed up
randomized shared memory simulations. Theoretical Computer Science 162 (1996) pp. 245–281.

[19] S. Muthukrishnan, B. Ghosh, and M.H. Schultz. First- and second-order diffusive methods for rapid,
coarse, distributed load balancing. Theory of Computing Systems 31 (1998), pp. 331–354.

[20] S. Muthukrishnan and R. Rajaraman. An adversarial model for distributed load balancing. Proceedings
of the 10th Annual ACM Symposium on Parallel Algorithms and Architectures (SPAA 1998), pp. 47–
54.

[21] D. Peleg and E. Upfal. The token distribution problem. SIAM J. Computing 18 (1989), pp. 229–243.
[22] Y. Rabani, A. Sinclair, and R. Wanka. Local divergence of Markov chains and the analysis of

iterative load-balancing schemes. Proceedings of the 39th Annual IEEE Symposium on Foundations
of Computer Science (FOCS 1998), pp. 694–703.

19

