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Abstract 

  
Clustering objects into groups is usually done using a statistical heuristic or an optimisation. The 

method depends on the size of the problem and its purpose. There may exist a number of  

partitions which do not differ significantly but some of which may be preferable (or equally good) 

when aspects of the problem not formally contained in the model are considered in the 

interpretation of the result. To decide between a number of good partitions  they must first be 

enumerated and this may be done by using a number of different heuristics. In this paper an 

alternative method is described which uses an integer linear programming model having the 

number and size distribution of groups as objectives and the criteria for group membership as 

constraints. 

The model is applied to three problems each having a different measure of dissimilarity 

between objects and so different membership criteria.  In each case a number of optimal solutions 

are found and expressed in two parts: a core of groups, the membership of which does not change, 

and the remaining objects which augment the core. The core is found to contain over three quarters 

of the objects and so provides a stable base for cluster definition. 

. 
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1 Introduction 

There are many circumstances in which objects are partitioned into groups: task partitioning, the 

analysis of social relations, the definition of taxa, and others. Objects which are similar or close 

will be in the same group. The necessary pairwise relations may be given directly, as when pairs of 

people in a society are defined as being linked in some way, or each object may be described 

according to a number of attributes and from these data a measure of the dissimilarity between 

each pair is calculated. In these latter problems the groups are usually called clusters. For the 

development of our model we consider that a grouping scheme will have four constituents: 

 

d: a measure of pairwise dissimilarity  

c: a criterion for group membership (based on d) 

n: the number of groups 

u: the unevenness of the size distribution of groups  

 

There are a number of measures of dissimilarity (eg. Everitt 1993). Some measure a distance 

between a pair of objects based on a number of attributes possessed by each; Euclidean distance, 

for instance. Other measures describe the distance between pairs of groups, the mean of the 

pairwise Euclidean distances. The purpose is to have some metric such that the larger the value the 

less similar are the pair and so the less the justification for including them in the same group. This 

allows object pairs to be defined as either too dissimilar to be grouped or sufficiently similar to 

form candidate groups from which a partition may be formed. 

It is common that in cluster formation a hierarchical heuristic is used in which, for instance, 

objects join the nearest cluster until all have been allocated. The process of cluster formation is 
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displayed as a tree showing the level of dissimilarity at which clusters are formed. In the light of 

contextual or theoretical considerations this tree is inspected and a decision made  as to the most 

appropriate partition. Once d has been chosen c, n and u are considered together in interpreting the 

result. This may be a cognitively difficult.  The result is a single partition. Some form of sensitivity 

testing, by choosing different measures for d say, or by using more than one method to form 

clusters (Kaufman and Rousseeuw 1990) is recommended as a way of exploring alternatives. 

Cluster formation is, in this broad sense, interactive. 

Task variety may be reduced by pre-setting the number of groups to n=k (the k-means method). 

There may be no strong reason for preferring a particular k so that while this method reduces the 

number of factors to be considered in interpreting results it requires a corresponding increase in 

sensitivity testing to see the effect of different values of k. Nonetheless, structuring the analysis in 

this way offers the prospect of easier interpretation of results. 

Optimization has been intermittently proposed for clustering problems using aggregate 

dissimilarity as an objective. For example, we may minimise the sum of squares of intra-cluster 

dissimilarities given appropriate constraints on the number of groups or their size. Clusters are 

formed by the use of mathematical programming methods (Rao 1971; Hansen and Jaumard 1997), 

notably linear programming (Vinod 1969; Joseph and Bryson 1998) and dynamic programming 

(Jensen 1969; van Osulman 2004). A considerable benefit of optimising approaches is that they 

have a clear criterion which allows for an assessment of how good optimal and other partitions are 

(Li 2006). This helps the evaluation of alternative partitions. These optimising methods work well 

for small and medium sized problems but they become infeasible for very large problems for 

which other methods such as the application of genetic algorithms are available (Murthy and 

Chowdhury 1996; Cowgill, Harvey and Watson 1999; Maulik and Bandyopadhyay 2000; Chiou 

and Lan 2001). However, most published applications of cluster analysis are of moderate size 

(Kettenring 2006) so that optimization methods may find wide application. 

In this paper it is proposed that a nested set of integer linear programmes (ILPs) having as their 

objectives the number and size distribution of groups (n and u above) offers a method of aiding 

cluster definition which is easily comprehended and so forms a good basis for interaction. First, 

the method is described in outline and a measure characteristic of the size distribution is chosen. 

Next, the optimisation models are set out and applied to three illustrative cases. Finally, the results 

are discussed. 

 

2 Method 

When the number of groups is fixed in advance (as with the k-means method) the distribution of 

objects into groups, and so the distribution of group sizes, is found as a result. If there is no 

compelling reason for specifying some particular number of groups then parsimony of description 

requires that the minimum number of groups be chosen. When the number of groups satisfactory 

for a particular problem is not obvious using the minimum number of groups is likely to be a good 

start. 

To identify and distinguish between the resulting partitions some judgement about the relative 

sizes of groups may be made: are groups of similar size to be preferred or is it better to identify 

large groups, if they exist, with the corresponding reduction in size of the remainder? Given a 

measure of the unevenness of the distribution of group sizes an optimum profile can be found.  

It is probable that there is more than one allocation of objects to groups which has this optimal 

profile and these must be found. The ability of an optimising approach easily to generate a number 

of optimal and near-optimal solutions allows the enumeration of alternatives with known 

properties.  

Combining these ideas, the outline method is: 

 

step 1:  set criteria  for group membership 

step 2:  minimise the number of groups given membership constraints 

step 3:  optimise the size distribution given constraints of group membership 

and the optimal number of groups 

step 4: find several optimal (and near-optimal) partitions 

step 5: interpret and return to step 1 if necessary 
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To implement this scheme requires a measure of the unevenness of a distribution of group sizes for 

use in step 3. 

 

3 Measures of Evenness 

In a partition m objects are allocated to n groups, the proportion in each group being pi (i = 

1,2…n). The evenness of this distribution may be measured in a number of ways, for instance by 

Shannon entropy H = - i pilog(pi) (Shannon 1948) or the Simpson index S  =  i pi
2
 (Simpson 

1949). The measure G = 1-S is the Gini index, popular as a descriptor of income inequality. Both 

H and G have maxima (Hmax = log(n) and Gmax = (1 – 1/n) ) when the distribution is even (pi = 1/n) 

and a minimum of zero when some pi is 1. Though there are other measures of unevenness (Hill 

1973) we restrict comparison to these two. Hill (1973) gives a general index Ia  =  [ i pi
a
 ]

1/(1-a)
 of 

which three cases are: I0 = n; I1 = exp(H); I2 = 1/S. In this sense there is a formal relation between 

H and S. The logarithm of Ia is the entropy measure due to Renyi (1961). Other entropy measures 

and their relations to H and S are given in Mayoral (1998), Patil and Taillie (1982), Rao (1982) 

and Peet (1974). 

There are two considerations which are often used in differentiating H from S: disaggregation 

properties (Theil 1967) and sampling effects (Magurran 1988; Pielou 1977; Lande 1996; Lande et 

al 1996; Keylock 2005). Neither is relevant in this application but it may still be the case that 

solutions depend on whether  H or S is used to measure evenness.  

In considering the construction of classification trees Breiman et al (1998) used both H and S 

among other measures but found the result to be relatively insensitive to which was used. To 

illustrate this we generate two sets of data for n = 10. First, fifty randomly selected probability 

distributions and, second, binomial distributions with parameter values from 0.01. The graph of G 

= 1-S against H (Figure 1) shows that the correspondence between these two measures of 

unevenness is very high, certainly one is an excellent proxy for the other. We use the simpler 

measure S in what follows. 

Figure 1. Relation between alternative measures of evenness. 
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4 Optimal Groups 

It will be easier to deal with the number in each group, mi , rather than the proportion and so S = 

imi
2
 and m = imi  will be used in the optimisation. S may be maximised (lumpy size distribution 

preferred) or minimised (even distribution preferred). In what follows S is maximised to identify 

large groups if they exist. 

Following Jessop (2003) and Proll (2007),  Jessop et al (2007) discuss approaches for this sort 

of optimization and describe two methods useful for moderate sized problems. It was found that if 

the network density (the proportion of all inter-object relations classed as similar rather than 

dissimilar) was not too high then an approach based on the enumeration of groups is feasible. 

Problems with between 140 and 350 objects and with network densities up to 0.14 were solved in 

this way. In the networks tested size and density were negatively correlated indicating that for 

smaller problems higher density networks could be solved. An alternative formulation was 

successful for higher density networks of 100 objects (see also Jessop 2009).  

In this paper the method based on enumeration is used. If all possible groups are enumerated it 

is simple to find a set which optimises S. The usual difficulty with enumeration  is that the number 

of groups is too large for this strategy to be practicable, though this depends on network density. 

However, in Step 1 criteria for group membership are set, so that only feasible groups need be 

enumerated. For a wide class of problems this renders enumeration a viable method. During the 

enumeration the size of each candidate group and so of mi
2
  is retained.  

The enumeration ensures that membership criteria are met and that the resulting candidate 

groups are listed. These are described by a binary matrix, X, in which xij = 1 if object j is in group 

i.  

Candidate groups are selected via the binary vector  in which i = 1 if group i is chosen. 

The first ILP (Step 2 above) selects the smallest number of groups such that each object 

appears in exactly one group: 

 

Model 1:  min   i i  =  nmin 

s.t.     i xij i = 1    ; j 

 

Since values of mi
2
 will have already been found in the enumeration selecting an optimal 

configuration is also an ILP: 

 

Model 2:  max S  =  i mi
2
  

s.t. i xij i = 1    ; j 

i i  =  nmin 

 

Should there be any other requirements – minimum or maximum group sizes, for instance – these 

can easily be incorporated either as constraints in the ILPs or in the enumeration. 

Other solutions are easily found (Step 4) by ensuring that the number of candidate groups 

shared between the current solution and any previous solution is less than nmin. If 
1
 is the first 

solution found, 
2
 the second, and so on, then the kth solution is found by augmenting Model 2: 

 

Model 3:  max S  =  i mi
2
  

s.t. i xij
k
i = 1    ; j 

i 
k
i  =  nmin 

i 
k
i 

a
i  <  nmin ;  a = 1…k-1  

 

The first few solutions are likely to be alternative optima with increasingly sub-optimal solutions 

following. 

The method is now applied to three cases, each illustrating a different idea of group 

membership.  
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5 Illustrative Applications 

5.1 Design Network 

A large number of problems can be described by the binary relations between objects. Chermayeff 

and Alexander (1966) described a design problem in which thirty three design requirements for an 

urban area are defined. Requirements were such as arrangements to protect the dwelling from 

local noise and safe and pleasant walking and wheeling surfaces. Two requirements interact if 

adopting different solutions for meeting one affects the solutions used in meeting another. The pair 

are dissimilar if they do not interact for we wish to form groups (design tasks) of interacting 

requirements both to give coherent sub-problems and to minimise inter-task dependency. 

 The pairwise interactions form arcs in a network where  lij = 1 if nodes are linked and 0 

otherwise and lii = 1. This Chermayeff and Alexander network has L = i jlij = 373 links and so a 

network density D = L/m
2
 = 0.34. 

The criterion for group membership is that all groups are maximally connected, ie. all group 

members are connected to each other. This means that inter-group interactions are minimised so 

that sub-problems (groups) are as independent as possible. 

There are 639 candidate groups ranging in size from 1 to 7. Using models 1 and 2 gives nmin = 

9, Smax = 133 and Smin = 123. For Smax  the distribution of group sizes is [6,5,4,4,3,3,3,3,2] and for 

Smin  is [4,4,4,4,4,4,3,3,3].  A measure of the adequacy of the grouping is the proportion of links 

contained in groups (Gershenson et al 2004): A  =  Smax/L  =  0.36. 

Figure 2. Design. An optimal partition: m = 33; L = 373; Smax = 133; D = 0.34;  A  =  0.36. (This solution is 

no. 3 in Table 1.) 

 

Using model 3 gives 12 Smax groups. Figure 2 shows one of these Smax groupings. Rows and 

columns are indexed in accord with the original presentation of the problem. Each shaded square 

represents a link. The nine maximally connected groups are shown on the diagonal in order of 

decreasing size. The figure confirms the relatively low value of A in that much of the interaction is 

between groups rather than being contained within them, an unsatisfactory partition. However, 

some further aggregation is possible either by relaxing the maximum density constraint in the 

enumeration of groups or by joining some of the groups which have a high inter-group density, 

groups 4 and 5 in Figure 2, for instance. 
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Table 1. Optimal partitions for the design problem. 

  solutions 

 core 1 2 3 4 5 6 7 8 9 10 11 12 

a [3,6,7,10,19,29]             

b [5,28,30]             

c [8,9,31]             

d [12,20,22,23]       13 13 13 13 13 13 

e [1,2,26,27] 13 13 13 13 13 13       

f [17,25] 16,24 16,24 16,24 24 24  16,24 16,24 16,24 24 24  

g [14,33] 15 15  15  15 15 15  15  15 

h [11,21]  4 4 4,16 4,16 16,24  4 4 4,16 4,16 16,24 

i [18,32] 4  15  15 4 4  15  15 4 

28 of the 33 objects appear in the same groups in all twelve solutions. In Table 1 these 

groupings are shown as the core at the left of the table. Each subsequent column shows a solution. 

A blank entry means that that the core group appears as shown. If numbers are entered then the 

core group is augmented. For example, solution 1 consists of these groups: 

   
a [3,6,7,10,19,29] 

b [5,28,30] 

c [8,9,31] 

d [12,20,22,23] 

e & 13 [1,2,13,26,27] 

f&16,24 [16,17,24,25] 

g&15 [14,15,33] 

h [11,21] 

i&4 [4,18,32] 

The structure of the set of optimal solutions is clear. Object 13 may be attached either to core d 

or e and this divides the 12 solutions in two. Each of the sets of six solutions are subdivided in the 

same way depending on the allocation of the remaining four objects 4, 15, 16, 24. 

Identifying the core, and so the non-core, aids the final decision as to which partition should be 

adopted. In this case it is clear that the decision is about the disposition of the 5 non-core tasks, a 

simpler problem than considering all 33. The larger the core the more similar are the alternative 

optima. The proportion of objects in the core C = 28/33 = 0.85 indicates this. 

 

5.2 Airport Performance 

Data on the operating and financial performance of twenty five UK airports were taken from 

Cruicksahnk et al (2004). The airports were: 

 

1 Heathrow 14 Belfast International 

2 Gatwick 15 Cardiff International 

3 Stansted 16 London Luton 

4 Southampton 17 Blackpool 

5 Glasgow 18 Bristol 

6 Edinburgh 19 Exeter 

7 Aberdeen 20 Liverpool 

8 Manchester 21 London Biggin Hill 

9 Bournemouth 22 London City 

10 Humberside 23 Norwich 

11 Nottingham East Midlands 24 Southend 

12 Birmingham International 25 Teesside 
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13 Newcastle 

 
From the data seven performance measures were calculated for each airport: 

 

1. proportion of international passengers 

2. proportion of charter passengers 

3. number of passengers / employee 

4. number of passengers / air traffic movement 

5. commercial revenue / total revenue 

6. commercial revenue / passenger 

7. profit (after interest and tax) / revenue 

  

These are measures of the type used to assess airport performance (Graham 2003). In 

benchmarking and performance analysis it is helpful to group these airports according to their 

performance profile, the extent to which values on the seven measures are similar.  

In dealing with multicriteria problems it is common to scale incommensurable variables to 

some common metric. Scaling each variable to have a mean 0 and variance 1 is popular for the 

preparation of  tables of  performance measures (for instance, the rankings made by the Financial 

Times of MBA and other programmes) and is also used in cluster analysis (Hair et al 2006). While 

any such transformation will be to some extent a matter of convenience we choose this because it 

is representative of practice. 

The similarity between pairs of airports is measured by the correlation, r, of the transformed 

variables and so 1-r is the measure of dissimilarity between them. 

We use a simple criterion for group membership, that all objects in a group should be similar to 

some minimum extent: 1-r < . For illustration we use  = 0.5 and find that nmin = 10, Smax = 81 

and Smin = 69. For Smax  the distribution of group sizes is [5,4,4,3,2,2,2,1,1,1] and for Smin  is 

[4,3,3,3,3,2,2,2,2,1].  
 

Figure 3. Airports. An optimal partition: m = 25; L = 121; Smax = 81; D = 0.19;  A  =  0.67.  (Solution 2 in 

Table 2.) 
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Table 2. Optimal partitions for the airport problem. 

  solutions max 

 core 1 2 3 4 1-r 

a [10,19,21,24,25]     0.48 

b [1,3,16,20]     0.25 

c [11,13,15,18]     0.40 

d [5,6,14]     0.32 

e [2,8]     0.38 

f [17]     n/a 

g  9,23 9,23 4,9 4,9  

h  12,22 7,22 12,22 7,22  

i  4 4 7 12  

j  7 12 23 23  

 (1-r) for  row g 0.17 0.17 0.48 0.48  

 (1-r)  for  row h 0.36 0.23 0.36 0.23  

An optimal result is shown in Figure 3 and all four optimal solutions in Table 2. Unlike the 

design case the core groups appear unaugmented in all four optimal partitions and account for 19 

airports. The remaining six airports appear in various combinations (two pairs and two singletons) 

as shown in rows g to j. In the design case all that could be done was to present alternative 

solutions as an aid to a final partitioning. In this case a further guide is possible by examining the 

maximum values of 1-r for each group. The values for the core are shown at the right, but since 

the core groups are unaugmented these maxima do not help to differentiate between solutions. The 

last two rows show 1-r values for the non-core groups. If there are no other considerations it 

makes sense to prefer the solution for which these values are smallest, in this case solution 2. 

 

5.3 MBA  Programmes 

Paucar-Caceres and Thorpe (2005) analysed the structure of  32 full-time UK MBA programmes 

according to the subjects covered in core and elective courses. The MBAs were offered at the 

following business schools: 

 

1 Aberdeen 12 De Montfort 23 London 

2 Ashridge 13 Durham 24 Manchester 

3 Aston 14 Edinburgh 25 Middlesex 

4 Bath 15 Exeter 26 Newcastle 

5 Birmingham 16 Glasgow 27 Nottingham 

6 Bradford 17 Henley 28 Oxford 

7 Bristol 18 Imperial 29 Strathclyde 

8 Brunel 19 Kingston 30 Wales 

9 Cambridge 20 Lancaster 31 Warwick 

10 City 21 Leeds 32 Westminster 

11 Cranfield 22 Leicester   

 

and the core modules were 

 

1 e-business 11 management development 

2 entrepreneurship 12 microeconomics 

3 ethics 13 management information systems 

4 finance 14 marketing management 

5 financial accounting 15 management science 
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6 general management 16 operations management 

7 human resource management 17 organisational behaviour 

8 international business 18 project management 

9 macroeconomics 19 statistics 

10 management accounting 20 strategy 

 

A features matrix Y encodes which of the 20 core subjects were offered at each programme:  yij 

= 1 if programme i has core subject j and zero otherwise. Programmes varied, offering between 3 

and 15 of the twenty subjects. Programmes are similar to the extent that they offer the same 

modules, specifically that group members should all share some minimum number, , of core 

subjects.  

With  = 5 the results of the optimisation are: nmin = 15, Smax = 170 and Smin = 82; for Smax  the 

distribution of group sizes is [11,5,3,2,1,1,1,1,1,1,1,1,1,1,1] and for Smin  is 

[4,3,3,3,3,3,2,2,2,2,1,1,1,1,1]. 29 of the 32 programmes are in the core, as shown in Table 3. 

The result is also shown in Figure 4. Figures 2 and 3 showed links between similar objects. 

Figure 4, on the other hand, shows which modules are offered by each programme. The rows 

(programmes) are ordered in the blocks shown in Table 3. The columns (modules) are ordered to 

emphasise the extent to which programmes have modules in common. 

It is no surprise that a large fraction of programmes are clustered together because they share 

some core modules, the largest group having a focus on operations and strategy and the next 

largest a focus on softer topics such as management development and ethics. The large number of 

singletons is at first more surprising but the diagram shows the sparseness of shared features. Of 

the ten  singletons (rows c to m in Table 3) five possess fewer than  = 5 of the core modules, two 

have exactly 5, two have 6 and the remaining one has 7. The presence of the ten singletons is a 

result of setting  = 5; different values could be tried.  

 

 

 

Figure 4. Features of MBA core programmes. 
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Table 3. Optimal partitions for the MBA problem. 

  solutions 

 core 1 2 3 

a [4,6,7,11,12,15,23,24,27,28,30]    

b [18,20,22,25,31]    

c [2]    

d [3]    

e [5]    

f [8]    

h [13]    

i [14]    

j [16]    

k [21]    

l [29]    

m [32]    

n [17,19]  10 10 

o [9] 1,10 26 1 

p  26 1 26 

 

6 Comparison with Other Clustering Algorithms 

While the method used here is different from the usual heuristic clustering algorithms it is of 

interest to compare the results found by both. For this the Airport data are used with r as the 

distance measure. Six algorithms were used. One of these, centroid clustering, gave the same 

results as that recommended above, Figure 3 and solution 2 in Table 2. The dendrogram for the 

centroid clustering is shown in Figure 5. The core groups, a – e, are indicated on the tree and the 

non-core pairs, (9,23) and (7,22) shown by braces to the left of the diagram. 

 

 
 Figure 5. Dendrogram for centroid clustering 
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Three of the other methods – complete linkage, single linkage and average linkage (between 

groups) – gave similar results, one of which is shown as Figure 6. The differences are that group e 

splits with airport 2 joining b and airport 8 joining d. Airport 6 is detached from the original group 

d. The result is clusters (c+d+8) and (b+2) together with a and f. Group e disappears. 

This rearrangement is not surprising given the links shown in Figure 3: groups c and d have a 

high inter-group density of connection; airport 8 is linked to two of the three members of d and 

one of the four of c; airport 2 is linked to three of the four members of b. 

The results from the other two methods – median and average distance (within groups) – have 

the additional aggregation of airports 9 and 23 with group a earlier in the aggregation process than 

shown in Figure 6. Again, this is consistent with the links shown in Figure 3. 

Figure 3 shows not just the groups but also the inter-group links. For common problems of 

moderate size, such as those shown here, high overlaps can easily be seen and decisions on 

reallocation taken. For example, airport 2 is Gatwick which is linked with the three other London 

airports in b as well as with the largest airport outside London, Manchester, in e. Similarly, group 

d has the main Scottish airports, Glasgow and Edinburgh, plus Belfast. These might be seen as 

similar to the larger regional airports in group c or, perhaps, with Cardiff airport (number 15) 

might be part of d, a group of British but not English airports. 

Resolution and final allocation depend on the context and purpose of the analysis. The 

dendrograms associated with different clustering heuristics give alternative allocations, as 

discussed above. Diagrams such as Figure 3 show the full set of similarities and are readily 

suggestive of ambiguities and possible regrouping. 

 

  

Figure 6. Dendrogram for complete linkage clustering 

 

 

 

 

 

 

 

 

 

 

 

7 Discussion 

A method is given for generating alternative partitions which uses a dissimilarity metric to impose 

constraints on group membership, and then uses the number and size distribution of groups as the 

objectives in ILP optimisations.  
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It is a criticism sometimes levelled at cluster analysis (eg. Barney and Hoskisson 1990) that it 

will always produce clusters whatever the data and that because of this does not provide results 

with much meaning. Specifying group membership criteria as constraints when enumerating 

candidate groups overcomes this objection, for if the criterion is not met then no groups will be 

formed. This is seen in the large number of singletons in the MBA problem. This resolution of the 

inevitability of cluster formation comes at a price, that of having explicitly to specify the criteria of 

group membership a priori rather than making some post hoc judgement. The initial specification 

can, of course, be revised and the model rerun. The contention is that it is more straightforward to 

use the number and size distribution of groups as objectives in the ILPs and so leave the criteria 

for group membership as parameters to be altered in sensitivity testing runs of the models. 

Membership criteria are likely to be more dependent on views taken of the context and purpose of 

the analysis and so forcing an a priori specification (just what do we mean by “similar”?) will 

encourage a thoughtful engagement with the problem. 

 Table 4. Summary of the three illustrative cases. 

 Illustrative application 

 1. Design network 2. Airports 3. MBAs 

no. of objects - m 33  25  32  

no. of links - L 373  121  n/a  

network density - D 0.34  0.19  n/a  

no. of candidate groups  639  118  3861  

nmin 9  10  15  

Smax 133  81  170  

Smin 123  69  82  

no.  of optimal groups 12  4  3  

proportion of links  in groups - A 0.36  0.67  n/a  

proportion of objects  in core - C 0.85  0.76  0.91  

Table 4 summarises the three cases. The descriptors permit an appreciation of the feasibility 

and usefulness of the partition. First, A  shows how satisfactory the partition is as a system 

description. The differences between the design and airport illustrations show this. The usefulness 

of the partition in the design case is poor but that for the airports is good. Second, the relative size 

of the core, C,  shows the stability or robustness of the optimal partitions. In the three cases C  is 

quite high (at least 0.76) showing that decisions between alternative optimal partitions is a matter 

of considering only the disposition of at most 24% of the objects. Third, the difference between 

Smax and Smin is a subsidiary indicator of the extent to which the optimal partitions are superior. 

Because the number of objects was not large the optimisation problems were easily solved by 

enumeration even though the network density was as high as 0.34. This confirms the speculation 

made in Section 4 of the negative correlation between size and density for problems solvable by 

this method. 

Finding an acceptable partition is a decision problem. The method proposed in this paper 

emphasises this by enumerating a number of alternative partitions and providing indicators to help 

comparison between them. In addition, the identification of core groups means that judgement is 

exercised on the relatively smaller problem of the disposition only of non-core objects. The larger 

the core the easier this will be and the more robust the result. 
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