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Abstract—In this paper, we give precise solutions to problems posed by Wang et al. and by Hsieh et al. In particular, we show that Qk
n

is bipanconnected and edge-bipancyclic, when k � 3 and n � 2, and we also show that when k is odd, Qk
n is m-panconnected, for

m ¼ nðk�1Þþ2k�6
2 , and ðk� 1Þ-pancyclic (these bounds are optimal). We introduce a path-shortening technique, called progressive

shortening, and strengthen existing results, showing that when paths are formed using progressive shortening, then these paths can

be efficiently constructed and used to solve a problem relating to the distributed simulation of linear arrays and cycles in a parallel

machine whose interconnection network is Qk
n, even in the presence of a faulty processor.

Index Terms—Interconnection networks, k-ary n-cubes, bipanconnectivity, bipancyclicity.

Ç

1 INTRODUCTION

THE choice of interconnection network is crucial in the
design of a distributed-memory multiprocessor. As to

which network is chosen depends upon a number of
factors relating to the topological, algorithmic, and com-
munication properties of the network and the types of
problems to which the resulting computer is to be applied.
One of the most popular interconnection networks is
undoubtedly the n-dimensional hypercube Qn. Some of its
pleasing properties, with regard to parallel computation,
include the following: it is vertex- and edge-symmetric; it
is Hamiltonian; it has diameter n; it has a recursive
decomposition; and it contains, or “nearly” contains (as
subgraphs), almost all interconnection networks currently
vogue in parallel computing (see [18] for these results and
more on the hypercube). Some of the commercial
machines whose underlying topology is based on the
hypercube are the Cosmic Cube [23], the Ametek S/14 [2],
the iPSC [10], [11], the Ncube [7], [11], and the CM-200 [8].

However, every vertex of Qn has degree n, and,
consequently, as n increases so does the degree of every
vertex. High degree vertices in interconnection networks
can lead to technological problems in parallel computers
whose underlying topology is that of the said interconnec-
tion network. One method of circumventing this problem,
so as to still retain a “hypercube-like” interconnection
network, is to build parallel computers so that the under-
lying topology is the k-ary n-cube Qk

n. The k-ary n-cube Qk
n

is similar in essence to the hypercube, but by a judicious
choice of k and n, we can include a large number of
vertices yet keep the degree of each vertex fixed. For
example, the hypercube Q12 has 4,096 vertices and every

vertex has degree 12. However, Q16
3 has 4,096 vertices and

every vertex has degree 6. Of course, one usually loses out
in some other respect (for example, in terms of diameter),
but often, this loss is not too catastrophic. The k-ary n-cube
Qk
n has not been investigated to the same extent as the

hypercube, but it is known to have the following properties
(among many others): it is vertex- and edge-symmetric [3];
it is Hamiltonian [4], [6]; it has diameter nbk=2c [4], [6]; it
has a recursive decomposition; and it contains many
important interconnection networks such as cycles (of
certain lengths) [3], meshes (of certain dimensions) [4],
and even hypercubes (of certain dimensions) [6]. Machines
whose underlying topology is based on a k-ary n-cube
include the Mosaic [24], the iWARP [5], the J-machine [21],
the Cray T3D [16], and the Cray T3E [1].

Of interest to us in this paper are the different paths and
cycles embedded within k-ary n-cubes. Path and cycle
networks are fundamental in parallel computing; not only is
there a multitude of algorithms specifically designed for
linear arrays of processors and cycles of processors but also
paths and cycles appear as data structures in many more
algorithms for parallel machines whose processors are
interconnected in a variety of topologies. For example,
having a collection of processors connected in a cycle means
that all-to-all message passing can be undertaken by “daisy-
chaining” messages around the cycle. Of particular interest
to us are questions relating to Hamiltonicity, pancyclicity,
panconnectivity, bipancyclicity, and bipanconnectivity
(these concepts are defined in the next section). These
properties can be described as “strong Hamiltonicity”
properties and their existence in an interconnection net-
work enables a much higher degree of flexibility with
regard to the simulation of linear arrays of processors or
cycles of processors.

The notions in the preceding paragraph have been
investigated in the context of a number of interconnection
networks: for example, in crossed cubes [12], [31], Möbius
cubes [14], augmented cubes [20], alternating group
graphs [9], star graphs [29], bubble-sort graphs [17], and
in hypercubes and hypercube-like networks [13], [19],
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[22], [25], [26], [28], [30]. With regard to k-ary n-cubes,
these notions have been considered in [15] and [27]. In
particular, it was proven in [27] that Qk

2 is almost-
Hamiltonian connected, bipanconnected, and bipancyclic;
that Qk

n is almost-Hamiltonian connected, for any k; and
that Qk

n is Hamiltonian-connected, for odd k. Recently, it
has been proven in [15] that Q3

n is edge-pancyclic. It was
posed as an open problem in [27] as to whether their
results on bipanconnectivity and bipancyclicity for Qk

2

could be extended to Qk
n, for arbitrary n, and it was

posed as an open problem in [15] as to whether their
results on panconnectivity and pancyclicity could be
extended to Qk

n, for arbitrary k. In this paper, we provide
precise answers to both these questions. In addition, we
show that when k is odd, Qk

n is m-panconnected, for
m ¼ nðk�1Þþ2k�6

2 , and ðk� 1Þ-pancyclic (these bounds are
optimal). We also strengthen the results in [15] and [27]
by introducing a path-shortening technique, called pro-
gressive shortening, and show that the construction of
paths using this technique enables us to efficiently
construct paths in a distributed fashion and so solve a
problem relating to the distributed simulation of linear
arrays and cycles in a parallel machine whose inter-
connection network is Qk

n, even in the presence of a faulty
processor (even in Qk

2, the solution to this problem is not
possible using the paths constructed in [27]).

In the next section, we present some basic definitions and
results, before improving the constructions from [27] in Qk

2

in Section 3. In Section 4, we look at the general case when k
is even, and in Section 5 when k is odd. We outline our
application in Section 6 before presenting our conclusions in
Section 7.

2 BASIC DEFINITIONS AND RESULTS

The k-ary n-cube Qk
n, for k � 3 and n � 2, has vertex set

f0; 1; . . . ; k� 1gn, and there is an edge ððun�1; un�2; . . . ; u0Þ;
ðvn�1; vn�2; . . . ; v0ÞÞ if, and only if, there exists d 2
f0; 1; . . . ; n� 1g such that minfjud � vdj; k� jud � vdjg ¼ 1,

and ui ¼ vi, for every i 2 f0; 1; . . . ; n� 1g n fdg. Many

structural properties of k-ary n-cubes are known, but of

particular relevance for us is that a k-ary n-cube is vertex-

symmetric; that is, given any two distinct vertices v and v0 of

Qk
n, there is an automorphism of Qk

n mapping v to v0.

Throughout, we assume that addition on tuple elements is

modulo k. The parity of a vertex ðvn�1; vn�2; . . . ; v0Þ of Qk
n is

defined to be ð�n�1
i¼0 vi mod 2Þ (note that if k is even, then

every edge of Qk
n joins an even parity vertex to an odd

parity vertex).
An index d 2 f0; 1; . . . ; n� 1g is often referred to as a

dimension. We can partition Qk
n over dimension d by fixing

the dth element of any vertex tuple at some value a, for
every a 2 f0; 1; . . . ; k� 1g. This results in k copies
Qdð0Þ; Qdð1Þ; . . . ; Qdðk� 1Þ of Qk

n�1 (with QdðaÞ obtained
to fixing the dth element at a), with corresponding
vertices in Qdð0Þ; Qdð1Þ; . . . ; Qdðk� 1Þ joined in a cycle of
length k (in dimension d). Such a partition proves to be
extremely useful.

It has long been known that every k-ary n-cube Qk
n is

Hamiltonian, i.e., it contains a cycle passing through every

vertex exactly once. A Hamiltonian path in a graph is a path

joining two vertices on which every vertex of the graph

appears exactly once, and a graph is Hamiltonian-connected if

there is a Hamiltonian path joining any pair of distinct

vertices. Note that any (nontrivial) bipartite graph cannot be

Hamiltonian-connected, though there might exist almost-

Hamiltonian paths, i.e., paths joining pairs of distinct vertices

upon which all but one of the vertices of the graph appear; a

solitary vertex not appearing on an almost-Hamiltonian

path is called the residual vertex. Irrespective of whether a

graph is bipartite or not, we say that a graph is almost-

Hamiltonian-connected if there is a Hamiltonian path or an

almost-Hamiltonian path joining any pair of distinct

vertices. It is proven in [27] that every k-ary n-cube Qk
n is

almost-Hamiltonian-connected, and that if k is odd then Qk
n

is Hamiltonian-connected.
We say that a graph G on n vertices is pancyclic

(respectively, m-pancyclic) if it contains a cycle of every

possible length between 3 and n (respectively, m and n).

The graph G is almost-pancyclic if it contains a cycle of every

possible length between 4 and n, and bipancyclic if it

contains a cycle of every possible even length between 4

and n (the definition of bipancyclicity is intended primarily

for bipartite graphs but can be applied to any graph). A

graph G is edge-bipancyclic if every edge e of G lies on a cycle

of every even length between 4 and n. The graph G is

panconnected (respectively, m-panconnected) if for any pair of

distinct vertices u and v, there is a path joining u and v of

every length between dðu; vÞ (respectively, m > dðu; vÞ) and

n� 1, where dðu; vÞ is the length of a minimal length path in

G joining u and v. The graph G is bipanconnected if for any

pair of distinct vertices u and v, there is a path joining u

and v of every length from {l : l ¼ dðu; vÞ þ 2i, where

0 � i � n�dðu;vÞ
2 }. It is proven in [27] that Qk

2 is bipancon-

nected and (edge-) bipancyclic; however, as to whether Qk
n,

for n � 3, is bipanconnected or bipancyclic was left as an

open question. However, in relation to this question, it was

proven in [15] that Q3
n is edge-pancyclic, for all n � 2.

Our final definition concerns the alteration of paths

joining two distinct vertices in Qk
n. Let u and v be distinct

vertices of Qk
n, and let � be a path joining u to v of length m,

where m� dðu; vÞ is even. Suppose that there are paths

�dðu;vÞ; �dðu;vÞþ2; . . . ; �m ¼ � such that

. the path �i joins u and v and is of length i, for each
i ¼ dðu; vÞ; dðu; vÞ þ 2; . . . ;m;

. for each i ¼ dðu; vÞ; dðu; vÞ þ 2; . . . ;m� 1, the path
�iþ1 is of the form

u ¼ u0; u1; . . . ; uiþ1 ¼ v

with �i of the form

u ¼ u0; u1; . . . ; uj; ujþ3; ujþ4; . . . ; uiþ1 ¼ v;

for some j 2 f0; 1; . . . ; i� 2g.
Then, we say that � can be progressively shortened to obtain

paths of all lengths from fl : l ¼ dðu; vÞ; dðu; vÞ þ 2; . . . ;mg.
As we shall see, it will be crucial that our paths can be

progressively shortened.
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3 EXISTING BIPANCONNECTIVITY RESULTS

The result from [27] that Qk
2 is bipanconnected (irrespective

of whether k is odd or even) is important to our forth-
coming results (as the base case of inductions). However,
we need to refine the proof from [27] that Qk

2 is
bipanconnected in order to obtain a stronger result,
involving progressive shortening, and so that we can apply
this stronger result later. We remark that it is also crucial
that any residual vertex is as stated in Proposition 1. Our
stronger result is as follows:

Proposition 1. Let k � 3 and let u and v be distinct vertices
of Qk

2:

1. If kþ dðu; vÞ is odd, then there exists a Hamiltonian

path joining u and v such that this path can be

progressively shortened to obtain paths of all lengths

from fdðu; vÞ þ 2i : 0 � i � ðk
2�1�dðu;vÞÞ

2 g.
2. If kþ dðu; vÞ is even, then there exists an almost-

Hamiltonian path joining u and v such that the

residual vertex is adjacent to v and such that this path

can be progressively shortened to obtain paths of all

lengths from fdðu; vÞ þ 2i : 0 � i � ðk
2�2�dðu;vÞÞ

2 g.
In particular, Qk

2 is bipannconnected.

Before we prove Proposition 1, let us illustrate why the

proof from [27] that Qk
2 is panconnected will not suffice.

Consider Case (a) of [27, Fig. 2] (in this case, k is even).

We have reproduced this figure in Fig. 1a. The authors

claim (in a statement prior to Theorem 3) that the almost-

Hamiltonian path joining u and v can be shortened to

a path of length dðu; vÞ so that paths of lengths

dðu; vÞ; dðu; vÞ þ 2; . . . ; k2 � 2 are obtained, and this is

indeed the case. However, regard the path from u to v

as a curve on the plane and close this curve as shown in

Fig. 1 with the dotted line. No matter how we progres-

sively shorten the almost-Hamiltonian path, the residual

vertex (shaded in gray) must lie inside the closed curve,

and hence, we cannot shorten the almost-Hamiltonian

path to a path of length dðu; vÞ (as any such path must lie

within the top-left shaded grid). We have corrected this

deficiency in Fig. 1b.

Similarly, the cases in [27, Figs. 2c and 3d] are

deficient in the same way and have been reproduced in

Figs. 2a and 2c. These deficiencies are corrected in

Figs. 2b and 2d. Thus, Proposition 1 follows (as all other

cases in [27] are such that the paths can be progressively

shortened).

4 THE GENERAL CASE WHEN k IS EVEN

We begin by examining whether Qk
n is bipanconnected or

not when k is even (we reiterate that Qk
n is bipartite when k

is even). As remarked earlier, this question was posed as an

open problem by Wang et al. in [27]. We answer this

question precisely.

Theorem 2. Let k � 4 and n � 2, with k even, and let u and v be

distinct vertices of Qk
n.

1. If dðu; vÞ is odd, then there exists a Hamiltonian path

joining u and v such that this path can be progressively

shortened to obtain paths of all odd lengths between

dðu; vÞ and kn � 1, inclusive.
2. If dðu; vÞ is even, then there exists an almost-Hamilto-

nian path joining u and v such that the residual vertex is

adjacent to v and such that this path can be progressively

shortened to obtain paths of all even lengths between

dðu; vÞ and kn � 2, inclusive.

In particular, Qk
n is bipannconnected.

Proof. The vertex-symmetry of Qk
n means that, w.l.o.g., we

may suppose that u ¼ ð0; 0; . . . ; 0Þ and v ¼ ðvn�1; vn�2;

vn�3; . . . ; v0Þ, where vi � k
2 , for i ¼ 0; 1; . . . ; n� 1, and

where v 6¼ ðvn�1; 0; . . . ; 0Þ. For brevity, denote vn�1 as a.

Let ui ¼ ði; 0; 0; . . . ; 0Þ, for 0 � i � k� 1; hence, u ¼ u0

and v 6¼ ua. Partition Qk
n over dimension n� 1 to obtain

Qk
nð0Þ; Qk

nð1Þ; . . . ; Qk
nðk� 1Þ. We proceed by induction on

n. There are two cases: dðua; vÞ is odd and dðua; vÞ is even.
Case 1. dðua; vÞ is odd.

So, by the induction hypothesis applied to Qk
nðaÞ,

there exists a Hamiltonian path �a from ua to v in
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Qk
nðaÞ, which can be progressively shortened to obtain

paths of all odd lengths between dðua; vÞ ¼ dðu; vÞ � a
and kn�1 � 1, inclusive. Note that if the parity of v is
even (respectively odd), then a is odd (respectively

even).

Denote the vertex ði; vn�2; vn�3; . . . ; v0Þ as vi, for i 2
f0; 1; . . . ; k� 1g; so, v ¼ va. For each i 2 f0; 1; . . . ;

k� 1g n fag, let �i 2 Qk
nðiÞ be obtained from �a by setting

the first component of every vertex of �a at i. Note that

corresponding vertices of the paths �0; �1; . . . ; �k�1 induce

cycles of length k in Qk
n, e.g., u0; u1; . . . ; uk�1; u0 is a cycle

of length k, as is v0; v1; . . . ; vk�1; v0. In particular, the

edges of these induced cycles and the edges of the paths

�0; �1; . . . ; �k�1 yield a k� kn�1 grid, with rows 1; 2; . . . ; k

and columns 1; 2; . . . ;m, where m ¼ kn�1, with “wrap-

around” column edges. Refer to the vertices by their

row-column coordinates in this grid; so, for example, u is

the vertex (1, 1) and v is the vertex ðaþ 1;mÞ.
Subcase 1.1. Suppose that a is even (and so v lies on

odd row aþ 1). Consider the path � from u to v

defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ;
. . . ; ð1;m� 3Þ; ð2;m� 3Þ; . . . ; ðk;m� 3Þ; ðk;m� 2Þ;
ðk� 1;m� 2Þ; . . . ; ð1;m� 2Þ; ð1;m� 1Þ; ðk;m� 1Þ;
ðk� 1;m� 1Þ; . . . ; ðaþ 2;m� 1Þ; ðaþ 2;mÞ;
ðaþ 3;mÞ; . . . ; ðk� 1;mÞ; ðk;mÞ; ð1;mÞ; ð2;mÞ;
ð2;m� 1Þ; ð3;m� 1Þ; ð3;mÞ; ð4;mÞ; ð4;m� 1Þ; . . . ;

ða;mÞ; ða;m� 1Þ; ðaþ 1;m� 1Þ; ðaþ 1;mÞ:

The path � is Hamiltonian and can be visualized as in

Fig. 3a. Furthermore, it can trivially be progressively

shortened to obtain paths of all odd lengths between

kn�1 � 1þ a and kn � 1 (inclusive), and so that the

path of length kn�1 � 1þ a is the path �0 in Qk
nð0Þ,

from u to v0, extended with the path in column m of

length a to vertex v. By above, the path �0 can be

progressively shortened to obtain paths of all odd

lengths between dðu; v0Þ ¼ dðu; vÞ � a and kn�1 � 1; the

result follows.

Subcase 1.2. Suppose that a is odd (and so v lies on
even row aþ 1 � 2). Consider the path � from u to v
defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ;
. . . ; ð1; m� 3Þ; ð2;m� 3Þ; . . . ; ðk;m� 3Þ; ðk;m� 2Þ;
ðk� 1;m� 2Þ; . . . ; ð1;m� 2Þ; ð1;m� 1Þ; ðk;m� 1Þ;
ðk� 1;m� 1Þ; . . . ; ðaþ 2;m� 1Þ; ðaþ 2;mÞ;
ðaþ 3;mÞ; . . . ; ðk� 1;mÞ; ðk;mÞ; ð1;mÞ; ð2;mÞ;
ð2;m� 1Þ; ð3;m� 1Þ; ð3;mÞ; ð4;mÞ; ð4;m� 1Þ; . . . ;

ða;m� 1Þ; ða;mÞ; ðaþ 1;mÞ

(note that the vertex ðaþ 1;m� 1Þ does not appear on �).

The path � is almost-Hamiltonian and can be

visualized as in Fig. 3b. Furthermore, it can trivially be

progressively shortened to obtain paths of all even

lengths between kn�1 � 1þ a and kn � 2, and so that the

path of length kn�1 � 1þ a is the path �0 in Qk
nð0Þ, from u

to v0, extended with the path in column m of length a

from v0 to v. By above, the path �0 can be progressively

shortened to obtain paths of all odd lengths between

dðu; v0Þ and kn�1 � 1. As dðu; vÞ ¼ dðu; v0Þ þ a and the

vertex ðaþ 1;m� 1Þ is adjacent to v, we obtain the

required result.

Case 2. dðua; vÞ is even.

So, by the induction hypothesis applied to Qk
nðaÞ,

there exists an almost-Hamiltonian path �a from ua to v

in Qk
nðaÞ, which can be progressively shortened to obtain

paths of all even lengths between dðua; vÞ ¼ dðu; vÞ � a
and kn�1 � 2, and so that the residual vertex of the

almost-Hamiltonian path �a is adjacent to v. Note that if

the parity of v is even (respectively odd) then a is even

(respectively odd).

For each i 2 f0; 1; . . . ; k� 1g n fag, let �i 2 Qk
nðiÞ be

obtained from �a by setting the first component of

every vertex of �a at i. As was the case in Case 1,

corresponding vertices of the paths �0; �1; . . . ; �k�1

induce cycles of length k in Qk
n. In particular, the

edges of these induced cycles and the edges of the

paths �0; �1; . . . ; �k�1 yield a k� ðkn�1 � 1Þ grid, with

rows 1; 2; . . . ; k and columns 1; 2; . . . ;m� 1, where

m ¼ kn�1, with “wrap-around” column edges. Further-

more, if we denote the residual vertex of �i in Qk
nðiÞ

by ri, then there is an edge ðvi; riÞ in Qk
n, for

i ¼ 0; 1; . . . ; k� 1; moreover, r0; r1; . . . ; rk�1; r0 is a cycle

(this is why we focus on the adjacency relationship

between the residual vertex and the vertex v, as in the

statement of the result). Thus, we have a k�m grid

with “wrap-around” column edges, just as we had in

Case 1; as before, we refer to the vertices as row-

column pairs.
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Subcase 2.1. Suppose that a is even (and so v lies on
odd row aþ 1 � 1 and on column m� 1). Consider the
path � from u to v defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ;
. . . ; ð1;m� 3Þ; ð2;m� 3Þ; . . . ; ðk;m� 3Þ; ðk;m� 2Þ;
ðk;m� 1Þ; ðk;mÞ; ðk� 1;mÞ; . . . ; ðaþ 2;mÞ;
ðaþ 2;m� 1Þ; ðaþ 3;m� 1Þ; . . . ; ðk� 1;m� 1Þ;
ðk� 1;m� 2Þ; ðk� 2;m� 2Þ; . . . ; ð1;m� 2Þ; ð1;m� 1Þ;
ð1;mÞ; ð2;mÞ; ð2;m� 1Þ; ð3;m� 1Þ; ð3;mÞ;
ð4;mÞ; ð4;m� 1Þ; . . . ; ða;mÞ; ða;m� 1Þ; ðaþ 1;m� 1Þ

(note that the vertex ðaþ 1;mÞ does not appear on �).
The path � is almost-Hamiltonian and can be visualized
as in Fig. 4a. Furthermore, it can trivially be progres-
sively shortened to obtain paths of all even lengths
between kn�1 � 2þ a and kn � 2, and so that the path of
length kn�1 � 2þ a is the path �0 in Qk

nð0Þ, from u to v0,
extended with the path in column m� 1 of length a from
v0 to v. By above, the path �0 can be progressively
shortened to obtain paths of all even lengths between
dðu; v0Þ and kn�1 � 2. As dðu; vÞ ¼ dðu; v0Þ þ a and the
vertex ðaþ 1;mÞ is adjacent to v, we obtain the required
result.

Subcase 2.2. Suppose that a is odd (and so v lies on
even row aþ 1 � 2 and on column m� 1). Consider the
path � from u to v defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ;
. . . ; ð1;m� 3Þ; ð2;m� 3Þ; . . . ; ðk;m� 3Þ; ðk;m� 2Þ;
ðk� 1;m� 2Þ; . . . ; ð1;m� 2Þ; ð1;m� 1Þ; ð1;mÞ; ð2;mÞ;
ð2;m� 1Þ; ð3;m� 1Þ; ð3;mÞ; ð4;mÞ; ð4;m� 1Þ; . . . ;

ða;m� 1Þ; ða;mÞ; ðaþ 1;mÞ; ðaþ 2;mÞ; . . . ; ðk� 1;mÞ;
ðk;mÞ; ðk;m� 1Þ; ðk� 1;m� 1Þ; . . . ;

ðaþ 2;m� 1Þ; ðaþ 1;m� 1Þ:

The path � is Hamiltonian and can be visualized as in
Fig. 4b. Furthermore, it can trivially be progressively
shortened to obtain paths of all odd lengths between
kn�1 � 2þ a and kn � 1, and so that the path of length
kn�1 � 2þ a is the path �0 in Qk

nð0Þ, from u to v0,
extended with the path in column m� 1 of length a from

v0 to v. By above, the path �0 can be progressively
shortened to obtain paths of all even lengths between
dðu; v0Þ ¼ dðu; vÞ � a and kn�1 � 2; thus, we obtain the
required result.

All that remains is to deal with the base case of the
induction. However, the base case is handled by
Proposition 1. tu
The following is an immediate corollary of Theorem 2:

Corollary 3. Let k � 4 and n � 2, with k even. Qk
n is

edge-bipancyclic.

5 THE GENERAL CASE WHEN k IS ODD

We now examine whether Qk
n is bipanconnected when k is

odd. As remarked earlier, this question was posed as an open

problem by Wang et al. in [27]. We answer this question

precisely; in fact, we prove even more as we shall see later.

Theorem 4. Let k � 3 and n � 2, with k odd, and let u and v be

distinct vertices of Qk
n.

1. If dðu; vÞ is even, then there exists a Hamiltonian path
joining u and v such that this path can be progressively
shortened to obtain paths of all even lengths between
dðu; vÞ and kn � 1, inclusive.

2. If dðu; vÞ is odd, then there exists an almost-
Hamiltonian path joining u and v such that the
residual vertex is adjacent to v and such that this path
can be progressively shortened to obtain paths of all
odd lengths between dðu; vÞ and kn � 2, inclusive.

In particular, Qk
n is bipannconnected.

Proof. The proof is very similar in structure to that of

Theorem 2, and we adopt the exact same notation as in that

proof. Again, we proceed by induction on n, and there are

two cases, according to whether dðua; vÞ is odd or even.
Case 1. dðua; vÞ is even.
So, by the induction hypothesis, there exists a Hamilto-

nian path �a from ua to v in Qk
nðaÞ, which can be

progressively shortened to obtain paths of all even lengths
between dðua; vÞ ¼ dðu; vÞ � a and kn�1 � 1, inclusive. As
in the proof of Theorem 2, the paths �0; �1; . . . ; �k�1 yield a
k� kn�1 grid, with rows 1; 2; . . . ; kand columns 1; 2; . . . ;m,
where m ¼ kn�1, with “wrap-around” column edges.

Subcase 1.1. Suppose that a is even (and so v lies on
odd row aþ 1 � 1 and on column m). Consider the path
� from u to v defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ; . . . ;

ðk;m� 3Þ; ðk� 1;m� 3Þ; . . . ; ð1;m� 3Þ; ð1;m� 2Þ;
ð2;m� 2Þ; . . . ; ðk;m� 2Þ; ðk;m� 1Þ; ðk;mÞ; ðk� 1;mÞ;
ðk� 1;m� 1Þ; ðk� 2;m� 1Þ; ðk� 2;mÞ; . . . ; ðaþ 2;mÞ;
ðaþ 2;m� 1Þ; ðaþ 1;m� 1Þ; ða;m� 1Þ; . . . ; ð1;m� 1Þ;
ð1;mÞ; ð2;mÞ; . . . ; ðaþ 1;mÞ:

The path � is Hamiltonian and can be visualized as in

Fig. 5a. Similarly to as in the proof of Theorem 2, � can be

progressively shortened to obtain paths of all even

lengths between dðu; vÞ and kn � 1.
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Subcase 1.2. Suppose that a is odd (and so v lies on
even row aþ 1 � 2 and on column m). Consider the
path � from u to v defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ; . . . ;

ðk;m� 3Þ; ðk� 1;m� 3Þ; . . . ; ð1;m� 3Þ; ð1;m� 2Þ;
ð2;m� 2Þ; . . . ; ðk;m� 2Þ; ðk;m� 1Þ; ðk;mÞ; ðk� 1;mÞ;
ðk� 1; m� 1Þ; ðk� 2;m� 1Þ; ðk� 2;mÞ; ðk� 3;mÞ;
ðk� 3; m� 1Þ; . . . ; ðaþ 2;m� 1Þ; ðaþ 1;m� 1Þ;
ða;m� 1Þ; . . . ; ð1;m� 1Þ; ð1;mÞ; ð2;mÞ; . . . ; ðaþ 1;mÞ

(note that the vertex ðaþ 2;mÞ does not appear on �).

The path � is almost-Hamiltonian and can be visualized

as in Fig. 5b. Similarly to as in the proof of Theorem 2, �

can be progressively shortened to obtain paths of all odd

lengths between dðu; vÞ and kn � 2.
Case 2. dðua; vÞ is odd.

So, by the induction hypothesis, there exists an

almost-Hamiltonian path �a from ua to v in Qk
nðaÞ, which

can be progressively shortened to obtain paths of all odd

lengths between dðua; vÞ ¼ dðu; vÞ � a and kn�1 � 2, and

so that the residual vertex of the almost-Hamiltonian

path �a is adjacent to v. As in the proof of Theorem 2, the
paths �0; �1; . . . ; �k�1 and the residual vertices yield a k�
kn�1 grid, with rows 1; 2; . . . ; k and columns 1; 2; . . . ;m,

where m ¼ kn�1, with “wrap-around” column edges.
Subcase 2.1. Suppose that a is odd (and so v lies on

even row aþ 1 � 2 and on column m� 1). Consider the
path � from u to v defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ; . . . ;

ðk;m� 3Þ; ðk;m� 2Þ; ðk� 1;m� 2Þ; ðk� 1;m� 3Þ;
. . . ; ðaþ 2;m� 3Þ; ðaþ 2;m� 2Þ; ðaþ 1;m� 2Þ;
ðaþ 1;m� 3Þ; ða;m� 3Þ; ða;m� 2Þ; . . . ; ð4;m� 2Þ;
ð4;m� 3Þ; ð3;m� 3Þ; ð3;m� 2Þ; ð2;m� 2Þ; ð2;m� 3Þ;
ð1;m� 3Þ; ð1;m� 2Þ; ð1;m� 1Þ; ðk;m� 1Þ;
ðk� 1;m� 1Þ; . . . ; ðaþ 2;m� 1Þ; ðaþ 2;mÞ; ðaþ 3;mÞ;
. . . ; ðk;mÞ; ð1;mÞ; ð2;mÞ; ð2;m� 1Þ; ð3;m� 1Þ; ð3;mÞ;
ð4;mÞ; ð4;m� 1Þ; . . . ; ða;m� 1Þ; ða;mÞ; ðaþ 1;mÞ;
ðaþ 1;m� 1Þ:

The path � is Hamiltonian and can be visualized as in

Fig. 6a. Similarly to as in the proof of Theorem 2, � can be
progressively shortened to obtain paths of all even
lengths between dðu; vÞ and kn � 1.

Subcase 2.2. Suppose that a is even (and so v lies on
odd row aþ 1 � 1 and on column m� 1). Consider the
path � from u to v defined as

ð1; 1Þ; ð2; 1Þ; . . . ; ðk; 1Þ; ðk; 2Þ; ðk� 1; 2Þ; . . . ; ð1; 2Þ;
ð1; 3Þ; ð2; 3Þ; . . . ; ðk; 3Þ; ðk; 4Þ; ðk� 1; 4Þ; . . . ; ð1; 4Þ;
. . . ; ðk;m� 3Þ; ðk� 1;m� 3Þ; . . . ; ð1;m� 3Þ;
ð1;m� 2Þ; ð1;m� 1Þ; ð1;mÞ; ð2;mÞ; ð2;m� 1Þ;
ð2;m� 2Þ; ð3;m� 2Þ; ð3;m� 1Þ; ð3;mÞ; ð4;mÞ;
ð4;m� 1Þ; ð4;m� 2Þ; . . . ; ða;mÞ; ða;m� 1Þ;
ða;m� 2Þ; ðaþ 1;m� 2Þ; ðaþ 2;m� 2Þ; . . . ;

ðk;m� 2Þ; ðk;m� 1Þ; ðk;mÞ; ðk� 1;mÞ;
ðk� 1;m� 1Þ; ðk� 2;m� 1Þ; . . . ; ðaþ 2;mÞ;
ðaþ 2;m� 1Þ; ðaþ 1;m� 1Þ

(note that the vertex ðaþ 1;mÞ does not appear on �).
The path � is almost-Hamiltonian and can be visualized
as in Fig. 6b. Similarly to as in the proof of Theorem 2, �

can be progressively shortened to obtain paths of all odd
lengths between dðu; vÞ and kn � 2.

However, the base case is handled by Proposition 1. tu

The following is an immediate corollary of Theorem 4:

Corollary 5. Let k � 3 and n � 2, with k odd. Qk
n is

edge-bipancyclic.

As remarked earlier, bipanconnectivity and bipancycli-
city are concepts which make most sense in the context of

bipartite graphs, such as the graphs Qk
n, for k even.

However, when k is odd, Qk
n is not bipartite, and it is

possible that odd cycles might exist, as well as odd and

even length paths between vertices u and v. As we shall see,
this is indeed the case but not universally.

Henceforth, k is odd. Consider the vertices u¼ð0; 0; . . . ; 0Þ
and v ¼ ðvn�1; vn�2; . . . ; v0Þ of Qk

n, where (as usual) we

assume w.l.o.g. that vi � k�1
2 , for i ¼ 0; 1; . . . ; n� 1. Consider

any path from u to v that does not use any “wrap-around”

edge, i.e., an edge where the ith component of one incident

vertex is k� 1 and where the ith component of the other
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incident vertex is 0, for some i. Such a path must alternate

between odd parity and even parity vertices; thus, such

paths are either all of even length or all of odd length

(depending upon whether dðu; vÞ is even or odd). Suppose

that dðu; vÞ is odd (and so all such paths are of odd

length). Let i be such that vi is maximal from among

fvn�1; vn�2; . . . ; v0g. Any path from u to v of length, at most

vn�1 þ . . .þ viþ1 þ ðk� vi � 1Þ þ vi�1 þ . . .þ v0

¼ dðu; vÞ þ k� 2vi � 1;

cannot use a wrap-around edge and so must be of odd

length. Consequently, there are no even length paths from u

to v of length less than dðu; vÞ þ k� 2vi. Identical reasoning

implies that if dðu; vÞ is even, then there are no odd length

paths from u to v of length less than dðu; vÞ þ k� 2vi.

Consequently, we have a lower bound on the length of a

shortest path, joining u and v and of parity different from

that of dðu; vÞ.
Choose the vertex v of Qk

n to be such that vn�1 ¼ 1 and

vj ¼ 0, for j ¼ 0; 1; . . . ; n� 2. Thus, there exists a vertex v

such that dðu; vÞ is odd and there are no paths joining u and

v of even length less than dðu; vÞ þ k� 2. There clearly also

exists a vertex v0 such that dðu; v0Þ is even and there are no

paths joining u and v0 of odd length less than dðu; vÞ þ k� 2.

Consequently, as we are interested in general statements

concerning all pairs of distinct vertices from Qk
n, we shall

only look for even (respectively, odd) length paths joining u

and v of length at least dðu; vÞ þ k� 2, when dðu; vÞ is odd

(respectively, even).

Theorem 6. Let k � 3 and n � 2, with k odd, and let u and v be

distinct vertices of Qk
n. There are paths joining u and v of all

lengths in fi : dðu; vÞ þ k� 3 � i � kn � 1g. Furthermore,

this result is optimal in that there exist distinct vertices u and

v of Qk
n for which dðu; vÞ is odd (respectively, even) and there

are no even-length (respectively, odd-length) paths joining u

and v of length less than dðu; vÞ þ k� 2.

Proof. The proof is very similar in structure to that of

Theorem 4, and we adopt the exact same notation as in

that proof (and in the proof of Theorem 2). There are

two cases, according to whether dðua; vÞ is odd or even.

Given the earlier proofs, we are much briefer with our

arguments here.

Case 1. dðua; vÞ is even.

By Theorem 4, there exists a Hamiltonian path �a
from ua to v in Qk

nðaÞ, which can be progressively

shortened to obtain paths of all even lengths between

dðua; vÞ ¼ dðu; vÞ � a and kn�1 � 1, inclusive. As in the

proofs of Theorems 2 and 4, the paths �0; �1; . . . ; �k�1

yield a k� kn�1 grid, with rows 1; 2; . . . ; k and columns

1; 2; . . . ;m, where m ¼ kn�1, with “wrap-around” col-

umn edges.

Subcase 1.1. Suppose that a is even (and so v lies on

odd row aþ 1 � 1 and on column m). Build the path � as

depicted in Fig. 7a. It is easy to see that � has length

kn � 2 and can be progressively shortened to obtain

paths of all odd lengths between ðk� 1Þ þ dðua; vÞ þ aþ
1 ¼ dðu; vÞ þ k and kn � 2 (shorten so that the resulting

subpath of length kn�1 � 1 lies on row k).

Subcase 1.2. Suppose that a is odd (and so v lies on

even row aþ 1 � 2 and on column m). Build the path �

as depicted in Fig. 7b. It is easy to see that � has length

kn � 1 and can be progressively shortened to obtain

paths of all even lengths between ðk� 1Þ þ dðua; vÞ þ aþ
1 ¼ dðu; vÞ þ k and kn � 1.

Case 2. dðua; vÞ is odd.

By Theorem 4, there exists an almost-Hamiltonian

path �a from ua to v in Qk
nðaÞ, which can be progressively

shortened to obtain paths of all odd lengths between

dðua; vÞ ¼ dðu; vÞ � a and kn�1 � 2, inclusive, and so that

the residual vertex is adjacent to v. As before, the paths

�0; �1; . . . ; �k�1 and the residual vertices yield a k� kn�1

grid, with rows 1; 2; . . . ; k and columns 1; 2; . . . ;m, where

m ¼ kn�1, with “wrap-around” column edges.

Subcase 2.1. Suppose that a is odd (and so v lies on

even row aþ 1 � 2 and on column m� 1). Build the

path � as depicted in Fig. 8a. It is easy to see that �

has length kn � 2 and can be progressively shortened

to obtain paths of all odd lengths between ðk� 1Þ þ
dðua; vÞ þ aþ 1 ¼ dðu; vÞ þ k and kn � 2.

Subcase 2.2. Suppose that a is even (and so v lies on

odd row aþ 1 � 1 and on column m� 1). Build the

path � as depicted in Fig. 8b. It is easy to see that �

has length kn � 1 and can be progressively shortened

to obtain paths of all even lengths between ðk� 1Þ þ
dðua; vÞ þ aþ 1 ¼ dðu; vÞ þ k and kn � 1.
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In order to complete the construction of our paths, we
deal with some special cases. W.l.o.g., assume that
vn�1 6¼ 0. There is trivially a path of length

ðk� vn�1Þ þ vn�2 þ . . .þ v0 ¼ dðu; vÞ þ k� 2vn�1

� dðu; vÞ þ k� 2;

joining u and v. We can easily lengthen this path to
obtain a path of length dðu; vÞ þ k� 2 joining any distinct
vertices u and v. Hence, no matter which vertex v is,
Theorem 4 yields paths as in the statement of the result.
Optimality follows by the argument presented prior to
the statement of the result. tu
Note that putting k ¼ 3 in Theorem 6 yields the result

from [15] that Q3
n is edge-pancyclic, and also resolves the

question for arbitrary k, as was posed in [15]. The
following corollary is immediate, given the fact that the
diameter of Qk

n, when k is odd, is nðk�1Þ
2 .

Corollary 7. Let k � 3 and n � 2, with k odd. The k-ary n-
cube Qk

n is m-panconnected, for m ¼ nðk�1Þþ2k�6
2 , and

ðk� 1Þ-pancyclic.

As remarked earlier, the bounds in Corollary 7 are optimal.

6 AN APPLICATION

We give here the outline of an application where we require
our paths to be progressively shortened and where
alternative shortening methods will not suffice.

Consider a parallel machine whose underlying inter-
connection network is a k-ary n-cube, and where this
machine is required to solve problems specifically designed
for a cycle of processors (among other problems), with the
number of processors involved in the cycle being variable.
Moreover, there is known to be a faulty processor in the
machine, and this faulty processor cannot be used in any
embedded cycle. Furthermore, the location of the fault is
not known and any cycle must be constructed in a
distributed fashion, through message-passing between
processors.

For simplicity, suppose that k is even and n ¼ 2;
consequently, any cycle we construct must have even
length. We begin our construction by processor (0, 0)
attempting to construct a Hamiltonian path to processor
(0, 1) according to the construction in Proposition 1.
Actually, the path is constructed as in Case 1.3 of [27,
Theorem 1]. It is important to note that the constructions
in Proposition 1 (and [27, Theorems 1 and 3]) are of such
a uniform nature that the processor at the head of the
path constructed so far can calculate in constant time the
name of the next processor on the path, and can send a
message to this processor, thus extending the path
constructed so far. If there were no faults, then this
construction would terminate with a Hamiltonian path
from (0, 0) to (0, 1) laid out in the k-ary 2-cube. However,
the construction will halt when the faulty processor is
encountered (we assume that the processor immediately
before the fault on the constructed path can detect that
the next processor is faulty).

Let p be the processor that detects that the faulty
processor is the next processor on the path, and suppose

that this faulty processor is f ¼ ði; jÞ. The processor p sends
a message to processor s ¼ ðiþ 1; jÞ (over at most four hops,
with addition modulo k) that it should use the construction
of Proposition 1 to embark on the construction of a path of

length k2 � 2 to the processor ði; j� 1Þ. Note that the path,
as shown in Fig. 2b (that is, the amended construction of a
case from [27]), avoids the faulty processor f . We reiterate
that the uniform nature of the construction is such that the

processor at the head of the path constructed so far can
calculate in constant time the name of the next processor on
the path, and can send a message to this processor, thus
extending the path constructed so far. Having reached the
processor ði; j� 1Þ, we actually truncate the path at

processor t ¼ ðiþ 1; j� 1Þ. Thus, we have a path of length
k2 � 3 from processor s to t, avoiding processor ði; j� 1Þ
and the faulty processor f . Moreover, this path can be
progressively shortened so as to obtain any odd length path

(of length, at most, k2 � 3) joining s to t (and avoiding f).
Furthermore, again because of the uniformity of the
construction and also the uniformity of the progressive
shortening, this progressive shortening can easily be
completed by message-passing between the processors. In

fact, message-passing can be used so that every processor q
on the path computes a list of triples of the form ðqþ; q�; iÞ
detailing that q appears on a path of length i from s to t so
that that the processor q� (respectively qþ) is the next
processor on this path moving towards s (respectively t).

The existence of the edge ðs; tÞ gives our embedded fault-
avoiding cycles of varying lengths.

The above construction can be generalized to an
analogous construction of fault-avoiding paths and cycles
in Qk

n, where there is a faulty processor. As we stated

above, we have not presented the precise details of this
generalization; what suffices is that the general principle
has been presented and any interested reader could
implement the construction if needs be. We envisage that

there are many other applications of progressive short-
ening but we have chosen not to explore these applica-
tions here.

7 CONCLUSIONS

In tandem with [15] and [27], we have resolved

completely the main questions concerning panconnectiv-
ity, bipanconnectivity, pancyclicity, and bipancyclicity for
a k-ary n-cube Qk

n, when k � 3 and n � 2. In doing so,
we have introduced the new concept of the progressive
shortening of a path and shown how this concept can be

used to solve a problem related to the embedding of
linear arrays and cycles of processors in a distributed-
memory multiprocessor whose interconnection network is
a k-ary n-cube and where there is one faulty processor.

As directions for future research, we would like to see

more applications of progressive shortening (and feel that
the concept will prove to be more widely applicable).
Also, we would like to see results on panconnectivity,
pancyclicity, and so forth, extended to k-ary n-cubes in

which there may be (a limited number of) faulty vertices
or edges.
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