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Abstract. Let G be a claw-free graph with order n and minimum degree δ. We improve results
of Faudree et al. and Gould & Jacobson, and solve two open problems by proving the following
two results. If δ = 4, then G has a 2-factor with at most (5n − 14)/18 components, unless G
belongs to a finite class of exceptional graphs. If δ ≥ 5, then G has a 2-factor with at most
(n − 3)/(δ − 1) components, unless G is a complete graph. These bounds are best possible in
the sense that we cannot replace 5/18 by a smaller quotient and we cannot replace δ − 1 by δ,
respectively.
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1. Introduction

Let G = (V (G), E(G)) be a finite and simple graph of order n(G) = |V (G)| and of size
e(G) = |E(G)|. For notation and terminology not defined below we refer to [3]. We denote
the minimum (vertex) degree of G by δ(G). The neighbor set of a vertex x in G is denoted
by NG(x), and its cardinality by dG(x). If no confusion can arise we use n, e, V, E, δ,N(x),
etc. without specifying the graph G. A 2-factor of a graph G is a spanning 2-regular
subgraph of G.

In this paper we study claw-free graphs, i.e., graphs that do not contain an induced
four-vertex star K1,3. Our aim is to obtain sharp upper bounds on the minimum number of
components of a 2-factor in a claw-free graph. Our research is motivated by the following
reasons. Firstly, any hamiltonian cycle is a connected 2-factor, i.e., a 2-factor with only
one component. Hence the smallest number of components in a 2-factor can be seen
as a measure for how close a graph is to being hamiltonian. This relates to the well-
known conjecture of Matthews and Sumner [15] stating that every 4-connected claw-
free graph is hamiltonian. Little progress has been made on settling this conjecture, but
it is easy to construct nonhamiltonian 3-connected claw-free graphs. Secondly, deciding
whether a (claw-free) graph is hamiltonian is a well-known NP-complete decision problem,
and consequently deciding whether a (claw-free) graph has a 2-factor with at most k
components for some fixed k is also NP-complete. The latter decision problem does not
assume any connectivity and hence is a different problem that turns out to be interesting
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in its own right. Previous upper bounds on the number of components of a 2-factor in
a claw-free graph have been presented in [6,13]. However, as we shall show below, these
bounds are not sharp, and our third reason is that we want to improve these bounds.
Fourthly, in [19] two infinite families of claw-free graphs are given, and it was stated as an
open problem whether these claw-free graphs are worst-case with respect to the minimum
number of components in a 2-factor. The two main results in this paper show that this
is indeed the case. Finally, claw-free graphs form a rich class containing all line graphs
and the class of complements of triangle-free graphs. Research on claw-free graphs and
graph factors are both considerably popular areas within graph theory, as witnessed by
the survey papers [7] and [16], respectively.

1.1. Known results

Results of both Choudum & Paulraj [2] and Egawa & Ota [4] imply that a moderate
minimum degree condition already guarantees that a claw-free graph contains a 2-factor.

Theorem 1. ([2,4]) A claw-free graph with δ ≥ 4 has a 2-factor.

Note that in the above theorem no connectivity condition is imposed on the graph.
It is easy to verify that an analogous result does not hold for general graphs, not even
with an arbitrarily high constant lower bound on the minimum degree or connectivity.
We observe that the above theorem gives a solution to a weaker form of the conjecture of
Matthews and Sumner [15] that every 4-connected claw-free graph is hamiltonian: every
4-connected claw-free graph has minimum degree at least four, and hence has a 2-factor.
The connectivity condition can be relaxed, however. It is known that a 2-connected claw-
free graph already has a 2-factor if δ = 3 [19], but that without any connectivity restriction
a claw-free graph with δ ≤ 3 does not necessarily contain a 2-factor.

Regarding upper bounds on the number of components of a 2-factor, Faudree et al. [6]
showed that every claw-free graph with δ ≥ 4 has a 2-factor with at most 6n/(δ + 2)− 1
components. Gould & Jacobson [13] proved that, for every integer k ≥ 2, every claw-free
graph of order n ≥ 16k3 with δ ≥ n/k has a 2-factor with at most k components. Fronček,
Ryjáček & Skupień [9] showed that, for every integer k ≥ 4, every claw-free graph G of
order n ≥ 3k2 − 3 with δ ≥ 3k − 4 and σk > n+ k2 − 4k + 7 has a 2-factor with at most
k − 1 components.

More recent results involving moderate connectivity restrictions were obtained in [10].
If a graph G is claw-free, 2-connected and has δ ≥ 4, then G has a 2-factor with at most
(n+ 1)/4 components [10]. If a graph G is claw-free, 3-connected and has δ ≥ 4, then G
has a 2-factor with at most 2n/15 components [10]. For more on graph factors we refer
the reader to the survey [16].

1.2. Our results

We first note that the number of components of a 2-factor in any graph is at most n/3.
For claw-free graphs with δ = 2 that have a 2-factor we cannot do better than this trivial
upper bound. This is obvious from considering a vertex-disjoint set of triangles (cycles
on three vertices). For claw-free graphs with δ = 3 that have a 2-factor, the upper bound
n/3 on its number of components is also tight. In order to see this we construct a family
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of graphs. We start with an even path x1x2 . . . x2k. We add k new vertices y1, . . . , yk and
edges x2i−1yi, x2iyi for i = 1, . . . , k. We connect each yi with a triangle on vertices ai, bi, ci
by adding edges aiyi, biyi, ciyi. We connect x1 with a triangle on vertices u1, v1, w1 by
adding edges u1x1, v1x1, w1x1, and we connect x2k with a triangle on vertices u2, v2, w2

by adding edges u2x2k, v2x2kw2x2k. The resulting graph Gk has δ = 3 and is claw-free,
since the neighborhood of every vertex is either one clique or two vertex-disjoint cliques.
Clearly, for i = 1, . . . , k, x2i forms a cycle with x2i−1 and yi in any 2-factor of Gk. Thus
Gk has a unique 2-factor consisting of triangles only. So, indeed the upper bound n/3 is
tight for the class of claw-free graphs with δ = 3. Hence, in order to get a nontrivial result
it is natural to consider claw-free graphs with δ ≥ 4.

Our two main results provide answers to two open questions posed in [19]. Let Kn

denote the complete graph on n vertices.

Theorem 2. A claw-free graph G on n vertices with δ ≥ 5 has a 2-factor with at most
(n− 3)/(δ − 1) components, unless G is isomorphic to Kn.

Note that Kn has to be excluded because the bound in the theorem is smaller than
one if G is a complete graph. The result is tight in the following sense. Let f2(G) denote
the minimum number of components in a 2-factor of G. In [19], for every integer d ≥ 4
an infinite family {F d

i } of claw-free graphs with δ(F d
i ) ≥ d is given such that f2(F

d
i ) >

|F d
i |/d ≥ |F d

i |/δ(F d
i ). Hence we cannot replace δ − 1 by δ in Theorem 2.

For δ = 4 we are able to give a more precise bound which is better than the analogue
of the bound in Theorem 2 for δ = 4.

Theorem 3. A claw-free graph G on n vertices with δ = 4 has a 2-factor with at most
(5n− 14)/18 components, unless G belongs to a finite class of exceptional graphs.

The exceptional graphs of Theorem 3 have at most seventeen vertices. We will specify
them in Section 4. The bound in Theorem 3 is tight in the following sense. There exists
an infinite family {Hi} of claw-free graphs with δ(Hi) = 4 such that

lim
|Hi|→∞

f2(Hi)

|Hi|
=

5

18
.

This family can be found in [19] as well.

Theorems 2 and 3 together clearly improve the previously mentioned result of Faudree
et al. [6]. Theorem 2 also improves the previously mentioned result of Gould & Jacob-
son [13]. This can be seen as follows. Let G be a claw-free graph with n ≥ 16k3 and
δ ≥ n/k for some integer k ≥ 2. If we apply Theorem 2 we find that G has a 2-factor
with at most the following number of components:

n− 3

δ − 1
≤ n− 3

n
k
− 1

=
nk − 3k

n− k
= k +

k2 − 3k

n− k
≤ k +

k2 − 3k

16k3 − k
= k +

k − 3

16k2 − 1
.

This shows that G has a 2-factor with at most k components if k ≥ 3 and with at most
k−1 components if k = 2. Hence Theorem 2 indeed improves the result of [13]. Moreover,
for fixed δ = c the result in [13] only admits a finite number of graphs (possibly zero)
since δ = c requires k ≥ n/c and hence n ≥ 16k3 ≥ 16n3/c3.
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1.3. Open problems

Before we present the proofs of our two main results, we finish this introduction by
mentioning two of the main intriguing open problems in this area.

The first open problem deals with 2-connected claw-free graphs. Egawa & Saito [5]
constructed 2-connected claw-free graphs in which every 2-factor has at least n/(3δ + 3)
components. We have reasons to believe that the following question has an affirmative
answer but we cannot prove this. Does any 2-connected claw-free graph have a 2-factor
with at most n/3δ components?

The second open problem is posed in [19] and deals with bridgeless claw-free graphs.
The graphs in the family {Hi} mentioned in Section 1.2 contain bridges. Does every
bridgeless claw-free graph with δ ≥ 4 have a 2-factor with at most (n−1)/δ components?
A partial answer was obtained in [19] by showing that this bound holds for claw-free
graphs with δ = 4 that do not have a maximal clique of two vertices (i.e., graphs with
the additional property that every edge is contained in a triangle).

2. Notation and preliminary results

Before we present the proofs of Theorems 2 and 3, we first introduce some additional
terminology and notation, and we show how to relate the statements of the two theorems
to statements on certain dominating systems in triangle-free graphs, using known results.

2.1. Restriction to line graphs of triangle-free graphs

The line graph of a graphH with edges e1, . . . , ep is the graph L(H) with vertices u1, . . . , up

such that there is an edge between any two vertices ui and uj if and only if ei and ej

share one end vertex in H. It is well-known and easy to verify that every line graph is
claw-free. We show that, in order to prove our main results we can restrict ourselves to
a subclass of claw-free graphs, namely the class of line graphs of triangle-free graphs. For
this purpose we use the closure concept as defined in [17].

The closure of a graph is defined as follows. Let G be a claw-free graph. Then, for each
vertex x of G, the set NG(x) induces a subgraph with at most two components. If this
subgraph has two components, both of them must be cliques, i.e., complete subgraphs. If
the subgraph induced by NG(x) is connected, we add edges joining all pairs of nonadjacent
vertices in NG(x). This operation is called local completion of G at x. The closure cl(G)
of G is a graph obtained by recursively repeating the local completion operation, as long
as this is possible. Ryjáček [17] showed that the closure of G is uniquely determined, and
that G is hamiltonian if and only if cl(G) is hamiltonian. The latter result was extended
to 2-factors by Ryjáček, Saito & Schelp [18].

Theorem 4. ([18]) Let G be a claw-free graph. Then G has a 2-factor with at most k
components if and only if cl(G) has a 2-factor with at most k components.

Ryjáček [17] also established the following relationship between claw-free graphs and
triangle-free graphs.

Theorem 5. ([17]) If G is a claw-free graph, then there is a triangle-free graph H such
that L(H) = cl(G).
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It is common knowledge that apart from K3 which is L(K3) and L(K1,3), every con-
nected line graph G has a unique H with G = L(H). We call H the preimage graph of G.
For K3 we let K1,3 be its preimage graph. For disconnected graphs we define the preimage
graphs according to their components.

By Theorems 4 and 5, we deduce that for a claw-free graph G, f2(G) = f2(cl(G)) =
f2(L(H)), where H is the preimage graph of cl(G). This implies that we can restrict
ourselves to line graphs of triangle-free graphs.

2.2. Translating the problem into finding a dominating system

An even graph is a graph in which every vertex has even degree at least two. A connected
even graph is called a circuit. For q ≥ 2, a star K1,q is a complete bipartite graph with
independent sets A = {c} and B with |B| = q; the vertex c is called the center and the
vertices in B are called the leaves of K1,q.

Let H be a graph that contains a set S consisting of stars with at least three edges and
circuits, all (stars and circuits) mutually edge-disjoint. We call S a system that dominates
H or simply a dominating system if for every edge e of H the following holds:

– e is contained in one of the stars of S, or
– e is contained in one of the circuits of S, or
– e shares an end vertex with an edge of at least one of the circuits in S.

For convenience we sometimes use the term k-D-system as shorthand for a dominating
system with exactly k elements. Gould & Hynds [12] proved the following result.

Theorem 6. ([12]) The line graph L(H) of a graph H has a 2-factor with k components
if and only if H has a k-D-system.

Combining Theorems 4 and 5 with Theorem 6 yields the following result.

Theorem 7. Let G be a claw-free graph. Then G has a 2-factor with at most k components
if and only if the preimage graph of cl(G) has a dominating system with at most k elements.

The edge-degree of an edge xy in a graph H is defined as dH(x) + dH(y)− 2, i.e., it is
equal to the degree of the vertex corresponding to xy in the line graph L(H). We denote
the minimum edge-degree of H by δe = δe(H).

Due to Theorem 7, in order to prove Theorems 2 and 3 it is sufficient to prove the
following two theorems, respectively.

Theorem 8. A triangle-free graph H with δe(H) ≥ 5 has a dominating system with at
most (e(H)− 3)/(δe(H)− 1) elements, unless H is isomorphic to K1,e(H).

Theorem 9. A triangle-free graph H with δe(H) = 4 has a dominating system with at
most (5e(H)− 14)/18 elements, unless H belongs to a finite class of exceptional graphs.

We will specify the six exceptional graphs of Theorem 9 in Section 4.
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2.3. Outline of the proofs

We will prove Theorem 8 and Theorem 9 in Sections 3 and 4, respectively. Both proofs
are modelled along the following lines. We first prove the statements in case H is a tree
or forest. This is done by induction combined with replacement and counting arguments.
In case H is not a tree we start with a specific maximum even subgraph X of H. We
carefully remove edges from the circuits in X, such that we obtain a new graph F that
is a forest. After adding sufficiently many pendant edges to F we can apply the results
we have for trees and forests to the components of F . We then translate the dominating
system of F into one of H, and counting arguments complete the proofs.

2.4. Additional notation and a useful lemma

We close this section by introducing some additional notation and by proving a technical
result that is a common ingredient for the proofs of our two main results.

The set of all vertices with degree k in G is denoted by Vk(G) and we put V≥k(G) =⋃
i≥k Vi(G). A vertex with degree 1 in G is called an end vertex or leaf of G. An edge

which is incident with a leaf is called a pendant edge. We say that we add a pendant edge
to G if we add a new vertex to G and join it to precisely one of the vertices of G. Two
edges are called independent if they do not share any end vertices.

We say that a graph H is smaller than a graph G if e(H) < e(G). If G is a set of
graphs, we write G ∈ G if the graph G is isomorphic to a graph in G, and G 6∈ G if G is
isomorphic to none of the graphs in G. We write H ⊂ G if H is a proper subgraph of G.
For a graph G = (V,E), we denote the subgraph induced by a subset S ⊆ V by G[S].
For a subgraph H ⊂ G, we denote NG(x)∩ V (H) by NH(x) and its cardinality by dH(x).
The set (

⋃
v∈H NG(v)) \ V (H) is denoted by NG(H) or N(H). For a subgraph F ⊂ G, we

denote NG(H) ∩ V (F ) by NF (H). For simplicity, we sometimes slightly abuse notation
and replace |V (H)| by |H|, “ui ∈ V (H)” by “ui ∈ H”, and “G− V (H)” by “G−H”.

Let X be an even subgraph of H and let C(X) be the set of components of X. Then
we say that X is a maximum even subgraph of H if |V (X)| is as large as possible, such
that, subject to the maximality of |V (X)|, the number of components of X is as small
as possible, and subject to the minimality of |C(X)|, the number |E(X)| of edges is as
large as possible. Obviously, if X is a maximum even subgraph of H, then H − E(X) is
a forest: if H − E(X) would contain a cycle D, we could add D to X, and the newly
formed even subgraph X ′ clearly contradicts the choice of X if |V (X ′)| > |V (X)| or
if |V (X ′)| = |V (X)| and |C(X ′)| < |C(X)|. Since |E(X ′)| > |E(X)|, we also obtain a
contradiction with the choice of X in case |V (X ′)| = |V (X)| and |C(X ′)| = |C(X)|.

For the purpose of the proofs of Theorems 8 and 9, we would be deleting too many
edges if we consider H − E(X), hence we need a stronger statement. Before we present
this statement, we first introduce some new terminology and describe a procedure for
treating the components of a (maximum) even subgraph.

As before, let C = C(X ) be the set of components of an even subgraph X of H. For
each C ∈ C we do as follows. First suppose C is isomorphic to a complete bipartite graph
K2,2k for some k ≥ 1. Let A(C) = {s, t} and B(C) = {s1, s2, . . . , s2k} be the partition
classes of C. If k = 1, we choose zero or more (possibly both) edges from {ss1, ts2}. If
k ≥ 2, we choose zero or more (possible all) edges from {ssi | i = 1, . . . , 2k}. If C is not
isomorphic to a K2,2k for some k ≥ 1, we choose at most one edge from C. We call the set
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of all chosen edges the X-set and denote it by M . Let H∗ = (H−E(X))∪M . We call H∗

an X-graph of H. Note that the following result holds for general graphs, not necessarily
triangle-free graphs, although we will only use it for triangle-free graphs in the sequel.

Lemma 1. Let X be a maximum even subgraph of a graph H. Then any X-graph H∗ of
H is a forest or there is a C ∈ C such that H[V (C)] is isomorphic to K4.

Proof. Let X be a maximum even subgraph of a graph H. Let H∗ be an X-graph of H
and suppose H∗ is not a forest.

In order to show that there is a C ∈ C such that H[V (C)] is isomorphic to K4, let
D be a cycle in H∗. Let C∗ be the set of circuits of X that share at least one edge with
D. Suppose C∗ = ∅. Then, the even subgraph X ∪ D clearly contradicts the choice of
X. Hence C∗ 6= ∅. Note that by construction each C ∈ C∗ can share at most two edges
with D. Clearly, the edges of all components of X ∩ D belong to M , and hence these
components are paths of length 1 or 2.

Consider the graph X∪D. We are going to construct another even subgraph of X∪D,
hence of H. For each uv ∈ E(X ∩D) we act as follows. Let uv belong to a circuit C ∈ C∗.
Suppose C only shares one edge with D (namely uv). Then we remove uv from X ∪D.
Note that this way both u and v get even degree in the resulting graph. Suppose C
shares two edges with D. Then C is a complete bipartite graph with partition classes
A(C) = {s, t} and B(C) = {s1, . . . , s2k} for some k ≥ 1. If k = 1, we may without loss
of generality assume uv = ss1. Then the second edge C shares with D is ts2. We remove
ss2 and ts1 from X ∪ D. Note that s, s1, s2, t get even degree in the resulting graph. If
k ≥ 2, we may without loss of generality assume uv = ss1 and the second edge C shares
with D is ss2. We remove ss1 and ss2 from X ∪D. Note that the degree of s stays even
in the resulting graph, while the degrees of s1 and s2 get even. Hence, after removing all
the edges as prescribed as above we obtain an even subgraph Y of X ∪D. Since we did
not remove any vertices, we must have |V (Y )| = |V (X)| due to our choice of X. Let C ′
denote the set of components of C\C∗ that share one or more vertices (but no edges) with
D. Then, also due to our construction, all remaining edges of components in C ∈ C∗ ∪ C ′
together with all remaining edges of D form one component D∗ in Y . Hence, C∗ = {C}
and C ′ = ∅, as otherwise Y contains fewer components than X. This would contradict our
choice of X.

Suppose |V (D)| ≥ 5. As |V (D ∩ X)| ≤ 3 we obtain |V (Y )| > |V (X)|, which is not
possible. Hence |V (D)| = 4 and D is a cycle on four vertices. If C is not a cycle on
four vertices sharing two edges with D, then again we find |V (Y )| > |V (X)|. So we can
write C = ss1ts2s and D = ss1s2ts and we find that H[V (C)] is isomorphic to K4. This
completes the proof of the lemma.

For trees, a simple counting argument yields the following folklore result, which we will
use in both proofs.

Observation 10 Let T be a tree with |T | ≥ 2. Then |V1(T )| =
∑
i≥3

(i− 2)|Vi(T )|+ 2.

3. Proof of Theorem 8

We first prove the statement of Theorem 8 in case H is a tree or forest.
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3.1. Theorem 8 holds for forests

We start with the following useful lemma.

Lemma 2. A tree H with δe(H) ≥ 5 has a dominating system S such that the set of
centers of stars in S is

⋃
i≥ δe(H)

2
+1
Vi(H).

Proof. Let F = H − V1(H). We use induction on |F |. For convenience, let d = δe(H). If
|F | = 1, the statement holds, since then S = {H} is a 1-D-system and the center of the
star has degree at least d + 1 > d/2 + 1 while all other vertices have degree 1. Similarly,
it is easy to check the case that |F | = 2: then F = K2, both vertices of F have degree at
least d+ 1 in H and are the two centers of stars of a 2-D-system, while the other vertices
of H have degree 1. Hence for the rest of the proof we may assume that |F | ≥ 3. We
distinguish two cases.

Case 1. F has a vertex u with dH(u) < d/2 + 1.
Note that, by the minimum edge-degree condition, N(u) ∩ V1(H) = ∅. Let N(u) =
{yi}i≤dH(u) and let Hi be the component of H − u containing yi. See Figure 1, left hand
side.

Fig. 1. From the tree H to the trees H ′i.

Let H ′i be the graph obtained from Hi and K1,d+1 by identifying yi and an end vertex
of K1,d+1. See Figure 1, right hand side. Since the minimum edge-degree of H ′i is at
least d and |H ′i − V1(H

′
i)| ≤ |F | − 1, by induction each H ′i has a dominating system

Si such that the set of centers of stars in Si is
⋃

j≥ d
2
+1 Vj(H

′
i). Since dH(u) < d/2 + 1,

dH′i
(yi) = dH(yi) ≥ d/2 + 1. Therefore, there exists a star Ai ∈ Si whose center is yi for

1 ≤ i ≤ dH(u). For 1 ≤ i ≤ dH(u), let A′i be the star in H with edge uyi together with
all edges in H that correspond to edges in Ai. For 1 ≤ i ≤ dH(u), we identify all stars in
Si\{Ai} with stars in H, except the star whose center is in the extra added K1,d+1. This
way we obtain a desired dominating system of H.

Case 2. dH(v) ≥ d/2 + 1 for every vertex v ∈ V (F ).
Since |F | ≥ 3, there is a vertex u ∈ F that is not an end vertex of F . Let N(u) =
{yi}i≤dH(u) and let Hi be the component of H − u containing yi. Note that dH(u) ≥ 4 as
d ≥ 5. We may assume without loss of generality that |H1| ≥ |H2| ≥ · · · ≥ |HdH(u)|. Let
` = max{i : |Hi| ≥ 2}.
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Since u is not an end vertex of F , the graph H − u contains at least two components
with edges, so ` ≥ 2. Let H ′1 be the graph obtained from H1 ∪ H2 by adding the edge
y1y2. If ` ≥ 3, then for 3 ≤ i ≤ `, we let H ′i be the graph obtained from Hi and a copy H∗i
of Hi by joining yi and its copy y∗i in H∗i by an edge. See Figure 2 for an example with
` = 3 and dH(u) = 6.

y1 y2 y3

u

y4 y5 y6

H1 H2 H3

y1 y2 y3 y
*
3

H'1 H'3

Fig. 2. Case 2 with ` = 3 and dH(u) = 6.

Since u /∈ H ′1, we find that |H ′1 − V1(H
′
1)| ≤ |F | − 1. Obviously, if ` ≥ 3, then |H ′i −

V1(H
′
i)| ≤ |F |− 1 for 3 ≤ i ≤ `. Furthermore, every H ′i has minimum edge-degree at least

d. Then, by induction, each H ′i has a dominating system Si such that the set of centers
of stars in Si is

⋃
j≥ d

2
+1 Vj(H

′
i).

Since y1 and y2 have degree at least d/2 + 1 in H ′1, there exist stars A1, A2 ∈ S1 whose
centers are y1, y2, respectively. Let S ′1 = {A ∈ S1 : A ⊆ H1 ∪H2}. Note that S ′1 contains
all stars of S1 except the star that contains the edge y1y2 (this star is either A1 or A2).
Similarly, if ` ≥ 3 then for every pair yi, y

∗
i with i ≥ 3, there exist stars Ai, A

∗
i in Si whose

centers are yi, y
∗
i , respectively. By symmetry, we may assume that yiy

∗
i ∈ E(A∗i ) for all

i ≥ 3. Let S ′i = {A ∈ Si : A ⊆ Hi} for all i ≥ 3.
Suppose y1y2 ∈ A2. We define a star A0 with center u and with all vertices in N(u)\{y2}

as leaves. As dH(u) ≥ 4, A0 contains at least three edges. We define a star A′2 of H that
contains the edge uy2 (as “replacement” for y1y2) together with all edges of H that
correspond to edges of A2. We identify all stars in S ′1 with stars in H. Also, for all i ≥ 3,
we identify all stars in S ′i with stars in H. By combining all these stars we obtain a desired
dominating system of H.

The case that y1y2 ∈ A1 is symmetric. This completes the proof of Lemma 2.

The previous result, together with the next lemma, implies that Theorem 8 holds for
trees. Note that this lemma holds for trees with δe ≥ 2, so we do not need to impose
δe ≥ 5 here.

Lemma 3. If H is a tree with δe(H) ≥ 2 that is not isomorphic to K1,e(H), then∑
i≥ δe(H)

2
+1

|Vi(H)| ≤ e(H)− 3

δe(H)− 1
.

Proof. By contradiction. Suppose the lemma is false and choose a smallest counterexample
H. For convenience, we let d = δe(H). Let F = H−V1(H). If |F | = 1, then H is isomorphic
to K1,d+1 = K1,e(H), which is a contradiction. Hence we may assume |F | ≥ 2. We need
the following claim.
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Claim 1. N(V1(H)) = V1(F ).

We prove Claim 1 as follows. By definition, V1(F ) ⊆ N(V1(H)), so it is sufficient to
prove that N(V1(H)) ⊆ V1(F ). Suppose that there exists a vertex u ∈ N(V1(H)) \ V1(F ).
Let N(u) = {yj}j≤d(u) and let Hj denote the component of H − u containing yj. By
symmetry, we may assume that |H1| ≥ |H2| ≥ · · · ≥ |Hd(u)|. Let r = max{j : |Hj| ≥ 2}.
As u /∈ V1(F ), r ≥ 2. Since the minimum edge-degree is d, we know that dH(u) ≥ d + 1
and |V1(H) ∩N(u)| ≥ d+ 1− r. Therefore,

r∑
j=1

|Hj| ≤ |H| − |V1(H) ∩N(u)| − 1 ≤ |H| − d− 2 + r. (1)

For 1 ≤ j ≤ r, let H ′j be the graph obtained from Hj and K1,d+1 by identifying yj and
a leaf of K1,d+1. It is easy to check that δe(H

′
j) ≥ d for j = 1, . . . , r. Since r ≥ 2, we also

have that |H ′j| < |H| for j = 1, . . . , r. Then H ′j is not a counterexample (and H ′j is not a
star either). We use this and |H ′j| ≥ d + 3 for j = 1, . . . , r to obtain for any fixed j ≤ r
that

∑
i≥ d

2
+1

|Vi(H
′
j)| ≤

e(H ′j)− 3

d− 1
=
|H ′j| − 4

d− 1
=
|Hj|+ d− 3

d− 1
. (2)

We use inequalities (1), (2), d ≥ 2, and r ≥ 2 to obtain

∑
i≥ d

2
+1

|Vi(H)| =
r∑

j=1

∑
i≥ d

2
+1

|Vi(H
′
j)| − r + 1

≤
r∑

j=1

|Hj|+ d− 3

d− 1
− r + 1

=

∑r
j=1 |Hj|+ dr − 3r

d− 1
− dr − r + d− 1

d− 1

=

∑r
j=1 |Hj| − 2r − d+ 1

d− 1

≤ |H| − d− 2 + r − 2r − d+ 1

d− 1

=
|H| − 2d− 1− r

d− 1

≤ e(H)− 3

d− 1
.

Hence, H cannot be a counterexample. This completes the proof of Claim 1.

By Claim 1, we find that

⋃
i≥ d

2
+1

Vi(H) =
⋃

i≥ d
2
+1

Vi(F ) ∪ V1(F ).
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Let ni = Vi(F ) for all i ≥ 1. Then the above implies that

∑
i≥ d

2
+1

|Vi(H)| =
∑

i≥ d
2
+1

ni + n1. (3)

Since N(V1(H)) = V1(F ) and every vertex of N(V1(H)) has degree at least d + 1, for
any u ∈ N(V1(H)) there are at least d end vertices of H which are adjacent to u. Hence

|H| ≥ |F |+ dn1. (4)

As |F | ≥ 2 we can use Observation 10, which we can translate into

n1 =
∑
i≥3

(i− 2)ni + 2.

We use this equality, together with (in)equalities (3) and (4) to deduce that

e(H)− 3− (d− 1)
∑

i≥d/2+1

|Vi(H)|

= |H| − 4− (d− 1)(
∑

i≥d/2+1

ni + n1)

≥ |F |+ dn1 − 4− (d− 1)
∑

i≥d/2+1

ni − (d− 1)n1

=
∑
i≥1

ni + n1 − 4− (d− 1)
∑

i≥d/2+1

ni

=
∑
i≥2

ni + 2n1 − 4− (d− 1)
∑

i≥d/2+1

ni

=
∑
i≥2

ni + 2(
∑
i≥2

(i− 2)ni + 2)− 4− (d− 1)
∑

i≥d/2+1

ni

=
∑
i≥2

(2i− 3)ni − (d− 1)
∑

i≥d/2+1

ni

=
∑

d/2+1>i≥2

(2i− 3)ni +
∑

i≥d/2+1

(2i− d− 2)ni ≥ 0.

Hence, H cannot be a counterexample. This completes the proof of Lemma 3.

Combining Lemmas 2 and 3, we immediately find that the upper bound in Theorem 8
is valid for trees. We complete this section by showing that the upper bound in Theorem 8
holds for forests as well.

Corollary 1. Let H be a forest with δe(H) ≥ 5. Then H has a dominating system with
at most (e(H)− 3)/(δe(H)− 1) elements, unless H is isomorphic to K1,e(H).
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Proof. Let H be a forest with d = δe(H) ≥ 5. Let D1, . . . , Dp be the components of H
for some p ≥ 1. By combining Lemmas 2 and 3 we obtain that each Di has a dominating
system Si with at most (e(Di) − 3)/(δe(Di) − 1) elements unless Di is isomorphic to
K1,e(Di). In the latter case Di has a dominating system with one element. Without loss of
generality we may assume that for some 0 ≤ r ≤ p all components Di for i = r+ 1, . . . , p
are isomorphic to K1,e(Di) (if there are any), while the other Di (if any) are not isomorphic
to K1,e(Di). We combine the dominating systems Si to obtain a dominating system S of H.
We determine an upper bound on |S| by using the following three observations. Firstly,
δe(Di) ≥ d for i = 1, . . . , r. Secondly, e(Di) = δe(Di) + 1 ≥ d + 1 for i = r + 1, . . . , p
as such Di are isomorphic to K1,e(Di) and also have δe(Di) ≥ d. Thirdly, we may assume
p ≥ 2 or p = r = 1; otherwise, if p = 1 and r = 0, then H is isomorphic to K1,e(H). Using
these observations we get

|S| ≤
r∑

i=1

e(Di)− 3

δe(Di)− 1
+ p− r

≤
r∑

i=1

e(Di)− 3

d− 1
+ p− r

=

r∑
i=1

e(Di)− 3r + (p− r)(d− 1)

d− 1

=

e(H)− 3 + 3−
p∑

i=r+1

e(Di)− 3r + (p− r)(d− 1)

d− 1

≤ e(H)− 3 + 3− (p− r)(d+ 1)− 3r + (p− r)(d− 1)

d− 1

=
e(H)− 3 + 3− dp− p+ dr + r − 3r + dp− p− dr + r

d− 1

=
e(H)− 3 + 3− 2p− r

d− 1

≤ e(H)− 3

d− 1
.

This completes the proof of Corollary 1.

3.2. Theorem 8 holds for general triangle-free graphs

For convenience we repeat the statement of Theorem 8.

Theorem 8. A triangle-free graph H with δe(H) ≥ 5 has a dominating system with at
most (e(H)− 3)/(δe(H)− 1) elements, unless H is isomorphic to K1,e(H).

Proof. Let H be a triangle-free graph with d = δe(H) ≥ 5. If H is a forest, the statement
follows from Corollary 1. Suppose H is not a forest. Let X be a maximum even subgraph
of H. Let C be the set of components of X.

The proof idea is to construct an X-graph H∗ of H. Then, by Lemma 1, H∗ is a forest.
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For each C ∈ C we partition V (C) into two sets I(C)∪ J(C), where I(C) denotes the
set of vertices in C that are only adjacent to vertices in C ∪ V1(H) and J(C) denotes
the set V (C)\I(C). Before we continue our analysis we first show that we may assume
|J(C)| ≥ 1 for all C ∈ C.

Suppose J(C) = ∅ for some C ∈ C. Then I(C) = C. Hence V (H) = V (C)∪V1(H), and
H has a dominating system S = {C} consisting of exactly one element. As H contains
a circuit (namely C), H contains two independent edges. Since H is triangle-free and
δe(H) = d, we obtain that e(H) ≥ d + 1 + d + 1− 2 = 2d. Since d ≥ 5, this implies that
e(H) ≥ d + 2, hence (e(H) − 3)/(d − 1) ≥ 1, and thus the statement of the theorem is
true.

We now deal with each circuit separately in the sequel, and we let α(C) denote the
total number of edges we remove from C.

We will add sufficiently many pendant edges to each remaining vertex of each C such
that the following two conditions are valid for H∗.

A. Each edge has edge-degree at least d.
B. Each remaining vertex of each C has at least one pendant edge.

As we will treat each circuit separately, we say that a circuit C satisfies conditions A
and B if after our modifications in H∗ the resulting graph has minimum edge-degree at
least d and each remaining vertex of C has at least one pendant edge.

Due to condition A we may apply Corollary 1 to H∗ in order to obtain a dominating
system S∗ with

|S|∗| ≤ e(H∗)− 3

δe(H∗)− 1
≤ e(H∗)− 3

d− 1
.

Let β(C) denote the total number of pendant edges we added to vertices in C. It will
turn out that in this procedure we might have to add more edges than we remove, i.e.,
β(C) > α(C) for some circuits C ∈ C. However, we will have the following advantage.
By condition B, the pendant edge(s) of each remaining vertex of each circuit C must be
dominated by a number of stars, say γ(C) stars, in any dominating system of H∗, so also
in S∗. If for each C ∈ C we replace these γ(C) stars by C and keep all other elements of
S∗, then we obtain a dominating system S in the original graph H with

|S| ≤ |S∗| −
∑
C

(γ(C)− 1)

≤ e(H∗)− 3

d− 1
−
∑
C

(γ(C)− 1)

≤ e(H)− 3−
∑
C(β(C)− α(C))

d− 1
−
∑
C

(γ(C)− 1)

=
e(H)− 3

d− 1
+
∑
C

β(C)− α(C)− (d− 1)(γ(C)− 1)

d− 1
.

Since we want to prove that |S| ≤ e(H)−3
d−1

, it is sufficient to prove for all C ∈ C that

β(C)− α(C)− (d− 1)(γ(C)− 1) ≤ 0. (5)
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Before proving (5) for each C ∈ C, we first need some new terminology. A cycle
decomposition of a circuit C is a collection of cycles D1, . . . , Dp such that E(Di)∩E(Dj) =
∅ for all 1 ≤ i < j ≤ p and E(D1) ∪ · · · ∪E(Dp) = E(C). For a vertex u, let w(u) denote
the number of cycles of a cycle decomposition to which u belongs. Clearly, w(u) = dC(u)/2
and we obtain the following inequality which we will frequently use: E(C) =

∑
V (C)w(u).

By Veblen’s Theorem (cf. [1]), each circuit has a cycle decomposition.
We now deal with each circuit separately in order to prove (5). Let C be a circuit in

C. We write q = |V (C)|, q′ = |J(C)|, I = I(C) and J = J(C). From the above discussion
we may assume q′ ≥ 1. Let d∗(u) = d(u) − 2w(u) denote the number of edges incident
with a vertex u ∈ I in the subgraph of H obtained from H[V (C)∪V1(H)] after removing
E(C).

Let J∗ be the subset of J that consists of all vertices u with d(u) ≥ d + 2w(u).
First suppose J∗ is nonempty. Then we remove all edges in E(C). We also remove all
vertices of I together with their possible neighbors in V1(H). To each u ∈ J∗ we add
one pendant edge and to each u ∈ J\J∗ we add d − d(u) + 2w(u) + 1 ≥ 2 edges. In the
latter number of edges we need the extra “+1” in order to ensure C satisfies condition
A. Clearly, C also satisfies condition B. We write q∗ = |J∗| and q̄ := |J\J∗|. Then we
use α(C) ≥

∑
C w(u) + 1

2

∑
I d
∗(u) (as two vertices in I might be adjacent to each other),

d(u) ≥ 2w(u) + 1 for all u ∈ J\J∗, w(u) ≥ 1 for all u ∈ C, q ≥ q∗ + q̄, q∗ ≥ 1 and d ≥ 5,
respectively, in order to obtain

β(C)− α(C)− (d− 1)(γ(C)− 1)

≤ q∗ +
∑
J\J∗

(d− d(u) + 2w(u) + 1)−
∑

C

w(u)− 1

2

∑
I

d∗(u)− (d− 1)(q′ − 1)

≤ q∗ + dq̄ −
∑
J\J∗

(d(u)− 2w(u)− 1)−
∑
V (C)

w(u)− dq′ + q′ + d− 1

≤ q∗ + dq̄ − q − dq′ + q′ + d− 1

≤ q∗ + dq̄ − q − dq̄ − dq∗ + q̄ + q∗ + d− 1

≤ (1− d)(q∗ − 1)

≤ 0.

Hence inequality (5) holds. From now we will assume that d(u) ≤ d+ 2w(u)− 1 for all
u ∈ J . Here, we need the extra “−1” as sometimes we add d− d(u) + 2w(u) new pendant
edges to such a vertex u, and we want this number to be strictly positive in order to
ensure condition B is satisfied.

Suppose q′ = 1. Say J = {u}. Then we remove all vertices from C except u. We add
d new pendant edges to u. Hence C satisfies conditions A and B. As C contains an edge
xy with u /∈ {x, y}, we obtain

β(C)− α(C)− (d− 1)(γ(C)− 1) = d− α(C)− (d− 1)(1− 1) ≤ d− e(C) ≤ 0,

so inequality (5) holds.
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Suppose q′ ≥ 2, say u1, u2 ∈ J . Recall e(C) ≥ 4. Then C contains two vertices v1 and
v2 such that u1v1 and u2v2 are independent edges in C. First we assume C = u1v1u2v2u1.
Then H[V (C)] = C as H is triangle-free. We remove the edges u1v2 and v1u2. For each
u ∈ C, we add d− d(u) + 2w(u) = d− d(u) + 2 ≥ 1 new pendant edges. Then conditions
A and B are satisfied for C.

We use d(ui) + d(vi) ≥ d+ 2 for i = 1, 2 and d ≥ 5 in order to obtain

β(C)− α(C)− (d− 1)(γ(C)− 1)

= d− d(u1) + 2 + d− d(v1) + 2 + d− d(u2) + 2 + d− d(v2) + 2− 2− (d− 1)(4− 1)

= 4d− d− 2− d− 2 + 6− 4d+ 4 + d− 1

= −d+ 5

≤ 0.

Hence inequality (5) holds.
Now suppose C is not a cycle on four vertices, so q ≥ 5. We distinguish three cases:

v1, v2 ∈ I, or one of them is in I, while the other one is in J , or v1, v2 ∈ J .
First suppose v1, v2 ∈ I. We remove all edges of E(C) and all vertices of I together

with their possible neighbors in V1(H). We add d − d(u) + 2w(u) + 1 ≥ 2 new pendant
edges to each u ∈ J . Note that this way conditions A and B are satisfied for C. Then
we use α(C) ≥

∑
C w(u) + 1

2

∑
I d
∗(u), d(u) ≥ 2w(u) + 1 for all u ∈ J , d(ui) + d(vi) =

d(ui) + 2w(vi) + d∗(vi) ≥ d+ 2 for i = 1, 2, w(u) ≥ 1 for all u ∈ C, and q ≥ q′ + 2 (since
we have v1, v2 ∈ I) respectively, in order to obtain that indeed inequality (5) holds, i.e.,

β(C)− α(C)− (d− 1)(γ(C)− 1)

≤
∑

J

(d− d(u) + 2w(u) + 1)−
∑

C

w(u)− 1

2

∑
I

d∗(u)− (d− 1)(q′ − 1)

≤ dq′ −
∑

J\{u1,u2}

(d(u)− 2w(u)− 1) + 2−
(

1

2
d(u1)− w(u1)

)
−
(

1

2
d(u2)− w(u2)

)

−1

2
(d(u1) + 2w(v1) + d∗(v1) + d(u2) + 2w(v2) + d∗(v2))−

∑
C\{u1,u2,v1,v2}

w(u)− dq′ + q′ + d− 1

≤ 2− 1
2
− 1

2
− d− 2− q + 4 + q′ + d− 1

≤ 0.

Secondly, suppose v1 ∈ I, v2 ∈ J or v1 ∈ J, v2 ∈ I. By symmetry, we may assume
without loss of generality that v1 ∈ I and v2 ∈ J . We remove all edges of E(C) except
u1v1. We also remove all vertices of I together with their neighbors in V1(H). We add
d− d(u) + 2w(u) + 1 ≥ 2 new pendant edges to each u ∈ J\{u1, v1}. We add d− d(u) +
2w(u) ≥ 1 new pendant edges to u ∈ {u1, v1}. Note that this way conditions A and B
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are satisfied for C. Then we use α(C) ≥
∑

C w(u) + 1
2

∑
I d
∗(u), d(u) ≥ 2w(u) + 1 for all

u ∈ J , d(u2) + d(v2) = d(u2) + 2w(v2) + d∗(v2) ≥ d + 2, w(u) ≥ 1 for all u ∈ C, and
q ≥ q′ + 1 (since we have v2 ∈ I) respectively, in order to obtain

β(C)− α(C)− (d− 1)(γ(C)− 1)

≤
∑

J

(d− d(u) + 2w(u) + 1)− 2−
∑

C

w(u)− 1

2

∑
I

d∗(u) + 1− (d− 1)(q′ − 1)

≤ dq′ −
∑

J\{u1,u2,u3}

(d(u)− 2w(u)− 1) + 3− 2−
(

1

2
d(u1)− w(u1)

)
−
(

1

2
d(u2)− w(u2)

)

−
(

1

2
d(v1)− w(v1)

)
− 1

2
(d(u1) + d(v1) + d(u2) + 2w(v2) + d∗(v2))

−
∑

C\{u1,u2,v1,v2}

w(u) + 1− dq′ + q′ + d− 1

≤ 1− 1
2
− 1

2
− 1

2
− d− 2− q + 4 + 1 + q′ + d− 1

≤ 1
2
,

so also in this case we find that β(C)−α(C)+(d−1)(γ(C)−1) ≤ 0, and hence inequality (5)
holds.

Thirdly, suppose v1, v2 ∈ J . We now show that we may assume without loss of gener-
ality that V (C) = J , so q = q′. Suppose otherwise. Then there exists a vertex y ∈ I such
that there exists a path P from u1 to y in C that besides y only uses vertices from J . Let x
be the neighbor of y on P . If x /∈ {u2, v2} we find that edges xy and u2v2 are independent.
Otherwise xy and u1v1 are independent. In both cases we return to the previous case.
Hence, we may indeed assume q = q′.

Now suppose there exists a third independent edge u3v3 in C. Then we remove all
edges of E(C) except u1v1. We add d− d(u) + 2w(u) + 1 ≥ 2 new pendant edges to each
u ∈ C\{u1, v1}. We add d − d(u) + 2w(u) ≥ 1 new pendant edges to u ∈ {u1, v1}. Note
that this way conditions A and B are satisfied for C. Let Z = {u1, u2, u3, v1, v2, v3} (so
|Z| = 6). Then we use d(u) ≥ 2w(u) + 1 for all u ∈ C, d(ui) + d(vi) ≥ d+ 2 for i = 1, 2, 3,
w(u) ≥ 1 for all u ∈ C, respectively, in order to obtain
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β(C)− α(C)− (d− 1)(γ(C)− 1)

≤
∑

C

(d− d(u) + 2w(u) + 1)− 2−
∑

C

w(u) + 1− (d− 1)(q − 1)

≤ dq −
∑
C\Z

(d(u)− 2w(u)− 1) + 6− 2−
3∑

i=1

(
1

2
d(ui)− w(ui)

)
−

3∑
i=1

(
1

2
d(vi)− w(vi)

)

−1

3

3∑
i=1

(d(ui) + d(vi))−
1

6

3∑
i=1

(d(ui) + d(vi))−
∑
C\Z

w(u) + 1− dq + q + d− 1

≤ 4− 3× 1
2
− 3× 1

2
− d− 2− 1

2
d− 1− q + 6 + 1 + q + d− 1

≤ 4− 1
2
d.

The final term is at most 1
2

if d ≥ 7, so inequality (5) holds if d ≥ 7. Suppose d = 5. We
add 3 new pendant edges to each u ∈ C. As d(u) ≥ 3 for all u ∈ C, we find that besides
condition B also condition A is satisfied for C. Then

β(C)− α(C)− (d− 1)(γ(C)− 1) = 3q − 4(q − 1) = 4− q ≤ 0,

as q ≥ 5. Suppose d = 6. We add 4 new pendant edges to each u ∈ C. Again, conditions
A and B are satisfied for C. Then

β(C)− α(C)− (d− 1)(γ(C)− 1) = 4q − 5(q − 1) = 5− q ≤ 0,

as q ≥ 5. So also in these two cases inequality (5) holds.

Now suppose C does not have three independent edges. Then all cycles in C must
contain either four or five vertices. Suppose C has a cycle D on five vertices. Then C
must be isomorphic to D as otherwise we can easily find three independent edges, namely
two edges of D and one edge with exactly one end vertex in D (note that G[D] = D as
H is triangle-free). Let C = u1u2u3u4u5u1. Then H[V (C)] = C as H is triangle-free. We
remove all edges from C except u1u2. We add d− d(ui) + 2w(ui) = d− d(ui) + 2 ≥ 1 new
pendant edges for i = 1, 2 and d−d(ui)+2w(ui)+1 = d−d(ui)+3 ≥ 2 new pendant edges
for i = 3, 4, 5. Then conditions A and B are valid for C. We use 2

∑5
i=1 d(ui) ≥ 5d + 10
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and d ≥ 5 in order to obtain

β(C)− α(C)− (d− 1)(γ(C)− 1)

≤
5∑

i−1

(d− d(ui) + 3)− 2− 4− (d− 1)(5− 1)

≤ 5d−
5∑

i=1

d(ui) + 15− 6− 4d+ 4

≤ d+ 13− 5
2
d− 5

= 8− 3
2
d

≤ 1
2
,

which means β(C)− α(C)− (d− 1)(γ(C)− 1) ≤ 0, so inequality (5) holds.

Now suppose C only contains cycles on four vertices. Then C is a complete bipartite
graph (or else we would be in one of the previous cases) with independent sets A(C) of
cardinality 2 and B(C) of cardinality 2k for some k ≥ 1. Note that G[C] = C as H is
triangle-free, and that we already treated with the case k = 1. Hence, we may assume
k ≥ 2. Let A(C) = {s, t} and let B(C) = {s1, . . . , sk} ∪ {t1, . . . , tk}.

First we assume that d(s) ≤ d. We remove all edges tsi of E(C) for i = 1, . . . , 2k.
We add d − d(t) + 2w(t) + 1 = d − d(t) + 2k + 1 ≥ 2 new pendant edges to t and add
d− d(s) + 1 new pendant edges to s. We add d− d(si) + 2w(si) = d− d(si) + 2 ≥ 1 new
pendant edges to each si for i = 1, . . . , 2k. Note that this way conditions A and B are
satisfied for C. We use d(si) ≥ 3 for all i = 1, . . . , k, d(s) ≥ 2k + 1, d(t) ≥ 2k + 1 and
d(u) + d(v) ≥ d+ 2 for all edges uv, in order to obtain
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β(C)− α(C)− (d− 1)(γ(C)− 1)

≤
2k∑
i=1

(d− d(si) + 2) + d− d(s) + 1 + d− d(t) + 2k + 1− 2k − (d− 1)(2k + 2− 1)

≤ 2dk −
2k∑
i=1

(
1

2
d(si)− 1

)
−
(

1

2
d(s)− k

)
−
(

1

2
d(t)− k

)
− 1

2k

(
2k∑
i=1

d(si) + kd(s) + kd(t)

)

−k − 1

2k

(
2k∑
i=1

d(si)

)
+ 2d+ 2− 2k − 2dk − d+ 2k + 1

= −2k × 1
2
− 1

2
− 1

2
− d− 2− 6k × k−1

2k
+ d+ 3

= −k − 3(k − 1)

= −4k + 3

≤ 0,

so inequality (5) holds. If d(s) ≥ d + 1 we do exactly the same as above except that we
add only one new pendant edge to s. Then again conditions A and B are satisfied for C
and using d(u) ≥ 3 for all u ∈ C we obtain

β(C)− α(C)− (d− 1)(γ(C)− 1)

≤
2k∑
i=1

(d− d(si) + 2) + 1 + d− d(t) + 2k + 1− 2k − (d− 1)(2k + 2− 1)

≤ 2dk − 2k + 2 + d− d(t)− 2dk − d+ 2k + 1

= 3− d(t)

≤ 0,

so inequality (5) also holds in this case. This completes the proof of Theorem 8.

4. Proof of Theorem 9

The proof of Theorem 9 is modelled along the same lines as the proof of Theorem 8 but
the details are different. We first present the six exceptional graphs of Theorem 9.

Let H1 be the tree that is obtained from an edge uv by adding four pendant edges
to u and four pendant edges to v. Let H2 be the tree that is obtained from a path uvw
by adding four pendant edges to u, three pendant edges to v, and four pendant edges to
w. Let H3 be the tree that is obtained from a path uvwx by adding four pendant edges
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to u, three pendant edges to v, three pendant edges to w and four pendant edges to x.
Let H4 be the graph that is obtained from a star K1,3 with center s and leaves x, y, z by
adding two pendant edges to s, four pendant edges to x, four pendant edges to y and four
pendant edges to z. See Figure 3.

H
1

H
1

H
2

H
3

H
4

Fig. 3. The graphs H1, H2, H3, H4.

We note that H1 has a 2-D-system, H2 has a 3-D-system, and both H3 and H4 have
a 4-D-system, while these graphs have 9, 13 and 17 edges, respectively. The other two
exceptional graphs are K1,5 and K1,6. Computing the bound 5e(H)−14

18
from Theorem 9 for

these graphs, we see that these graphs should be excluded from Theorem 9, and therefore
the corresponding claw-free graphs should be excluded from Theorem 3. In particular, if
a claw-free graph G has a closure cl(G) that is isomorphic to L(H i) for i ∈ {1, 2, 3, 4} or
to Kj for j ∈ {5, 6}, then G has to be excluded from Theorem 3.

As in the proof of Theorem 8, we first prove the statement of Theorem 9 in case H is
a tree.

4.1. Theorem 9 holds for trees

We will use the following result.

Theorem 11. ([19]) A tree H with δe(H) ≥ 4 that does not contain any vertices of degree
two has a dominating system with at most (e(H)− 1)/4 elements.

Another lemma we need is the following.

Lemma 4. Let u be a vertex with degree dH(u) ≥ 3 in a tree H with δe(H) ≥ 4 and
V2(H) = ∅. Then H has a dominating system S with a star that has center u and dH(u)
leaves.

Proof. We let u be the root of H. Because δe(H) ≥ 4 and V2(H) = ∅, we can define
the following dominating system of H. All vertices of H\V1(H) on even distance from u
become centers of stars with all their neighbors as leaves. All vertices of H\V1(H) on odd
distance from u that have a neighbor in V1(H) become centers of stars with only leaves
in V1(H). All other vertices do not become star centers.

Let us denote the set of exceptional preimage graphs by H, so we have that H =
{K1,5, K1,6, H

1, H2, H3, H4}. Our main result of this section confirms that our second
main result holds for trees.
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Lemma 5. Let H 6∈ H be a tree with δe(H) ≥ 4. Then H has a dominating system with
at most (5e(H)− 14)/18 elements.

Proof. Let H be a smallest counterexample to the claim. Let F = H − V1(H). We write
ni = |Vi(F )|. Since F is a tree we find

e(F ) = |F | − 1 =
∑
i≥1

ni − 1. (6)

Clearly, H is not isomorphic to a star K1,k. This implies that |F | ≥ 2 and we can use
Observation 10 to obtain the following equation.

n1 =
∑
i≥3

(i− 2)ni + 2. (7)

We start with the following claim.

Claim 1 V2(H) 6= ∅.

We prove this claim by contradiction. Suppose V2(H) = ∅. Then the claim immediately
follows from Theorem 11, if we can show the following: if H 6∈ H, then b(e(H)− 1)/4c ≤
b(5e(H)− 14)/18c. Below we prove this statement.

First note that (e(H) − 1)/4 ≤ (5e(H) − 14)/18 if e(H) ≥ 19. Since δe(H) ≥ 4,
we find that e(H) ≥ 5, and that H would be isomorphic to K1,5 if e(H) = 5, and to
K1,6 if e(H) = 6. Hence we may assume that 7 ≤ e(H) ≤ 18. We then observe that
b(e(H)− 1)/4c > b(5e(H)− 14)/18c only if e(H) ∈ {9, 13, 17}. We consider each of these
three cases, where we will use the following simple observations on F . Since F is a tree
and |F | ≥ 2, n1 ≥ 2. Since δe(H) ≥ 4, each vertex in V1(F ) has at least four pendant
edges in H. For the same reason, each vertex in V2(F ) that is adjacent to a leaf of H has
at least three pendant edges in H, and each vertex in V3(F ) that is adjacent to a leaf of
H has at least two pendant edges in H.

Suppose e(H) = 9. Then, using the above, we find that n1 = 2 and ni = 0 for all i ≥ 2.
Hence H is isomorphic to H1.

Suppose e(H) = 13. Again, we find that n1 = 2. Then, due to equality (7), ni = 0 for
i ≥ 3. Then n2 = 1. Hence F is a path on three vertices. This implies that H is isomorphic
to H2.

Suppose e(H) = 17. We find that 2 ≤ n1 ≤ 3. Suppose n1 = 2. Due to equality (7) we
find that ni = 0 for i ≥ 3. Then n2 = 2. Hence F is a path on four vertices. This implies
that H is isomorphic to H3. Suppose n1 = 3. Due to equality (7) we find that n3 = 1
and ni = 0 for i ≥ 4. Then n2 = 0. Hence F is a star on four vertices. We find that H is
isomorphic to H4.

This completes the proof of Claim 1.

The following claim immediately follows from our assumption that H is a smallest coun-
terexample and from the definition of the graphs H i.

Claim 2 Let H ′ be a tree with δe(H
′) ≥ 4 and e(H ′) < e(H). Then the minimum number

of elements in a dominating system of H ′ is at most

– (5e(H ′)− 14)/18 if H ′ 6∈ H;
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– (5e(H ′)− 14)/18 + 5/18 if H ′ is isomorphic to H1;
– (5e(H ′)− 14)/18 + 3/18 if H ′ is isomorphic to H2;
– (5e(H ′)− 14)/18 + 1/18 if H ′ is isomorphic to H3 or H4.

We need a few other claims as well.

Claim 3 Any vertex u ∈ V \V1(H) with p neighbors in V \V1(H) has at most max{1, 5−p}
neighbors in V1(H).

We prove Claim 3 by contradiction. Suppose u ∈ V \V1(H) is adjacent to more than
max{1, 5− p} leaves of H. Then we remove one of these leaves of H to obtain a smaller
graph H ′ with minimum edge-degree at least four. If the new graph H ′ is not in H, then
H ′ is a smaller counterexample, see Claim 2. This contradicts our assumption on H. Since
V2(H) 6= ∅ due to Claim 1, H is not a star, and hence H ′ is neither isomorphic to K1,5

nor to K1,6. Suppose H ′ ∈ {H1, H2, H3, H4}. Then it is easy to check that H is not a
counterexample. This completes the proof of Claim 3.

Claim 4 N(V1(H)) = V1(F ).

We prove Claim 4 as follows. By definition of F , any vertex in V1(F ) has (at least)
four neighbors in V1(H). Hence, V1(F ) ⊆ N(V1(H)).

We use a proof by contradiction to show that N(V1(H)) ⊆ V1(F ). Suppose u ∈
V (F )\V1(F ) is adjacent to p ≥ 2 vertices of F and q ≥ 1 leaves of H. By Claim 3,
we know that q ≤ max{1, 5 − p} ≤ 3. Let {v1, . . . , vp} be the neighbors of u in F . We
distinguish three cases.

Case 1. q = 3 or dH(vi) = dH(vj) = 2 for some 1 ≤ i < j ≤ p.
We obtain new trees Hi for i = 1, . . . , p as follows: for a fixed value of i we remove the
edges uvj for all j 6= i and we add 4 − q ≥ 1 new pendant edges to u. We denote the
component of the resulting graph that contains vi by Hi. See Figure 4 for an example
with q = 1 and p = 4 (so with dH(vi) = dH(vj) = 2 for some 1 ≤ i < j ≤ p).

v1 v2 v3

u

v4

H1 H2

v1 v2

H3

v3

H4

v4

Fig. 4. Case 1 with q = 1 and p = 4.

We observe that each Hi is smaller than H, has minimum edge-degree at least four, and
is neither isomorphic to K1,5 nor to K1,6. By Claim 2, each Hi has a dominating system

Si with at most 5e(Hi)−14
18

+ ci elements with ci ∈ {0, 1
18
, 3

18
, 5

18
}. Due to our assumption

that q = 3 or dH(vi) = dH(vj) = 2 for some 1 ≤ i < j ≤ p, we can unite the stars with
center u in each Si to obtain a dominating system S of H (in which indeed u is the center
of a star with at least three leaves). We distinguish two subcases.

Case 1a. p ≥ 3.



Sharp upper bounds on minimum 2-factors in claw-free graphs 23

Due to δe(H) ≥ 4, p + q ≥ 5. Due to Claim 3, q ≤ 2. Then dH(vi) = dH(vj) = 2 for at
least two vertices vi, vj. Hence at least two graphs Hi, Hj are not in {H1, H2, H3, H4}.
Then the number of elements of S is at most

p∑
i=1

|Si| − (p− 1) ≤ 5
∑p

i=1 e(Hi)− 14p

18
+

5(p− 2)

18
− (p− 1)

=
5(e(H) + 4p− q)− 9p− 10

18
− (p− 1)

=
5e(H)− 14

18
+

22− 2p− 5(p+ q)

18

≤ 5e(H)− 14

18
+

22− 2× 3− 5× 5

18

≤ 5e(H)− 14

18
,

where we used that p ≥ 3 and p+ q ≥ 5.

Case 1b. p = 2.
Due to δe(H) ≥ 4 and Claim 3, q = 3. If both H1 and H2 are isomorphic to H1, then H
is isomorphic to H2. If one of the graphs, H1, H2, is isomorphic to H1 and the other one
is isomorphic to H2, then H is isomorphic to H3. So we may assume that these cases do
not occur. Then the number of elements of S is at most

|S1|+ |S2| − 1 ≤ 5(e(H1) + e(H2))− 28

18
+

6

18
− 1

=
5(e(H) + 5)− 22

18
− 1

=
5e(H)− 14

18
− 1

18

≤ 5e(H)− 14

18
.

Case 2. Either q = 2, or q = 1 and dH(vi) = 2 for some 1 ≤ i ≤ p.
Since δe(H) ≥ 2, we have p ≥ 5 − q ≥ 3, and we may assume that at least two vertices
vi, vj, say v1 and v2, have degree at least three, otherwise we return to Case 1. We remove
uv1 and uv2, add the edge v1v2 and we also add two new pendant edges to u. This way
we obtain two graphs H ′ and H ′′. See Figure 5 for an example with p = 3 and q = 2.

We observe that both H ′ and H ′′ are smaller than H, have minimum edge-degree at
least four, and are neither isomorphic to K1,5 nor to K1,6. If both H ′ and H ′′ are isomorphic
to H1, then H is isomorphic to H4. So we may assume that this is not the case. Then, by
Claim 2, we may without loss of generality assume that H ′ has a dominating system S ′
with at most 5e(H′)−14

18
+ 5

18
elements and H ′′ has a dominating system S ′′ with at most

5e(H′′)−14
18

+ 3
18

elements.
Suppose without loss of generality that the edge v1v2 is covered by a star with center

v1. Then we can combine S ′ and S ′′ to obtain a dominating system S of H, in which the
edge uv1 belongs to a star with center v1 and the edge uv2 belongs to a star with center u.
This, together with our assumption that either q = 2, or q = 1 and dH(vi) = 2 for some
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v1 v2 v1 v2v3

u

v3

H' H"
u

Fig. 5. Case 2 with p = 3 and q = 2.

1 ≤ i ≤ p, ensures that vertex u is indeed the center of a star in S with at least three
edges. The number of elements of S is at most

|S ′|+ |S ′′| ≤ 5(e(H ′) + e(H ′′))− 28

18
+

8

18

=
5(e(H) + 1)− 20

18

≤ 5e(H)− 14

18
.

Case 3. q = 1 and dH(vi) ≥ 3 for all 1 ≤ i ≤ p.
Because δe(H) ≥ 4, we have p ≥ 5− q = 4. For i = 1, . . . , 4, we remove the edges uvi from
H. We add an edges v1v2 to obtain a graph H1, an edge v3v4 to obtain a graph H2, and
three new pendant edges to u to obtain a graph H3. See Figure 6 for an example with
p = 4.

v1 v2 v3

H1

v1 v2

u

v4

H2

v3 v4

H3
u

Fig. 6. Case 3 with p = 4.

We observe that H1 and H2 have minimum edge-degree at least four, are smaller than
H, and are neither isomorphic to K1,5 nor to K1,6. By Claim 2, each Hi has a dominating

system Si with at most 5e(H1)−14
18

+ ci elements with ci ∈ {0, 1
18
, 3

18
, 5

18
}. Suppose without

loss of generality that the edge v1v2 is covered by a star in S1 with center v1, and that
the edge v3v4 is covered by a star in S2 with center v3.

We distinguish two subcases.

Case 3a. H3 is isomorphic to K1,4.
Suppose both H1 and H2 are isomorphic to H1. Then e(H) = 21, and H has a 5-D-
system. Hence, H would not be a counterexample. Suppose H1 is isomorphic to H1 and



Sharp upper bounds on minimum 2-factors in claw-free graphs 25

H2 is isomorphic to H2. Then e(H) = 25 and H has a 6-D-system. Again we find that
H is not a counterexample. So we may assume these cases do not occur. Then we can
combine the dominating systems Si for i = 1, 2 to obtain a dominating system S of H, in
which the edge uv1 belongs to a star with center v1, the edge uv3 belongs to a star with
center v3, and the edges uv2, uv4 belong to a star with center u. The number of elements
of S is at most

|S1|+ |S2|+ 1 ≤ 5(e(H1) + e(H2))− 28

18
+

6

18
+ 1

=
5(e(H)− 2)− 4

18

=
5e(H)− 14

18
.

Case 3b. H3 is not isomorphic to K1,4.

Then H3 has a dominating system S3 with at most 5e(H3)−14
18

+ c3 elements with c3 ∈
{0, 1

18
, 3

18
, 5

18
}. We combine S1 and S2 in the same way as we did for Case 3a. We also use

all stars of S3 except the star with center u. This way we obtain a dominating system S of
H (in which u is the center of a star with at least three leaves). The number of elements
of S is at most

|S1|+ |S2|+ 1 + |S3| − 1 ≤ 5(e(H1) + e(H2) + e(H3))− 42

18
+

15

18

=
5(e(H) + 1)− 27

18

≤ 5e(H)− 14

18
.

This completes the proof of Claim 4.

By Claims 3 and 4 we find that Vi(H) = Vi(F ) for all i 6= 1, 5 and V5(H) = V1(F )∪V5(F ).
Hence

e(H) = e(F ) + 4n1. (8)

We need two more claims regarding vertices in V2(F ) before we can complete the proof
of Lemma 5.

Claim 5 Each vertex in V≥4(F ) has at most one neighbor in V2(F ) = V2(H).

We prove Claim 5 by contradiction. Suppose u ∈ V≥4(F ) is adjacent to q ≥ 2 vertices
of V2(F ). Assume u is adjacent to p ≥ 0 other vertices of H, which are all in V (F )\V2(F )
due to Claim 4. Let {x1, . . . , xq} be the neighbors of u in V2(F ). For i = 1, . . . , q, let
yi 6= u be the other neighbor of xi in F . Since δe(H) ≥ 4, we have p + q ≥ 4. Then we
distinguish three cases.

Case 1. q ≥ 3.
We remove the vertices x1 and x2. We add a new vertex z only adjacent to y1 and y2 to
obtain a tree H ′. We add three new pendant edges to u to obtain a tree H ′′. Both H ′ and
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y1 y2 y3

u

x1 x2 x3

u

H'

H"

x3

z

y1 y2 y3

Fig. 7. Case 1 with p = 2 and q = 3.

H ′′ are smaller than H, have minimum edge-degree at least four, and are not isomorphic
to a graph in H. See Figure 7 for an example with p = 2 and q = 3.

Due to Claim 2, we then find that H ′ has a dominating system S ′ with at most 5e(H′)−14
18

elements and H ′′ has a dominating system S ′′ with at most 5e(H′′)−14
18

elements.

Since q ≥ 3, we can combine S ′ and S ′′ to obtain a dominating system S of H (in
which indeed vertex u is the center of a star with at least three leaves). The number of
elements of S is at most

|S ′|+ |S ′′| ≤ 5(e(H ′) + e(H ′′))− 28

18

=
5(e(H) + 1)− 28

18

≤ 5e(H)− 14

18
.

Case 2. p ≥ 3 and q = 2.

Since p ≥ 3, u has two neighbors v1 and v2 in V (F )\V2(F ). Then both v1 and v2 have
degree at least three in H. We remove uv1 and uv2. We add the edge v1v2 to obtain a
graph H ′. We add two new pendant edges to u to obtain a graph H ′′. See Figure 8 for an
example with p = 3 and q = 2.

y1

u
x1

y2

x2

v1
v2 v3

y1

u
x1

y2

x2

H''

H'v1 v2

v3

Fig. 8. Case 2 with p = 3 and q = 2.
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Both H ′ and H ′′ are smaller than H, and have minimum edge-degree at least four.
Furthermore, H ′ is neither isomorphic to K1,5 nor to K1,6, and H ′′ is not in H. Then, by

Claim 2, we find that H ′ has a dominating system S ′ with at most 5e(H′)−14
18

+ 5
18

elements

and H ′′ has a dominating system S ′′ with at most 5e(H′′)−14
18

elements.

Suppose without loss of generality that the edge v1v2 is covered by a star with center
v1. Then we can combine S ′ and S ′′ to obtain a dominating system S of H, in which the
edge uv1 belongs to a star with center v1 and the edge uv2 belongs to a star with center
u. This, together with q = 2, ensures that u is indeed the center of a star in S with at
least three edges. The number of elements of S is at most

|S ′|+ |S ′′| ≤ 5(e(H ′) + e(H ′′))− 28

18
+

5

18

=
5(e(H) + 1)− 23

18

≤ 5e(H)− 14

18
.

Case 3. p = q = 2.

Then u has two neighbors v1 and v2 in V (F )\V2(F ). Then both v1 and v2 have degree at
least three. We remove uv1 and uv2 from H. We add the edge v1v2 to obtain a graph H ′.
We replace u, x1, x2 by a new vertex z only adjacent to y1 and y2 to obtain a graph H ′′′.
See Figure 9.

y1

u
x1

y2

x2

v1 v2

y1

z

y2

H''

H'v1 v2

Fig. 9. Case 3 with p = q = 2.

Both H ′ and H ′′ are smaller than H and have minimum edge-degree at least four.
Furthermore, H ′ is neither isomorphic to K1,5 nor to K1,6, and H ′′ is not in H. Then, by

Claim 2, we find that H ′ has a dominating system S ′ with at most 5e(H′)−14
18

+ 5
18

elements

and H ′′ has a dominating system S ′′ with at most 5e(H′′)−14
18

elements.

Suppose without loss of generality that the edge v1v2 is covered by a star with center
v1. We obtain a dominating system S of H as follows. We let u be the center of a star
with leaves v2, x1, x2. We replace v2 by u in the star from S ′ with center v1. We use all
other stars of S ′ as well. We replace z by x1 in the star from S ′′ with center y1. We replace
z by x2 in the star from S ′′ with center y2. We use all other stars of S ′′ as well. Then the
number of elements of S is at most
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|S ′|+ |S ′′|+ 1 ≤ 5(e(H ′) + e(H ′′))− 28

18
+

5

18
+ 1

=
5(e(H)− 3)− 5

18

≤ 5e(H)− 14

18
.

This completes the proof of Claim 5.

Claim 6 Each vertex in V2(F ) = V2(H) has one of its neighbors in V≥4(F ) and the other
one in V1(F ) ∪ V≥4(F ).

We prove Claim 6 as follows. Let x ∈ V2(F ). Recall that vertices in V2(F ) and V3(F )
are not adjacent to leaves in H due to Claim 4. This implies the following two statements.
First, x has exactly two neighbors in H. Secondly, since δe(H) ≥ 4, x does not have a
neighbor in V2(F )∪V3(F ). Now suppose x has both its two neighbors in V1(F ). Then F is
a path wxy, where both w and y have four pendant edges in H due to Claim 3. This means
that e(H) = 10 and that H has a 2-D-system. Then H would not be a counterexample.
This finishes the proof of Claim 6.

We now have sufficient ingredients to complete the proof of Lemma 5. Recall that V2(F ) 6=
∅ due to Claim 1. This observation, together with Claim 5 implies that

∑
i≥4

ni ≥ n2. (9)

Let V ∗2 (F ) denote the set of vertices in V2(F ) that are adjacent to a vertex in V1(F ).
We write n∗2 = |V ∗2 (F )|. For a vertex u ∈ V≥4(F ) with (exactly) one neighbor v in V2(F ),
we call the component of H −{uv} that contains u the u-tree of H. We call a u-tree with
no vertices in V2(F ) a proper u-tree. Let V ∗≥4(F ) consist of all vertices u ∈ V≥4(F ) for
which H has a proper u-tree. We write n∗≥4 = |V ∗≥4(F )|. We use Claim 5 and Claim 6 to
deduce that

n∗2 + n∗≥4 ≥ 2. (10)

Recall that a claw-free graph with minimum degree at least 4 contains a 2-factor due
to Theorem 1. This implies that our graph H has a dominating system S. Let s be the
number of centers of stars in S that do not contain a leaf of H. By Claim 4 we find that

|S| = n1 + s. (11)

Below we show that we may assume without loss of generality that

3s+ 4n1 + n∗2 + n∗≥4 ≤ e(H). (12)

We prove inequality (12) as follows. Each star in S with center in V (F )\V1(F ) has at
least three edges. This explains the term 3s. Each star in S with center in V1(F ) has at
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least four edges. This explains the term 4n1. Each vertex in V ∗2 (F ) is a leaf of a star in S
with center in V1(F ), and consequently these stars have five edges. This explains the term
n∗2. Each vertex u in V ∗≥4(F ) is a center vertex of a star S in S, because u is adjacent to
a vertex v of V2(F ) that has degree two in H due to Claim 4. By Lemma 4, any proper
u-tree H ′ of H has a dominating system S ′ that contains a star S ′ with center u and
dH′(u) = dH(u) − 1 ≥ 3 leaves. Then we may without loss of generality assume that S
has at least four edges (namely the edges of S ′ plus the edge uv). This explains the term
n∗≥4. Hence, we have deduced the lower bound on e(H) of inequality (12).

Using (in)equalities (11),(12),(8),(6),(7), (10), and (9) consecutively, we find that

5e(H)− 14− 18|S|
= 5e(H)− 14− 18n1 − 18s

≥ 5e(H)− 14− 18n1 − 6e(H) + 24n1 + 6n∗2 + 6n∗≥4

= −e(H)− 14 + 6n1 + 6n∗2 + 6n∗≥4

= −e(F )− 4n1 − 14 + 6n1 + 6n∗2 + 6n∗≥4

= −e(F ) + 2n1 − 14 + 6n∗2 + 6n∗≥4

= −
∑
i≥1

ni + 1 + 2n1 − 14 + 6n∗2 + 6n∗≥4

= n1 −
∑
i≥2

ni − 13 + 6n∗2 + 6n∗≥4

=
∑
i≥3

(i− 2)ni + 2−
∑
i≥2

ni − 13 + 6n∗2 + 6n∗≥4

=
∑
i≥4

(i− 3)ni − n2 − 11 + 6n∗2 + 6n∗≥4 ≥
∑
i≥4

(i− 3)ni − n2 + 1 ≥ 0.

Hence S has at most 5e(H)−14
18

elements, and H can not be a counterexample. This
completes the proof of Lemma 5.

So we know that Theorem 9 holds in the case that H is a tree. We will use this result
in the next part to show that the theorem holds for general triangle-free graphs.

4.2. Theorem 9 holds for general triangle-free graphs

For convenience we mention the statement of Theorem 9 with the explicit class of excep-
tional graphs.

Theorem 9. Let H 6∈ {K1,5, K1,6, H
1, H2, H3, H4} be a triangle-free graph with δe(H) ≥

4. Then H contains a dominating system S with at most 5e(H)−14
18

elements.

Proof. Let H /∈ H be a triangle-free graph with δe(H) ≥ 4. Suppose H is a tree. Then
the result follows from Lemma 5. Suppose H is not a tree. Let X be a maximum even
subgraph of H. As in the proof of Theorem 8, the proof idea is to construct an X-graph
H∗ of H. Then, by Lemma 1, H∗ is a forest. After some preprocessing we apply Lemma 5
to every component of H∗ after adding sufficiently many pendant edges to ensure that
each edge has edge-degree at least 4. In this procedure we have to add more edges than
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we remove. However, we will have the same advantage as in Theorem 8 if we also ensure
that each remaining vertex in each circuit of X has at least one pendant edge. The added
pendant edges have to be dominated by (extra) stars in any dominating system of H∗,
and these stars can be merged together into fewer elements of a dominating system in
the original graph H. In other words, the larger number of stars we get by applying the
upper bounds to H∗ provide the necessary compensation for the larger number of edges
that we created. This way we are able to establish our upper bound for H.

We will now describe the procedure. Let C be a circuit in X. Let I(C) be the set
of vertices in C that are only adjacent to vertices in C ∪ V1(H). If I(C) = C then
V (H) = V (C) ∪ V1(H), and H has a dominating system S = {C} consisting of one
element. Since H is a triangle-free graph with δe(H) ≥ 4 and H is not isomorphic to K1,5

or K1,6, we know that |E(H)| ≥ 7. Then the statement of the theorem is true.
From now on, we assume that I(C) ( C for each circuit C in X. We consider each C

in X separately, and distinguish three cases. For each case we determine the net increase
in the number of edges in order to restore the minimum edge-degree.

Case 1. |C| ≥ 5 and |I(C)| ≤ 1.
Then C contains an edge uv with u and v not in I(C). From H, we remove all vertices in
I(C) together with all their neighbors in V1(H). We also remove all edges in E(C)\{uv}.
We add three new pendant edges to u and three new pendant edges to v. To every other
vertex in C−I(C) we add four new pendant edges. This together with e(C) ≥ |C| implies
that the net increase in the number of edges is at most

4(|C| − 2− |I(C)|) + 6− (e(C)− 1) ≤ 3|C| − 4|I(C)| − 1. (13)

Case 2. |C| ≥ 5 and |I(C)| ≥ 2.
From H, we remove all vertices in I(C) together with all their neighbors in V1(H). We
also remove all edges in E(C) from H. We add four new pendant edges to every vertex
in C − I(C). This, together with e(C) ≥ |C|, implies that the net increase in the number
of edges is at most

4(|C| − |I(C)|)− e(C) ≤ 3|C| − 4|I(C)|. (14)

Case 3. |C| = 4.
Then C is a cycle stuvs. We remove the edges sv and tu. Recall that st has edge-degree
at least four in H. If dH(s) = 2, then dH(t) ≥ 4, and we add four pendant edges to s and
two pendant edges to t. If dH(s) = 3, then dH(t) ≥ 3, and we add three pendant edges to
s and three pendant edges to t. If dH(s) ≥ 4, then we add two pendant edges to s and four
pendant edges to t. Since also uv has edge-degree at least four in H, we can do exactly
the same for uv. This way the net increase in the number of edges is 2× 6− 2 = 10.

After we have performed one of the above operations as considered in Case 1, Case
2 or Case 3 for every circuit C in X, we have obtained a forest H∗ by Lemma 1. From
the above procedure it is clear that H∗ has minimum edge-degree δe(H

∗) ≥ 4. For each
circuit C in Case 1 and Case 2 we have removed all vertices in I(C) together with their
neighbors in V1(H). Then the forest H∗ does not contain a component isomorphic to K1,5

or K1,6. Hence, we can apply Lemma 5 to each component D of H∗ to obtain a dominating
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system S(D) of D that has at most (5e(D)− 14)/18 elements if D is not isomorphic to a
graph in {H1, H2, H3, H4}. Otherwise |S∗| = (5e(D) − 14)/18 + c with c = 5/18 if D is
isomorphic to H1, c = 3/18 if D is isomorphic to H2, and c = 1/18 if D is isomorphic to
H3 or H4.

For i = 1, 2, 3, let Ci denote the set of circuits that fall under Case i. Then the net
increase in the number of edges due to circuits in C3 is 10|C3|. This, together with in-
equality (13) and inequality (14) gives

e(H∗) ≤ e(H) +
∑
C∈C1

(3|C| − 4|I(C)| − 1) +
∑
C∈C2

(3|C| − 4|I(C)|) + 10|C3|. (15)

From our procedure it is clear that every vertex in any C− I(C) with C ∈ C1∪C2 and
every vertex in any C ∈ C3 is a center vertex of a star in any dominating system of H∗.
By uniting the star centers in each S(D) that correspond to the same circuit we obtain a
dominating system S of H. Let D1, . . . , Dk be the components in H∗. We distinguish two
cases.

Case 1. k ≥ 2.
Then the number of elements in S is at most

k∑
i=1

|S(Di)| −
∑

C∈C1∪C2
(|C| − |I(C)| − 1)− 3|C3|

≤
k∑

i=1

(
5e(Di)− 14

18
+

5

18

)
−

∑
C∈C1∪C2

(|C| − |I(C)| − 1)− 3|C3|

=
5e(H∗)− 9k

18
−

∑
C∈C1∪C2

(|C| − |I(C)| − 1)− 3|C3|

≤

5{e(H) +
∑
C∈C1

(3|C| − 4|I(C)| − 1) +
∑
C∈C2

(3|C| − 4|I(C)|) + 10|C3|} − 14

18

−
∑

C∈C1∪C2
(|C| − |I(C)| − 1)− 3|C3|

=
5e(H)− 14

18
+

∑
C∈C1(13− 3|C| − 2|I(C)|)

18
+

∑
C∈C2(18− 3|C| − 2|I(C)|)

18
− 4|C3|

18

≤ 5e(H)− 14

18
+

∑
C∈C1(13− 3|C|)

18
+

∑
C∈C2(14− 3|C|)

18

≤ 5e(H)− 14

18
,

where we used k ≥ 2, (15), |I(C)| ≥ 2 for all C ∈ C2, and |C| ≥ 5 for all C ∈ C1 ∪ C2.

Case 2. k = 1.
It is easy to check that H∗ is not isomorphic to H1. Suppose H∗ is isomorphic to H2.
Then X does not contain a circuit on four vertices, because we would have added pendant
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edges to each of those vertices. Consider the three vertices in H∗ that are not leaves. Since
we assume I(C) ( C for each circuit C in X, these vertices do not belong to the same
circuit in X. By construction they do not belong to three different circuits either. Then
H has at least 10 edges and a 2-D-system. Hence, the statement is true.

Suppose H∗ is neither isomorphic to H1 nor to H2. Then the number of elements in S
is at most

5e(H∗)− 14

18
+

1

18
−

∑
C∈C1∪C2

(|C| − |I(C)| − 1)− 3|C3| ≤ 5e(H)− 14

18
.

Here we used the same deduction as in the case k ≥ 2. Since there is at least one circuit
C, we can compensate for the constant 1/18. This completes the proof of the upper bound
in Theorem 9 for connected triangle-free graphs with δe ≥ 4. This completes the proof of
Theorem 9.
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