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Abstract

The pp-wave/SYM correspondence is an equivalence relation, Hstring = ∆ − J , between
the Hamiltonian Hstring of string field theory in the pp-wave background and the dilatation
operator ∆ in N = 4 Super Yang-Mills in the double scaling limit. We calculate matrix
elements of these operators in string field theory and in gauge theory. In the string
theory Hilbert space we use the natural string basis, and in the gauge theory we use the
basis which is isomorphic to it. States in this basis are specific linear combinations of
the original BMN operators, and were constructed previously for the case of two scalar
impurities. We extend this construction to incorporate BMN operators with vector and
mixed impurities. This enables us to verify from the gauge theory perspective two key
properties of the three-string interaction vertex of Spradlin and Volovich:
(1) the vanishing of the three-string amplitude for string states with one vector and one
scalar impurity; and (2) the relative minus sign in the string amplitude involving states
with two vector impurities compared to that with two scalar impurities. This implies
a spontaneous breaking of the Z2 symmetry of the string field theory in the pp-wave
background. Furthermore, we calculate the gauge theory matrix elements of ∆ − J for
states with an arbitrary number of scalar impurities. In all cases we find perfect agreement
with the corresponding string amplitudes derived from the three-string vertex.
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1 Introduction

The pp-wave/SYM correspondence in its original form [1] emphasises a duality relation
between the masses of string states and the anomalous dimensions [2] of the BMN oper-
ators in the dual gauge theory. This correspondence was further discussed and extended
in [3, 4], where it was expressed in the form [4]

1

µ
Hstring = ∆ − J . (1.1)

Here Hstring is the full string field theory Hamiltonian, µ is the scale parameter of the pp-
wave background, and ∆− J is the gauge theory dilatation operator (which in the radial
quantisation formalism plays the rôle of the Hamiltonian HSYM) minus the R-charge. The
relation (1.1) is expected to be exact and hold in the double scaling limit N ∼ J2 → ∞
to all orders in the two free parameters of the theory, g2 and λ′

λ′ =
g2
YMN

J2
=

1

(µp+α′)2
, (1.2)

g2 =
J2

N
= 4π gst (µp+α′)2 . (1.3)

On the gauge theory side, λ′ is the effective coupling constant of the BMN sector, and g2

is the effective genus counting parameter of Feynman diagrams [1, 5, 6]. The right hand
sides of (1.2), (1.3) express λ′ and g2 in terms of the pp-wave string theory parameters
to the effect that 1/λ′ ∝ µ measures the deviation from the flat background and g2 is
proportional to the string coupling gst in IIB.

Since the two Hamiltonians, Hstring and ∆, act on the states of two different theories,
the duality relation (1.1) requires an isomorphism between the Hilbert spaces of the light-
cone gauge pp-wave string field theory and of the BMN sector of the N = 4 gauge theory.
More specifically, we need to establish a one-to-one correspondence between the bases of
two theories, {|sα〉string} and {|sα〉SYM},

|sα〉string ↔ |sα〉SYM , (1.4)

which preserves the scalar product,

string〈sα|sβ〉string = SYM〈sα|sβ〉SYM . (1.5)

Then the correspondence (1.1) holds at the matrix elements level,

string〈sα|µ−1Hstring|sβ〉string = SYM〈sα|∆ − J |sβ〉SYM . (1.6)

The string field theory Hilbert space is equipped with a natural basis of multi-string
states,

{|sα〉string} = |stringa〉 , |stringb〉 ⊗ |stringc〉 , |stringd〉 ⊗ |stringe〉 ⊗ |stringf〉 , . . . (1.7)
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which diagonalises the free string Hamiltonian and is automatically orthonormal. Here
a, b, . . . are the labels of single-string states. This basis does not diagonalise the full string
Hamiltonian, Hstring, since free string states in (1.7) can interact (split and join). The
splitting and joining of a single string state is described by the three-string interaction,
and the corresponding matrix element on the left hand side of (1.6) is

〈stringa|H int
string|stringb〉 ⊗ |stringc〉 ≡ 〈stringa|〈stringb|〈stringc|H3〉 . (1.8)

Here the |H3〉 is the three-string interaction vertex in the light-cone string field theory
in the pp-wave background. The expression for this vertex was originally obtained by
Spradlin and Volovich [7,8] and further studied and clarified by Pankiewicz and Stefanski
in [9, 10] and in other papers including [11, 12]. Its expression is recalled in Appendix
A.1 However, there is a puzzle related to the three-string amplitudes (1.8) built on the
Spradlin-Volovich vertex which we would like to clarify in this paper, among other things.
The presence of a non-trivial R–R field in the pp-wave background breaks the light-cone
Lorentz symmetry SO(8) down to SO(4) × SO(4) × Z2. The two SO(4)’s rotate the
first and the last four directions among themselves, while the Z2 symmetry swaps these
two groups of four directions. Apparently, the Z2 part of the bosonic symmetry of the
pp-wave background is not respected by the Spradlin-Volovich three-string interactions
[13, 14, 8, 11, 15]: there is a relative minus sign in the string amplitude involving states
with two oscillators along the first SO(4) compared to that with two oscillators along the
second SO(4). An unbroken Z2-invariance would not allow this to happen. We will argue
now that this minus sign implies a spontaneous breaking of the Z2 symmetry of the string
field theory in the pp-wave background.

The ket-vertex |H3〉 (A.5), (A.6) of [7, 8] is built on the string state |0〉 which is the
ground state of the theory in flat background, but not in the pp-wave background. At the
same time, the external string bra-states in (1.8) are built on the true pp-wave ground
state |v〉. It was explained in [11] that these two states, |0〉 and |v〉, have an opposite
Z2 parity, i.e. cannot be both invariant under Z2. Hence, it follows immediately [8, 11]
that the amplitude (1.8) is not invariant under the action of Z2, but changes sign. In the
recent paper [12], the result of [7, 8], which utilised the vacuum |0〉, was compared with
an alternative formalism of constructing |H3〉 starting directly from the true ground-state
|v〉. The two formalisms were found to be identical. Following [12, 7, 8] we choose the
Z2-parity prescription

Z2 : |0〉 → |0〉 , Z2 : |v〉 → −|v〉 . (1.9)

This means that the vertex |H3〉 built on |0〉 is invariant under Z2, but the pp-wave string
ground-state 〈v| and, hence, the external states 〈stringa|〈stringb|〈stringc| in (1.8), acquire
a minus sign. This implies a spontaneous breaking of the Z2 symmetry of the string field
theory in the pp-wave background, which is the physical reason for the minus sign of the
matrix element discussed above.

1For notational simplicity and in order to distinguish this vertex from other proposals, we will some-
times refer to the vertex of [7, 8, 9, 10] simply as the Spradlin-Volovich vertex.
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One of the objectives of this paper is to verify with an independent gauge theory
calculation this important minus sign (and hence the spontaneous breaking of Z2), as well
as the related fact that the three-string amplitude (1.8) vanishes for string states with one
direction along the first, and one one direction along the second SO(4), i.e. one vector
and one scalar impurity in the gauge theory language.

As already mentioned, and following [4,16,17], in order to compare (1.8) with matrix
elements of the dilatation operator in gauge theory via (1.6), it is important to identify
a basis in gauge theory which is isomorphic to the natural string basis (1.7). We discuss
this issue in section 2. States in the isomorphic to string basis, {|sα〉SYM}, are obtained
from linear combinations of the original multi-trace BMN [1] operators Oα(x),

|sα〉SYM = Uαβ Oβ(x = 0)|0〉 , (1.10)

where Uαβ is an x-independent matrix. This matrix was determined in [4,17] by requiring
that (1.6) holds, i.e. that the known three-string interaction vertex of the pp-wave light-
cone string field theory [7, 8] is reproduced from gauge theory matrix elements of the
dilatation operator involving BMN states (operators) with two scalar impurities.

In this paper we will take Uαβ determined in [17], and use it to construct the gauge
theory basis (1.10) for an arbitrary number of scalar impurities. With this in hand
we can compute generic gauge theory matrix elements on the right hand side of (1.6).
The contributions on the left hand side of (1.6) are then computed using (1.8). We
will verify (1.6) and hence the Spradlin-Volovich expression for |H3〉 for generic bosonic
impurities. First successful steps in this direction have been already taken in [17, 18] at
the level of arbitrary number of identical scalar impurities.2 However, the inclusion of
vector impurities is essential in order to address in the gauge theory the two important
properties of the three-string interaction discussed earlier:
(1) the vanishing of the three-string amplitude for string states with one vector and one
scalar impurity; and
(2) the relative minus sign in the string amplitude involving states with two vector
impurities compared to that with two scalar impurities.

In section 3 we will verify (1) and (2) working at the two-impurity level, and will con-
sider all representations of BMN operators with two vector or scalar impurities, i.e. sym-
metric traceless, antisymmetric and singlet. By considering BMN operators with vector,
scalar and mixed (scalar+vector) impurities we explore and verify the correspondence
(1.6) for string states in all the directions of the two SO(4) groups.

In section 5, we will calculate the gauge theory matrix elements of ∆ − J for states
with an arbitrary number of scalar impurities. Next we compute the corresponding three-
string amplitudes derived from the three-string vertex and compare them to the field
theory result, finding perfect agreement.

2For further tests of the correspondence in the open-closed string sector, see [19].
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Finally, section 4 and section 6 are dedicated to computations of three-point correlators
of BMN operators. These results are used earlier in section 3 and 5 for the calculation
of matrix elements. More specifically, in section 4 we compute the coefficient of the
conformal three-point function of BMN operators with mixed (one scalar and one vector)
impurities. In section 6 we generalise this analysis to the case of BMN operators with an
arbitrary number of scalar impurities.

2 The dilatation operator in SYM and the natural

string basis

As mentioned earlier, the BMN basis in SYM which is isomorphic to the natural string
basis in dual string field theory, is a certain linear combination (1.10) of the original BMN
operators Oα(x) proposed in [1]. The states in the natural string basis are not identically
equal to the original BMN operators since the former are automatically orthonormal,
while the latter are not, and their overlaps depend on the string coupling g2. In other
words, the matrix U in (1.10) is not simply the identity matrix.

Apart from the original BMN basis, there is another distinguished basis of the confor-
mal primary BMN operators O∆α

(x) which are the eigenstates of the dilatation operator
∆ in gauge theory. This ∆-BMN basis is again a linear combination of the states from the
original BMN basis Oα(x) with a different x-independent matrix U . For BMN operators
with scalar impurities, this basis was constructed in [20] and extended to include vector
and mixed impurities in [21]. The ∆-BMN basis is particularly convenient since the two-
and three-point correlation functions of ∆-BMN operators can be written in the simple
canonical form with a universal x-dependence, guaranteed by conformal invariance of the
theory. For conformal primary operators with scalar impurities these canonical correlators
are particularly simple and are given by

〈O†
∆α

(x)O∆β
(0)〉 =

δαβ

(x2)∆α
, (2.1)

〈O∆1(x1)O∆2(x2)O†
∆3

(x3)〉 =
C123

(x2
12)

∆1+∆2−∆3
2 (x2

13)
∆1+∆3−∆2

2 (x2
23)

∆2+∆3−∆1
2

. (2.2)

Canonical expression for the correlators involving conformal primary operators with vector
impurities appear to be much less illuminating and harder to interpret, however it was
noted in [21] that this difficulty is avoided and the correlators for all types of impurities
can be expressed in the same form, similar to (2.1) and (2.2), if on the left hand sides
of (2.1) and (2.2) we use a different notion of conjugation Ō instead of O† [21]. This
different notion of operator conjugation is defined as hermitian conjugation followed by
an inversion of the operator argument x′

µ = xµ/x
2. Under inversion a scalar operator
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O∆(x) of conformal dimension ∆ transforms as

O†
∆(x) → O†′

∆(x′) = x2∆O†
∆(x) , xµ → x′

µ =
xµ

x2
, (2.3)

while a vector or tensor operator (i.e. operator with vector impurities) contains a factor
Jµν(x) = δµν − 2xµxν/x

2 on the right hand side for each vector index of the operator.
Jµν(x) is the usual inversion tensor, in terms of which the Jacobian of the inversion is
expressed ∂x′

µ/∂xν = Jµν(x)/x2. This prescription is essential in order to make vector
∆-BMN operators orthonormalisable, see section 2 of [21] for more details.

With this prescription, the two-point function (2.1) for vector and for scalar ∆-BMN
operators takes the same simple form:

〈Ō∆α
(x)O∆β

(0)〉 = δαβ , (2.4)

which does not depend on x and hence has the meaning of overlap of the corresponding
states in the gauge theory Hilbert space.

Note, however, that these ∆-BMN states are the eigenstates of ∆, i.e. the eigenstates
of the full interacting string Hamiltonian, so they cannot be identically equal to the
states from the natural string basis. The relation between the two bases is again a linear
combination

|sα〉SYM = Uαβ O∆β
(x = 0)|0〉 , (2.5)

with another constant matrix Uαβ . In general, for any basis of operators Õα such that

Õα = Uαβ O∆β
, (2.6)

the overlap is given by

〈 ¯̃Oα(x)Õβ(0)〉 = UβγU
†
γα ≡ Sβα. (2.7)

The operators Õα do not anymore have definite scaling dimensions ∆, but since they are
expressed as a linear superposition of conformal primary operators which do, there is no

problem in performing the inversion required to define ¯̃Oα(x), and the right hand side of
(2.7) follows.

Now we describe a practical way of how to calculate simultaneously the overlaps and
the matrix elements of the anomalous dimension operator δ = ∆ − ∆cl, where ∆cl is

the engineering dimension. Let us define the barred-operator ¯̃O(x) as the Hermitian
conjugation of Õ(x) followed by an inversion of the resulting operator, defined as if it was
free, i.e. instead of the factor x2∆ in (2.3) we put x2∆cl , such that,

Ō∆(x) ≡ x2∆cl J · O†
∆(x) , (2.8)
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where Jµν(x) is the usual inversion tensor for each vector index (each vector impurity) of
the operator. Then the two-point function takes the form:

〈 ¯̃Oα(x)Õβ(0)〉 = Uβγ eδγ log x−2

U †
γα = Sβα + Tβα log x−2 + O ((log x−2)2) . (2.9)

Here we have expanded the full result in powers of log x−2. The overlap of the two states
is defined as the zeroth-order term in the expansion, Sβα = UβγU

†
γα, and the matrix of

anomalous dimensions in this basis is the first order term,

Tβα = UβγδγU
†
γα . (2.10)

We note that (2.9), and hence the definitions of the overlap and the anomalous dimension
matrix, are valid to all orders in the gauge coupling, and so can be in principle computed
to all orders in λ′ and g2 for any basis Õα.

By initially relating this basis to the ∆-BMN basis we avoided all the problems of
removing the ‘non-universal’ x-dependence on the right hand side of the correlator. Now
we can forget about the ∆-BMN basis and follow the simple prescription discussed above:
for an arbitrary basis, the overlap matrix Sβα and the anomalous dimensions matrix Tβα

are the zeroth and the first term in the expansion of (2.9) in powers of log x−2.

We now consider the original BMN basis, for which we have

〈Ōα(x)Oβ〉 = Sβα + Tβα log x−2 + · · · , (2.11)

and relate this basis to the isomorphic to string basis via (1.10),

Ostring
β = UβγOγ , Ōstring

α = ŌδU
†
δα . (2.12)

In the isomorphic to string basis (which is automatically orthonormal, as explained earlier)
we get

Sstring = 1l = USU † , T string = UTU † . (2.13)

We note that S is a Hermitian, positive matrix (it is a matrix of norms), therefore the
matrix S−1/2 is well-defined.3 S is then diagonalised by the matrix U := S−1/2 · V , where
V †V = 1l:

S −→ USU † = 1l , (2.14)

T −→ UTU † = V †(S− 1
2 TS− 1

2 )V . (2.15)

The arbitrariness contained in V , which is still left at this stage was fixed in [4, 17] by
requiring that (1.6) holds and that the known three-string interaction vertex of the pp-
wave light-cone string field theory [7,8] is reproduced from gauge theory matrix elements
involving BMN states (operators) with two scalar impurities. This condition implies
V = 1l. Hence, the matrix of anomalous dimensions in the string basis is given by

Γ := T string = S− 1
2 T S− 1

2 . (2.16)

3We would like to point our that this matrix S−
1

2 appears also in [16] and [22].
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In the following sections we will show that, with the same choice of V = 1l, the matrix
elements of Γ between BMN operators with
• two vector impurities,
• one vector and one scalar impurity and, finally,
• an arbitrary number of scalar impurities,
precisely agree with the corresponding matrix elements of the interacting string Hamil-
tonian. We will consider all representations of BMN operators with vector or scalar
impurities, i.e. symmetric traceless, antisymmetric and singlet. The inclusion of vector,
mixed (scalar-vector) and scalar BMN operators allows us to study the correspondence
for string states in all of the pp-wave light-cone directions.

Other studies of the dilatation operator in gauge theory and its interpretation in
quantum mechanical models, which we do not pursue here, can be found in the recent
papers [23, 24, 22, 25].

3 Tests of the correspondence in the two-impurity

sector: scalar, mixed, and vector states

In this and the following sections we will need the expressions for the single-trace original
BMN operators:

OJ
vac =

1
√

JNJ
0

TrZJ , (3.1)

OJ
ij,m = C

(

J
∑

l=0

e
2πiml

J Tr
(

φiZ
lφjZ

J−l
)

)

, (3.2)

OJ
µν,m =

C
2

(

J
∑

l=0

e
2πiml

J Tr
[

(DµZ)Z l(DνZ)ZJ−l
]

+ Tr
[

(DµDνZ)ZJ+1
]

)

, (3.3)

OJ
iµ,m =

C√
2

(

J
∑

l=0

e
2πiml

J Tr
[

φiZ
l(DµZ)ZJ−l

]

+ Tr
[

(Dµφi)Z
J+1
]

)

, (3.4)

where i, j = 1, . . . , 4, µ, ν = 1, . . . , 4 label the scalar and the vector impurities. Note that
in writing OJ

ij,m and OJ
µν,m we have taken i 6= j and µ 6= ν, where the above expressions

take the simple form (3.2) and (3.3). We also defined

C :=
1

√

JNJ+2
0

, N0 :=
g2

2

N

4π2
. (3.5)

The normalisation of the operators is such that their two-point functions take the canon-
ical form in the planar limit. We also note that expressions for OJ

µν,n and OJ
iµ,m contain

7



appropriate compensating terms [26,27]. These terms are required in order for the corre-
sponding operator to be conformal primaries in the BMN limit.

The operators in (3.2)–(3.4) are the original BMN operators. They are related to each
other by supersymmetry transformations [27]. In order to test the correspondence, we
need to use a different basis of operators which is isomorphic to string states, as discussed
earlier. Importantly, the isomorphic to string operators ÕJ

iµ,m, ÕJ
µν,m are related to the

ÕJ
ij,m in exactly the same way as the original BMN operators are. This is because the

matrix U in (2.6) is a numerical matrix, i.e. it does not contain any fields and does
not transform under supersymmetry. Hence, U is the same for scalar, vector and mixed
impurity BMN operators.

We will also need the expressions for the double-trace operators

T J,y
ij,m = : Oy·J

ij,m : : O(1−y)·J
vac : , (3.6)

T J,y
µν,m = : Oy·J

µν,m : : O(1−y)·J
vac : , (3.7)

T J,y
iµ,m = : Oy·J

iµ,m : : O(1−y)·J
vac : , (3.8)

where y ∈ (0, 1).

From the three-string vertex of [7,8] one extracts the following matrix elements of the
string Hamiltonian in the large-µ limit:

1

µ
〈OJ

ij,m|Hstring|T J,y
ij,n〉 = −Cnorm

λ′

π2y
sin2(πmy) , (3.9)

1

µ
〈OJ

iµ,m|Hstring|T J,y
iµ,n〉 = 0 , (3.10)

1

µ
〈OJ

µν,m|Hstring|T J,y
µν,n〉 = Cnorm

λ′

π2y
sin2(πmy) , (3.11)

for µ 6= ν and i 6= j. The overall normalisation Cnorm is left undetermined in string field
theory. In order to get agreement with the field theory result we will set here4

Cnorm = −g2

2

√

y(1 − y)√
J

. (3.12)

Using this normalisation, (3.9) and (3.11) become

1

µ
〈OJ

ij,m|Hstring|T J,y
ij,n〉 = −1

µ
〈OJ

µν,m|Hstring|T J,y
µν,n〉 = λ′ g2√

J

√

(1 − y)/y sin2(πmy)

2 π2
. (3.13)

4Cnorm is further discussed in section 5.2, where we consider the case of arbitrary many impurities,
see (5.24).
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As mentioned earlier, the agreement of (3.9) with the corresponding gauge theory matrix
elements was found in [17]. We will show that agreement with gauge theory holds also
for (3.10) and (3.11).

We now need the explicit form of the matrices S and T in the original BMN basis.
Both S and T have an expansion in powers of g2, but in our analysis we will need their
expressions only up to and including O(g2) terms. We will also work at one loop in the
Yang-Mills effective coupling λ′, where the matrix T is of O(λ′), whereas S is of O(1). In
this case, (2.9) is simply

〈Oα(0)Ōβ(x)〉 = Sαβ + Tαβ log(xΛ)−2 . (3.14)

The pleasant fact is that expressions for S and T are closely related and can be obtained
from the coefficients of the three-point functions, which were derived in [20,21] for BMN
operators with two scalar and two vector impurities, respectively. We also need to know
S and T in the case of mixed (i.e. one scalar and one vector) impurities. The three-
point functions of such BMN operators were not considered previously, and they will be
calculated in section 4.

The diagonal elements of S and T can be immediately obtained from

〈OJ
AB,m(0) ŌJ

AB,n(x)〉 = δmn

(

1 + λ′m2 log(Λx)−2
)

, (3.15)

〈T J,y
AB,m(0) T̄ J,z

AB,n(x)〉 = δmnδyz

(

1 + λ′(m2/y2) log(Λx)−2
)

. (3.16)

The previous expressions are valid up to O(λ′) and O(g2), and were derived originally
in [6, 20] for the scalar case, and in [26, 29, 30] for the mixed and vector case.

To determine the off-diagonal elements, we need to compute the two-point correlators
〈T J,y

AB,n(0) ŌJ
AB,n(x)〉. To this end, let us momentarily focus on the following class of three-

point correlators,

G(x1, x2, x3) = 〈Oy·J
AB,n(x1)O(1−y)·J

vac (x2)ŌJ
AB,m(x3)〉 , (3.17)

where A = (i, µ) and A 6= B. On general grounds, these three-point function have the
form [6, 31, 20, 32]

G(x1, x2, x3) = g2Cm,ny

[

1 − λ′
(

am,ny log(x31Λ)2 + bm,ny log(x32x31Λ/x12)
)]

, (3.18)

where g2Cm,ny is the tree-level contribution, with

Cm,ny :=

√

(1 − y)/y sin2(πmy)√
J π2(m − n/y)2

, (3.19)

and the coefficients am,ny and bm,ny must be calculated in perturbation theory at O(λ′).

The two-point function 〈T J,y
AB,n(0) ŌJ

AB,m(x)〉 can easily be deduced from (3.17) by setting
x13 = x23 = x and x12 = Λ−1 [32],

〈T J,y
AB,n(0) ŌJ

AB,m(x)〉 = g2Cm,ny

[

1 + λ′ (am,ny + bm,ny) log(xΛ)−2
]

. (3.20)
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The matrices S and T are then given, up to O(g2), by

S =





δmn g2 Cm,qz

g2 Cpy,n δpq



 + O(g2
2) = 1l + g2s + O(g2

2) , (3.21)

(3.22)

T = λ′





m2 δmn g2 Cm,ny (a + b)m,qz

g2 Cpy,n (a + b)py,n (p2/y2) δpqδyz



 + O(g2
2) (3.23)

≡ d + g2t + O(g2
2) ,

with

d = λ′





m2 δmn 0

0 (p2/y2) δpqδyz



 , (3.24)

t = λ′





0 Cm,ny (a + b)m,qz

Cpy,n (a + b)py,n 0



 . (3.25)

It then follows that
S−1/2 = 1l − g2(s/2) + O(g2

2) (3.26)

diagonalises S at O(g2).

We now need to compute the explicit expressions for ay
mn and by

mn, in the scalar case,
mixed (scalar-vector) case, and finally in the vector case.

It is easy to compute at O(λ′) the coefficient ay
mn in planar perturbation theory, which

turns out to be

am,ny =
n2

y2
, (3.27)

independently of the type of impurity considered. Notice that this is exactly the O(λ′)
anomalous dimension5 of the “small” BMN operator at x1.

We will now explain how bm,ny is determined from the coefficients of the conformal
three-point function. First we note that the correlator (3.17) does not take the conformal
form (2.2) since the original BMN operators in (3.18) are not conformal primaries for
g2 6= 0 due to operator mixing [33, 20]. However, at leading order in g2, the only mixing
effect which contributes to (2.2) is the presence of the double-trace corrections in the

5It is immediate to convince oneself that the Feynman diagrams contributing to the log x2
31 part of

〈Oy·J
AB,n(x1)O(1−y)·J

vac (x2)ŌJ
AB,m(x3)〉 are those where the operator O(1−y)·J

vac (x2) does not participate in
the interaction, i.e. they are precisely the Feynman diagrams contributing to the anomalous dimension
of Oy·J

AB,n(x1) - embedded in a three-point function.

10



expression for the conjugate ∆-BMN operator.6 Importantly, [28,21], these mixing effects
cannot affect the remaining logarithm, λ′ log x2

12, which can then be computed without
taking into account mixing altogether. Hence, we can use the right hand side of the
conformal expression (2.2) in order to compute the coefficient bm,ny in (3.18). Expanding
the right-hand side of (2.2) to O(λ′), and equating the coefficient of the log x2

12 to the
corresponding term in (3.17), we obtain

g2Cm,ny bm,ny = (m2 − n2/y2) C(AnB−n, vac| AmB−m) , (3.28)

where C(CnD−n, vac| AmB−m) is the coefficient C123 of the conformal three-point function
〈OJ1

CD,n(x1)OJ2
vac(x2)ŌJ

AB,m(x3)〉. We used ∆1 = J1 + 2 + λ′n2/y2, ∆2 = J , and ∆3 =
J + 2 + λ′m2.

Equation (3.28) determines bm,ny in terms of the coefficients C(CnD−n, vac| AmB−m) of
the three-point function. These coefficients for BMN operators with two scalar impurities,
one scalar and one vector impurity, and two vector impurities are given by:

C(knl−n, vac| imj−m) = Cvac
123

2 sin2(πmy)

y π2(m2 − n2

y2 )2

(

δi(kδl)j m2 + δi[kδl]j
mn

y
+ 1

4
δijδkl

n2

y2

)

(3.29)

C(jnν−n, vac| imµ−m) = Cvac
123

2 sin2(πmy)

y π2(m2 − n2

y2 )2
δijδµν

1

4

(

m +
n

y

)2

, (3.30)

C(ρnσ−n, vac|µmν−m) = Cvac
123

2 sin2(πmy)

y π2(m2 − n2

y2 )2

(

δµ(ρδσ)ν
n2

y2
+ δµ[ρδσ]ν

mn

y
+ 1

4
δµνδρσm2

)

,

(3.31)

where Cvac
123 =

√
JJ1J2/N = (g2/

√
J)
√

y(1 − y), and the symmetric traceless and anti-
symmetric traceless combinations of two Kronecker deltas are defined as

δi(kδl)j = 1
2
(δikδlj + δilδkj) − 1

4
δijδkl , δi[kδl]j = 1

2
(δikδlj − δilδkj) . (3.32)

The three-point function coefficient for scalars (3.29) was derived in [20] (the simple
case n = 0 was first obtained in [31]), whereas that for the vectors, (3.31), was recently
obtained in [21]. The three-point function coefficient (3.30) for the case of mixed scalar-
vector impurities is a new result, and its derivation is presented in section 4 of this paper.

From (3.29)–(3.31) and (3.28), it is then immediate to derive the coefficients bm,ny

6This is because the double-trace corrections to the single-trace expression for an original BMN op-
erator is of O(g2), i.e. suppressed with 1/N . This can be compensated by factorising the three-point
function into a product of two two-point functions, which is possible only for the double-trace mixing in
the operator Ō.
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which correspond to considering scalar, mixed, or vector BMN operators in (3.17):

[bm,ny]scalar = m2 − mn

y
, (3.33)

[bm,ny]scalar−vector =
1

2

(

m2 − n2

y2

)

, (3.34)

[bm,ny]vector = −n2

y2
+

mn

y
. (3.35)

In conclusion, using (3.20) we get, up to O(g2),

〈T J,y
ij,n(0) ŌJ

ij,m(x)〉 = g2Cm,ny

[

1 + λ′

(

m2 − mn

y
+

n2

y2

)

log(xΛ)−2

]

, (3.36)

〈T J,y
jν,n(0) ŌJ

iµ,m(x)〉 = g2Cm,ny

[

1 +
λ′

2

(

m2 +
n2

y2

)

log(xΛ)−2

]

δijδµν , (3.37)

〈T J,y
µν,n(0) ŌJ

µν,m(x)〉 = g2Cm,ny

[

1 + λ′

(

mn

y

)

log(xΛ)−2

]

. (3.38)

We will now make use of the expressions for these three correlators to construct the matrix
T , and therefore the matrix Γ dual to H int

string, in the three cases of BMN states with (i)
two scalar, (ii) one scalar and one vector, and finally (iii) two vector impurities. These
three cases are addressed separately below.

3.1 Matrix elements with scalar BMN states

This case was first analysed in [17], and we review it here for completeness.

Substituting (3.27) and (3.33) in (3.23), we find that the matrix Tscalar is given, at
O(g2), by7

Tscalar = λ′





m2 g2Cm,ny (m2 − mn/y + n2/y2)

g2Cny,m (m2 − mn/y + n2/y2) n2/y2





≡ d + g2 tscalar . (3.39)

Multiplying it on the left and on the right by S−1/2 = 1l − g2(s/2) + O(g2
2) we get the

expression for the matrix Γ introduced in (2.16) at O(g2):

Γscalar = d + g2 [tscalar − (1/2){s , d}] (3.40)

7We use a somewhat simplified, but correct, notation for the indices of the matrices S and T .
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= λ′





m2 (g2Cm,ny/2) (m− n/y)2

(g2Cny,m/2) (m− n/y)2 n2/y2



 ,

from which it follows, using the definition (3.19) of Cm,ny,

〈OJ
ij,m |Γscalar| T J,y

ij,n〉 = λ′ g2√
J

√

(1 − y)/y sin2(πmy)

2 π2
. (3.41)

This result was first found in [17]. (3.41) agrees with (3.9) after choosing the normalisation
(3.12) for the string result.

3.2 Matrix elements with mixed BMN states

In this case, using (3.27) and (3.34) we can determine the matrix Tmixed in (3.23) for the
case of mixed impurities. It is given, at O(g2), by the following expression:

Tmixed = λ′





m2 g2Cm,ny (m2 + n2/y2)/2

g2Cny,m (m2 + n2/y2)/2 n2/y2



 (3.42)

≡ d + g2 tmixed ,

where we used am,ny + bmixed
m,ny = (m2 + n2/y2)/2. It then follows that

Γmixed = d + g2 [tmixed − (1/2){s , d}] = λ′





m2 0

0 n2/y2



 , (3.43)

and hence
〈OJ

iµ,m |Γmixed| T J,y
iµ,n〉 = 0 . (3.44)

This verifies in gauge theory the vanishing of the three-string amplitude (3.10) between
states with one scalar and one vector impurity, which was predicted in [8].

3.3 Matrix elements with vector BMN states

Finally, we study the case of vector BMN impurities. Using (3.27) and (3.35) we obtain
the matrix Tvector in (3.23) for the case of vector impurities. At O(g2), it is given by:

Tvector = λ′





m2 g2Cm,ny (mn/y)

g2Cny,m (mn/y) n2/y2



 (3.45)
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≡ d + g2 tvector ,

where we used am,ny + bvector
m,ny = mn/y. It then follows that

Γvector = d + g2 [tvector − (1/2){s , d}] (3.46)

= λ′





m2 −(g2Cm,ny/2) (m − n/y)2

−(g2Cm,ny/2) (m − n/y)2 n2/y2



 ,

from which we get

〈OJ
µν,m |Γvector| T J,y

µν,n〉 = −λ′ g2√
J

√

(1 − y)/y sin2(πmy)

2 π2
(3.47)

= −〈OJ
ij,m |Γscalar| T J,y

ij,n〉 .

As advertised earlier, the off-diagonal elements 〈OJ
µν,m |Γvector| T J,y

µν,n〉 of Γvector are precisely

the opposite of the corresponding elements 〈OJ
ij,m |Γscalar| T J,y

ij,n〉 of Γscalar. This again had
been predicted in string field theory in [8]. As explained in the introduction, this signals
the spontaneous breaking of Z2 symmetry in pp-wave string theory.

3.4 Generalisation to all representations for two-impurity BMN
states

Finally, we extend our previous computations to include all representations of scalar and
vector BMN operators with two impurities.

We recall here the results from the previous sections:

〈OJ
ij,m |Γscalar| T J,y

ij,n〉 = −〈OJ
µν,m |Γvector| T J,y

µν,n〉 = λ′ g2√
J

√

(1 − y)/y sin2(πmy)

2 π2
,

〈OJ
kµ,m |Γmixed| T J,y

lν,n〉 = 0 , (3.48)

(i 6= j, µ 6= ν) which correspond to the string field theory amplitude (3.9), (3.10) and
(3.11). From these results it is immediate to obtain

〈OJ
νµ,m |Γvector | T J,y

µν,n〉 = 〈OJ
µν,m |Γvector | T J,y

µν,n〉 , (3.49)

since this amounts to complex conjugate the BMN phase factor contained in OJ
µν,m, i.e. to

exchange m → −m (same considerations apply for the scalar amplitude). Equation (3.49)
follows since the first expression in (3.48) is even in m. Therefore we can at once obtain
the result for the symmetric-traceless and antisymmetric representations for vectors:

〈OJ
(µ ν),m |Γvector | T J,y

(ρσ),n〉 = −λ′ g2√
J

√

(1 − y)/y sin2(πmy)

π2
δµ(ρδσ)ν , (3.50)
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〈OJ
[µν],m |Γvector | T J,y

[ρσ],n〉 = 0 , (3.51)

whereas for scalars,

〈OJ
(i j),m |Γscalar | T J,y

(kl),n〉 = λ′ g2√
J

√

(1 − y)/y sin2(πmy)

π2
δi(kδl)j , (3.52)

〈OJ
[ij],m |Γscalar | T J,y

[kl],n〉 = 0 . (3.53)

Here we have defined

O(µν) =
1

2
(Oµν + Oνµ) − δµν

4

∑

ρ

Oρρ , O[µν] =
1

2
(Oµν −Oνµ) . (3.54)

The vector singlet case can be treated instantly by noticing that the three-point function
coefficient for vector singlets is actually the same as the three-point function coefficient
for the symmetric-traceless scalars, as it can be seen by comparing (3.29) to (3.31). This,
together with (3.52), immediately implies that8

〈OJ
vector 1,m |Γvector | T J,y

vector 1,n〉 = λ′ g2√
J

√

(1 − y)/y sin2(πmy)

π2

= −〈OJ
scalar 1,m |Γscalar | T J,y

scalar 1,n〉 , (3.55)

where O1 = (1/2)
∑

µ Oµµ. We notice that the result for the scalar singlet amplitude

〈OJ
scalar 1,m |Γscalar | T J,y

scalar1,n〉 agrees with the result found in [18]. The opposite sign in
(3.55) for the vector singlet compared to the scalar singlet case is again a manifestation
of the (spontaneously broken) Z2 symmetry in pp-wave string theory.

4 A technical aside: three-point function with mixed

impurities

In this section we derive the expression (3.30). The reader not interested in the actual
calculation can turn a few pages and proceed to the next section.

Here we would like to compute the coefficient of the three-point function of one vacuum
operator (3.1) and two conformal primary ∆-BMN operators with one scalar and one
vector impurity,

ÕJ
iµ,m = OJ

iµ,m + · · · , (4.1)

8The reader willing to derive explicitly the result (3.55) for vector singlets should be aware that, for

singlets, (3.20) should be modified to 〈T J,y
1,n (0) ŌJ

1,m(x)〉 = g2Cm,ny

[

1 + λ′ (am,ny + bm,ny) log(xΛ)−2
]

+

g2C−m,ny

[

1 + λ′ (a−m,ny + b−m,ny) log(xΛ)−2
]

, and that, from the result (3.31) derived in [21], it follows
that [bm,ny]vector, 1 = m2 − mn/y.

15



where OJ
iµ,m is defined in (3.4). The operator ÕJ

iµ,m has a definite scaling dimension,
∆n = ∆cl + δn, which implies that the single-trace expression OJ

iµ,m on the right hand
side of (4.1) must be accompanied by multi-trace corrections (and other mixing effects)
at higher orders in g2 [33, 20]. The dots on the right hand side of (4.1) stand for these
corrections.

Nevertheless, our strategy is to study the three-point correlator of the original BMN
operators OJ

iµ,m,

〈Oy·J
jν,n(x1)O(1−y)·J

vac (x2)ŌJ
iµ,m(x3)〉 = (4.2)

g2Cm,ny

[

1 − λ′

(

am,ny log(x31Λ)2 + bmixed
m,ny log

∣

∣

∣

∣

x32x31Λ

x12

∣

∣

∣

∣

)]

δµνδij ,

and to focus on the computation of the coefficient bmixed
m,ny of the log x12. This is because,

for reasons explained in the paragraph below (3.27), this coefficient can be computed
without taking into account mixing altogether, and is directly related to the coefficient
of the three-point function of conformal primary BMN operators with mixed impurities
through (3.28). Therefore, from now on we will work with the original BMN operator
(3.4).

The mixed BMN operator in (3.4) contains two terms: a “pure” BMN part and a
compensating term, first and second term on the right hand side of (3.4), respectively.
The Feynman diagrams contributing to the Green’s function in (4.2) can be divided into
two classes: those obtained by taking only the pure BMN part of Oy·J

jν,n(x1) and ŌJ
iµ,m(x3)

and those where the compensating part is taken (in one or both operators). As already
explained, we will focus only on diagrams which can produce a log x12 dependence, and
both classes of diagrams contribute to the coefficient bmixed

m,ny in (4.2). For the sake of clarity,
we quote here the results from these two classes of diagrams:

[

bmixed
m,ny

]

BMN
= m

(

m − n

y

)

, (4.3)

[

bmixed
m,ny

]

comp
= −1

2

(

m − n

y

)2

. (4.4)

The total result

[bm,ny]scalar−vector =
[

bmixed
m,ny

]

BMN
+
[

bmixed
m,ny

]

comp
=

1

2

(

m2 − n2

y2

)

, (4.5)

was anticipated in (3.34). We now compute separately these two classes of diagrams. Our
notation and conventions are summarised in Appendix B.
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4.1 Diagrams originating from the “pure” BMN parts

We consider first the diagrams where the scalar impurity interacts. These are represented
in Figure 1. The result for these diagrams is:

φiφiφi

φiφiφi

Z̄Z̄Z̄

Z̄Z̄Z̄

∂µZ∂µZ∂µZ

∂µZ∂µZ ∂µZ

x1 x2

1a 1b 1c

1d 1e 1f

Figure 1: Diagrams with scalar impurity interacting. Diagrams 1a and 1d have positive
signs, all the others have negative signs.

(

2

g2

)(

g2

2

)4

· 2(PI − PII + P̄I − P̄II) · (2δµν)δij · X . (4.6)

The first term on the right hand side of (4.6) comes from the diagram 1a (the coefficient
of 2 is easily seen from −VF in (B.4)), the second term is the sum of diagrams 1b and 1c.
The relative sign is also immediately seen from the commutators in −VF . We have taken
into account the fact that diagrams 1b and 1c give the same contribution.9

9This is a simple corollary of the cancellation of D-terms against gluon interactions and self-energies
in three-point functions of BMN operators at O(λ′) (in the complex basis) [34, 6, 31, 20]. In our case,
self-interactions diagrams do not participate since they cannot generate log x2

12 terms at order O(λ′).
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The third and fourth term in (4.6) come from the mirror diagrams 1d, 1e and 1f, where
the φ interaction is now at the bottom. The factor 2δµν comes from the free contraction10

of the DµZ impurity with the DνZ impurity. The coefficients PI and PII come from
summing over the BMN phase factors, and their expressions are summarised in Appendix
C. Mirror diagrams are associated with the complex conjugate coefficients P̄I and P̄II .
Finally, the function X is defined in (D.2) of Appendix D.

There are additional diagrams, drawn in Figures 2 and 3, where the interaction involves
now the vector impurity.

∂µZ∂µZ∂µZ

φiφiφi

Z̄Z̄Z̄

x1 x2

2a 2b 2c

Figure 2: Diagrams with vector impurity interacting associated to PI .

These diagrams are identical to those in Figure 5 and 6 of [21], with the only modi-
fication that the non-interacting impurity is now a scalar impurity (whereas in Figure 5
and 6 of [21] it was a vector impurity). We will not compute again these diagrams, and
instead borrow the result from [21]. Their contribution turns out to be precisely the same
of the contribution (4.6) from the diagrams where the scalar impurity interacts.

The final result for the pure BMN diagrams is therefore:

(

2

g2

)(

g2

2

)4

· 8(PI − PII + P̄I − P̄II) · δµνδij · X . (4.7)

This quantity has still to be multiplied by the normalisations of the operators, in which
we include an extra factor of J2 = (1− y) · J coming from inequivalent Wick contractions
of Ovac with the rest,

1√
J

√
1 − y√

y

(

1√
2

)2

. (4.8)

10For an extensive discussion of the treatment of BMN operators with vector impurities, the reader is
referred to [21]. Free contractions of vector impurities are discussed in Eq. (34) of that paper, and the
main results can be summarised as 〈DµZ DνZ〉free = 2 δµν , and 〈Z DνZ〉free = 0.
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Z

Z

Z̄

Z̄

∂µZ∂µZ ∂µZ

∂µZ∂µZ ∂µZ

∂µZ

∂νZ∂νZ∂νZ

∂νZ∂νZ DνZ

φi φi

φi

φi

φi
φi

3a 3b 3c

3d 3e 3f

Figure 3: Diagrams with vector impurity interacting associated to PII .

4.2 Diagrams from compensating terms

The compensating term is present in both operators at x3 and x1, therefore there are three
subclasses of diagrams: (i) diagrams with compensating term in the “external” operator
at x3 and pure BMN part in the “internal” (small) operator at x1; (ii) diagrams where
the compensating term of both operators at x1 and x3 is considered; and (iii) diagrams
where the compensating term of the small operator at x1 and the pure BMN part of the
operator at x3 are taken.

Each diagram in class (i) vanishes separately, since the only way to contract the
impurity DνZ in Oy·J

jν,n(x1) is with a Z̄ in ŌJ
iµ,m(x3), and this contraction vanishes (see

footnote 10). Moreover , it is not difficult to see that the total contribution of the diagrams
in class (ii) vanishes. Hence we are left with diagrams in class (iii), which we now discuss.

We start by considering diagrams without gluons. The first three diagram are repre-
sented in Figure 4, and their contribution is

(

2

g2

)(

g2

2

)4

·
(

2X − X − X · q̄J2
)

δµνδij , (4.9)
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φi

φiφi ∂µZ∂µZ∂µZ

∂νφj ∂νφj
∂νφj Z

ZZ

4a 4b 4c

Figure 4: Diagrams originating from the compensating term in the ‘internal’ operator
(at x1). In these diagrams no gluons are emitted or exchanged.

where q = exp(2πm/J) is the phase factor of the BMN operator at x3. The first term
in the right hand side of (4.9) comes from the first diagram in Figure 4. This diagram
is equal to the first diagram in Figure 5 of [21], from which we borrowed the result. The
factor of 2 is easily seen from the term Tr(2 ZφiZ̄φi) in −VF , see (B.4). The opposite
sign of the second term in (4.9) is also seen from the term −Tr(φiφiZZ̄) in −VF . The
third term comes from the term −Tr(φiφiZ̄Z) in −VF , and carries a BMN phase factor
q̄J2. There are also mirror diagrams, where the interaction occurs at the bottom of the
diagram (similarly to the fourth, fifth and sixth diagram in Figure 1). As usual, their
effect is to add the complex conjugate of the previous result, so that the final result for
diagrams without gluons is:

(

2

g2

)(

g2

2

)4

· 2X · (1 − cos (2πmy)) δµνδij . (4.10)

We now consider diagrams where a gluon is emitted from the covariant derivative Dνφj

at x1. These gluon emission diagrams are represented in Figure 5. The total result for
them is:

(

2

g2

)(

g2

2

)4

·
(

3X − 3X · q̄J1
)

δµνδij . (4.11)

The first term on the right hand side of (4.11) corresponds to the first diagram in Figure
3. This diagram was computed in [21] (it is the third diagram in Figure 5), from which
we took the result. The only difference is that in the present case it is accompanied by
phase factor equal to 1. The second term come from the second diagram in Figure 3, and
carries a BMN phase factor equal to q̄J1. Again, there are also mirror diagrams, where
the interaction occurs at the bottom of the diagram. Their effect is to add the complex
conjugate of the previous result, so that the final result for diagrams with gluon emission
is:

(

2

g2

)(

g2

2

)4

· 6X · (1 − cos (2πmy)) δµνδij . (4.12)
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φi φi∂µZ

∂µZ

DνφjDνφj
ZZ

5a 5b

Figure 5: Gluon emission diagrams originating from the compensating term in the internal
operator.

Finally, we have to consider gluon interaction diagrams. These are depicted in Figure
6 and, as before, there are also mirror diagrams, where the interaction occurs at the
bottom of each diagram. However, each of the diagrams vanishes separately (this is to

φi φi∂µZ

∂µZ

∂νφj∂νφj
ZZ

6a 6b

Figure 6: Gluon interaction diagrams, from the compensating term in the internal oper-
ator.

be contrasted with the case of scalar interactions, where gluon interactions double up the
result for the interaction from the scalar potential, as discussed in the previous subsection).
This was shown again in [21] (second diagram in Figure 5 of that paper).

Adding (4.10) and (4.12) we get the total contribution of the compensating term
diagrams,

(

2

g2

)(

g2

2

)4

· 16X · sin2 (πmy) δµνδij . (4.13)

21



The result (4.13) has still to be multiplied by the normalisations of the operators (4.8).

4.3 Summary: the result for mixed impurities

We add the results (4.7) and (4.13), and use (C.3) of Appendix C, to get the total result

(

g2

2

)3

· (−16 X) · (δµνδij) · m + n/y

m − n/y
sin2 πmy . (4.14)

Multiplying this result by the normalisation (4.8), and amputating a factor of [(g2/2) ∆(x13)]
2

we obtain

〈Oy·J
jν,n(x1)O(1−y)·J

vac (x2)ŌJ
iµ,m(x3)〉

∣

∣

∣

log x12 term
=

1√
J

√
1 − y√

y

(

1√
2

)2(
g2

2

)

·
(

−16
m + n/y

m − n/y
sin2 πmy

)

log(x12Λ)−1

8π2
δµνδij =

−λ′g2 Cm,ny ·
1

2

(

m2 − n2

y2

)

· log(x12Λ)−1δµνδij , (4.15)

where Cm,ny is defined in (3.19). Equation (4.15) is the principal result of this section.

The coefficient [bm,ny]scalar−vector in (3.34) immediately follows by comparing (4.15) to
(4.2). Finally, the three-point function coefficient (3.30) for mixed impurities is obtained
from (3.34) and (3.28).

5 The correspondence for an arbitrary number of

scalar impurities

In this section we shall evaluate the coefficients of three-point functions of ∆-BMN oper-
ators with arbitrary number of scalar impurities, and use this information to derive the
single- double-trace two-point function of operators with an arbitrary number of scalar
impurities.

5.1 The results in field theory

Every BMN operator with an arbitrary number of impurities can be decomposed into two
pieces. The pure BMN part, which contains no Z̄, and the compensating part, which

22



contains Z̄. In order to make the structure of the general BMN operator clear, let us
consider the example of an operator with three impurities. The pure BMN part consists
of two terms:

Opure =
∑

0≤l2≤l3

ql2
2 ql3

3 Tr(φ1Z
l2φ2Z

l3−l2φ3Z
J−l3) +

∑

0≤l3≤l2

ql2
2 ql3

3 Tr(φ1Z
l3φ3Z

l2−l3φ2Z
J−l2) .

(5.1)

In all cases φ1 is positioned first in the trace, while we have to sum over all the different
orderings of the remaining impurities. Let us denote by φp(i) the impurity which sits in
the ith position of a specific ordering of the impurities, and lp(i) the number of Z fields
between φ1 and φp(i) (in the example given above p(2) = 2, p(3) = 3 for the first trace
while p(2) = 3, p(3) = 2 for the second trace). Next we consider the compensating terms.
In our example, these should be written as

Ocomp = −δφ2≡φ3

∑

0≤l2

(q2q3)
l2 Tr(φ1Z

l2Z̄ZJ−l2) − δφ1≡φ2

∑

0≤l3

ql3
3 Tr(Z̄Z l3φ3Z

J−l3)

−δφ1≡φ3

∑

0≤l2

ql2
2 Tr(Z̄Z l2φ2Z

J−l2) . (5.2)

In other words, whenever two impurities in Opure are of the same flavour, we add a
compensating term where these two impurities are replaced by Z̄.

With this example in mind, it is not difficult to write down the most general form of
an operator with n impurities,

O{ni} ≡
1√

Jn−1NJ+n

∑

p=perm{2,...,n}

O1p
{ni}

, (5.3)

where i = 1, . . . , n and

O1p(2)...p(n)
{ni}pure =

∑

0≤lp(2)≤lp(3)...≤lp(n)

n
∏

i=2

q
lp(i)

p(i) Tr(φ1Z
lp(2)φp(2)Z

lp(3)−lp(2)φp(3) . . . φp(n)Z
J−lp(n)) ,

(5.4)

O1p(2)...p(n)
{ni}comp = −1

2

n−1
∑

k=2

δφp(k)≡φp(k+1)

∑

0≤lp(2)...≤lp(k)≤lp(k+2)...≤lp(n)

n
∏

i=2,i6=p(k+1)

q
lp(i)

p(i) q
lp(k)

p(k+1)

Tr(φ1Z
lp(2)φp(2)...Z

lp(k)−lp(k−1)Z̄Z lp(k+2)−lp(k)φp(k+2) . . . φp(n)Z
J−lp(n))

−δφ1≡φp(2)

∑

0≤lp(3)...≤lp(n)

n
∏

i=3

q
lp(i)

p(i) Tr(Z̄Z lp(3)φp(3) · · ·φp(n)Z
J−lp(n)) . (5.5)

The origin of the 1
2

in front of the first term of O1p(2)...p(n)
{ni}comp is quite clear. It comes from

the fact that we have counted twice the same term, since we have two orderings where
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φp(i) and φp(i+1) coincide. The one with φp(i) coming first and φp(i+1) following and vice
versa. Finally, we note that in principle more compensating terms should be added to the
right hand side of (5.5) when two or more pairs of impurities coincide. These terms are
irrelevant for our purposes in the BMN limit.

In the above expression, φp(i) ∈ {φ1, φ2, φ3, φ4}. This makes the meaning of the Kro-
necker δ-symbols functions obvious. It should also be noted that the operator given above
is normalised so that its two point function is one at the free theory level.11

As in section 3, we will need the expressions for double-trace operators,

T J,y
{ni}{ki}

= : OJ ·y
{ni}

: : OJ ·(1−y)
{ki}

: . (5.6)

On general grounds, the two-point function of the double- and single-trace BMN operators
takes the form

〈T J,y
{ni}{ki}

(0) ŌJ
{mi}

(x)〉 = g2Cfree

[

1 + λ′ (a + b + c) log(xΛ)−2
]

. (5.7)

In (5.7) we have suppressed the indices of a, b and c. Here ŌJ
{mi}

contains p3 impuri-

ties, whereas the two single-trace expressions in T J,y
{ni}{ki}

contain p1 and p2 impurities,
respectively.

Compared to (3.20), the above equation contains a new coefficient, c. This is due to
the fact that the second operator on the right hand side of (5.6) is no longer just the
vacuum, but instead is a generic string state. This results in an additional logarithmic
part for the three-point function (3.18), i.e. c · log(x32Λ)2).

The next step is to calculate the matrix of classical overlaps S. To this end, we
will need to compute the correlation functions of single-trace operators with double-trace
operators to O(g2). We will not need the correlation functions of two different double-
trace operators, because these overlaps are of O(g2

2). Hence, it is possible to treat each
double-trace operator independently and write the expressions (5.9), (5.13) and (5.14) as
two by two matrices.

Thus the classical overlap is given by

S = 1l + g2s , (5.8)

where

s =

(

0 Cfree

Cfree 0

)

, (5.9)

11Strictly speaking this is true only when all the q’s which correspond to a particular φ, say φ1, are
different. This is the case that we are going to consider. However what follows can be applied with slight
modifications to the case where two or more of the q’s are the same.
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and

Cfree =
∑

perm′

Cp
free , (5.10)

where

Cp
free =

(−1)p2

πp3

√

yp1−1(1 − y)p2−1J

p1
∏

a=1

sin(πmp(a)y)

mp(a) − na/y

p2
∏

b=1

sin(πmp(b+p1)y)

mp(b+p1) − kb/(1 − y)
. (5.11)

The sum in (5.10) is over all the admissible permutations of the {mi}, which label the
barred BMN operator, as on the left hand side of (5.7). A permutation is admissible only
when the permuted numbers belong to φ’s of the same flavour.

Our next goal is to determine the anomalous dimension matrix T ,

T = d + g2t , (5.12)

where the diagonal part d contains the anomalous dimensions, as in (3.24),

d = λ′





∑p3

a=1 m2
a/2 0

0
∑p1

a=1 n2
a/2y2 +

∑p2

a=1 k2
a/2(1 − y)2



 , (5.13)

and

t = λ′

(

0 t12
t21 0

)

. (5.14)

t12 can be read from (5.7), and is given by

t12 =
∑

perm′

Cp
free(a + b + c) . (5.15)

The coefficients a and c are given by the anomalous dimensions of the first and second
operators in the definition of T ,

a =

p1
∑

a=1

n2
a

2y2
, c =

p2
∑

a=1

k2
a

2(1 − y)2
. (5.16)

The contributions of
∑

perm′ C
p
free a and

∑

perm′ C
p
free c to t12 in (5.15) factorise, to give

Cfree a , Cfree c , (5.17)

respectively.

The remaining contribution to t12 is
∑

perm′ C
p
free b. It can be extracted from the

coefficient of the corresponding three-point function following the same logic as in section
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3. These three-point functions of generic BMN operators with arbitrary numbers of scalar
impurities are computed in the following section. Our result is

∑

perm′

Cp
free b =

∑

perm′

Cp
free

1

2

(

p1
∑

a=1

mp(a)

(

mp(a) −
na

y

)

+

p2
∑

a=1

mp(a+p1)

(

mp(a+p1) −
ka

1 − y

)

+
1

2

p1
∑

(a,b)

(mp(a) − na)(mp(b) − nb) +
1

2

p2
∑

(a,b)

(mp(p1+a) − ka)(mp(p1+b) − kb)

+
1

2

p1
∑

a=1

p2
∑

b=1

(mp(a) − na)(mp(p1+b) − kb)

)

. (5.18)

The double sum summation notation (a, b) means that we do not distinguish between the
pair a, b and the pair b, a (a 6= b).

As in section 3, the anomalous dimension matrix Γ in the isomorphic to string basis
is given by

Γ = d + g2t
′ , t′ = t − 1

2
{s, d} , (5.19)

where

{s, d} = λ′

(

0 Cfree(δ1 + δ2 + δ3)
Cfree(δ1 + δ2 + δ3) 0

)

, (5.20)

and δi is the anomalous dimension of the ith operator (i = 1, 2, 3). After some algebra,
we obtain the final result:

Γ12 =
λ′g2

4

∑

perm′

Cp
free

(

p1
∑

a=1

(

mp(a) −
na

y

)2

+

p2
∑

a=1

(

mp(a+p1) −
ka

1 − y

)2

+

p1
∑

(a,b)

(mp(a) − na)(mp(b) − nb) (5.21)

+

p2
∑

(a,b)

(mp(p1+a) − ka)(mp(p1+b) − kb) +

p1
∑

a=1

p2
∑

b=1

(mp(a) − na)(mp(p1+b) − kb)



 .

This is our final expression for matrix elements in gauge theory. In the next section we
will compute the corresponding three-string amplitude and compare it to (5.21). We will
find perfect agreement.

5.2 The results in string field theory

In this subsection we assemble the basic ingredients of the SFT calculation of the string
amplitude for states with an arbitrary number of scalar impurities. The amplitude has
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the form [7, 8] (we refer the reader to Appendix A for more details)

〈Φ|P|VB〉 , (5.22)

where 〈Φ| represents the three external string states, |VB〉 is the kinematic part of the
bosonic vertex (A.6), and the prefactor P is given by

P = Cnorm

3
∑

r=1

∞
∑

−∞

ωrn

µαr
αrI†

n αrI
−n . (5.23)

Cnorm is defined in such a way that we get agreement with the field theory calculation.
Its value is taken to be

Cnorm = −1

2
g2

√

y(1 − y)√
J

(−1)
1
2

∑3
r=1

∑+∞
m=−∞ αr I†

m αr I
m . (5.24)

The prefactor can act on the external bra–state and give a sum of 2p3 terms, each of which
has an external state identical to the initial 〈Φ|, except one of the αn’s which has changed
to α−n. Of course each of these terms is multiplied by the corresponding ωrn/µαr. What
we are left with is the action of the exponential in |VB〉. In order to keep the comparison
to field theory as simple as possible, we choose a certain set of associations between the
impurities of the third string and the impurities of the other two strings. The final result
will be a sum over all possible such associations, i.e. permutations of this set.

When an external oscillator has not been changed by the prefactor, the action of |VB〉
gives a factor of N̂3r

nan′
a

where r = 1, 2, 3. But if the external oscillator has been changed
by the prefactor, the action of |VB〉 gives a factor of

F 3r
na−n′

a
= N̂3r

−nan′
a

ω3na

µα3

+ N̂3r
na−n′

a

ωrn′
a

µαr

= N̂3r
na−n′

a

(

ω3na

µα3

+
ωrn′

a

µαr

)

. (5.25)

One can evaluate F 3r
na−n′

a
to get

F 31
na−n′

a
= (−1)na+n′

a
λ′

2π
√

y

(

na −
n′

a

y

)2
sin(πnay)

na − n′
a/y

,

F 32
na−n′

a
= (−1)na+1 λ′

2π
√

1 − y
(na − n′

a/(1 − y))2 sin(πnay)

na − n′
a/(1 − y)

,

F 33
na−n′

a
= (−1)na+n′

a+1 2 sin(πnay) sin(πn′
ay)

πµ
,

F 11
na−n′

a
=

2(−1)na+n′
a

4πµy
,

F 22
na−n′

a
=

2

4πµ(1 − y)
. (5.26)
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We are now in position to write down the result for a given permutation. This reads

〈Φ|P|VB〉 = Cnorm

[

p1
∑

a

F 31
ma−na

p1
∏

b6=a

N̂31
mbnb

p2
∏

b=1

N̂32
mb+p1

kb
+

p2
∑

a

F 32
ma−ka

p1
∏

b=1

N̂31
mbnb

p2
∏

b6=a

N̂32
mb+p1

kb

+





p1
∑

(a,b)

F 33
ma−mb

N̂11
nanb

+

p1
∑

(a,b)

F 11
na−nb

N̂33
mamb





p1
∏

c 6=a,b

N̂31
mcnc

p2
∏

c=1

N̂32
mc+p1kc

(5.27)

+





p2
∑

(a,b)

F 33
mp1+a−mp1+b

N̂22
kakb

+

p2
∑

(a,b)

F 22
ka−kb

N̂33
mp1+amp1+b





p1
∏

c=1

N̂31
mcnc

p2
∏

c 6=a,b

N̂32
mc+p1kc

+

(

p1
∑

a=1

p2
∑

b=1

F 33
ma−mp1+b

N̂12
makb

+

p1
∑

a=1

p2
∑

b=1

F 12
na−kb

N̂33
mamp1+b

)

p1
∏

c 6=a

N̂31
mcnc

p2
∏

c 6=b

N̂32
mc+p1kc

]

.

As before, in the double sum over all pairs (a, b) which appears above we do not distinguish
between the pair (a, b) and the pair (b, a). Making use of the expressions for the Neumann
matrices from [35] it is now easy to obtain the final expression for the matrix element in
string theory:

〈Φ|P|VB〉 =
Cp

free

4
g2λ

′

( p1
∑

a=1

(ma −
na

y
)2 +

p2
∑

a=1

(ma+p1 −
ka

1 − y
)2

+

p1
∑

(a,b)

(ma − na)(mb − nb) + (mb − na)(ma − nb)

+

p2
∑

(a,b)

(mp1+a − ka)(mp1+b − kb) + (mp1+b − ka)(mp1+a − kb)

+

p1
∑

a=1

p2
∑

b=1

(ma − na)(mp1+b − nb) + (mp1+b − na)(ma − nb)

)

. (5.28)

One should note that in calculating the three string vertex we did not take into account
terms where there were two contractions of oscillators belonging to the same string if the
prefactor had not acted on one of these oscillators previously. This is so because these
terms are of order (1/µ)4 = λ′2, as can be easily seen.12

In order to get the final string theory result, we should not forget to sum (5.28) over
all the admissible permutations, as we have done for the field theory result. This means
that the first line of (5.28) should be summed over all the possible permutations, while the
remaining lines should be summed over all permutations except those which exchange the
m’s associated with the labels a and b (more precisely, the permutations which exchange

12There is a subtlety in writing (5.28), since the Cp for each term in that equation are in fact different:
to each term in (5.28) one should associate the Cp corresponding to the permutation of the indices which
label m, n and k appearing in the term considered.
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ma with mb, mp1+a with mp1+b, ma with mp1+b in the second, third and fourth line of
(5.28), respectively). Including these permutations would result in a double-counting.
Once this sums are performed, we obtain perfect agreement with the field theory result
(5.21).

6 A technical aside: calculation of general scalar BMN

three-point functions

This final section is devoted to the derivation of the expression (5.18).

Our goal is to calculate 〈OJ ·y
{ni}

(x1)OJ ·(1−y)
{ki}

(x2) ŌJ
{mi}

(0)〉. To simplify the notation, we

will rename the operators in this Green’s function as O1(x1), O2(x2) and Ō3(0). Let us

assume that there are f
(i)
1 φ1’s, f

(i)
2 φ2’s, f

(i)
3 φ3’s and f

(i)
4 φ4’s in the ith operator where

i = 1, 2, 3. We consider the case where f
(3)
1 = f

(1)
1 + f

(2)
1 with similar relations holding for

the other three impurities.

There are of course many different diagrams. In order to deal efficiently with them,
let us select a particular set of Wick contractions between the impurities of the barred
operator and the impurities of the unbarred operators. Obviously, only impurities of the
same flavour can be contracted. The full result will then be a sum over all the different
permutations of such contractions.

We start by considering the diagrams where the pure BMN part is taken in each
of the three operators. These are drawn in Figure 7. It is easy to see that there are
f

(3)
1 !f

(3)
2 !f

(3)
3 !f

(3)
4 ! different contributions. Let us select one of them and draw the corre-

sponding diagrams, Figure 7, in which the ith φ1 field of Ō3(0) interacts with the nth φ1

field of O1(x1), while all the other fields are freely contracted. The phase factor associated
with these free contractions becomes, in the BMN limit:

P2 =

p1
∏

a6=n

J1
∑

la=1

(q̄ara)
la

p2
∏

b=1

J
∑

lb=J1+1

(q̄p1+bpb)
lb

=

p1
∏

a6=n

J1
∑

la

e−2πi(ma−
na
y

) la
J

p2
∏

b=1

J
∑

lb=J1+1

e−2πi(mp1+b−
kb

1−y
)

lb
J

= Jp3−1

p1
∏

a6=n

∫ y

0

dxe−2πi(ma−
na
y

)x
p2
∏

b=1

∫ 1

y

dxe−2πi(mp1+b−
kb
y

)x

= Jp3−1

p1
∏

a6=n

e−πimay sin πmay

(ma − na/y)π

p2
∏

b=1

e−πimp1+by
(−1)p2 sin πmp1+by

(mp1+b − kb/(1 − y))π
. (6.1)
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Recall that (5.1), (5.2) and (5.4), (5.5) do not contain q1. In (6.1) and in what follows
q1 is defined as q1 =

∏J
i=2 q̄i, and qi = e2πimi/J is the phase factor of the ith impurity (ra

and pa are the phase factors of O1 and O2 respectively).

φiφi

φi φiZ̄ Z̄

ZZ

7a 7b

Figure 7: Feynman diagrams where a scalar impurity from O1 interacts with a Z field.
The dots stand for impurities which have free contractions. These diagrams are also
accompanied by their mirror images, where the interaction occurs in the bottom part of
the diagram.

Note that in obtaining the above formula we have taken into account all the possible
orderings of the freely contracting impurities.

We also need the phase factor associated with the fields which are involved in the
interaction. This is given by

P1 = (q̄J1
i − 1)(q̄i − 1)g2 =

−4πmi

J
e−πimiy sin πmiy . (6.2)

The total phase factor will be P = P1P2
13 Taking into account the normalisation of the

operators, and evaluating the space-time integral associated with the vertex (see (D.1)),
one gets:

G
(1)
3 =

Jp3

N
√

Jp3−1Jp1−1
1 Jp2−1

2

p1
∏

a6=n

sin πmay

ma − na/y

p2
∏

b=1

sin πmp1+by

mp1+b − kb/(1 − y)
(−1)p2

(−λ′)
mi sin πmiy

4πp3
log

x2
1x

2
2

x2
12

. (6.3)

In the previous expression we are keeping only the log x12 terms, which are relevant to
determine the coefficient b in (5.7), similarly to what we did in section 4. We denoted by

13In this section the Lagrangian and Feynman rules of [31] are used.
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G
(1)
3 the part of the three-point function which corresponds to the diagrams of Figure 7,

and by p3 = p1 + p2 the number of the impurities of O3.

In order to make easier the comparison with the string theory result, we rewrite (6.3)
as

g2C
p
freeb

(1) =
Jp3

N
√

Jp3−1Jp1−1
1 Jp2−1

2

k
∏

a6=n

sin πmay

ma − na/y

p2
∏

b=1

sin πmp1+by

mp1+b − kb/(1 − y)
(−1)p2

mi sin πmiy

2πp3
. (6.4)

Equation (6.4) corresponds to the first term in the first line of (5.18). Until now we have
considered only diagrams where the interacting φ belongs to the operator O1. Of course,
there are diagrams where it is an impurity in O2 which interacts. These contributions
produce the second term in the first line of (5.18).

Now we consider the diagrams in Figure 8. In these diagrams we take for O1 the

φi

φj

Z̄

Z̄

Z̄

Z

ZZ

8a 8b

Figure 8: In Figure 8a we take the pure BMN part in the external operator, whereas in
8b we take the compensating term. In both cases we take the compensating term in O1

and the pure BMN part in O2. Here i and j label the position of the corresponding φ in
the barred BMN operator.

compensating term, for O2 the pure BMN part, and for Ō3 the pure BMN part (Figure
8a) or the compensating term (Figure 8b). In the case where two φ1’s interact, the number

of different diagrams is f
(3)
1 !f

(3)
2 !f

(3)
3 !f

(3)
4 !

f
(1)
1 (f

(1)
1 −1)

4
. This number is obtained as follows.

There are f
(1)
1 (f

(1)
1 −1)/2 different ways to single out two φ1’s from the operator O1. This

should be multiplied by the f
(3)
1 (f

(3)
1 −1)/2 different ways in which we can choose two φ1’s

from the barred operator Ō3, times the number (f
(3)
1 − 2)!f

(3)
2 !f

(3)
3 !f

(3)
4 ! of independent

free contractions of all the remaining impurities.
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Evaluating the phase factor associated with the interacting fields we get

P1 = (q̄J1
i − 1)(q̄J1

j − 1)g2. (6.5)

For the total phase factor one obtains

P = Jp1+p2−2

p1
∏

a6=i,j

e−πimay sin πmay

(ma − na/y)π

p2
∏

b=1

e−πimp1+by
sin πmp1+by

(mp1+b − kb/(1 − y))π
(−1)p2

g2(−4) sin πmiy sin πmjye−πi(mi+mj)y . (6.6)

The contribution to G3 which corresponds to the diagrams of Figure 8 is therefore

G
(2)
3 =

Jp3

N
√

Jp3−1Jp1−1
1 Jp2−1

2

p1
∏

a6=i,j

sin πmay

ma − na/y

p2
∏

b=1

sin πmp1+by

mp1+b − kb/(1 − y)
(−1)p2

(−λ′)
sin πmiy sin πmjy

4πp3
log

x2
1x

2
2

x2
12

. (6.7)

From the last equation we can extract

g2C
p
freeb

(2) =
Jp3

N
√

Jp3−1Jp1−1
1 Jp2−1

2

k
∏

a6=i,j

sin πmay

ma − na/y

p2
∏

b=1

sin πmp1+by

mp1+b − kb/(1 − y)
(−1)p2

sin πmiy sin πmiy

2πp3
. (6.8)

This term corresponds to the first term of the second line in (5.18). There are also
diagrams where we consider the pure BMN part in O1 and the compensating part in O2

(rather than the opposite). These terms produce the second term in the second line of
(5.18).

We now consider the last set of diagrams, which are represented in Figure 9. In order
to draw these diagrams we have used (5.4) for the operators O1, O2, and (5.4), (5.5) for
the barred operator. In these diagrams the xth φ1 belongs to O1, while the zth φ1 belongs
to O2.

In this case the phase factor associated with the fields which interact becomes

P1 = (q̄J1
i − 1)(q̄J1

j − 1)(−g2) . (6.9)

For the total phase factor one obtains

P = Jp3−2

p1
∏

a6=x

e−πimay sin πmay

ma − na/y

p2
∏

b6=z

exp−πimp1+by
sin πmp1+by

mp1+b − kb/y
(−1)p2−1

(−g2)(−4)

πp1−1πp2−1
sin πmiy sin πmjye−πi(mi+mj)y . (6.10)

32



φi

φj

φx φx φzφz

Z̄

Z

9a 9b

Figure 9: In Figure 9a we take the BMN part in the external operator, whereas in 9b we
take the compensating term.

The contribution to G3 which corresponds to the diagrams of Figure 9 is therefore

G
(3)
3 =

Jp−3

N
√

Jp3−1Jp1−1
1 Jp2−1

2

p1
∏

a6=x

sin πmay

ma − na/y

p2
∏

b6=z

sin πmp1+by

mp1+b − kb/(1 − y)
(−1)p2

(−λ′)
sin πmiy sin πmjy

4πp3
log

x2
1x

2
2

x2
12

. (6.11)

From this equation we extract

g2C
p
freeb

(3) =
Jp−3

N
√

Jp3−1Jp1−1
1 Jp2−1

2

p1
∏

a6=x

sin πmay

ma − na/y

p2
∏

b6=z

sin πmp1+by

mp1+b − kb/(1 − y)
(−1)p2

sin πmiy sin πmiy

2πp3
. (6.12)

Finally, by adding (6.4), (6.8) and (6.12) (and the terms similar to (6.4) and (6.8), as
discussed in the text), and summing over all permutations, it is immediate to obtain
(5.18).
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Appendix A: the three-string vertex

We first specify the notation and conventions used in pp-wave string field theory. The
combination α′p+ for the r-th string is denoted αr and

∑3
r=1 αr = 0. As is standard in

the literature, we will choose a frame in which α3 = −1

αr = α′p+
(r) : α3 = −1, α1 = y, α2 = 1 − y. (A.1)

In terms of the U(1) R-charges of the BMN operators in the gauge theory three-point
function, 〈OJ1

1 OJ2
2 ŌJ

3 〉 we have

y =
J1

J
, 1 − y =

J2

J
, y ∈ (0, 1) , (A.2)

and J = J1 + J2.

The effective SYM coupling constant (1.2) in the frame (A.1) takes the simple form

λ′ =
1

(µp+α′)2
≡ 1

(µα3)2
=

1

µ2
. (A.3)

Here µ is the mass parameter which appears in the pp-wave metric, in the chosen frame
it is dimensionless14 and the expansion in powers of 1/µ2 is equivalent to the perturbative
expansion in λ′. Finally, the frequencies are defined via

ωrm =
√

m2 + (µαr)2 . (A.4)

The three-string vertex |H3〉 can be represented as a ket-state in the tensor product
of three string Fock spaces. It has the form [7, 8]

1

µ
|H3〉 = P|VF 〉|VB〉δ

(

3
∑

r=1

αr

)

, (A.5)

where the kets |VB〉 and |VF 〉 are constructed to satisfy the bosonic and fermionic kine-
matic symmetries, and αr are defined in (A.1). The bosonic factor |VB〉 is given by

|VB〉 = exp

(

1

2

3
∑

r,s=1

∞
∑

m,n=−∞

8
∑

I=1

αr I†

m N̂ rs
mnαs I†

n

)

|0〉|0〉|0〉 , (A.6)

where the N̂ rs
mn are the Neumann matrices in the BMN-basis of string oscillators. The

complete perturbative expansion of the Neumann matrices in the pp-wave background in

14It is p+µ which is invariant under longitudinal boosts and is frame-independent.
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the vicinity of µ = ∞, was constructed in [35]15. The fermionic factor |VF 〉 is not going to
be relevant for the present paper, where only external bosonic string states are considered.

The prefactor P is a polynomial in the bosonic and fermionic oscillators, and is deter-
mined from imposing the remaining symmetries of the pp-wave background. The relevant
for us bosonic part of the prefactor, as determined by Spradlin and Volovich in [8], reads

P = Cnorm

3
∑

r=1

∞
∑

−∞

ωrn

µαr
αrI†

n αrJ
−n vIJ , (A.7)

where vIJ = diag(1l4,−1l4), and the overall normalisation Cnorm is left undetermined.
Notice that it is the expression for vIJ which leads to the relative minus sign between
the string amplitudes involving states with excitations along the two different SO(4)’s as
e.g. in (3.9) and (3.11).

Appendix B: notation and conventions in gauge
theory

We write the bosonic part of the N = 4 Lagrangian as

L =
2

g2
Tr

(

1

4
FµνFµν +

1

2
(Dµφi)(Dµφi) −

1

4
[φi, φj][φi, φj]

)

, (B.1)

where φi, i = 1, . . . , 6 are the six real scalar fields transforming under an R-symmetry
group SO(6). The covariant derivative is Dµφi = ∂µφi − i[Aµ, φi], where Aµ = Aa

µT
a, and

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ].

If we define the complex combination

Z =
φ5 + iφ6√

2
, (B.2)

the N = 4 Lagrangian can be re-expressed as

L =
2

g2
Tr

(

1

4
FµνFµν + (DµZ)(DµZ) +

1

2
(Dµφi)(Dµφ

i)

)

+ VF + VD , (B.3)

where the F-term and D-term potential are

VF = − 2

g2
Tr
(

2 ZφiZ̄φi − φiφi(ZZ̄ + Z̄Z) + · · ·
)

, (B.4)

VD = − 2

g2
Tr
(

ZZZ̄Z̄ − ZZ̄ZZ̄ + · · ·
)

, (B.5)

15We refer the reader to the Appendix of Ref. [36] for some useful properties of the perturbative
Neumann matrices and relations between different string-oscillator bases.
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are the F-term and D-term of the scalar potential respectively. In the last equalities the
dots stand for impurity flavour changing terms, which mutually cancel between the F-
and the D-term.

Our SU(N) generators are normalised as

Tr
(

T aT b
)

= δab , (B.6)

so that, for example,

〈

Z i
j(x)Z̄ l

m(0)
〉

=
g2

2
δi
mδl

j ∆(x) , ∆(x) =
1

4π2x2
. (B.7)

Finally, we will use the definitions J := J1 + J2 and J1 = y · J , where y ∈ (0, 1).

Appendix C: summing over BMN phase factors

We report here the expressions for the coefficients PI and PII which arise after summing
over the BMN phase factors in the interacting diagrams of section 4. Defining

q = e2πim/J , q1 = e2πin/J1 , (C.1)

the expressions for PI and PII are given by

PI =

J1
∑

l=0

(q̄q1)
l q̄ , PII =

J1
∑

l=0

(q̄q1)
l . (C.2)

We also need to evaluate the quantity 2(PI + P̄I)− 2(PII + P̄II), which in the BMN limit
is

2(PI + P̄I) − 2(PII + P̄II) = − 8m

m − n/y
sin2 πmy . (C.3)

Appendix D: the function X

The expression for three-point functions of BMN operators with scalar, vector, or mixed
impurities involves the ubiquitous integral

X1234 =

∫

d4z ∆(x1 − z)∆(x2 − z)∆(x3 − z)∆(x4 − z) . (D.1)

X1234 develops a log x2
12 term X as x1 approaches x2, which repeatedly appears in section

4. The expression for X is [21]

X := X1234|x3=x4
=

log (x12Λ)−1

8π2 (4π2x2
31)

2
. (D.2)
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