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Abstract

We derive a sequential algorithm Find-Ham-Cycle with the following property. On input:
k and n (specifying the k-ary n-cube Qk

n); F , a set of at most 2n − 2 faulty links; and
v, a node of Qk

n, the algorithm outputs nodes v
+ and v

− such that if Find-Ham-Cycle is
executed once for every node v of Qk

n then the node v
+ (resp. v

−) denotes the successor
(resp. predecessor) node of v on a fixed Hamiltonian cycle in Qk

n in which no link is in
F . Moreover, the algorithm Find-Ham-Cycle runs in time polynomial in n and log k. We
also obtain a similar algorithm for an n-dimensional hypercube with at most n − 2 faulty
links. We use our algorithms to obtain distributed algorithms to embed Hamiltonian cycles
k-ary n-cubes and hypercubes with faulty links; our hypercube algorithm improves on a
recently-derived algorithm due to Leu and Kuo, and our k-ary n-cube algorithm is the first
distributed algorithm for embedding a Hamiltonian cycle in a k-ary n-cube with faulty links.

Keywords: interconnection networks; k-ary n-cubes; hypercubes; fault-tolerance; Hamilto-

nian cycles; distributed algorithms; embeddings.

1 Introduction

Numerous interconnection networks have been proposed as underlying topologies for
parallel computers. As to which network is chosen depends upon a number of factors
relating to the topological, algorithmic and communication properties of the network
and the types of problems to which the resulting computer is to be applied. One of the
most popular interconnection networks is undoubtedly the n-dimensional hypercube
Qn. Some of its pleasing properties, with regard to parallel computation, include: it
is node- and link-symmetric; it is Hamiltonian; it has diameter n; it has a recursive
decomposition; and it contains, or “nearly” contains (as subgraphs), almost all inter-
connection networks currently vogue in parallel computing (see [29] for these results
and more on the hypercube). Some of the commercial machines whose underlying
topology is based on the hypercube are the Cosmic Cube [37], the Ametek S/14 [8],
the iPSC [21,22], the Ncube [14,22] and the CM-200 [15].

However, every node of Qn has degree n, and consequently, as n increases so does
the degree of every node. High degree nodes in interconnection networks can lead to
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technological problems in parallel computers whose underlying topology is that of the
said interconnection network. One method of circumventing this problem, so as to still
retain a “hypercube-like” interconnection network, is to build parallel computers so
that the underlying topology is the k-ary n-cube Qk

n. The k-ary n-cube Qk
n is similar

in essence to the hypercube, but by a judicious choice of k and n we can include
a large number of nodes yet keep the degree of each node fixed. For example, the
hypercube Q12 has 4096 nodes and every node has degree 12. However, Q16

3 has 4096
nodes and every node has degree 6. Of course, one usually loses out in some other
respect (for example, in terms of diameter) but often this loss is not too catastrophic.
The k-ary n-cube Qk

n has not been investigated to the same extent as the hypercube,
but it is known to have the following properties (amongst many others): it is node-
and link-symmetric [7]; it is Hamiltonian [9,12]; it has diameter n⌊k/2⌋ [9,12]; it has
a recursive decomposition; and it contains many important interconnection networks
such as cycles (of certain lengths) [7], meshes (of certain dimensions) [9] and even
hypercubes (of certain dimensions) [12]. Machines whose underlying topology is based
on a k-ary n-cube include the Mosaic [38], the iWARP [11], the J-machine [32], the
Cray T3D [26] and the Cray T3E [5].

In parallel computers which have a large number of processors, it is not uncom-
mon for nodes or links between nodes to fail. This experience has motivated inves-
tigations into how able different interconnection networks are to cope with a lim-
ited number of node and/or link faults. Most investigations have focussed on the
resulting communication capabilities or embeddability of faulty interconnection net-
works, e.g., whether a certain network is still connected or whether certain guest
networks can still be embedded in certain host networks, given a limited number
of faults. Also, most research has centered around hypercubes; see, for example,
[10,13,14,16–19,24,27,28,30,31,34–36,39–46] for recent work. The k-ary n-cube has
not been considered to such a great extent although there is some existing research;
see, for example, [1–4,6, 20].

In this paper, we are primarily interested in the distributed embedding of a Hamil-
tonian cycle in a k-ary n-cube when some of the links are faulty, and secondarily in a
hypercube with faulty links. The existence of a Hamiltonian cycle in an interconnec-
tion network is extremely useful as, for one thing, it facilitates all-to-all broadcasts,
with messages being “daisy-chained” around the cycle. Also, the existence of a Hamil-
tonian path between two nodes enables algorithms designed for linear arrays to be
simulated in the (faulty) k-ary n-cube. It is well known that Qn and Qk

n possess
fault-free Hamiltonian cycles in the presence of at most n− 2 and 2n− 2 faulty links,
respectively; indeed, under the additional modest assumption that a node in Qn or
Qk

n is incident with at least 2 healthy links, there are still Hamiltonian cycles in Qn

and Qk
n when there are 2n− 5 [16] and 4n− 5 [6] faulty links, respectively, and these

results are optimal. However, the existence of a Hamiltonian cycle is not necessar-
ily sufficient for algorithmic viability as the cycle needs to be constructed, and not
by a centralized algorithm which necessarily takes time exponential in n, but by a
distributed algorithm which hopefully will run in polynomial-time and have minimal
message-passing overhead.

Our main result is the derivation of a sequential algorithm Find-Ham-Cycle with
the following property. On input: k and n (specifying the k-ary n-cube Qk

n); F , a
set of at most 2n − 2 faulty links; and v, a node of Qk

n, the algorithm outputs nodes
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v+ and v− such that if Find-Ham-Cycle is executed once for every node v of Qk
n

then the node v+ (resp. v−) denotes the successor (resp. predecessor) node of v on
a fixed Hamiltonian cycle in Qk

n in which no link is in F . Moreover, the algorithm
Find-Ham-Cycle runs in time polynomial in n and log k. We also obtain a similar
algorithm for an n-dimensional hypercube with at most n− 2 faulty links. Note that
executing our algorithms at each node of a distributed-memory multiprocessor whose
underlying topology is a k-ary n-cube or a hypercube results in an embedding of a
fault-free Hamiltonian cycle, assuming that each node has complete knowledge of all
faulty links but where no message passing is required. Consequently, in order to use
our algorithms in a distributed fashion, all we need to do is to disseminate knowledge
of which links are faulty, which is a problem that has been well studied.

In Section 2, we give the basic definitions relating to the content of this paper,
before outlining and commenting on related work in Section 3. In Section 4, we
develop our main algorithm for k-ary n-cubes, and in Section 5 we show how this
algorithm can be adapted for hypercubes. Finally, we show how our algorithms can
be applied in Section 6.

2 Basic definitions

The k-ary n-cube Qk
n, for k ≥ 2 and n ≥ 2, has kn nodes indexed by {0, 1, . . . , k−1}n,

and there is a link ((x1, x2, . . . , xn), (y1, y2, . . . , yn)) if, and only if, there exists j ∈
{1, 2, . . . , n} such that min{|xj − yj |, k − |xj − yj |} = 1, and xi = yi, for every
i ∈ {1, 2, . . . , n} \ {j} (for example, Qk

2 is a k × k mesh with wrap-around). When
k = 2, Q2

n is the hypercube of dimension n and we denote it simply Qn. When k ≥ 3,
Qk

n can be thought of as the direct (graph) product of n cycles of length k, or the
Cayley graph of the finitely generated group 〈g1, g2, . . . , gk : gk

i = 1, g−1

i g−1

j gigj =
1, for all i, j = 1, 2, . . . , k〉 [9].

Each component of an n-tuple describing the nodes of Qk
n is called a dimension,

and Qk
n can be partitioned over a dimension i by regarding it as consisting of k disjoint

copies of Qk
n−1, where the jth copy is induced by the nodes of Qk

n in which the value
of the ith component is fixed at j ∈ {0, 1, . . . , k − 1} (corresponding nodes of these
k copies of Qk

n−1 are joined by a link, if k = 2, and joined in a cycle of length k,
if k ≥ 3). We denote the nodes of Qk

n in bold type, e.g., x, so as to reflect their
representation as n-tuples. The Lee distance between two nodes x and y of Qk

n is
defined as

n∑

i=1

min{|xi − yi|, k − |xi − yi|}

(so, two nodes are joined in Qk
n if, and only if, the Lee distance between them is 1).

A faulty link , or simply fault , in Qk
n is a link which can be considered as missing.

We assume that the nodes incident with a faulty link are fully cognisant that this
link is faulty, and that the fault does not affect the nodes’ performance. Any link
that is not faulty is healthy . An oriented graph in an undirected graph is a subgraph
where each link has had an orientation imposed so as to transform it into a directed
subgraph.
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3 Related work

The problem of developing a feasible distributed algorithm for the algorithmic con-
struction of a Hamiltonian cycle in a faulty hypercube was first tackled in [17]. In this
paper, Chan and Lee obtain a distributed algorithm for a distributed-memory multi-
processor whose underlying interconnection network is an n-dimensional hypercube,
which builds a cycle of size at least 2n − 2f in the hypercube when f ≤ ⌊(n + 1)/2⌋
nodes are faulty. They assume that initially each node has only local knowledge of
which nodes are faulty; that is, each node is aware only of which of its neighbours
are faulty (all links are assumed to be healthy). After construction of the cycle,
each node on the cycle knows its successor and predecessor on the cycle. Chan and
Lee do not explicitly define their model of computation but only say how their own
particular algorithm is executed on this model. Their model is such that initially a
given source node is active. This source node computes and then activates, at some
appropriate point, some of its neighbours and these neighbours begin to compute.
These neighbours then activate some of their neighbours, and so forth. Nodes can be
activated at some future point even if they have already been activated. Chan and
Lee’s algorithm essentially simultaneously executes 2f − 1 cycle-building algorithms
each of which is based on a distinct (binary-reflected) Gray code. Chan and Lee do
not concern themselves with a complexity analysis but one can easily see that their
algorithm involves Ω((2n − 2f)(2f − 1)) node activations and also has the (severe)
drawback that Ω(2n) space is required (and consequently Ω(2n) time) at each node
(in order to compute and store a Gray code).

Chan and Lee mention in their conclusion that there is a possibility of deriving
a similar distributed algorithm for the situation where the hypercube has at most
⌊(n + 1)/2⌋ faulty links and where the resulting cycle will be Hamiltonian. They
hint that this might be accomplished by using link-disjoint Hamiltonian cycles in a
hypercube although they leave as open the question of whether this can actually be
done. Following their suggestions would almost surely result in a distributed algorithm
which, like Chan and Lee’s faulty-node algorithm, requires Ω(2n) space at each node.

Latifi, Zheng and Bagherzadeh [27,28] tackle the question posed by Chan and Lee
and develop a centralized sequential algorithm which builds a Hamiltonian cycle in
an n-dimensional hypercube when at most n − 2 links are faulty. We use the term
centralized in order to convey the fact that all faults are known a priori to the algo-
rithm. What they do is to develop an O(n2) time algorithm which on being given a
set of at most n − 2 faulty links produces a characterization of a fault-free Hamilto-
nian cycle. This characterization is a permutation of {1, 2, . . . , n} which encodes the
construction of a Gray code, i.e., a Hamiltonian cycle in the hypercube. Of course, in
order to obtain the actual Hamiltonian cycle, the permutation needs to be expanded,
which takes Ω(2n) time. So, although Latifi, Zheng and Bagherzadeh’s algorithm
can be used to construct a Hamiltonian cycle in a hypercube with faulty links, in a
distributed fashion, full knowledge of all faulty links must be acquired by each node
and the subsequent expansion of the characterization of the cycle by each node takes
Ω(2n) time.

Significant progress was made in [30] where Leu and Kuo develop a distributed
algorithm for a distributed-memory multiprocessor whose underlying interconnection
network is an n-dimensional hypercube, which builds a Hamiltonian cycle in the
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hypercube when at most n− 2 links are faulty. They assume that initially each node
has global knowledge of which links are faulty but remark that even if each node
only has knowledge of the links incident with it which are are faulty, a broadcast
algorithm due to Park and Bose [33] can be used to distribute this local knowledge so
that every node acquires global knowledge of all the faulty links in the network. Leu
and Kuo’s algorithm works by incrementally joining appropriate cycles so as to avoid
faulty links and ultimately obtain a fault-free Hamiltonian cycle. Their algorithm
runs in polynomial-time. However, it requires message-passing between nodes in the
construction of the cycle (once global fault knowledge has been acquired by each
node) which should, in theory, be avoidable. Wang, Leu and Kuo extend the research
in [30] when in [43] they embed not only Hamiltonian cycles in hypercubes but also
other topologies.

In this paper, we develop distributed algorithms to construct Hamiltonian cycles
in a distributed-memory multiprocessor whose underlying interconnection network is
a k-ary n-cube or an n-dimensional hypercube when there is a limited number of
faulty links. Our approach extends and improves that adopted by Leu and Kuo,
above, with the result that we obtain an improved hypercube algorithm and a new
k-ary n-cube algorithm. As far as we are aware, ours is the first feasible distributed
algorithm for constructing Hamiltonian cycles in k-ary n-cubes with faulty links.

4 Finding Hamiltonian cycles

Throughout this section, k ≥ 3 and n ≥ 2 unless otherwise stated. We detail a
sequential algorithm Find-Ham-Cycle with the following property. The algorithm
has input variables:

• k and n, which specify Qk
n;

• F , a set of at most 2n − 2 faulty links in Qk
n; and

• v, a node of Qk
n,

and output variables:

• v+ and v−, nodes of Qk
n,

and is such that if Find-Ham-Cycle(k,n,F,v;v+,v−) is executed once for every
node v of Qk

n (with the same set of faults F each time) then the node v+ (resp. v−) de-
notes the successor (resp. predecessor) node of v on a fixed, oriented Hamiltonian cy-
cle in Qk

n in which no link is in F (we already know that such a Hamiltonian cycle exists
by [6], although our analysis and constructions yield an alternative proof of this fact).
Moreover, the algorithm Find-Ham-Cycle runs in time polynomial in n and log k.
Consequently, if we were to execute the algorithm Find-Ham-Cycle(k,n,F ,v;v+,v−)
at every node v of a machine whose underlying topology is that of the k-ary n-cube
Qk

n and in which there are at most 2n−2 faulty links (thus we assume that every node
has global knowledge relating to the set of faults) then after termination, every node
would know its successor and predecessor nodes on a (fault-free) oriented Hamiltonian
cycle, and this information would have been obtained in polynomial time (in n and
log k) and without sending any messages amongst nodes.
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4.1 Basic construction

Let Qk
n have at most 2n − 2 faults, for some n ≥ 3, which we denote by the set F .

The basic structure of our algorithm is as follows, although, as we shall see, there are
some subtleties.

• Partition Qk
n over some dimension d so as to obtain k copies, Q0, Q1, . . ., Qk−1,

of Qk
n−1 in which the total number of faults, summing over all copies of Qk

n−1,
is at most 2(n − 1) − 2.

• Superimpose all the faults in Q0, Q1, . . ., Qk−1 onto one copy of Qk
n−1; call it

P (thus there are at most 2(n − 1) − 2 faults in P ).

• Recursively find a Hamiltonian cycle C in P .

• The Hamiltonian cycle C in P is also a Hamiltonian cycle Ci in Qi, for i =
0, 1, . . . , k − 1. Join these cycles together using links in dimension d so as to
obtain a Hamiltonian cycle in Qk

n (which avoids all the faults).

By “join”, above, we mean the following. Choose two distinct links (x,y) and
(x,y′) of the Hamiltonian cycle C. These links correspond to the links (xi,yi) and
(xi,y

′

i) of Ci, for i = 0, 1, . . . , k − 1, and there are links (xi,xi+1), (yi,yi+1) and
(y′

i,y
′

i+1) in a healthy Qk
n, for i = 0, 1, . . . , k − 1 with addition modulo k (of course,

in our faulty Qk
n some of these links may be faulty, but more of this later). We add

and remove links as follows.

• For each i ∈ {1, 2, . . . , k−2}, remove the links (xi,yi) and (xi,y
′

i) from Ci, and
remove the link (x0,y

′

0) from C0. If k − 1 is even (resp. odd) then remove the
link (xk−1,yk−1) (resp. (xk−1,y

′

k−1
)) from Ck−1.

• For even i ∈ {0, 1, . . . , k − 2}, include the links (xi,xi+1) and (y′

i+1,y
′

i). For
odd i ∈ {0, 1, . . . , k − 2}, include the links (xi,xi+1) and (yi+1,yi).

The construction can be visualized as in Fig. 1, where k is odd and where we have
provided an orientation on the links so that a directed cycle results.

...

... ...

...

x0

y0

y0'

xi-1

yi-1

yi-1'

xi

yi

yi'

xi+1

yi+1

yi+1'

xk-1

yk-1

yk-1'

C0 Ci+1 Ck-1CiCi-1

Figure 1. Joining the cycles C0, C1, . . ., Ck−1 (where k − 1 is even).

6



Thus, we obtain a Hamiltonian cycle in Qk
n. However, as we have just mentioned,

in a faulty k-ary n-cube Qk
n we must ensure that we can find two links (x,y) and

(x,y′) in C so that none of the links in dimension d used to join the Hamiltonian
cycles C0, C1, . . ., Ck−1 are faulty. Also, we need to deal separately with the base
case of the recursion, when n = 2.

Apart from the above consideration, deriving an algorithm would be easy if we
were not concerned that the algorithm should run in polynomial time (in n and log k).
As any (sequential) algorithm which finds a Hamiltonian cycle in a k-ary n-cube Qk

n

necessarily runs in time Ω(kn), we seek a (parallel) algorithm which we can run (in
polynomial time) at every node of a machine whose underlying topology is that of our
faulty k-ary n-cube Qk

n so that a Hamiltonian cycle is found but where every node
only has local knowledge of this Hamiltonian cycle. Of course, this local knowledge
is enough for us to utilize the Hamiltonian cycle for message routing and so on.
Furthermore, in such a distributed algorithm we must also ensure that orientations
of recursively-constructed cycles are monitored when these oriented cycles are joined
together to former a larger oriented cycle.

At first glance, it might appear relatively straightforward to obtain such an algo-
rithm. However, consider the final act of joining together the cycles C0, C1, . . ., Ck−1

in Qk
n. Suppose that a decision as to which links (x,y) and (x,y′) of C are chosen

(over which to join the cycles C0, C1, . . ., Ck−1) is deferred until after the recursive
calls which build C. Each node v only has local knowledge of C and consequently
only knows for sure that the links (v−,v) and (v,v+) are links of C. If node v decides
to join the cycles over these two links (or, more precisely, if in the execution of the
algorithm at node v we decide to join the cycles over these two links), how does some
other node u of Qk

n know to do likewise, given that u only has local knowledge of the
Hamiltonian cycle C? Also, it is not obvious as to how the links (x,y) and (x,y′) of
C can be decided upon before preforming the recursive calls which build C; as how
can we be sure that any chosen links will end up being in the resulting Hamiltonian
cycle C?

What we do is to find a node z of P with the property that no matter which two
of its neighbours are the successor and predecessor on an oriented Hamiltonian cycle
within C, it will be possible to join the resulting cycles C0, C1, . . ., Ck−1 using the
two links corresponding to those involving z and its predecessor and successor.

4.2 Joining cycles

Consider our k-ary n-cube Qk
n in which there is a set F of at most 2n− 2 faults. Let

d be the dimension in which most faults of F occur. Partition Qk
n over dimension d

to obtain k copies, Q0, Q1, . . ., Qk−1, of Qk
n−1. Note that the total number of faults,

summing over Q0, Q1, . . ., Qk−1, is at most 2(n − 1) − 2, if n ≥ 3, or at most 1, if
n = 2. Let P be a copy of Qk

n−1 in which all the faults in Q0, Q1, . . ., Qk−1 have
been superimposed. For each fault (a,b) of F (in Qk

n), if (a,b) is in dimension d then
denote by proj((a,b), d) the node (of Qk

n−1)

(a1, . . . , ad−1, ad+1, . . . , an) (= (b1, . . . , bd−1, bd+1, . . . , bn)),

and if (a,b) is not in dimension d then denote by proj((a,b), d) the link (of Qk
n−1)

((a1, . . . , ad−1, ad+1, . . . , an), (b1, . . . , bd−1, bd+1, . . . , bn)).
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Let D be the set (of nodes of P ) of such projections of all faults in dimension d.
Hence, |D| ≤ 2n − 2, if n ≥ 3. We shall use the related operation expand later: if
u = (u1, u2, . . . , un−1) ∈ {0, 1, . . . , k−1}n−1, w ∈ {0, 1, . . . , k−1} and d ∈ {1, 2, . . . , n}
then expand(u, w, d) is the node (u1, . . . , ud−1, w, ud, . . . , un−1) of Qk

n.
Fix n ≥ 3 until further notice. We wish to choose canonical links (x,y) and

(x,y′) of the recursively built Hamiltonian cycle C of P so that {x,y,y′} ∩ D = ∅.
In particular, we look for a node x ∈ P \ D none of whose neighbours in P is in D.
We now verify that such a node x exists.

A simple counting argument proves the existence of x in most cases. Suppose that
such a node x did not exist. Thus, every node of P must be adjacent to a node of D.
The number of nodes adjacent to a node of D is at most (2n − 2)2(n − 1). Hence,
(2n − 2) + (2n − 2)2(n − 1) = (2n − 2)(2n − 1) ≥ kn−1. This yields a contradiction
whenever (k ≥ 5 and n ≥ 3) or (k = 4 and n ≥ 4) or (k = 3 and n ≥ 5), i.e., whenever
(k, n) 6∈ {(3, 3), (3, 4), (4, 3)}. So, in these cases x exists, and an algorithm to find x

can be constructed which examines O(n2) nodes of P .
However, we can do better (and this constructive affirmation will result in an

improved algorithm to find such a node x which need only examine O(n) nodes of
P ). Suppose that k ≥ 5 and n ≥ 5. Define the set of nodes S of P as follows.

S = {(a1, a2, . . . , an−2, 0) : (ai, ai+1) = (1, 2), for some i ∈ {1, 2, . . . , n − 3},

and aj = 0, for j ∈ {1, 2, . . . , n − 2} \ {i, i + 1}} ∪ {(2, 0, . . . , 0, 1, 0)}

∪ {(a1, a2, . . . , an−2, 1) : (ai, ai+1) = (2, 1), for some i ∈ {1, 2, . . . , n − 3},

and aj = 0, for j ∈ {1, 2, . . . , n − 2} \ {i, i + 1}} ∪ {(1, 0, . . . , 0, 2, 1)}

∪ {(3, 3, . . . , 3, 3), (4, 4, . . . , 4, 4), (0, 0, . . . , 0, 2)}.

Suppose that k ≥ 5 and n = 4. Define the set of nodes S of P as follows.

S = {(0, 0, 0), (1, 2, 0), (2, 4, 0), (4, 3, 0), (3, 1, 0), (2, 2, 2), (3, 3, 3)}.

Suppose that k ≥ 5 and n = 3. Define the set of nodes S of P as follows.

S = {(0, 0), (1, 2), (2, 4), (4, 3), (3, 1)}.

Suppose that k = 4 and n ≥ 4. Define the set of nodes S of P as follows.

S = {(a1, a2, . . . , an−1) : (ai, ai+1) = (1, 2), for some i ∈ {1, 2, . . . , n − 2},

and aj = 0, for j ∈ {1, 2, . . . , n − 1} \ {i, i + 1}} ∪ {(2, 0, . . . , 0, 1)}

∪ {(a1, a2, . . . , an−1) : (ai, ai+1) = (2, 1), for some i ∈ {1, 2, . . . , n − 2},

and aj = 3, for j ∈ {1, 2, . . . , n − 1} \ {i, i + 1}} ∪ {(1, 3, . . . , 3, 2)}

∪ {((0, 0, . . . , 0)}.

Suppose that k = 3 and n ≥ 5. Define the set of nodes S of P as follows.

S = {(a1, a2, . . . , an−2, 1) : (ai, ai+1) = (1, 2), for some i ∈ {1, 2, . . . , n − 3},

and aj = 0, for j ∈ {1, 2, . . . , n − 2} \ {i, i + 1}} ∪ {(2, 0, . . . , 0, 1, 1)}

∪ {(a1, a2, . . . , an−2, 2) : (ai, ai+1) = (2, 1), for some i ∈ {1, 2, . . . , n − 3},

and aj = 0, for j ∈ {1, 2, . . . , n − 2} \ {i, i + 1}} ∪ {(1, 0, . . . , 0, 2, 2)}

∪ {(0, 0, . . . , 0, 0), (1, 1, . . . , 1, 0), (2, 2, . . . , 2, 0)}.
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In particular, in all cases |S| = 2n−1 and the Lee distance between any two nodes
of S is at least 3. Thus, as |D| ≤ 2n − 2, there must exist at least one node, x, of S
that is adjacent to no node of D. Furthermore, we can easily devise an algorithm, call
it Find-x, which, on being given k and n, where n and k fall into one of the above
cases, and also a set of nodes D, finds such a node x by searching the nodes of S in a
canonical, pre-determined order. It is straightforward to see that this algorithm can
be implemented to run in O(n3 log k) time.

Now consider the case when n = 2 and there are 2 faulty links; we need to deal
with the ‘base case’ of our forthcoming recursive algorithm. Suppose further that
k ≥ 4 (it is trivial to derive a Hamiltonian cycle for the case when n = 2 and k = 3
and when there are 2 faulty links). Without loss of generality, either both faults lie
in dimension 1, or one lies in dimension 1 and one in dimension 2; moreover, we may
assume (by link-symmetry) that one dimension 1 fault, f1, is the link ((0, 0), (k−1, 0)).
Consequently, the other fault, f2, is of the form ((i′, j′), (i′ + 1, j′)) (a dimension 1
fault) or of the form ((i′, j′), (i′, j′ + 1)) (a dimension 2 fault).

If f2 is a dimension 1 fault then we can join the dimension 2 cycles just as we did
earlier, as depicted in Fig. 1, ensuring that we avoid the fault f2, which is possible as
k ≥ 4 (note that the fault f1 is not used to join cycles regardless). If f2 is a dimension
2 fault then we need to join k − 1 cycles and one path (each of which lies within
dimension 2). We do this exactly as we did earlier except that we ensure that f2 is
one of the links omitted in our construction, as depicted in Fig. 1.

4.3 Implementation details

We can now present our algorithm. Recall that this algorithm is only to describe the
resulting oriented Hamiltonian cycle in a localized fashion. As expected, all addition
and subtraction of values from {0, 1, . . . , k − 1} is modulo k.

Find-Ham-Cycle(input variables

k, n : parameters of Qk
n

F : set of at most 2n − 2 link faults

v : node at which this algorithm is executed

output variables

v+ : successor of v on the Hamiltonian cycle

v− : predecessor of v on the Hamiltonian cycle)

begin

/* Deal with the base cases of the recursion. */

if (n = 3 and (k = 3 or k = 4)) or (n = 4 or k = 3) then

return the successor and predecessor nodes on a

canonical Hamiltonian cycle

else

if n = 2 then

return v+ and v− from Find-Ham-Cycle-n=2(k,F,v;v+,v−)

/* Find the dimension d in which most faults lie. */
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if there are no faults in F then

d := 1
else

let d be the dimension containing most faults

/* Partition over dimension d to obtain k-ary (n − 1)- */

/* cubes Q0, Q1, . . ., Qk−1, and superimpose the faults */

/* in Q0, Q1, . . ., Qk−1 on a k-ary (n − 1)-cube P to */

/* obtain the fault set G. Build the set of nodes D. */

/* Recall, if (y, z) is in dimension d then proj((y, z), d) */

/* is the node (y1, . . . , yd−1, yd+1, . . . , yn); otherwise */

/* proj((y, z), d) is the link ((y1, . . . , yd−1, yd+1, . . . , yn), (z1, */

/* . . . , zd−1, zd+1, . . . , zn)). */

G := ∅ /* will consist of at most 2n − 4 faults of Qk
n−1 */

D := ∅ /* will consist of at most 2n − 2 nodes of Qk
n−1 */

for every (y, z) ∈ F do

if (y, z) is in dimension d then

put the node proj((y, z), d) in D
else

put the link proj((y, z), d) in G

/* Obtain a node x of P so that the resulting cycles C0, C1, */

/* . . ., Ck−1 are to be joined over two links incident with x. */

Find-x(k,n − 1,D;x)

/* Recursively find a Hamiltonian cycle C in P. */

u := proj(v, d) and w := dth component of v

Find-Ham-Cycle(n − 1,k,G,u;u+,u−)

/* Obtain v+ and v−. Recall, expand(u, w, d) is (u1, . . . , ud−1, w, */

/* ud, . . . , un−1). */

v+ := expand(u+, w, d) and v− := expand(u−, w, d)

/* Reverse the direction of the cycles C0, C2, C4, . . . */

if w is even then swap v+ and v−

/* Join the cycles C0, C1, . . ., Ck−1. */

if u = x then

if w 6= 0 and w 6= k − 1 then

v+ := expand(u, w + 1, d) and v− := expand(u, w − 1, d)
if w = 0 then v+ := expand(u, 1, d)
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if w = k − 1 then v− := expand(u, k − 2, d)
else

if u+ := x then

if w 6= 0 then v+ := expand(u, w − 1, d)
else

if u− := x then

if w 6= k − 1 then v− := expand(u, w + 1, d)
end

Assuming that Find-Ham-cycle-n=2(k,F,v;v+,v−) finds an oriented Hamilto-
nian cycle in a k-ary 2-cube, the algorithm Find-Ham-Cycle essentially follows the
construction as described in Sections 4.1 and 4.2 and as depicted in Fig. 1. With refer-
ence to Fig. 1 and the final part of the algorithm, nodes for which u = x are coloured
white, nodes for which u+ = x are coloured grey, and nodes for which u− = x are
coloured black. We remark that the “canonical Hamiltonian cycle” for the cases when
(n, k) ∈ {(3, 3), (3, 4), (4, 3)} exists (by [6], for example) and can be derived by hand
or using a simple computer program.

Find-Ham-Cycle-n=2(input variables

k : parameter of Qk
2

F : set of at most 2 faults

v : node at which this algorithm is executed

output variables

v+ : successor of v on the Hamiltonian cycle

v− : predecessor of v on the Hamiltonian cycle)

begin

if k = 3 then

return the successor and predecessor nodes on a

canonical Hamiltonian cycle

/* Reorient the k-ary 2-cube if necessary. */

if dimension 2 has more faults than dimension 1 then

swap dimensions via a transformation σ (so that now

dimension 1 has most faults)

if dimension 1 has at least 1 fault then

rename nodes via a transformation τ so that one of the

dimension 1 faults is ((0, 0), (k − 1, 0))

/* So apart from possibly ((0, 0), (k − 1, 0)), there is at most */

/* one other fault f, either of the form ((i′, j′), (i′, j′ + 1)) */

/* or ((i′, j′), (i′ + 1, j′)). */

suppose that v = (i, j)

/* Initialize successor and predecessor nodes. */
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if i is even then

v+ := (i, j − 1) and v− := (i, j + 1)
else

v+ := (i, j + 1) and v− := (i, j − 1)

/* Find links over which to join the dimension 2 cycles/paths */

/* so as to avoid faults. */

if f = ((i′, j′), (i′, j′ + 1)) then

if w = k − 1 and w is odd then

x := j′ + 1
else

x := j′

else

if f = ((i′, j′), (i′ + 1, j′)) then x := j′ + 2

/* Join the cycles/paths. */

if j = x then

if i 6= 0 and i 6= k − 1 then v+ := (i + 1, j) and v− := (i − 1, j)
if i = 0 then v+ := (i + 1, j)
if i = k − 1 then v− := (i − 1, j)

else

if j = x − 1 then

if i 6= k − 1 is even then

v− := (i + 1, x − 1)
else

if i is odd then v+ := (i − 1, x − 1)
else

if j = x + 1 then

if i 6= 0 is even then

v+ := (i − 1, x + 1)
else

if i 6= k − 1 is odd then v− := (i + 1, x + 1)

/* Un-reorient the k-ary 2-cube if necessary. */

if τ was performed earlier then perform τ−1

if σ was performed earlier then perform σ−1

end

In the algorithm Find-Ham-Cycle-n=2, the reorientation τ of Qk
2 is easily per-

formed by adding appropriate offsets to the components of nodes (and subtracting
the same offsets in order to perform τ−1); the same offsets apply for every node.
Otherwise, the algorithm essentially implements the construction as described in Sec-
tions 4.1 and 4.2 and as depicted in Fig. 1, except where cycles/paths to be joined
lie in dimension 2 in Qk

2 . Note that the choice of x always ensures that if there is a
fault in dimension 2 then the construction is such that this fault is not used in the
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resulting Hamiltonian cycle.
The algorithm Find-Ham-Cycle-n=2 trivially has time complexity O(log k) and

apart from the recursive call, the time complexity of Find-Ham-Cycle is O(n3 log k)
(which is the time complexity of Find-x). Hence, the time complexity f(n, k) of
Find-Ham-Cycle satisfies the recurrence

f(n, k) ≤ f(n − 1, k) + αn3 log k,

for some constant α, and so f(n, k) = O(n4 log k). Hence, we have the following
result.

Theorem 1 The algorithm Find-Ham-Cycle takes as input the parameters n and
k of Qk

n, a set F of at most 2n − 2 faulty links in Qk
n and a node v of Qk

n and
outputs two nodes v+ and v− of Qk

n. If we fix the parameters n, k and F and we run
Find-Ham-Cycle once for every node v of Qk

n as input then:

• the oriented graph induced by the directed links {(v,v+) : v ∈ Qk
n} is an oriented

Hamiltonian cycle in Qk
n in which no faulty link appears; and

• the oriented graph induced by the directed links {(v,v−) : v ∈ Qk
n} is the same

Hamiltonian cycle but oriented in the opposite direction.

Furthermore, the algorithm Find-Ham-Cycle has time complexity O(n4 log k).

5 The hypercube

The algorithm Find-Ham-Cycle can be adapted so that it similarly gives a Hamil-
tonian cycle in an n-dimensional hypercube Qn with at most n − 2 faulty links,
where n ≥ 3. This adaptation, which we outline here, is conceptually simpler than
Find-Ham-Cycle. (Recall that Chan and Lee have already shown that a Hamiltonian
cycle exists in Qn in the presence of n − 2 link faults [16].)

The basic structure of our algorithm Find-Ham-Cycle-Hyper for our faulty Qn

is identical to that of Find-Ham-Cycle. We begin by partitioning Qn over some
dimension d in which there is at least 1 fault (or over any dimension if there are no
faults), and then superimpose the faults not in dimension d on an (n−1)-dimensional
hypercube P so that P has at most n− 3 faulty links. We also project all faulty links
in dimension d so as to obtain a set D of nodes of P of size at most n − 2, as before.

We then determine a node x of P such that x 6∈ D and nor is any of its neighbours
(our counting argument, as used earlier, verifies that such an x always exists). After
recursively finding a Hamiltonian cycle C in P , we obtain two isomorphic Hamiltonian
cycles, C0 and C1, in the two “halves” of our original faulty Qn, joined by links in
dimension d. We then join C0 and C1 using the links in dimension d whose projections
are x and one of its neighbours in C, just as we did before.

The following corollary follows from the preceding analysis.

Corollary 2 There is an algorithm Find-Ham-Cycle-Hyper which takes as input the
parameter n ≥ 3 of Qn , a set F of at most n − 2 faulty links in Qn and a node
v ∈ Qn and outputs two nodes v+ and v− of Qn. If we fix the parameters n and F
and we run Find-Ham-Cycle-Hyper once for every node v of Qn as input then:

13



• the oriented graph induced by the directed links {(v,v+) : v ∈ Qn} is an oriented
Hamiltonian cycle in Qn in which no faulty link appears; and

• the oriented graph induced by the directed links {(v,v−) : v ∈ Qn} is the same
Hamiltonian cycle but oriented in the opposite direction.

Furthermore, the algorithm Find-Ham-Cycle-Hyper has time complexity O(n4).

6 Applying our algorithms

As stated earlier, our intention is to develop an algorithm for a distributed-memory
multiprocessor whose underlying interconnection network is, primarily, the k-ary n-
cube or, secondarily, the n-dimensional hypercube, so that after execution of the
algorithm, every node knows its successor and a predecessor on a Hamiltonian cycle
within the underlying network, even when at most 2n− 2 links are faulty in the case
of the k-ary n-cube or at most n− 2 links are faulty in the case of the n-dimensional
hypercube. Moreover, we should assume that each node only has local knowledge of
which of its incident links are faulty. Clearly, we are almost done as all we need to
do is to arrange for all fault information to be disseminated throughout the network
prior to execution of our algorithm. Luckily, considerable work as been done on this
problem.

One simple way of disseminating the fault information is to obtain a spanning tree
(which contains only healthy links) of depth d. In a multi-port model, where nodes
can both transmit and receive messages to and from any number of neighbours in one
step, the time taken to disseminate all fault information is 2d. We are assuming, quite
reasonably, that information relating to more than one fault can be bundled together
into one message, given that there are at most 2n − 2 faults in the k-ary n-cube
and the description of each fault can be squeezed into only n⌈log(k)⌉ + ⌈log(n)⌉ + 1
bits (the situation is even more favourable for the hypercube). In a one-port model,
where in any one step any node can transmit at most one message to a neighbour
and receive at most one message from a neighbour, the time taken is easily seen to
be at most 2d∆, where ∆ is the maximal degree of any node of the tree (note that
a tree can be edge-coloured using at most ∆ colours and this edge-colouring allows
us to send messages along every bi-directional link in ∆ steps). The above is only a
very rudimentary method for disseminating the fault information but is sufficient for
our needs (this paper’s main concern is with building Hamiltonian cycles rather than
performing all-to-all broadcasts).

In [23], it is shown that a k-ary n-cube has at least 2n link-disjoint spanning trees
of depth at most n⌊k

2
⌋+k−1, and in [25] it is shown that an n-dimensional hypercube

has at least n link-disjoint spanning trees of depth at most n + 1. Hence, we have
our distributed algorithms as described above. Note that our hypercube algorithm
is vastly superior to that of Chan and Lee’s (when incorporated within their model
of computation) and also improves upon that of Leu and Kuo (as once we have
disseminated the fault information, we do not need to send any further messages).
Of course, our distributed algorithm for the k-ary n-cube is the first such feasible
algorithm (irrespective of the underlying model of computation).
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