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1. Introduction and Statement of Results

The integrated density of states (IDS) is an important notion in the quantum theory
of solids and describes the number of electron states below a certain energy level
per unit volume. Let us shortly explain this notion in the case of a disordered solid,
e.g., an alloy of two metals with a crystal structure where the nuclei of the two metals
are randomly distributed at the lattice points. The situation can be described quan-
tum mechanically by a corresponding family Ho ¼ Dþ Vo of random Schro« dinger
operators. Due to the macroscopic dimensions of the solid one can consider
operators on the whole R3. Let Ln � R3 denote a cube of sidelength n, centered
at the origin, and letHo

Ln
denote the restriction ofHo to Ln with a suitable boundary

condition (e.g. Dirichlet or Neumann or periodic). Then the IDS is the limit of the
corresponding eigenvalue counting functions of Ho

Ln
, normalized by the volume

of the cubes Ln. An ergodicity assumption yields the fact that one can associate
to the whole family fHog a nonrandom spectrum, i.e., that almost all operators have
the same spectrum. Moreover, the points of increase of the IDS coincide with the
almost sure spectrum of fHog. The nonrandomness of spectral data implies that
the alloy exhibits almost surely a particular behavior of conductivity. For the
importance of the IDS from the viewpoint of solid state physics see [BBEE+84,
ES-84, Lif-85, LGP-88]. An overview over the mathematical results on random
Schro« dinger operators is given in the books [CL-90] and [PF-92]. Early rigorous
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results on the IDS can be found, e.g., in articles by Pastur [Pas-71a, Pas-71b, Pas-80]
or Shubin [Shu-79, Shu-82]. A good introductory course on random Schro« dinger
operators is [Kir-89].
Our aim is to generalize the classical existence result of a nonrandom IDS for

random Schro« dinger operators to more general spaces. The main results are
Theorems 1.3 and 1.4 below. They are generalizations of [PV-00]. We consider
the universal Riemannian covering X of a compact Riemannian manifold
M ¼ X=G with an in¢nite group G of deck transformations. In this context, Adachi,
Bru« ning and Sunada [BS-92, AS-93] proved the existence of an IDS for a G-periodic
elliptic operator H in the case that G is amenable. They also proved that this
IDS agrees with the G-trace of the spectral projections ofH. Note also that Dodziuk
and Mathai in their paper [DM-97] on L2-Betti numbers derived a result for the IDS
of the pure Laplace operator on k-forms. All mentioned results on the IDS use
Shubin’s [Shu-82] convergence criterium based on the Laplace transform.
In this article we consider a family of Schro« dinger operators Ho ¼ Dþ Vo (on a

Riemannian manifold X ), which are parametrized by the elements of a probability
space. More precisely, we consider the following objects:

DEFINITION 1.1. Let X be the Riemannian universal covering of a compact
Riemannian manifoldM ¼ X=G and fHo ¼ Dþ Vogo2O be a family of Schro« dinger
operators, parametrized by elements of the probability space ðO;A;PÞ. The family
fHog is called an ergodic random family of Schro« dinger operators, if the potential
V : O
 X ! R is jointly measurable and if there exists an ergodic family of measure
preserving transformations fTg: O! Ogg2G with Tg1g2 ¼ Tg1Tg2 such that the poten-
tial satis¢es the following compatibility condition

VTgoðxÞ ¼ Voðg�1xÞ ð1Þ

for all o 2 O, g 2 G and x 2 X .

According to our convention D is a nonnegative operator.
For the notion of measurability of random unbounded selfadjoint operators we

refer to [KM-82a, Section 2] and [CL-90, Chapter V]. The ergodicity of such
operators is thoroughly investigated in [PF-92]. If X 
 O 3 ðx;oÞ 7!VoðxÞ is jointly
measurable, the multiplication operatoro 7!Vo is measurable in the sense of Kirsch
and Martinelli [KM-82a]. Furthermore, by their Proposition 2.4 we know that
Ho ¼ Dþ Vo is measurable, too.
In the Euclidean case X ¼ Rn, mild integrability assumptions on ðx;oÞ 7!VoðxÞ

ensure the independence of the IDS of the boundary conditions (b.c.) used for
its construction (see [KM-82b]). In relation to cubes Ln, one can consider Dirichlet
and Neumann b.c. as well as periodic ones. In more general geometries,
b.c. (in)dependence is a more subtle question. See [Sz-89, Sz-90], where Dirichlet
and Neumann IDS on hyperbolic spaces are compared.
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Note that ergodicity of the family fTgg means that the only invariant measurable
sets A � O are measure-theoretically trivial, i.e.PðAÞ ¼ 0 orPðAÞ ¼ 1. For technical
reasons (in order to apply a Sobolev lemma) we require that there exists a constant
C0 > for an ergodic random family of Schro« dinger operators such that

krkVok1WC0; for all o 2 O and kW 1
2 dimðXÞ þ 2: ð2Þ

This implies in particular that Vo is in¢nitesimally D-bounded, uniformly in o. It
seems that this regularity condition on the potential may be relaxed considerably
by using stochastic methods instead of analytical methods for the required heat
kernel estimates. Another approach to circumvent strong regularity assumptions
could be the use of quadratic forms [Sim-71].

EXAMPLE. Let X and G be as in De¢nition 1.1. Then we can consider the following
potential, which is an analogue of an alloy-type potential in the Euclidean setting:
Let u: X ! R be a smooth function with compact support. We choose

O ¼ 
g2GR, equipped with the product measureP ¼ �g2Gm, where m is a probability
measure on R. Then the random variables pg: O! R, pgðoÞ ¼ og are independent
and identically distributed. The transformations ðTg1ðoÞÞg2 ¼ og�11 g2

are measure
preserving and ergodic. ThenHo ¼ Dþ Vo with VoðxÞ ¼

P
g2G pgðoÞuðg

�1xÞ de¢nes
an ergodic random family of Schro« dinger operators. Note that Vo is a superposition
of G-translates of the single site potential u with coupling constants given by the
random variables.

Let us introduce some more notation. For a given h > 0, the h-boundary ofD � X
is de¢ned as

@hD ¼ fx 2 X j dðx; @DÞW hg:

A subset of X is called a regular domain if it is the nonempty interior of a connected
compact set with smooth boundary. A regular set D is a ¢nite union
D ¼

Sk
j¼1Dj of regular domains with disjoint closures Dj . In the sequel we will often

deal with h-approximations and h-regularizations:

DEFINITION 1.2. Let U;V � X be open subsets and h > 0. V is called an
h-approximation of U, if the symmetric difference satis¢es the following property:

UDV � @hU : ð3Þ

If, additionally, V is a regular set, we call V an h-regularization of U. Similarly, a
sequence fVng is called an h-approximation (h-regularization) of fUng if there is
a ¢xed h > 0 with UnDVn � @hUn for all n (and the sets Vn are regular). If only
the existence and not the actual value of h > 0 is of importance, we also refer to
fVng as an approximation (regularization) of fUng.
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Remarks. (1) For p 2 X let BrðpÞ denote the open metric r-ball around p. Then
BrþhðpÞ is an h-approximation of BrðpÞ, but generally not vice versa (think, e.g.,
of the ball of radius p� h=2 around any point of the unit 2-sphere).
(2) Relation (3) ist equivalent to Un@hU � V � ðU [ @hUÞ and implies @V � @hU .
(3) A natural procedure to construct an h-regularization V of a set U goes as

follows: Choose a smooth function g: X ! ½0; 1� with

gðxÞ ¼
0; for x 2 XnU;
1; for x 2 Un@hU;

�

a regular value t 2 ð0; 1Þ of g, and V ¼ g�1ððt; 1�Þ. g can be obtained by smoothing the
characteristic function wUn@hU via a suitable convolution process.

The restriction of a Schro« dinger operator Ho to a regular set D with Dirichlet
boundary conditions is denoted by Ho

D . It is well known that such an operator
has discrete spectrum and, thus, we can de¢ne the normalized eigenvalue counting
function (including multiplicities) as

No
DðlÞ ¼

#fi j liðHo
DÞ < lg

jDj
; ð4Þ

where jDj denotes the volume of D. A nonnegative, monotone increasing and
left-continuous function on R is called a distribution function. Thus, No

D is a dis-
tribution function. Note that a distribution function has at most countably many
discontinuity points.
For a better understanding of our general result we ¢rst state the simpler case

where we assume G to be of polynomial growth. We denote the metric open r-ball
around p 2 X by BrðpÞ. Then we have, for every p 2 X , a sequence of increasing
radii r1 < r2 < � � � satisfying

lim
n!1

j@dBrnðpÞj
jBrnðpÞj

¼ 0 for all d > 0: ð5Þ

This follows readily from Lemma 3.2. in [AS-93]. Since metric balls may not be
regular sets (due to the existence of conjugate points), we need a regularization
of those balls in the following theorem.

THEOREM 1.3. Let X be the Riemannian universal covering of a compact
Riemannian manifold M ¼ X=G and assume that G is of polynomial growth. Let
Ho ¼ Dþ Vo be a family of ergodic random Schro« dinger operators satisfying (2).
Then there exists a (nonrandom) distribution function N with the following property:
For every p 2 X and any regularization Dn of an increasing sequence of balls Brn ðpÞ
satisfying (5) we have, for almost all o 2 O,

NðlÞ ¼ lim
n!1

No
Dn
ðlÞ
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at all continuty points of N. Note that NDn denotes the normalized eigenvalue counting
function of the restricted operator Ho

Dn
with Dirichlet boundary condition, as de¢ned

in (4). N is called the integrated density of states (IDS) of the family fHog.

In fact, existence of a nonrandom IDS can be proved in the much more general
setting of amenable covering groups G. In the following general result, we use
the notion of ‘admissible sequences’. This is our generalization of the cubes Ln

in the Euclidean case. However, to avoid too many technical details, we postpone
the precise de¢nition of this notion to the next section.

THEOREM 1.4. Let X be the Riemannian universal covering of a compact
Riemannian manifold M ¼ X=G and assume that G is amenable. Let
Ho ¼ Dþ Vo be a family of ergodic random Schro« dinger operators satisfying (2).
Then there exists a (nonrandom) distribution function N such that we have, for every
admissible sequence Dn � X and almost every o 2 O, NðlÞ ¼ limn!1No

Dn
ðlÞ at all

continuity points of N. N is called the integrated density of states of the family fHog.

As mentioned before, we do not present the de¢nition of admissible sequences at
this point. We think it is more useful to give some information about the existence
of those sequences to give some feeling for the applicability of Theorem 1.4.

PROPOSITION 1.5. Let X be the Riemannian universal covering of a compact
Riemannian manifold M ¼ X=G. For every monotone increasing sequence Dn � X
of regular sets satisfying the following property

lim
n!1

j@dDnj

jDnj
¼ 0 for all d > 0; ðPÞ

there exists a subsequenceDnj which is an admissible sequence. Henceforth, we refer to
this isoperimetric property of (not necessarily regular) subsets of X as property (P).
The existence of a sequence fDng satisfying property (P) is equivalent to the fact that
G is amenable.

The ¢rst part of this proposition will be proved after the de¢nition of admissible
sequences in the next section. The equivalence statement coincides essentially with
[AS-93, Prop. 1.1.].
In the particular case that G is of polynomial growth (and, thus, automatically

amenable) there are two natural choices for admissible sequences: either via com-
binatorial balls in G or via metric balls in X . This is the content of Proposition
1.6 below. However, if one drops the assumption on the polynomial growth, metric
balls do not seem to be always an appropriate choice for admissible sequences.
For example, choose X to be the three-dimensional diagonal horosphere of the
Riemannian product of two real hyperbolic planes. X is a solvable Lie group with
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a left invariant metric admitting a cocompact lattice G.? Thus, G is amenable and
Proposition 1.5 guarantees the existence of admissible sequences.?? On the other
hand, metric balls BrðpÞ � X have exonential volume growth (see [KP-99, p. 669]).
This yields strong evidence that a sequence of those balls cannot be used as an
admissible sequence.
In order to state Proposition 1.6 below we again need some notation.
Let X and G be as before. It was explained in [AS-93, Section 3] how to obtain a

connected polyhedral G-fundamental domain F � X by lifting simplices of a
triangularization of M in a suitable manner. F consists of ¢nitely many smooth
images of simplices which can overlap only at their boundaries. Using a polyhedral
fundamental domain F , any ¢nite subset I � G induces naturally a corresponding
subset fðIÞ � X de¢ned as

fðIÞ ¼ intðIFÞ ¼ int
[
g2I

gF

 !
: ð6Þ

PROPOSITION 1.6. Let X be the Riemannian universal covering of a compact
Riemannian manifold M ¼ X=G and G be of polynomial growth.
(a) Let F be a connected polyhedral fundamental domain and f be the correspond-

ing map (see (6)). Let e be the identity element of G, E a ¢nite set of generators
of G with e 2 E ¼ E�1 and En � G the combinatorial ball of radius n 2N about
e. Then there exists an increasing sequence r1 < r2 < � � � of integer radii such that

jErnþdnErn�d j

jErn j
! 0 for all d 2N: ð7Þ

Any regularization of ffðErn Þg is an admissible sequence.
(b) Let p 2 X be an arbitrary point. Then there exists an increasing sequence

r1 < r2 < � � � of radii such that the corresponding metric balls fBrnðpÞg satisfy (5).
Moreover, any regularization of fBrng is an admissible sequence.

We obtain as an immediate consequence of Proposition 1.6 (b) that Theorem 1.3 is
a particular case of Theorem 1.4. Thus it suf¢ces to prove Theorem 1.4 which is done
in Section 4.

2. Admissible Sequences and Ergodic Theorem

An important tool in the existence proof of a nonrandom IDS is an ergodic theorem
for the group G of deck transformations on X . We will use Lindenstrauss’s pointwise
ergodic theorem which is related to a maximal ergodic theorem of Shulman (see
[Lin-99]; further informations about ergodic theorems can be found in [Kre-85]

?X=G coincides with the solvmanifold decribed in [Thu-97, Example 3.8.9].
??An admissible sequence for the diagonal horosphere is explicitely given in [KP-99, p. 668].
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or [Tem-92]). Lindenstrauss’s theorem applies to discrete amenable groups. This
section contains some useful geometric facts and their interaction with this ergodic
theorem.
As in the previous section, let F � X denote a connected polyhedral fundamental

domain of G and f the associated map from ¢nite subsets of G to open subsets
of X (see (6)), which we assume to be ¢xed once and for all.

DEFINITION 2.1. A sequence fDng of regular subsets of X is called an admissible
sequence of X if the following properties are satis¢ed:

� There exists a sequence fIng of monotone increasing, nonempty, ¢nite subsets of G
with

lim
n!1

jInDIngj
jInj

¼ 0; for all g 2 G; ð8Þ

sup
n2N

jInþ1I�1n j

jInþ1j
<1: ð9Þ

Let An ¼ fðInÞ. (Lemma 2.4 below implies that fAng satis¢es property (P).)
� Either fAng is an approximation of fDng and fDng satis¢es the isoperimetric prop-

erty (P), or fDng is an approximation of fAng. (In the second case, fDng satis¢es
property (P) automatically, see the second statement of Lemma 2.5 below.)

Sequences satisfying only (8) are called Fo= lner sequences. Monotone increasing
sequences fIng satisfying (8) and (9) are called tempered Fo= lner sequences.

Equation (8) describes geometrically that the group G is amenable. Condition (9)
and the notion ‘tempered F�lner sequence’ are due to A. Shulman who proved a
maximal ergodic theorem for those sequences. The following proposition states that
(9) is not a serious restriction for F�lner sequences:

PROPOSITION 2.2 (see [Lin-99, Prop. 1.5]). Every F�lner sequence has a tempered
subsequence. In particular, every amenable group admits a monotone increasing
sequence fIng satisfying (8) and (9).

Next we state Lindenstrauss’ pointwise ergodic theorem [Lin-99, Thm. 1.3].

THEOREM 2.3. Let G be an amenable discrete group and ðO;A;PÞ be a probability
space. Assume that G acts ergodically on O by measure preserving transformations
fTgg. Let fIng be a tempered F�lner sequence. Then we have, for every f 2 L1ðOÞ
and for almost all o 2 O,

lim
n!1

1
jInj

X
g2I�1n

f ðTgoÞ ¼ Eðf Þ ¼
Z
O
f ðoÞdPðoÞ: ð10Þ

ERGODIC RANDOM SCHRO« DINGER OPERATORS ON MANIFOLDS 123



Furthermore

lim
n!1

Z
O

			Eð f Þ � 1
jInj

X
g2I�1n

f ðTgoÞ
			dPðoÞ ¼ 0:

In the statement of the theorem one can replace the space L1 by L2, due to Shulman
[Shul-88]. Mean ergodic theorems hold in more general circumstances, see, e.g.,
[Tem-72, Thm. 6.4] or [Kre-85, ‰6.4].
The reader might wonder why there is a summation over I�1n instead of In in (10).

The reason for this choice is simply that we want it to ¢t, without modi¢cation,
for the application later in the paper. Lindenstrauss’s theorem contains a summation
over In. Accordingly, our conditions on In agree with those of him only after replac-
ing In by I�1n . Note that condition (8) is equivalent to

lim
n!1

jI�1n DgI�1n j

jI�1n j
¼ 0; for all g 2 G:

The following lemma exhibits a useful connection between the isoperimetric
property (P) and the F�lner condition (8).

LEMMA 2.4. Let In � G be a sequence of nonempty, ¢nite sets and let An ¼ fðInÞ.
Then the following properties are equivalent:

(a) fIng satis¢es the F�lner condition (8).
(b) fAng satis¢es the isoperimetric property (P).

Proof.We ¢rst show that (a) implies (b). For an arbitrary ¢xed d > 0 we de¢ne the
following ¢nite set:

B ¼ fg 2 G j dðgF ;FÞW dg:

We ¢rst observe that if A ¼ fðIÞ, then

Td ðAÞ :¼ fx 2 X j dðx;AÞW dg � fðIBÞ:

In fact, for any x 2 TdðAÞ there exists an x0 2 A and a g 2 I with dðx; x0ÞW d and
x0 2 gF . Consequently, we have dðg�1x;FÞW d and, thus, there exists a g 2 B with
g�1x 2 gF . This implies x 2 ggF � fðIBÞ.
For the proof we apply this observation twice. From An ¼ fðInÞ we conclude that

Td ðAnÞ nAn � fðInBÞ nfðInÞ ¼ fðInBnInÞ:
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Let Hn ¼ InBnIn. A second application of the above observation yields

@dAn � TdðTdðAnÞ nAnÞ � fðHnBÞ

� f
[

g1;g22B

ðIng1DInÞg2

 !
¼

[
g1;g22B

fððIng1DInÞg2Þ:

This implies

j@dAnj

jAnj
W

X
g1;g22B

jfðIng1g2DIng2Þj
jfðInÞj

¼ jBj �
X
g12B

jIng1DInj
jInj

�!0;

¢nishing the proof of the ¢rst implication.
For the proof of ‘(b)) (a)’ it suf¢ces to show that there is a d > 0 (not dependent

on n) such that fðInDIngÞ � @dAn. We ¢rst prove that fðIngnInÞ � @d0þd1An, where
d0 ¼ dðgF ;FÞ and d1 ¼ diamðFÞ. Let g 2 IngnIn. Then g ¼ g0g with g0 2 In and
g0F � An, gF \ An ¼ ;. Since dðgF ; g0FÞ ¼ d0 we conclude that there exists a
z 2 @An with dðz; gFÞW d0. This implies that gF � @d0þd1An, ¢nishing this inclusion.
We are done if we prove that fðInnIngÞ � @2d0þ2d1An. Let g 2 InnIng. Then we have
gg�1 2 Ing�1nIn and we obtain by the previous considerations that gg�1F �
@d0þd1An. The required inclusion follows now from gF � Td0þd1 ðgg

�1FÞ. &

LEMMA 2.5. Let fUng be a sequence of subsets of X satisfying the isoperimetric
property (P). Then we have, for every radius r > 0, an index n0 ¼ n0ðrÞ such that every
set Un, nX n0, contains ametric ball of radius r.Moreover, if fVng is an approximation
of fUng, then fVng satis¢es also property (P).

Proof.We assume that there exists an r > 0 and a sequence n1 < n2 < n3 < � � � such
that we have BrðpÞ 6� Unj for all p 2 Unj and all jX 1. This implies Unj � @rUnj , which
is a contradiction to property (P). It remains to prove the second statement. We have
Unn@hUn � Vn � ðUn [ @hUnÞ and @Vn � @hUn. This implies that

j@dVnj

jVnj
W
j@hþdUnj

jUnj

jUnj

jUnn@hUnj
¼
j@hþdUnj

jUnj

jUnj

jUnj � jUn \ @hUnj
! 0: ð11Þ

Note that, for n large enough, the denominator jUnn@hUnj in (14) is strictly larger
than 0. &

Remark. The second statement in Lemma 2.5 is not symmetric w.r.t. Vn and Un.

Proposition 1.5 is now a consequence of Proposition 2.2 and the previous
geometric considerations:

Proof of Proposition 1.5. Let Dn � X be as in the proposition. We de¢ne
In ¼ fg 2 G j gF � Dng. Note that In � G is monotone increasing and nonempty,
for n suf¢ciently large, by the ¢rst statement of Lemma 2.5. One easily checks that
An ¼ fðInÞ is a d1-approximation of Dn with d1 ¼ diamðFÞ. Thus, by the second
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statement of Lemma 2.5, An inherits the isoperimetric property of Dn. This implies,
by Lemma 2.4, that In is an increasing F�lner sequence. By Proposition 2.2, there
exists a tempered F�lner subsequence Inj . Consequently, Dnj is an admissible
sequence. &

Proof of Proposition 1.6 .Note that G is of polynomial growth. We ¢rst prove (a).
The existence of an increasing sequence of radii rn satisfying (7) was proved in
[Ad-93, Prop. 5]. Let In ¼ Ern . (8) follows readily from Lemma 2.4. By Gromov’s
famous result [Gro-81], G is almost nilpotent and this implies, together with [Ba-72],
that there exist a constant CX 1 such that

rk

C
W jErjWCrk; ð12Þ

where k 2N is the degree of G. This immediately yields (9):

jInþ1I�1n j

jInþ1j
W
jE2rnþ1 j

jErnþ1 j
W 2kC2:

Now we prove (b). W.l.o.g. we can assume that p 2 F . Let In ¼ fg 2 G j gF � BrnðpÞ.
The F�lner property of In follows precisely as in the proof of Proposition 1.5. It
remains to prove (9). One easily checks that

Brn�d1 ðpÞ � An ¼ fðInÞ � Brn ðpÞ ð13Þ

with d1 ¼ diamðF Þ. Let k � k denote the word norm of G with respect to E. Milnor
showed in [Mil-68] that there are aX 1, bX 0 such that

1
a
kgk � bW dðp; gpÞW akgk:

This implies, together with (13), that

fg 2 G j kgkW
1
a
ðrn � d1Þg � In � fg 2 G j kgkW aðrn þ bÞg;

and the same inclusions hold for I�1n . Consequently, we have

fg 2 G j kgkW
2
a
ðrn � d1Þg � InI

�1
n � fg 2 G j kgkW 2aðrn þ bÞg;

and the required estimate follows, again, by (12). &

The ¢nal lemma of this section, which we will apply later to heat kernels, is an
immediate consequence of Lindenstrauss’s ergodic theorem.

LEMMA 2.6. Let In � G be a tempered F�lner sequence and An ¼ fðInÞ � X. Assume
that G acts ergodically on a probability space ðO;A;PÞ by measure preserving
transformations fTgg. Let f : O
 X ! R be a jointly measurable bounded function
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satisfying the compatibity condition

f ðTgo; xÞ ¼ f ðo; g�1xÞ

for all o 2 O, g 2 G and x 2 X. Then we have, for almost all o 2 O,

lim
n!1

1
jAnj

Z
An

f ðo; xÞ dx ¼
1
jF j

E

Z
F

f ð�; xÞ dx

 �

; ð14Þ

where E denotes the expection on O. The convergence holds in the L1ðOÞ-topology, as
well.

Proof. Let F ðoÞ ¼
R
F
f ðo; xÞdx. Then we obviously have F 2 L1ðOÞ. We conclude

that

1
jAnj

Z
An

f ðo; xÞ dx ¼
1
jInj

X
g2In

1
jF j

Z
gF

f ðo; xÞ dx

¼
1
jInj

X
g2In

1
jF j

Z
F

f ðo; gxÞ dx

¼
1
jInj

X
g2In

1
jF j

Z
F

f ðTg�1o; xÞ dx

¼
1
jInj

X
g2I�1n

1
jF j

F ðTgoÞ:

Now Theorem 2.3 implies

lim
n!1

1
jAnj

Z
An

f ðo; xÞdx ¼
1
jF j

EðF Þ;

for almost all o 2 O and in L1-sense. &

3. Heat Kernel Estimates

In this section we derive heat kernel estimates for a family of Schro« dinger operators
fHo ¼ Dþ Vogo2O satisfying the regularity condition

krkVok1WC0; for all o 2 O and kW 1
2 dimðX Þ þ 2: ð15Þ

These estimates are, besides an ergodic theorem, the second crucial tool for our
existence proof of an IDS.
Due to the Kato-Rellich Theorem [RSII-75] all Ho are densely de¢ned selfadjoint

operators on L2ðX Þ and their domains coincide. By the spectral theorem we can
de¢ne the operator expð�tHoÞ, which has an integral kernel koðt; �; �Þ. Let
D � X be a regular set. We denote the restriction ofHo toDwith Dirichlet boundary
conditions by Ho

D and the corresponding heat kernel of expð�tH
o
DÞ by k

o
Dðt; �; �Þ. We

will need the following estimates.

ERGODIC RANDOM SCHRO« DINGER OPERATORS ON MANIFOLDS 127



PROPOSITION 3.1. Let Ho ¼ Dþ Vo, o 2 O, be a family of operators satisfying
(15). Then the following estimates hold:

(a) Domain Monotonicity: For every regular set D � X we have

0W koDðt; x; yÞW koðt; x; yÞ;

for all x; y 2 D and t > 0.
(b) Upper Bound: There exists a function CðtÞ, t > 0, such that

0W koðt; x; yÞWCðtÞ;

for all x; y 2 X and o 2 O.
(c) Principle of not feeling the boundary: For all t > 0 there exists an h ¼ hðt; eÞ > 0

such that, for all regular sets D � X and all o 2 O, we have

jkoðt; x; yÞ � koDðt; x; yÞjW e for all x; y 2 Dn@hD:

Proof. Inequality (a) is a consequence of the maximum principle for solutions of
the heat equation (see, e.g., [Tay-96] or [Cha-84]).
We now consider assertion (b). Let t > 0 be ¢xed. The heat kernel kðt; x; yÞ of the

Laplacian on X (i.e., without potential) is a continuous function (see, e.g., [Dav90])
satisfying kðt; x; yÞ ¼ kðt; gx; gyÞ for any g 2 G. Since G acts cocompactly on X ,
we conclude the existence of a constant C1ðtÞ with 0W kðt; x; xÞWC1ðtÞ. A simple
application of the semigroup property yields the same off-diagonal estimate

0W kðt; x; yÞW
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
kðt; x; xÞkðt; y; yÞ

p
WC1ðtÞ:

The potential can be treated with stochastic arguments which was proposed to us by
A. Thalmaier: Since X is stochastically complete, we can apply the Feynman^Kac
formula for manifolds (see, e.g., [Elw-82]) and obtain, for every f 2 C10 ðX Þ,Z

X
koðt; x; yÞ f ðyÞdy ¼ Ex f ðbtÞ exp

Z t

0
VoðbsÞds


 �
 �
;

where bt is the Brownian motion on X starting in x and Ex is the corresponding
expectation. Using kVokWC0 we obtain for every nonnegative f 2 C10 ðX Þ:Z

X
koðt; x; yÞf ðyÞdy

				
				 W Exð f ðbtÞÞeC0t W C1ðtÞeC0tkf k1:

Continuity of ko implies

jkoðt; x; yÞjWC1ðtÞeC0t;

¢nishing the proof of (b).
The proof of (c) is based on ¢nite propagation speed of the wave equation. The

roots of this approach can be found in [CGT-82]. We follow the arguments given
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in [LS-99, Thm 2.26] which are attributed to U. Bunke. For the reader’s convenience,
we present the proof in detail (see also [DM-97] for a related method).
To simplify the notation, we omit the index o. Due to condition (15), all

inequalities hold uniformly in o 2 O.
In what follows, t > 0 is ¢xed and h > 0 is kept variable. Let x0; y0 2 Dh :¼ Dn@hD

and B1 ¼ Bh=3ðx0Þ and B2 ¼ Bh=3ðy0Þ be the corresponding balls. Our ¢rst aim is to
prove existence of a function CðhÞ with CðhÞ ! 0, as h!1 such that, for every
u 2 C10 ðB2Þ and f ¼ ðe�tH � e�tHD Þu, the following pointwise estimate holds:

jHkf ðx0ÞjWCðhÞkuk2: ð16Þ

Our departure point is the following Fourier transform identity

ð�1Þmffiffiffiffiffi
pt

p

Z 1

0

d2m

ds2m
e�s

2=4t

 !
cosðsxÞds ¼ x2me�tx

2
: ð17Þ

Applying the spectral theorem to (17) with x ¼
ffiffiffiffiffi
H

p
and x ¼

ffiffiffiffiffiffiffi
HD

p
we obtain

Hkþl f ¼
Z 1

0
PðsÞe�s

2=4t ðcosðs
ffiffiffiffiffi
H

p
Þ � cosðs

ffiffiffiffiffiffiffi
HD

p
ÞÞu ds;

where PðsÞ is a ¢xed polynomial. Note that the coef¢cients of P are expressions in t
and that t is considered as a ¢xed positive constant. Unit propagation speed (see,
e.g., [Tay-96]) implies, for gs ¼ cosðs

ffiffiffiffiffi
H

p
Þu and hs ¼ cosðs

ffiffiffiffiffiffiffi
Hd

p
Þu that

suppðgsÞ; suppðhsÞ � B2h=3ðy0Þ � D

for s < h=3. Since gs and hs both satisfy the wave equation with initial conditions
gð0; �Þ ¼ u, @g=@sð0; �Þ ¼ 0, we conclude that gs � hs  0, for 0 < s < h=3. The
Cauchy^Schwarz inequality yields

kHkþl f k2L2ðB1ÞW
Z
B1

Z 1

h=3
jPðsÞðgsðxÞ � hsðxÞÞj e�s

2=4tds

 �2

dx

WA1ðhÞ
Z 1

h=3
jPðsÞje�s

2=4t
Z
B1
ðgsðxÞ � hsðxÞÞ

2dx ds;

where A1ðhÞ ¼
R1
h=3 jPðsÞje

�s2=4tds! 0, as h!1. Using, again, the spectral
theorem, we conclude from j cosðsxÞjW 1 that

kHkþl f kL2ðB1ÞW 2A1ðhÞkukL2ðB2Þ:

In order to obtain the pointwise estimate (16), we would like to apply a Sobolev
inequality of the type

jgðxÞjW
XN
l¼0

alkHlgkL2ðBh=3ðxÞÞ ð18Þ

for all g 2 C10 ðBh=3ðxÞÞ, where N ¼ ½ðdimX=2Þ þ 2�, and the coef¢cients al are
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independent of x 2 X and o 2 O. This is possible since X=G is compact. Moreover,
the condition g 2 C10 ðBh=3ðxÞÞ can be relaxed to g 2 C1ðBh=3ðxÞÞ, since, for
hX h0 > 0, we can choose, for every point x 2 X , cut-off functions
rx 2 C10 ðBh=3ðxÞÞ with universal bounds on the derivatives and, thus, apply an
estimate

kHlrxgkL2ðBh=3ðxÞÞW bl kgkL2ðBh=3ðxÞÞ þ gl kH
lgkL2ðBh=3ðxÞÞ

with universal constants bl; gl . This proves (16), namely

jHkf ðx0ÞjW
XN
l¼0

al kHkþl f kL2ðB1ÞWA2ðhÞ kukL2ðB2Þ;

where A2ðhÞ ! 0, as h!1.
Next, the heat kernels come into play:

jhHk
y ðkðt; x0; �Þ � kDðt; x0; �ÞÞ; uiL2ðB2Þj

¼

ð
B2
Hk

y ðkðt; x0; yÞ � kDðt; x0; yÞÞuðyÞ dy
				

				
¼

ð
B2
ðkðt; x0; yÞ � kDðt; x0; yÞÞðHkuÞðyÞ dy

				
				

¼ jððe�tH � e�tHD ÞHkuÞðx0Þj

¼ jHkf ðx0ÞjWA2ðhÞkukL2ðB2Þ:

Since u 2 C10 ðB2Þ was arbitrary, we conclude that

kHk
y ðkðt; x0; �Þ � kDðt; x0; �ÞÞkL2ðB2ÞWA2ðhÞ:

Again, using the Sobolev inequality (18), we end up with

jkðt; x0; y0Þ � kDðt; x0; y0ÞjWA3ðhÞ;

where A3ðhÞ ! 0, as h!1. Choosing h large enough, we obtain the required esti-
mate of the lemma. &

Remarks. (1) Estimate (b) of Proposition 3.1 is very crude, but suf¢cient for our
purposes. For a much better estimate, we refer the reader to [LY-86].
(2) For the Neumann heat kernel, estimate (c) is still valid [LS-99]. However,

Domain Monotonicity for Neumann heat kernels is a subtle question. See
[Cha-86,BB-93] and [CZ-94].
The following lemma states, in concise form, the crucial fact about heat kernels,

which is needed in the next section.

LEMMA 3.2 (Heat Kernel Lemma). Let fAng and fDng be two sequences of subsets of
X satisfying both the isoperimetric property (P). Moreover, we assume that the sets
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Dn are regular and that either fAng is an approximation of fDng, or vice versa.
Moreover, let Ho ¼ Dþ Vo, o 2 O, be a family of operators satisfying (15). Then
we have, for n!1,

sup
o2O

1
jAnj

Z
An

koðt; x; xÞdx�
1
jDnj

Z
Dn

koDn
ðt; x; xÞdx

				
				�!0: ð19Þ

Remark. Note that (19) can be also interpreted as the following limit of traces:

sup
o2O

1
jAnj

TrðwAn
e�tH

o
Þ �

1
jDnj

Trðe�tH
o
Dn Þ

				
				�!0;

where wA denotes the characteristic function of A � X .
Proof. Proposition 3.1 (b) and property (P) easily imply that

1
jAnj

Z
An

koðt; x; xÞdx�
1
jDnj

Z
Dn

koðt; x; xÞdx
				

				�!0:

Thus we have to prove (19) only in the case An ¼ Dn. Using, again, Proposition 3.1
and property (P) we conclude, for h ¼ hðt; eÞ, that

1
jDnj

ð
Dn

koðt; x; xÞdx�
1
jDnj

ð
Dn

koDn
ðt; x; xÞdx

				
				

W
1
jDnj

ð
ðDnn@hDnÞ

þ

ð
ðDn\@hDnÞ


 �
ðkoðt; x; xÞ � koDn

ðt; x; xÞÞdx

W
jDnn@hDnj

jDnj
eþ

j@hDnj

jDnj
CðtÞ�!e:

This ¢nishes the proof, since e > 0 was arbitrary. &

4. Proof of the Main Theorem

In this section we present the proof of Theorem 1.4. We assume that fDng is an
admissible sequence of X , and that In and An ¼ fðInÞ are the associated sequences
(see De¢nition 2.1). Let fHogo2O be an ergodic random family of Schro« dinger
operators satisfying the regularity condition (15). In order to show almost-
sure-convergence of the normalized eigenvalue counting functions No

Dn
to a

nonrandom distribution function N at all continuity points it suf¢ces to prove
pointwise convergence of the corresponding Laplace transformations. This fact
is a consequence of the following lemma. Recall that a distribution function is a
nonnegative, left-continuous, monotone increasing function.

LEMMA 4.1 (Shubin). Let Nn be a sequence of distribution functions such that

(a) there exists a c 2 R such that NnðlÞ ¼ 0 for all lW c and n 2N,
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(b) there exists a C1: Rþ
! R such that ~NNnðtÞ :¼

R
e�ltdNnðlÞWC1ðtÞ for all n 2N,

t > 0,
(c) limn!1 ~NNnðtÞ ¼: cðtÞ exists for all t > 0.

Then the limit NðlÞ :¼ limn!1NnðlÞ exists at all continuity points. N is, again, a
distribution function, and its Laplace transform is c.

Proof of Theorem 1.4. Now let t > 0 be ¢xed. The Laplace transforms of the
normalized eigenvalue counting functions can be written in terms of heat kernels:

~NNo
Dn
ðtÞ ¼

Z
Dn

e�tl dNo
Dn
ðlÞ ¼

1
jDnj

Trðe�tH
o
Dn Þ

¼
1
jDnj

Z
Dn

koDn
ðt; x; xÞdx: ð20Þ

Applying the heat kernel Lemma 3.2, we obtain

lim
n!1

~NNo
Dn
ðtÞ �

1
jAnj

Z
An

koðt; x; xÞdx
				

				 ¼ 0:

Note that the function ðo; xÞ 7! koðt; x; xÞ is jointly measurable. Equation (1) and the
spectral theorem imply that

e�tH
Tgo
¼ Uge

�tHo
U#

g ;

where Ug: L2ðX Þ ! L2ðX Þ are unitary operators, de¢ned by Ugf ðxÞ ¼ f ðg�1xÞ. This
yields kTgoðt; x; xÞ ¼ koðt; g�1x; g�1xÞ, and we can apply Lemma 2.6. Consequently,
we have, for almost all o 2 O:

lim
n!1

~NNo
Dn
ðtÞ ¼ lim

n!1

1
jAnj

Z
An

koðt; x; xÞdx ¼
1
jF j

E

Z
F

k�ðt; x; xÞdx

 �

:

Note that the conditions of Shubin’s Lemma are satis¢ed: The previous consider-
ations imply (c), for almost all o 2 O. (a) holds with c ¼ �C0, where C0 is the
constant in (15), and (b) follows from (20) and Proposition 3.1. Consequently, an
application of Shubin’s lemma ¢nishes the proof of Theorem 1.4. Moreover, we
obtain an explicit formula for the Laplace transform of the nonrandom IDS:

~NNðtÞ ¼
Z

e�ltdNðlÞ ¼
1
jF j

E

Z
F

k�ðt; x; xÞdx

 �

:

5. Discussion

There are at least two natural extensions of our results including random higher
order terms. From the physical point of view it would be interesting to include
a magnetic ¢eld term in the Schro« dinger operator. The non-Euclidean setting raises
the question whether one can consider the pure Laplace operator on a differentiable
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manifold equipped with a family of Riemannian metrics depending ergodically on a
random parameter. This may model, e.g., a quantum mechanical system of a
membrane with random hollows. For these cases, as well as for more singular
potentials, we would need to extend the methods of Section 3.
We restricted ourselves to the case where the group acton is discrete and the con-

¢guration space is continuous. One could also consider actions of Lie groups on
manifolds; or a graph instead of a manifold as the con¢guration space.
In collaboration with Daniel Lenz we currently investigate whether our IDS

coincides with a trace of an appropriate von Neumann algebra. The concept of
a von Neumann algebra of random operators may be also useful as a common
abstract setting for all the situations described in the previous paragraph. Such
an abstract setting for the case of an Abelian group acting on another Abelian group
was studied, e.g., in [Le-99].
Furthermore, from the physical point of view, it would be interesting to investigate

¢ner properties of the IDS for particular models: the continuity or differentiability of
l 7!NðlÞ, and the asymptotic behavior as l approaches an edge of the spectrum of
fHog, cf. [Sz-89, Sz-90].
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