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Abstract

The lateral shear margins of palaeo-ice stream beds are occasionally marked
by large curvi-linear moraines but little work has addressed how they might form.
In this paper we review the characteristics of ’lateral shear margin moraines’
and present two quantitative models for their formation; (i) differential erosion
rates related to lateral variations in the stream velocity; and (ii), lateral incursion
from inter-stream ridges after the thinner stream retreats, where the shear mar-
gin moraine is consequently just a terminal moraine of the inter-stream ridge.
Other possible mechanisms of formation are addressed qualitatively. Both of our
quantitative theories are, in principle, feasible, but the incursion model is less
plausible and inconsistent with observations. The differential erosion model can
predict moraines tens of metres thick and several kilometres wide which can be
formed in a thousand years. The width of the moraine depends on the competi-
tion between a term which varies across the ice-stream because it is dependent
on ice velocity and which always causes erosion, and a term related to the local
accumulation rate which causes erosion if is positive and deposition if negative.
These terms combine to create the possibility of deposition at the shear margins
of ice streams in ablation areas. The width of the moraine has a tendency to in-
crease with the width of the stream. The conditions which permit shear margin
moraines to form are quite constrained; too much ablation and deposition occurs
everywhere rather than just near the lateral margins of the ice streams; too little
ablation and there is erosion everywhere. This is consistent with the infrequent
observations of lateral shear margin moraines.

1 Introduction
The discharge of continental ice sheets is focussed into relatively narrow corridors of
ice, known as ice streams, which play an important role in their mass balance and
their links to the ocean-climate system (Bamber et al., 2000; Joughin and Tulaczyk,
2002). Ice streams are commonly fed by tributaries (Joughin et al, 1999) and as the
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flow velocity increases, the lateral transition to the slow-moving ice outside of the ice
stream generates intense shear zones (Raymond et al, 2001). These shear zones are
only a few hundred metres wide and are characterised by prominent bands of crevasses,
which are readily identifiable both on the ground and from remote sensing and provide
an easy way to identify the onset of ice stream activity (Hodge and Doppelhammer,
1996).

The importance of ice stream shear margins lies in the fact that they can support
very high shear stresses (>100 kPa), which often exceed that of the bed (order of 10k
Pa) (Jackson and Kamb, 1997; Raymond et al., 2001). Consequently, they play a
crucial role in the force balance of an ice stream and side drag has been calculated to
support between 50-100% of the driving force, becoming increasingly important in the
lower reaches of marine-terminating ice streams (Echelmeyer et al, 1994; Raymond
et al, 2001). It is for this reason that ice stream flow, and hence ice flux, is acutely
sensitive to the width of the ice stream (Raymond et al, 2001). Given the recent ob-
servations from West Antarctica that show changes in ice stream width and lateral
migration of lateral margins (Jacobel et al, 1996; Conway et al, 2002), there is an in-
creased urgency associated with understanding the processes that occur at ice stream
lateral margins and the factors that control their position (Raymond et al, 2001).

Most studies to date have focused on measuring and modelling the strain rates and
mechanics within ice stream shear margins and the associated influence on meltwa-
ter production and ice dynamics (Echelmeyer et al, 1994; Jackson and Kamb, 1997;
Whillans and Van der Veen, 1997; 2002; Harrison et al., 1998; Schoof, 2004; Van
der Veen et al, 2007). Due to their inaccessibility, fewer studies have focussed on the
subglacial processes beneath ice stream shear zones, although several papers have at-
tempted to link ice dynamnics with basal conditions (e.g. Raymond, 1996; Jacobsen
and Raymond, 1998; Schoof, 2004). Radar data appear to show higher basal reflec-
tivity (indicative of meltwater) under the shear zone compared to the ice outside of
the lateral margin of the stream (e.g. Catania et al, 2003) but geophysical techniques
are hindered by the noise imparted by crevasse structures. More recent deployment
of low frequency (2 MHz) ice-penetrating radar across the lateral margin of Whillans
Ice Stream in West Antarctica indicated that lubrication within the shear zone is dif-
ferent from that under the central parts of the ice stream, indicating that the ‘jump’
in basal lubrication lies towards the inner portion of the shear zone (Raymond et al.,
2006). Raymond et al. (2006) also noted that roughness elements may possibly exist
under the shear margin of Whillans Ice Stream but the bed reflection data is not able
to confirm or refute this possibility.

In contrast to the severe logistical constraints of studying the bed beneath active (or
recently stagnated) ice stream shear margins, the shear margins of palaeo-ice streams
are typically very obvious on the now-exposed beds of palaeo-ice sheets (e.g. Stokes
and Clark, 1999). Interestingly, observations of palaeo-ice stream shear margins reveal
that, in places, the lateral margin of the ice stream is marked by large subglacial ridges,
10s of metres high, 10s metres wide, and several kilometers long (cf. Dyke and Morris,
1988; Stokes and Clark, 2002). There are very few observations of such features and
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their mechanism of formation is unknown. This paper is motivated by the idea that
if we can understand more about the genesis of these ridges, we learn more about the
processes that occur at and control the position of ice stream shear margins.

The paper relies on the till-continuity/till deformation model of glacial sediment
transport (Boulton et al., 1985). Till is assumed to deform in a layer beneath an ice
stream, with velocity strongly correlated with the overlying ice velocity. If the ice flow
is extending, the till flow is also extending. In many situations, the ice thickness is
maintained by surface accumulation, but the till thickness will decrease on account
of the extension - i.e. erosion. If ablation is occurring, the opposite effects occur;
the ice flow compresses and till will build up. Modelling of a variety of different
circumstances based on these principles has been carried out by by e.g. Alley et al.
(1987), Alley (1991), Jenson and others (1996), Boulton (1996), Hindmarsh (1997),
Clark and Pollard (1998) and Pollard and DeConto (2003). These studies apply to
larger length scales than are considered here, and there may be a lower length scale to
which viscous theories apply (Hindmarsh, 1997); if the viscous theory can be shown
to work for landforms such as ribbed moraine and drumlins, then this indicates that
the modelling approach used here remains valid. A study of ribbed moraines suggests
that the viscous theory remains a useable description down to length-scales of 100m
(Dunlop, 2004), comparable with the narrowest shear moraines.

Firstly, we review the relevant data from palaeo-ice stream beds. Following this,
a simplified theory based on lateral variations of velocity and differential erosion is
presented, and shown to fulfil some basic criteria in terms of moraine thickness and
breadth. The assumptions going into the simplification are reviewed, and a more so-
phisticated version of the theory is then presented, which makes some quantitative
difference but does not affect the broad outline of the picture. The increased com-
plexity of the theory arises from a more complete discussion of lateral flow processes,
and of deformation styles within till. An alternative theory is also presented based on
flow incursion from inter-stream ridges following climatically induced retreat of the
ice-stream, and shown to fit the observations less well. Both theories are essentially
time-dependent, and argue that lateral shear margin moraines are associated with re-
treat processes. This is in contrast to other possible mechanisms of formation which
we briefly discuss and evaluate.

2 Observations of Lateral Shear Margin Moraines
Descriptions of lateral shear margin moraines are rare compared to the ubiquity of
other subglacial landforms on former ice sheet beds (e.g. flutes, drumlins, ribbed
moraines, etc.). The first detailed description of a lateral shear margin moraine was
reported by Dyke and Morris (1988) who identified a single narrow ridge of till, 68
km long and lying perfectly parallel to the edge of a drumlin field on Prince of Wales
Island, Canadian Arctic Archipelago, see Figure 1.They noted that the ridge was much
lower and narrower than the adjacent drumlins but that it had an ice moulded appear-
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ance and that individual segments of the ridge partially resembled heel-to-toe drumlins.
Dyke and Morris (1988) stated that “it is difficult to envisage what might cause a sin-
gle body of drift to become excessively attenuated at the edge of a drumlin field” but
provided two possible explanations.

The first explanation was that it might represent a lateral moraine formed at the
lateral margin of a brief but rapid ice flow (surge?) but this was rejected because
there is strong evidence that the area outside of the drumlin field was not ice-free (see
Dyke et al., 1992 for comprehensive reconstruction of glacial history). The second
explanation, therefore, postulated that the ridge marks the boundary between rapidly
flowing warm-based ice to the north and east and slow-flowing cold-based ice to the
south and west (Figure 1). Dyke and Morris (1988) and later, Dyke et al. (1992)
preferred this explanation, coining the term ‘lateral shear moraine’ and suggesting that
the feature marks a curvilinear vertical shear zone at the lateral margin of an ice stream.

Later work by Kleman and Borgström (1994) identified a similar ridge formed
subglacially at the boundary between warm and cold-based ice at a site in northern
Sweden. They described a 600 m ridge of till marking the boundary of a small area
of relict periglacial landscape, inferred to have been preserved under cold-based ice.
Because the adjacent flutes in this location are orientated at a very small angle towards
the cold-based patch, Kleman and Borgström (1994) suggested that ice flow, and hence
subglacial sediment transport, led to the accumulation of debris at the boundary of the
cold-based patch. They defined a lateral shear moraine as ’a ridge parallel or sub-
parallel to a flow line between glacially lineated and a relict [formerly cold-based]
surface’ and suggested they were a diagnostic landform of a thermal boundary.

The only other well-documented location of lateral shear moraines is on Storkerson
Peninsula, north-eastern Victoria Island, which, incidentally, lies across M’Clintock
Channel from Prince of Wales Island at the north-western edge of the Laurentide Ice
Sheet. Here, Hodgson (1994) was the first to describe massive, extended ridges that
border a drumlin field thought to have been produced by an ice stream, see Figure 2.
He noted the similarity of these ridges to the one reported by Dyke and Morris (1988)
and Dyke et al. (1992) but also pointed out that the area outside of the ridges (and
the ice stream) was probably not cold-based. This is because eskers are found outside
and spanning the ice stream margin (see Figure 2). Alternatively, the area outside the
ice stream may have been cold-based during ice stream activity but reverted to warm-
based during esker formation. The ridges identified by Hodgson (1994) were the focus
of further research by Stokes and Clark (2002). They identified four distinct ridges at
the lateral margin of the M’Clintock Channel Ice Stream (cf. Hodgson, 1994; Clark
and Stokes, 2001). The southernmost moraine is shown in Figure 2 and represents
a 22 km long sinuous ridge of till. Taken together, the ridges are generally 10-20
km in length, 250-1000 m wide and 10-60 m above the surrounding terrain. They
generally appear more ruggedly streamlined than the adjacent ice stream bedforms
and the elevation along their crestline fluctuates by 10s of metres, possibly due to
subsequent modification. Stokes and Clark (2002) also noted that two of the ridges
appear further away (and slightly offset) from the last inferred position of the ice stream
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lateral margin and speculated that they may have formed when the ice stream was
in a slightly different location (implying lateral margin migration prior to ice stream
shutdown).

More recent observations of shear margin moraines are reported by Ottesen et
al. (2005) who use their presence to define the width of a palaeo-ice stream in the
Vestfjorden-Trænadjupet drainage system on the mid-Norwegian continental shelf.
These ridges are several 10s of kilometres long, a few kilometres wide, and 10-20
m high but the mechanisms of formation are not discussed. The available data on the
dimensions and characteristics of lateral shear margin moraines are summarised in Ta-
ble 1. It is likely that other shear margin moraines remain to be detected. More recent
mapping of the whole of Victoria Island by Storrar and Stokes (2006), for example,
identified another shear margin moraine further south from those on Storkerson Penin-
sula. Notwithstanding this, almost 20 years of searching palaeo-ice sheet beds has
yielded only a small (<30) population of such landforms. It would appear, therefore,
that they are either rarely formed or that they are rarely preserved.

Have shear margin moraines been identified under active ice streams? There is
no convincing evidence of their occurrence but Clarke et al. (2000) identified several
features described as entrained morainal debris at the base of a recently abandoned
shear margin of Ice Stream B in West Antarctica. Further offshore in West Antarctica,
there are also descriptions of ‘laterally accreting ridges’ marking the position of the
lateral margins of palaeo-ice stream tracks (Shipp et al., 1999).

The observations and data on shear margin moraines are largely descriptive and
no work has specifically addressed the formation of these features. Stokes and Clark
(2002) did, however, speculate on five possible mechanisms which included: 1. Melt-
water processes depositing sediment in englacial and subglacial streams; 2. Melt-
out and deposition of entrained englacial debris; 3. Downstream sediment recycling
(‘bank’ erosion-deposition, analogous to fluvial deposition of bars); 4. Differential
erosion; 5. Lateral advection of sediment towards the lateral margin. Based on a large
(up to 40 m) ’step’ in the topography coinciding with the ice stream margin, Stokes
and Clark (2002) tentatively favoured the sediment recycling hypothesis, envisaging
a situation whereby sediment is ‘mined’from the ice stream margin (analogous to a
river bank) and is then deposited and streamlined in the down-stream direction. The
association between topographic steps and ice stream shear margin moraines has not,
however, been reported elsewhere.

In this paper, we explore aspects of the latter two mechanisms; (i) that they are
the result of lateral variations in the erosional power of ice-streams, and (ii) that they
are the results of lateral advection of sediment towards the ice stream shear margin;
specifically, that the retreat of the ice-stream allows the inter-stream ridge to advance
into the area formerly occupied by the ice-stream, and that the lateral moraines repre-
sent a type of terminal moraine. Following this analysis, we evaluate their plausibility
and discuss other possible theories of formation.

It is important to make a distinction between subglacial shear margin moraines and
‘interlobate complexes’ that are inferred to form between neighbouring ice lobes/streams
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(Punkari, 1995, 1997). Firstly, lateral shear margin moraines form at the boundary be-
tween fast and slow-flowing ice (which may also be a thermal boundary), whereas
interlobate complexes form between regions of similar ice velocities (Punkari, 1997).
Secondly, lateral shear margin moraines are, according to limited observations (al-
though no exposures have been recorded), built from subglacial till (see Table 1),
whereas interlobate complexes comprise glaciofluvial material transported by supraglacial
and englacial meltwater channels (Punkari, 1997). Thirdly, lateral shear margin moraines
occur as narrow linear to curvilinear ice-moulded ridges, whereas interlobate com-
plexes generally occur as composite ridges and hummocks and are often found in as-
sociation with eskers (Punkari, 1997).

3 Variation in lateral erosion from lateral variations in
ice-stream dynamic fields

Lateral variations in ice-stream downstream velocity create lateral variations in the
downstream till flux gradient, and consequently differential erosion. However, the
requirement of the ice-stream flow to balance a locally uniform accumulation rate re-
quires a transverse velocity component to be set up in the ice-stream in order to ensure
mass conservation in the ice-sheet (Hindmarsh, 2006). In the accumulation area, ice
moves very slowly from near the lateral margin to the centre of the ice-stream. In
the ablation zone the movement is the other way. If till and ice flow are reasonably
strongly correlated, this creates an additional stretching or shortening in till strain rates
across the ice stream (i.e. a lateral gradient in the lateral velocity) which turns out to
acts against lateral variation in the erosive power. If stretching terms dominated till
erosion, erosion would be as uniform as the accumulation rate pattern, which is not
expected to vary significantly across an ice-stream. However, our analysis shows there
is also an erosional/depositional term which depends upon the ice thickness gradient
(normalised by ice thickness) and till thickness gradient (normalised by till thickness)
being different, which in general is true. This term is proportional to the ice velocity.

Consequently, there is (i) an erosion or deposition term independent of lateral posi-
tion which increases with thinning and accumulation, (i.e. where the ice is extending),
and decreases with ablation and thickening, (i.e. where the ice is compressing); and (ii)
a erosive term which varies across the ice-stream in proportion to the velocity. The two
terms are additive, creating variations in erosion or deposition across the ice-stream.
The argument can be put very simply, which we do now, and then refined, to show its
robustness.

3.1 Basic Principles
Consider a coordinate system (x, y, z), with x aligned with the flow of the ice-stream,
y transverse to the flow and z pointing vertically upwards. We recall that in an ice-
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stream, velocities are low at the lateral margin, increase rapidly through the shear
zone, and reach a plateau in the middle. This can be justified theoretically (Raymond,
1996). The statement of continuity in the ice is

∂H

∂t
+ H

∂u

∂x
+ u

∂H

∂x
+ v

∂H

∂y
+ H

∂v

∂y
= a, (1)

where H is the ice thickness, (u, v, w) are the velocities and a is the accumulation rate.
Assume v ∂H

∂y
to be small , and noting that in general ∂H

∂x
< 0, (1) can be rewritten

∂v

∂y
=

1

H

(
a− ∂H

∂t

)
− u

H

∂H

∂x
− ∂u

∂x
. (2)

This term can be integrated

v (y) =

∫ y

0

(
1

H

(
a− ∂H

∂t

)
− u

H

∂H

∂x

)
dy′ −

∫ y

0

∂u

∂x
dy′ = −vL, (3)

where vL is the prescribed velocity at the shear margin arising from flow into the
stream from flanking ice-rises. Initially it is assumed that till is deforming in a plug
with velocity equal to the ice velocity. In this case, till continuity is

∂D

∂t
+ D

∂u

∂x
+ u

∂D

∂x
+ v

∂D

∂y
+ D

∂v

∂y
= 0. (4)

We first consider the simple case where D is uniform across the stream, so that ∂D
∂y

is
zero. Then, till continuity simplifies to

∂D

∂t
= −D

∂v

∂y
−D

∂u

∂x
− u

∂D

∂x
, (5)

so by using (2) the erosion rate can be computed.

∂D

∂t
= −D

H

((
a− ∂H

∂t

)
− u

(
∂H

∂x
− H

D

∂D

∂x

))
. (6)

Note that ∂u
∂x

has cancelled in this expression. It is a good approximation to take H, ∂H
∂t

and ∂H
∂x

to be constant across an ice-stream, meaning that the lateral erosion rate vari-
ation is dominated by the variation in u. To simplify matters further, let us take u∂D

∂x

to be zero, and examine what happens to a uniform till layer. The term -u∂H
∂x

> 0
nearly always, and the term

(
a− ∂H

∂t

)
> 0 under many circumstances e.g. a steady

Antarctic ice stream, or a steady extending Antarctic ice-stream. Then there will be
erosion across the width of the ice stream. If however the term

(
a− ∂H

∂t

)
< 0 (ablation

or compressional flow) then one can have till deposition everywhere, or till deposition
at the shear margins but erosion in the middle, or erosion throughout.

It is important to realise that the source of the till is upstream, even though there are
transverse velocities. Something that is slightly non-intuitive is that since the velocity
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fields are identical in ice and till (in this first analysis of the problem) and the ice
flux divergence has to balance a uniform accumulation/ablation rate, one wonders why
should the till erosion/deposition rate not be uniform. The difference arises from the
advective ice flux divergence contribution u∂H

∂x
which is in general different from the

advective till flux divergence u∂D
∂x

. In this first analysis we take this term to be zero,
but more generally there is no reason why ∂|H

∂x
should be the same as H

D
∂D
∂x

, and it is
this which permits lateral variation in the erosion rate.

Some examples in Figure 3 show the conditions which create differential ero-
sion/deposition near the flanks of ice-streams. The derivation of the downstream ve-
locity field is discussed below, and is shown in Figure 4; parameters used are listed
at the end of the next section. Under particular conditions, notably when the shear
margin is experiencing ablation or when the ice is thickening, one can have erosion
in the middle of the ice-stream but deposition at the sides. Under this view lateral
shear margin moraines are an unusual variant of terminal moraine, which occur under
special combinations of ablation, ice velocity and surface slope. Their lack of stream-
lining and irregular thickness along profile can at least in principle be explained by
this as follows. If lateral deposition only occurs in the ablation zone, than the amount
of deposition (thickness of till) will reflect amongst other things the time interval that
the ablation zone occupied that particular area. Variations in till thickness can be ex-
plained by variability in the ice sheet margin retreat rate. Note in Figure 3 that the
predominant direction of the lateral velocity depends upon the surface mass-balance
regime in the area.

3.2 Calculation of the lateral variation in downstream velocity
Across a very long flat and weak-bedded icce stream, the appropriate equation for the
along-flow mechanical balance is (Raymond, 1996)

∂ (Hτ̄xy)

∂y
= ρgH

∂H

∂x
+ τ bx, (7a)

τ bx =

{
τ ∗

b , Plastic Bed
C |u|1/` , Viscous bed

, (7b)

τ̄xy = B̄

∣∣∣∣12 ∂u

∂y

∣∣∣∣ 1
n
−1

∂u

∂y
(7c)

where τ̄xy is the mean value of the shear stress acting in the vertical plane, ρi is the
density of ice, g is the acceleration due to gravity, τ bx is the basal shear stress (strictly,
tangential traction) acting in the downstream direction, τ ∗

b is the plastic strength of
till, u is the downstream velocity component, C and ` are material constants for the
till, and B̄, n are material properties for the ice; B̄ is the mean value over the vertical
column. Boundary conditions are τ̄xy (y = 0) = 0 at the stream centre and u(y =
L) at the stream shear margin. It is assumed that the bed is sufficiently weak that
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vertical variations in the velocity are small. If ` is large, the viscous law tends towards
plasticity. Both C and τ ∗

b include the effects of the unknown effective pressure; as is
usual, we assume it to be set by the properties of the sub-glacial drainage system.

The mechanical equations (7) can be readily solved numerically to obtain the
downstream velocity u as a function of lateral position y. Our aim now is to exam-
ine how the downstream velocity varies with position when affected by variations in
the basal shear stress τ bx. In particular we will be interested in how the width of the
shear zone depends upon τ bx and through this on the very poorly-known bed parame-
ters τ ∗

b , C and `.
Figure 4 shows some velocity plots for different bed conditions. The different

cases are indicated in the caption. As the bed becomes more viscous, the shear zone
broadens, and the difference between the greatest deposition rate and the most negative
erosion rate decreases. A large contrast is helpful to the creation of lateral shear margin
moraines, as it increases the range of circumstances where one can get the necessary
simultaneous erosion and deposition to create shear moraines. Thus, the apparent
association of shear moraines with streamlined features, inferred high velocities and
implicit weak beds is at least consistent with the theory.

Parameters used were ∂H
∂x

= 0.002, H =1000m, ρi = 917kg.m−3, g = 9.81m.s−2, n =
3, L = 20km, B̄ = 2.7 × 108Pa.yr1/3, ` = 3. The resistant cases 2 and 3 had mean
values C = (2.15× 103, 104)Pa.(yr.m−1)

1/3
. The effective pressure had a mean value

of 10kPa and where it varied in space (Case 4), it was linearly from 5kPa in the centre
to 15kPa at the lateral margin.

3.3 Strong lateral variations and time evolution.
So far we have computed deposition/erosion rates on the basis that the till was of
uniform thickness across the stream, and used these to calculate resultant till thick-
nesses. In fact, the erosion/deposition rates are influenced by the lateral variations in
till thickness, which will develop through time. Here, we consider the effect of lateral
variations in thickness upon the flow. Now, the till continuity equation is

∂D

∂t
+ v

∂D

∂y
+

D

H

((
a− ∂H

∂t

)
− u

∂H

∂x

)
= 0. (8)

where v (y) is given by (3). We are still taking ∂D
∂x

to be zero. In the regions of interest,
where lateral moraine is being built, we rather expect ∂D

∂x
to be of the opposite sign to

∂H
∂x

so this assumption, motivated by tractability, does not seriously bias our results by
producing deposition where none exists. Clearly, as the till thins non-uniformly the
bed resistance will become non-uniform and the downstream velocity will change, but
the results in the preceding section indicate that the basic pattern remains relatively
constant. We therefore take the velocity distribution from the perfectly slippery bed,
and use this to compute v.

The results from four time-dependent evolutions are shown in Figure 5, the dif-
ferent cases corresponding to the accumulation/ablation cases in Figure 3. Cases are
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shown which include the effect of transverse velocity as well as ignoring it. In the
accumulation area, transverse advection (v∂D/∂y) has the effect of broadening the
area of reduced erosion associated with the shear zone; in the ablation area, transverse
advection sharpens up the zone of deposition, in other words causes the lateral shear
margin moraine to be thinner and higher.

4 Velocity/Flux relationships for shearing flow
So far a somewhat simple approach to till deformation has been followed, which as-
sumes that till flows as a plug with thickness D. We consider qualitatively what will
happen if there is internal deformation within the till in a quasi-viscous way.

The velocities and fluxes are computed following Alley (1989) and Hindmarsh
(1998). Till flux can arise either from internal deformation within the till or from
till sliding over the base. We assume that when considering internal deformation, the
strain-rate in the till is given by a double power law rheology (Boulton and Hindmarsh,
1987)

du

dz
=

Ad |Tt|`−1 Tt

pe (z)b
=

Ad |Tt|`−1 Tt

(p̂c + β(D − z))m , (9)

where Ad is a rate factor and a and b are till material parameters, and, following Hind-
marsh (1997), view this as a parameterisation of many complex failure processes. After
integrating with respect to z over the interval 0 ≤ z ≤ D we find

ub =
Ad |Tt|`−1 Tt

β (m− 1)

(
p̂1−m

c − (p̂c + βD)1−m)
, (10)

and the flux is given by

q =
Ad |Tt|`−1 Tt

(m− 1) (m− 2) β2

(
p̂2−m

c − (p̂c + βD)1−m (p̂c + ΩD)
)
, (11)

where
Ω = β (m− 1) , β = (1− φ) (ρs − ρw) g (12)

where g is the acceleration due to gravity, ρw, ρi and ρs are the densities of ice, wa-
ter and sediment grains, and φ is the porosity of the sediment. We use the values
9.81m.s−2, 1000kg.m−3, 917kg.m−3, 2700kg.m−3 and 0.2 respectively in this paper.

An effective thickness De (see also Schoof, 2007, for a discussion on effective till
thickness) may be defined by

De =
|q|
|ub|

=
1

(m− 2) β

p̂2−m
c − (p̂c + βD)1−m (p̂c + ΩD)

p̂1−m
c − (p̂c + βD)1−m .
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Note that this is independent of the shear stress, but depends on the interfacial effective
pressure p̂c. For deep till (βD >> p̂c), this becomes

De =
1

(m− 2) β

p̂2−m
c − Ωβ1−mD2−m

p̂1−m
c − (βD)1−m

with different further simplifications depending on the magnitude of m

De =


p̂c

(m−2)β
m > 2

(m−1)β1−m

(2−m)
D2−b

p̂1−b
c

1 < m < 2
m−1
m−2

D m < 1

.

The lower values of m have the effective thickness increasing with till thickness, so
in qualitative terms the results will be similar for the case of plug flow. However, for the
case m >2, the most plastic-like behaviour, the effective thickness is independent of
thickness (when the sediment thickness is large), and increases with effective pressure.
Figure 6 shows graphs of effective till thickness for different effective pressure indices,
with β = 1.3× 104Pa.m−1 and p̂c = 104Pa. It seems that in general De ≤ D, at least
in situations where there is no extrusion flow.

When we are no longer in plug flow, the till continuity equation is

∂D

∂t
+ v

∂De

∂y
+

De

H

((
a− ∂H

∂t

)
− u

∂H

∂x

)
= 0.

The third term shows De affects the rate of lowering, presumably reducing it as De ≤
D. The second term shows that the advection term depends upon ∂De

∂y
rather than di-

rectly on D.
For small thicknesses, the effective thickness increases with the thickness and the

evolutions are like those shown with the solid line in Figure 5. For m > 2 and large till
thicknesses (e.g. for the case shown, > 10m), the effective thickness reaches a constant
value. In this case, the term v ∂De

∂y
will be negligible, and the results are qualitatively

similar to those with the dashed line in the same figure. Since the cases De ∝ D
and De is constant bound the theoretical cases, we expect evolutions to lie somewhere
between the solid and dashed lines in Figure 5. As both produce reasonable simula-
tions of lateral shear moraine formation the somewhat involved matter of flux/velocity
relationships does not appear to require further investigation in this context.

5 An alternative theory: incursion from inter-stream
ridges

An alternative till-continuity-based hypothesis can be constructed on the notion that
when an ice stream thins and retreats, it no longer prevents incursion of ice from the
inter-stream ridges, which can advance on the recently deglaciated ice stream bed.
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There is no substantial geomorphic evidence from underneath ice-stream ridges in the
form of cross-cutting lineations from the zone that was initially ice-stream and subse-
quently overridden by the ridge. However, we arguably do not know enough about the
conditions under which palimpsest landforms are preserved for this to be a conclusive
objection, so we proceed with a modelling study to investigate the feasibility of the
mechanism.

For this, we need a time-dependent ice-sheet model; unlike the previous case the
incorporation of membrane stresses is not necessary, so the shallow ice approximation
(Hutter, 1983) is used to describe ice mechanics. Thus, for the ice the continuity
equation is

∂H

∂t
+∇ ·Q = a, (13)

Q = −2A (ρg)n

n + 2
Hn+2

∣∣∣∣∂s

∂x

∣∣∣∣n−1
∂s

∂x
+ Hub (14)

and for the till
∂D

∂t
+∇ · q = 0. (15)

In broad terms, an ice-sheet is allowed to grow. Lubricating till is provided in a
strip, so as to form an ice-stream. Accumulation and ablation areas are specified so as
to limit the size of the ice-sheet. The ablation is increased, and the stream and inter-
stream ridge both retreat - the stream more so, because of its lower slope. During the
initial period, while the till lubricates, its surface profile is not allowed to change. This
is contrived, but it allows us to look at the changes in till thickness after the change in
ablation.

The results of one simulation are presented in Figures 7 and 8. Ice flow always
occurs in the downslope direction. Parameters are as above; also A = B̄−1/3 =
10−16Pa−3.yr−1. The accumulation rate is 1m.yr−1; the ablation rate is increased from
5m.year−1 to 10m.year−1 to cause retreat. The till parameters are m = ` = 2.5,
Ad = 10yr−1.

As can be seen, terminal moraines for the ice-stream as well as a lateral shear
moraine are created. The lateral shear moraine is really better described as a corner
moraine. This example took a fair amount of experimentation adjusting the forcing
parameters to create, and such clear moraines were not in general created.

6 Summary of Conclusions from Modelling
1. If till velocity is reasonably strongly correlated with ice velocity, this creates

differential till erosion/deposition patterns across an ice stream on account of
the strong lateral variations in downstream velocity. This erosion stems from till
being thinned by stretching.
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2. The erosion/deposition consists of (i) a quantity uniform across the breadth of
the ice stream, which can be either erosional or depositional. Erosion increases
with accumulation or extending flow, and decreases with ablation or compress-
ing flow; and (ii) a spatially varying term which is always erosional, with the
greatest erosion occurring in the fastest parts of the ice stream.

3. Deposition can only occur when there is ablation or compressing flow

4. Typical erosion/deposition rates are of the order of millimetres to centimetres
per year.

5. We associate lateral shear margin moraines with the retreat of the ablation zone
through an area. Changes in ablation rate or in occupancy time will affect the
thickness of such moraine, offering an explanation of their somewhat irregular
along-flow profiles.

6. Low ablation or thinning by glaciodynamic processes including surging reason-
ably explain the absence of lateral moraines.

7. These conclusions appear to be independent of detailed consideration of how
the deformation of till varies with depth, provided that there is some flux of till
correlated with ice velocity.

8. Our modelling of transverse variation in erosion effectively parameterised the
along-flow direction. Modelling could be improved by considering map view
modelling with longitudinal stresses.

9. Time-dependent modelling using a simpler mechanical model (the shallow ice
approximation) shows that ice-stream retreat and lateral incursion from ice-
stream ridges could produce lateral moraines, but the predicted features appear
to be associated with ice-stream terminal moraines, and the lateral moraines are
really corner moraines.

10. We suggest that lateral shear margin moraines are relatively rarely formed, rather
than rarely recognised (compared to the ubiquity of other subglacial bedforms)
and that this is due to the unique glaciological setting. Their formation requires
a metres-thick layer of unconsolidated sediment; an abrupt lateral transition in
ice velocity; and relatively high ablation rates.

11. Till continuity/deforming bed mechanisms offer a feasible explanation for lateral
shear margin moraines but other possible mechanisms require testing and there
is an urgent need to examine the internal structure of shear margin moraines.
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7 Discussion

7.1 Evaluation of model plausibility
A final satisfying discussion would include a statement on how well the theories match
the data in Table 1 and in Figures 1 and 2, in terms of the moraine thickness and
width. In both theories these observables are dependent on unknown parameters, and
we have to cast the discussion in the more restrictive form of whether the theories
are plausible explanations of the observations. Since the lateral incursion mechanism
seems to require specific associations between lateral and terminal moraines that are
not generally observed, we conclude it to be unlikely to be an adequate explanation of
the observations we have reported.

Figure 5 shows that moraines tens of metres thick and several kilometres wide can
be formed in a thousand years. The width of the moraine depends on the competition
between (i) the term u∂H/∂x (downstream velocity times slope where the bed if flat)
which always causes erosion, and (ii) a − ∂H/∂t (accumulation rate - rate of change
of thickness) which causes erosion if it is positive and deposition if negative. The
first term becomes very small near the lateral margin of an ice-stream, meaning that
lower erosion or deposition can occur in this area. Exactly where across the ice-stream
erosion changes to deposition depends upon the competition between the two terms.
Since how the velocity pattern varies across the ice-stream depends on the ice-stream
width, the width of the moraine is also dependent on the ice-stream width; if the ice-
stream were narrower, the lateral moraine would be narrower.

From the above discussion we can see that the rate of erosion and deposition de-
pend upon the ice-stream velocity and the accumulation/ablation rate. It seems that the
ratio of the two which permits lateral moraines to form is quite constrained; too much
ablation and deposition occurs everywhere rather than just near the lateral margins of
the ice streams. Moreover, the ablation zone has to be in the same region for some
considerable time to create the substantial moraines.

7.2 Alternative mechanisms of formation
Our analysis suggests that differential erosion rates related to lateral variations in ice
stream velocity offer a plausible explanation for the formation of lateral shear margin
moraines. Numerical modelling is also able to generate such moraines from lateral
incursion of interstream ridges after the (thinner) ice stream has retreated. Since this
mechanism suggests that shear margin moraines may actually be a form of terminal
moraine and should be found in association with terminal moraines we reject it: they
have never been observed in such situations. Moreover, after the ice stream has re-
treated, the advance from the inter-stream ridge might be expected to flow across the
trough. In this case, we would expect to observe cross-cutting lineations in the trough
(and maybe flutings/lineations pointing obliquely towards the moraines from outside
the trough). Again, this situation has never been observed.
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There are several other possible explanations for the formation of lateral shear mar-
gin moraines, which were briefly outlined in Stokes and Clark (2002) and which we
now discuss. These are: (1), meltwater processes depositing sediment in englacial
and subglacial streams; (2), melt-out and deposition of entrained englacial debris; (3),
downstream sediment recycling from a step at the lateral margin; and (4), lateral ad-
vection of sediment towards the ice stream margin.

The shear created between the slow-moving interstream ridges and the ice stream
results in strain-heating and high melting rates at ice stream margins. The generation
of crevasses in this area may also allow any surface meltwater to penetrate to the bed.
For these reasons, Punkari (1997) suggested that the margins of ice streams, specifi-
cally interlobate areas of the Scandinavian Ice Sheet, were prime locations for the net
accumulation of glacial and glaciofluvial deposits. This led Stokes and Clark (2002)
to consider whether meltwater processes play a role in forming lateral shear margin
moraines. They discarded the hypothesis on the grounds that, based on their morphol-
ogy and surficial deposits, all of the examples mentioned in the literature are described
as being composed of till (e.g. Hodgson, 1994). This would appear to undermine the-
ories of formation which appeal directly to meltwater erosion and deposition and liken
shear margin moraines to eskers. Moreover, unlike eskers, which are commonly sin-
uous, sharp-crested, and may have tributaries; shear margin moraines are curvi-linear,
have streamlined crests, and have never been observed to have tributaries. This, too,
would appear to indicate that shear margin moraines sensu stricto are not glaciofluvial
features. Although we think it unlikely that shear margin moraines are related to melt-
water processes, we add a note of caution because there are no detailed observations of
their internal structure. Large and well-defined moraine ridges can be formed almost
entirely of glacio-fluvial material (e.g. Salpausselkä moraines in southern Finland:
Fyfe, 1990) and glaciofluvial deposits, including eskers, have been observed at ice
stream shear margins and in interlobate areas (Punkari, 1997). In order to ultimately
resolve the potential role of meltwater processes, there is a clear need to examine the
internal structure of ice stream shear margin moraines.

Related to meltwater processes is the idea that entrained englacial debris may melt
out and be preferentially deposited at ice stream shear margins. If sediment is eroded
and entrained in the onset zones of ice streams, or through the process of basal freeze-
on under the main trunk of the ice stream (cf. Christofferson et al., 2006; Rempel, in
press), the elevated levels of strain heating (cf. Jacobsen and Raymond, 1998; Schoof,
2004) could produce sufficient melting and deposition of englacial debris at ice stream
shear margins. Therefore, given sufficiently long time scales, melt-out could be a
feasible mechanism for producing ice stream shear margin moraines. This process
could be seen as being related to our ideas which link both differential erosion and
ablation, although not subglacial melting.

The process of downstream sediment recycling was favoured by Stokes and Clark
(2002) who reported a series of shear margin moraines in association with a topo-
graphic step at the ice stream margin. They suggested that as the ice stream eroded
down through a thick layer of soft sediments it produced a step at the ice stream mar-
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gin and that the moraines are composed of sediment mined from lateral erosion into
the step and subsequently smeared downstream. They draw analogy with fluvial ero-
sion on the outside of a meander bend and subseuqent deposition in bars. The appeal
of this mechanism, as stated by Stokes and Clark (2002) is that sediment supply from
upstream is the primary control on their development and this would explain the large
variability in their size and elevation above surrounding terrain. It would also explain
why ice stream shear margin moraines are not found at the inferred margins of all
palaeo-ice streams. It should be noted, however, that the secondary transverse flows
encountered in the fluvial setting are not plausible in the glacial setting. Moreover, not
all shear margin moraines are found in association with topographic steps. The central
idea of differential erosion is appealing, however, and our new analysis in this paper
would appear to support its impprtant role, without necessarily invoking steps at the
ice stream margin or downstream recycling and streamlining.

A further mechanism discussed by Stokes and Clark (2002) was lateral advection
of sediment towards the lateral margin from outside or from within the ice stream. Our
analysis in this paper suggests that sediment from outside the margin might be trans-
ported towards and deposited at the margin after the thinner ice stream has retreated
but that this mechanism is inconsistent with observations. It is also plausible that the
interstream ridges deliver sediment towards the shear margin whilst the neighbouring
ice stream remains active. We would argue that this is unlikely because most adjacent
interstream ridges in both palaeo and contemporary settings were/are characterised by
inactive cold-based ice, which is not capable of eroding and transporting significant
amounts of subglacial sediment.

A further possibility is that sediment is transported from within the ice stream to-
wards the margin. This is a second-order prediction of our theory, but is difficult to
detect and in general the flow vectors of ice streams do not point obliquely towards the
ice stream margin. This mechanism was, however, favoured by Kleman and Borgström
(1994) who observed flutings pointing at a small angle towards a lateral shear moraine
in northern Sweden. They suggested that the lateral shear moraine may have formed
because subglacial debris was transported towards the patch of cold-based ice and ac-
cumulated at the frozen boundary. There is no evidence that this feature was formed
at the margin of an ice stream and so this mechanism may not be valid for the specific
case of ice stream shear margin moraines. Kleman and Borgström (1994) do, how-
ever, highlight the importance of frozen-thawed boundaries, which are known to exist
at the lateral margins of many active ice streams and which may or may not play a
role in shear margin moraine formation. Stokes and Clark (2002), for example, also
raised the possibility that vigorous flow within the ice stream may squeeze and stack
subglacial sediment up against the thermal boundary and that subtantial basal melting
in the low pressure marginal zone may also allow material to be squeezed upwards,
drawing water-rich till from beneath the ice stream.

Our theory does predict movement towards the margins in the ablation zone, which
is where we predict shear margin moraines to form, so the observations of Kleman and
Borgström (1994) are entirely consistent with out theory. However, the source of the
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till is from upstream rather than from the sides, so it is not really correct to view our
theory as postulating lateral accretion; transverse motion is a second-order effect asso-
ciated with our model, and the oblique fluting angles seen by Kleman and Borgström
(1994) are consistent with this. If one wants to make a distinction between lateral
shearing and squeezing (both are driven by thinning of ice towards the lateral margin)
squeezing happens when the ice motion is decoupled from the sediment motion. This
implies that the same is true for motion along the ice-stream. The geomorphological
implications of this remain unclear at the moment as most theories assume the flows
of ice and sediment to be strongly coupled.

An appealing aspect of our ’differential erosion’ model is that it can explain the
apparent scarcity of ice stream shear margin moraines. The conditions which permit
them to form are quite constrained because with too much ablation, deposition occurs
evrywhere (rather than just at the lateral margins) and with too little ablation there is
erosion everywhere (including near the ice stream margins). A possible complicating
factor with some of the other theories discussed above (e.g. meltwater processes) is
that they do not necessarily explain why lateral shear moraines are apparently so rarely
created and have never been formally identified under active ice streams. The alterna-
tive is that lateral shear moraines are often created but are rarely preserved. Given that
ice stream shear margins are highly dynamic features susceptible to migration (e.g.
Jacobel et al., 1996; Jacobsen and Raymond, 1998) this possibility should certainly
be entertained in future work. Technological advances in geophysical exploration of
active sub-ice stream environments will also go a long way towards solving this par-
ticular conundrum.
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Location Length Height Width CompositionReference
Prince of Wales
Island, northern
Canada (Laurentide
IS)

68km, pos-
sibly longer

< 30m
above sur-
rounding
terrain

<
1000m

Till Dyke and
Morris
(1988);
Dyke et al.
(1992)

Storkerson Penin-
sula, Victoria Island,
northern Canada
(Laurentide IS)

10-20km 10-60m 250-
1000m

Till Hodgson
(1994);
Stokes
and Clark
(2002)

Vestfjorden-
Trænadjupet,
mid-Norwegian
continental shelf,
(Fennoscandian IS)

35-70km 20-50m 2000-
6000m

Till
(inferred)

Ottesen et
al. (2005)

Arvestuottar, north-
ern Sweden,
(Fennoscandian
IS)

0.6km not re-
ported

Not re-
ported;
probably
<100m

Till Kleman
and
Borgström
(1994)

Firth of Tay, off-
shore eastern Scot-
land, (British IS)

not re-
ported

not re-
ported

6000m Till Golledge
and Stoker
(2006)

Table 1: Examples and dimensions of lateral shear margin moraines

List of Figures
1 Landsat ETM+ satellite image (R,G,B: 7,4,2) of part of a lateral shear

margin moraine (red arrows) formed in the shear zone of the former
Crooked Lake Ice Stream on Prince of Wales Island, Canadian Arctic
Archipelago. The ice stream lineations indicate flow to the north-west
in the top right of the image, whereas the area south and west of the
moraine is inferred to have been preserved under cold based ice (see
Dyke et al., 1992 and De Angelis and Kleman, 2005 for discussion of
the reconstructed glacial history). . . . . . . . . . . . . . . . . . . . 23
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2 Landsat ETM+ satellite image (R,G,B: 7,4,2) of a lateral shear mar-
gin moraine (red arrows) formed in a part of the shear zone of the
M’Clintock Channel Ice Stream on Storkerson Peninsula, Victoria Is-
land, Canadian Arctic Archipelago. The ice stream lineations indicate
flow to the north on the right of the image, whereas the area to the
west of the moraine is outside of the margin and show no evidence
of stream-lining (see Hodgson, 1994 and Clark and Stokes, 2001 for
discussion of the reconstructed glacial history). . . . . . . . . . . . . 24

3 Erosion/deposition rates and transverse velocities for different accu-
mulation/ablation rates in the marginal zones of ice-streams. Corre-
sponding downstream velocity is shown in Case 1, Figure 4. Other
parameters specified at end of section 3.2 . . . . . . . . . . . . . . . 25

4 Erosion/deposition rates and downstream velocities for different basal
properties. Case 1 is a perfectly slippery bed (also used in Figure 3;
Cases 2 and 3 have increasing bed resistance, while Case 4 is the same
as Case 2, but with effective pressure increasing from centre of stream
to flank. Accumulation rate is -1m/year, the corresponding transverse
velocity may be see in Figure 3. Other parameters specified at end of
section 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Time dependent evolutions of till thickness for indicated accumula-
tion/ablation cases; solid line includes the effect of transverse advec-
tion (v∂D/∂t), dotted lines exclude it. Corresponding erosion deposi-
tion rates and transverse velocity may be see in Figure 3. Time interval
between lines is 200 years. Other parameters specified at end of sec-
tion 3.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
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Figure 1: Landsat ETM+ satellite image (R,G,B: 7,4,2) of part of a lateral shear margin
moraine (red arrows) formed in the shear zone of the former Crooked Lake Ice Stream
on Prince of Wales Island, Canadian Arctic Archipelago. The ice stream lineations
indicate flow to the north-west in the top right of the image, whereas the area south
and west of the moraine is inferred to have been preserved under cold based ice (see
Dyke et al., 1992 and De Angelis and Kleman, 2005 for discussion of the reconstructed
glacial history).
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Figure 2: Landsat ETM+ satellite image (R,G,B: 7,4,2) of a lateral shear margin
moraine (red arrows) formed in a part of the shear zone of the M’Clintock Channel
Ice Stream on Storkerson Peninsula, Victoria Island, Canadian Arctic Archipelago.
The ice stream lineations indicate flow to the north on the right of the image, whereas
the area to the west of the moraine is outside of the margin and show no evidence of
stream-lining (see Hodgson, 1994 and Clark and Stokes, 2001 for discussion of the
reconstructed glacial history).
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Figure 3: Erosion/deposition rates and transverse velocities for different accumula-
tion/ablation rates in the marginal zones of ice-streams. Corresponding downstream
velocity is shown in Case 1, Figure 4. Other parameters specified at end of section 3.2
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Figure 4: Erosion/deposition rates and downstream velocities for different basal prop-
erties. Case 1 is a perfectly slippery bed (also used in Figure 3; Cases 2 and 3 have
increasing bed resistance, while Case 4 is the same as Case 2, but with effective pres-
sure increasing from centre of stream to flank. Accumulation rate is -1m/year, the
corresponding transverse velocity may be see in Figure 3. Other parameters specified
at end of section 3.2
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Figure 5: Time dependent evolutions of till thickness for indicated accumula-
tion/ablation cases; solid line includes the effect of transverse advection (v∂D/∂t),
dotted lines exclude it. Corresponding erosion deposition rates and transverse velocity
may be see in Figure 3. Time interval between lines is 200 years. Other parameters
specified at end of section 3.2 27



Figure 6: Effective till thickness (flux/upper surface velocity) as a function of thickness
for different effective pressure indices m.
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Figure 7: Incursion simulations (a): Ice and bed geometry at start of simulation, im-
mediately prior to the increase in ablation.
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Figure 8: Incursion simulations (b): Ice and bed geometry approximately 600 years
after warming begins. Ice has retreated and terminal and lateral moraines established.
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