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Abstract

We generalise the optimisation technique of dynamic programming for discrete-
time systems with an uncertain gain function. We assume that uncertainty about
the gain function is described by an imprecise probability model, which generalises
the well-known Bayesian, or precise, models. We compare various optimality criteria
that can be associated with such a model, and which coincide in the precise case:
maximality, robust optimality and maximinity. We show that (only) for the first
two an optimal feedback can be constructed by solving a Bellman-like equation.
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1 Introduction to the Problem

The main objective in optimal control is to find out how a system can be influenced,
or controlled, in such a way that its behaviour satisfies certain requirements, while
at the same time maximising a given gain function. A very efficient method for
solving optimal control problems for discrete-time systems is the recursive dynamic
programming technique, introduced by Richard Bellman [1].

To explain the ideas behind it, we refer to Figures 1 and 2. In Figure 1 we depict
a situation where a system can go from state a to state c through state b in three
ways: following the paths αβ, αγ and αδ. We denote the gains associated with these
paths by Jαβ, Jαγ and Jαδ respectively. Assume that path αγ is optimal, meaning
that Jαγ > Jαβ and Jαγ > Jαδ. Then it follows that path γ is the optimal way to go

1 This paper presents research results of project G.0139.01 of the Fund for Scientific
Research, Flanders (Belgium), and of the Belgian Programme on Interuniversity Poles of
Attraction initiated by the Belgian state, Prime Minister’s Office for Science, Technology
and Culture. The scientific responsibility rests with the authors.
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Fig. 1. Principle of Optimality
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Fig. 2. Dynamic Programming

from b to c. To see this, observe that Jαν = Jα+Jν for ν ∈ {β, γ, δ} (we shall assume
throughout that gains are additive along paths) and derive from the inequalities
above that Jγ > Jβ and Jγ > Jδ. This simple observation, which Bellman called
the principle of optimality, forms the basis for the recursive technique of dynamic
programming for solving an optimal control problem. To see how this is done in
principle, consider the situation depicted in Figure 2. Suppose we want to find the
optimal way to go from state a to state e. After one time step, we can reach the
states b, c and d from state a, and the optimal paths from these states to the final
state e are known to be α, γ and η, respectively. To find the optimal path from a to
e, we only need to compare the costs Jλ+Jα, Jµ+Jγ and Jν +Jη of the respective
candidate optimal paths λα, µγ and νη, since the principle of optimality tells us
that the paths λβ, νδ and νε cannot be optimal: if they were, then so would be
the paths β, δ and ε. This, written down in a more formal language, is what is
essentially known as Bellman’s equation. It allows us to solve an optimal control
problem fairly efficiently through a recursive procedure, by calculating optimal
paths backwards from the final state.

In applications, it may happen that the gain function, which associates a gain with
every possible control action and the resulting behaviour of the system, is not well
known. This problem is most often treated by modelling the uncertainty about
the gain by means of a probability measure, and by maximising the expected gain
under this probability measure. Due to the linearity of the expectation operator,
this approach does not change the nature of the optimisation problem in any
essential way, and the usual dynamic programming method can therefore still be
applied.

As an example, consider the simple linear system described by

xk+1 = axk + buk, k = 0, . . . , N − 1 (1)

where xk ∈ R denote the system state and uk ∈ R the control at time k, and
where a and b are non-zero real numbers. Given an initial state x0 and a sequence
u· of successive controls u0, u1, . . . , uN−1, the systems goes through the successive
states x1, x2, . . . , xN determined by Eq. (1), and we assume that with this control
there is associated a gain

J(x0, u·, ω) =
N−1∑
k=0

[x2
k + ωu2

k],

where ω is some positive real constant. Solving the present optimal control problem
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consists in finding a control u· that brings the system at time N in a given final
state xf , while at the same time maximising the gain J(x0, u·, ω). The dynamic
programming approach achieves this by reasoning backwards in time. First, the
control uN−1 is determined that maximises the gain

x2
N−1 + ωu2

N−1 =
(
xf − buN−1

a

)2

+ ωu2
N−1.

This control also determines a unique xN−1, and the procedure is then repeated
by finding a control uN−2 that maximises the gain x2

N−2 + ωu2
N−2, and so on . . .

The principle of optimality then ensures that the control u· found in this recursive
manner indeed solves the optimal control problem. When ω is not well known, and
only its probability distribution is given, the optimal control problem is solved by
maximising the expected value of the gain, which can in this special example be
done by replacing ω with its expectation.

It has however been argued by various scholars (see [2, Chapter 5] for a detailed
discussion with many references) that uncertainty cannot always be modelled ad-
equately by (precise) probability measures, because, roughly speaking, there may
not be enough information available to identify a single probability measure. In
those cases, it is more appropriate to represent the available knowledge through a
so-called imprecise probability model, e.g., by a coherent lower prevision, or what
is mathematically equivalent, by a set of probability measures. For applications of
this approach, see for instance [3,4]. In the example above, it may for instance
happen that the probability distribution for ω is only known to belong to a given
set: e.g., ω is normally distributed with mean zero, but the variance is only known
to belong to an interval [σ2, σ2]; or ω itself is only known to belong to an interval
[ω, ω]. 2

Two questions now arise naturally. First of all, how should we formulate the opti-
mal control problem: what does it mean for a control to be optimal with respect
to an uncertain gain function, where the uncertainty is represented through an
imprecise probability model? In Section 2 we identify three different optimality
criteria, each with a different interpretation (although they coincide for precise
probability models), and we study the relations between them. Secondly, is it still
possible to solve the corresponding optimal control problems using the ideas un-
derlying Bellman’s dynamic programming method? We show in Section 3 that this
is the case for only two of the three optimality criteria we study: only for these a
generalised principle of optimality holds, and the optimal controls are solutions of
suitably generalised Bellman-like equations. In order to arrive at this conclusion,
we study the properties that an abstract notion of optimality should satisfy for
the Bellman approach to work. To illustrate how our ideas can be implemented,
we present a numerical example in Section 4.

We recognise that other authors (see for instance [5,6,7,8,9]) have extended the

2 This also covers the case where we want to find out how robust the optimal control
solution is against variations of ω within a given interval.

3



dynamic programming algorithm to systems with uncertain gain and/or uncertain
dynamics, where the uncertainty is modelled by an imprecise probability model.
But none of them seem to have questioned under what assumptions their gener-
alised dynamic programming method leads to optimal paths. Here we approach
the problem from the opposite, and in our opinion, more logical side: one should
first define a notion of optimality and investigate whether the dynamic program-
ming argument holds for it, rather than blindly “generalise” Bellman’s algorithm
without showing that it actually yields optimal controls.

In the remainder of this section, we introduce the basic systems-theoretic concepts
and notation used in the rest of the paper.

1.1 The System

For a and b in N, the set of natural numbers c that satisfy a ≤ c ≤ b is denoted
by [a, b]. Let

xk+1 = f(xk, uk, k)

describe a discrete-time dynamical system with k ∈ N, xk ∈ X and uk ∈ U . The
set X is the state space (e.g., Rn, n ∈ N \ {0}), and the set U is the control space
(e.g., Rm, m ∈ N \ {0}). The map f : X × U × N → X describes the evolution of
the state in time: given the state xk ∈ X and the control uk ∈ U at time k ∈ N,
it returns the next state xk+1 of the system. For practical reasons, we impose a
final time N beyond which we are not interested in the dynamics of the system.
Moreover, it may happen that not all states and controls are allowed at all times:
we demand that xk should belong to a set of admissible states Xk at every instant
k ∈ [0, N ], and that uk should belong to a set of admissible controls Uk at every
instant k ∈ [0, N − 1], where Xk ⊆ X and Uk ⊆ U are given. The set XN may be
thought of as the set we want the state to end up in at time N .

1.2 Paths

A path is a triple (x, k, u·), where x ∈ X is a state, k ∈ [0, N ] a time instant, and
u· : [k,N−1]→ U a sequence of controls. Such a path fixes a unique state trajectory
x· : [k,N ]→ X , which is defined recursively through xk = x and x`+1 = f(x`, u`, `)
for every ` ∈ [k,N − 1]. It is said to be admissible if x` ∈ X` for every ` ∈ [k,N ]
and u` ∈ U` for every ` ∈ [k,N−1]. We denote the unique map from the empty set
∅ to U by u∅. If k = N , the control u· does nothing: it is equal to u∅. The unique
path starting and ending at time k = N in x ∈ X is denoted by (x,N, u∅).

The set of admissible paths starting in the state x ∈ Xk at time k ∈ [0, N ] is
denoted by U(x, k), i.e.,

U(x, k) = {(x, k, u·) : (x, k, u·) admissible path} .
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For example, U(x,N) = {(x,N, u∅)} whenever x ∈ XN and U(x,N) = ∅ otherwise.

If we consider a path with final time M different from N , then we write (x, k, u·)M
(assume k ≤ M ≤ N). Observe that (x, k, u·)k can be identified with (x, k, u∅)k;
it is the unique path (of length zero) starting and ending at time k in x. Let
0 ≤ k ≤ ` ≤ m. Two paths (x, k, u·)` and (y, `, v·)m can be concatenated if y = x`.
The concatenation is denoted by (x, k, u·, `, v·)m or by (x, k, u·)` ⊕ (y, `, v·)m. It
represents the path that starts in state x at time k, and results from applying
control ui for times i ∈ [k, `−1] and control vi for times i ∈ [`,m−1]. In particular,

(x, k, u·)` = (x, k, u·)k ⊕ (x, k, u·)` = (x, k, u·)` ⊕ (x`, `, u·)`.

The set of admissible paths starting in state x ∈ Xk at time k ∈ [0, N ] and ending
at time ` ∈ [k,N ] is denoted by U(x, k)`. In particular we have that U(x, k)k =
{(x, k, u∅)k} if x ∈ Xk, and U(x, k)k = ∅ otherwise. Moreover, for any (x, k, u·)` ∈
U(x, k)` and any V ⊆ U(x`, `), we use the notation

(x, k, u·)` ⊕ V = {(x, k, u·)` ⊕ (x`, `, v·) : (x`, `, v·) ∈ V}.

1.3 The Gain Function

We assume that applying the control action u ∈ U to the system in state x ∈ X
at time k ∈ [0, N − 1] yields a real-valued gain g(x, u, k, ω). Moreover, reaching
the final state x ∈ X at time N also yields a gain h(x, ω). The parameter ω ∈ Ω
represents the (unknown) state of the world, and it is a device used to model that
the gains are not well known. If we knew that the real state of the world was ωo,
we would know the gains to be g(x, u, k, ωo) and h(x, ωo). As it is, the real state of
the world is uncertain, and so are the gains, which could be considered as random
variables. It is important to note that the parameter ω only influences the gains;
it has no effect on the system dynamics, which are assumed to be known perfectly
well.

We shall only consider the important case where the gains are additive along paths,
i.e., with a path (x, k, u·) we associate a gain J(x, k, u·, ω) given by:

J(x, k, u·, ω) =
∑N−1
i=k g(xi, ui, i, ω) + h(xN , ω),

for any ω ∈ Ω (gain additivity). If M < N , we also use the notation

J(x, k, u·, ω)M =
∑M−1
i=k g(xi, ui, i, ω).

It will be convenient to associate a zero gain with an empty control action: for
k ∈ [0, N ] we let J(x, k, u·, ω)k = 0.

The main objective of optimal control can now be formulated as follows: given
that the system is in the initial state x ∈ X at time k ∈ [0, N ], find a control
sequence u· : [k,N −1]→ U resulting in an admissible path (x, k, u·) such that the
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corresponding gain J(x, k, u·, ω) is maximal. Moreover, we would like this control
sequence u· to be such that its value uk at time k is a function of x and k only,
since in that case the control can be realised through state feedback.

If ω is known, then the problem reduces to the classical problem of dynamic pro-
gramming, first studied and solved by Bellman [1]. We shall assume here that
the available information about the true state of the world is modelled through a
coherent lower prevision P defined on the set L(Ω) of gambles, or bounded real-
valued maps, on Ω. A special case of this obtains when P is a linear prevision
P . Linear previsions are the precise probability models; they can be interpreted
as expectation operators associated with (finitely additive) probability measures,
and they are previsions or fair prices in the sense of de Finetti [10]. We assume
that the reader is familiar with the basic ideas behind the theory of coherent lower
(and linear) previsions (see [2] for more details).

For a given path (x, k, u·), the corresponding gain J(x, k, u·, ω) can be seen as
a real-valued map on Ω, which is denoted by J(x, k, u·) and is called the gain
gamble associated with (x, k, u·).

3 In the same way we define the gain gambles
g(xk, uk, k), h(xN) and J(x, k, u·)M . There is gain additivity: J(x, k, u·, `, v·)m =
J(x, k, u·)` + J(x`, `, v·)m for k ≤ ` ≤ m ≤ N , and J(x, k, u·)k = 0. We denote by
J (x, k) the set of gain gambles for admissible paths from initial state x ∈ Xk at
time k ∈ [0, N ]:

J (x, k) = {J(x, k, u·) : (x, k, u·) ∈ U(x, k)} .

2 Optimality Criteria

2.1 P-Maximality

The lower prevision P(X) of a gamble X has a behavioural interpretation as a
subject’s supremum acceptable price for buying the gamble X: it is the highest
value of µ such that the subject accepts the gamble X − x (i.e., accepts to buy X
for a price x) for all x < µ. The conjugate upper prevision P(X) = −P(−X) of X
is then the subject’s infimum acceptable price for selling X. This way of looking
at a coherent lower prevision P defined on the set L(Ω) of all gambles allows us
to define a strict partial order >P on L(Ω) whose interpretation is that of strict
preference.

Definition 1 For any gambles X and Y in L(Ω) we say that X strictly dominates
Y , or that X is strictly preferred to Y (with respect to P), and we write X >P Y ,

3 To simplify the discussion, we assume that this map is bounded. We have shown
elsewhere how the boundedness requirement can be relaxed in the theory of coherent
lower previsions [11].
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if 4

P(X − Y ) > 0 or (X ≥ Y and X 6= Y ).

Indeed, if X ≥ Y and X 6= Y , then the subject should be willing to exchange Y
for X, since this can only improve his gain. On the other hand, P(X − Y ) > 0
expresses that the subject is willing to pay some strictly positive price to exchange
Y for X, which again means that he strictly prefers X to Y .

It is clear that we can also use the coherent lower prevision P to express a strict
preference between any two paths (x, k, u·) and (x, k, v·), based on their gains: if
J(x, k, u·) >P J(x, k, v·) this means that the uncertain gain J(x, k, u·) is strictly
preferred to the uncertain gain J(x, k, v·). We then say that the path (x, k, u·) is
strictly preferred to (x, k, v·), and we use the notation (x, k, u·) >P (x, k, v·).

The relation >P is anti-reflexive and transitive. 5 It is therefore indeed a strict
partial order on L(Ω), and in particular also on J (x, k) and on U(x, k). But it is
generally not linear: unless P is a linear prevision, there will typically be gambles
X and Y such that P(X − Y ) ≤ 0 ≤ P(X − Y ), and therefore X 6>PY and
Y 6>PX. Two paths need not be comparable with respect to this order, and it does
not always make sense to look for greatest elements, i.e., for paths that strictly
dominate all the others. Rather, we should look for maximal, or undominated,
elements: paths (x, k, u·) that are not dominated by any other path, meaning
that (x, k, v·)6>P(x, k, u·) for all paths (x, k, v·) in U(x, k). Observe that a maximal
gamble X in a set K with respect to >P can be characterised as a maximal element
of K with respect to ≥ (i.e., it is point-wise undominated) such that P(X−Y ) ≥ 0
for all Y ∈ K. In case P is a linear prevision P , maximal gambles with respect to>P

are precisely the point-wise undominated gambles whose prevision is maximal; they
maximise the expected gain. This motivates the following optimality definition.

Definition 2 Let k ∈ [0, N ], x ∈ Xk and V ⊆ U(x, k). A path (x, k, u∗· ) in V
is called P -maximal, or >P -optimal, in V if no path in V is strictly preferred to
(x, k, u∗· ), i.e., (x, k, u·)6>P(x, k, u∗· ) for all (x, k, u·) ∈ V. We denote the set of the
P-maximal paths in V by opt>P

(V). The operator opt>P
is called the optimality

operator induced by >P , associated with U(x, k).

The P -maximal paths in U(x, k) are precisely those admissible paths starting at
time k in state x for which the associated gain gamble is a maximal element of
J (x, k) with respect to the strict partial order >P . If we denote the set of these
>P -maximal gain gambles in J (x, k) by opt>P

(J (x, k)), then for all (x, k, u·) ∈
U(x, k):

(x, k, u·) ∈ opt>P
(U(x, k)) ⇐⇒ J(x, k, u·) ∈ opt>P

(J (x, k)) .

P -maximal paths do not always exist: not every partially ordered set has maximal
elements. A fairly general sufficient condition for the existence of P -maximal ele-

4 The symbol “≥” denotes the point-wise order on gambles.
5 Since P is coherent, we have P(X −X) = 0 and P(Z −X) ≥ P(Z − Y ) + P(Y −X).
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ments in J (x, k) (and hence in U(x, k)) is that J (x, k) should be compact 6 (and
of course non-empty). This follows from a general result mentioned in [2, Sec-
tion 3.9.2], which is also proven in Lemma 3 below. In fact, we use this lemma to
prove a stronger result in Theorem 4, whose Corollary 5 turns out to be very impor-
tant in showing that the dynamic programming approach works for P -maximality
(see Section 3.2).

In order to prove Lemma 3 and Theorem 4, it is convenient to introduce the partial
preorder (a reflexive and transitive relation) <P on L(Ω) defined by:

X <P Y ⇔ P(X − Y ) ≥ 0.

Recall that an element X of a subset K of L(Ω) is a maximal element of K with
respect to <P if it is undominated, i.e., if and only if

(∀Y ∈ K)(Y <P X ⇒ X <P Y ). (2)

Lemma 3 For any non-empty compact subset K of L(Ω) the following statements
hold.

(i) If X is a maximal element of K with respect to <P , then P(X − Y ) ≥ 0 for
all Y in K.

(ii) For every X in K the subset

↑PX =
{
Y ∈ K : Y <P X

}
= {Y ∈ K : P(Y −X) ≥ 0}

of K is non-empty and compact.
(iii) There is a maximal element of K with respect to <P .
(iv) For every X in K there is a maximal element Y of K with respect to <P

such that Y <P X.
(v) For every X in K there is a maximal element Y of K with respect to the

pointwise order ≥ such that Y ≥ X.
(vi) There is maximal element of K with respect to >P .

PROOF. Assume that X is a maximal element of K with respect to <P . Consider
Y in K, then it follows from Condition (2) that P(Y −X) < 0 or P(X − Y ) ≥ 0.
In both cases it follows that P(X − Y ) ≥ 0. This proves (i).

It is obvious that X <P X, so ↑PX is non-empty. Consider a sequence (Xn) in
↑PX that converges to some gamble X∞: supω∈Ω|X∞(ω) − Xn(ω)| → 0. Since K
is compact and therefore closed, we know that X∞ ∈ K. It now follows from the
coherence of P (see [2, Theorem 2.6.1]) and P(Xn −X) ≥ 0 that

P(X∞ −X) = P(X∞ −Xn +Xn −X)

≥ P(X∞ −Xn) + P(Xn −X) ≥ P(X∞ −Xn),

6 In this paper, we always assume that L(Ω) is provided with the supremum-norm
topology.
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for all n. Since −|X∞ −Xn| ≤ X∞ −Xn ≤ |X∞ −Xn|, the coherence of P (again
see [2, Theorem 2.6.1]) also tells us that

− P(|X∞ −Xn|) = P(−|X∞ −Xn|)
≤ P(X∞ −Xn) ≤ P(|X∞ −Xn|) ≤ P(|X∞ −Xn|),

and that 0 ≤ P(|X∞−Xn|) ≤ sup|X∞−Xn|. This implies that P(X∞−Xn)→ 0,
and therefore P(X∞ − X) ≥ 0, whence X∞ ∈ ↑PX. This tells us that ↑PX is a
closed subset of the compact K and therefore also compact, proving (ii).

To prove (iii), let K′ be any subset of the non-empty compact set K that is linearly
ordered with respect to <P . If we can show that K′ has an upper bound in K with
respect to <P , then we can infer from Zorn’s lemma that K has a <P -maximal
element. Let then {X1, X2, . . . , Xn} be an arbitrary finite subset of K′. We can
assume without loss of generality that X1 <P X2 <P . . . <P Xn, and consequently
↑PX1 ⊆ ↑PX2 ⊆ · · · ⊆ ↑PXn. This implies that the intersection

⋂n
k=1 ↑PXk = ↑PX1

of these up-sets is non-empty. We see that the collection
{
↑PX : X ∈ K′

}
of com-

pact and therefore closed subsets of the compact set K has the finite intersection
property. Consequently, the intersection

⋂
X∈K′ ↑PX is non-empty as well, and this

is the set of upper bounds of K′ in K with respect to <P .

To prove (iv), combine (ii) and (iii) to show that the non-empty compact set ↑PX
has a maximal element Y with respect to <P . It is then a trivial step to prove
that Y is also <P -maximal in K.

The fifth statement follows from the fourth: let P be the (coherent) so-called
vacuous lower prevision, defined by P(X) = inf {X(ω) : ω ∈ Ω}. Then the order
<P is nothing but the pointwise order ≥.

We now come to the last statement. By combining (i) and (iii), we know that there
is some Yo in K such that P(Yo − X) ≥ 0 for all X ∈ K. From (v) we infer that
there is some ≥-maximal Y in K such that Y ≥ Yo, and therefore (by coherence)
P(Y − X) ≥ P(Yo − X) ≥ 0 for all X ∈ K. This means that Y is a maximal
element of K with respect to >P .

Theorem 4 For every element X of a compact subset K of L(Ω) that is not a
maximal element of K with respect to >P , there is some maximal element Y of K
with respect to >P such that Y >P X.

PROOF. Consider an element X of K that is not >P -maximal in K. We may
assume that X is ≥-maximal in K. Indeed, if X is not ≥-maximal then by
Lemma 3(v) there is some ≥-maximal Z in K such that Z ≥ X and Z 6= X,
whence Z >P X. If Z is >P -maximal in K then there is nothing left to prove.
So we are left with the case that Z is not >P -maximal. If we can prove for this
≥-maximal Z that there is some >P -maximal Y in K such that Y >P Z then also
Y >P X and the proof is complete.
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Since X is ≥-maximal in K, there is some U in K such that P(U − X) > 0.
By Lemma 3(ii) and (vi) there is a >P -maximal element Y in ↑PU . Since P(Y −
U) ≥ 0 we infer from the coherence of P (see [2, Theorem 2.6.1(e)]) that P(Y −
X) = P(Y − U + U − X) ≥ P(Y − U) + P(U − X) > 0, whence Y >P X. It
remains to prove that Y is also >P -maximal in K. Assume ex absurdo that there
is some V in K such that V >P Y . Then there are two possibilities. If V ≥ Y and
V 6= Y then it follows from the coherence of P (see [2, Theorem 2.6.1(d)]) that
P(V −U) ≥ P(Y −U) ≥ 0, whence V ∈ ↑PU , a contradiction. If P(V −Y ) > 0 then
it follows from the coherence of P (see [2, Theorem 2.6.1(e)]) that P(V − U) =
P(V − Y + Y − U) ≥ P(V − Y ) + P(Y − U) > 0, whence V ∈ ↑PU , again a
contradiction.

Corollary 5 Let k ∈ [0, N ] and let x ∈ Xk. If J (x, k) is compact then for every
admissible, non-P-maximal path (x, k, u·) in U(x, k) there is a P-maximal path
(x, k, u∗· ) in U(x, k) that is strictly preferred to it.

2.2 P-Maximinity

We now turn to a different optimality criterion that can be associated with a lower
prevision P . We use P to define another strict order on L(Ω):

Definition 6 For any gambles X and Y in L(Ω) we write X AP Y if

P(X) > P(Y ) or (X ≥ Y and X 6= Y ).

AP induces a strict partial order on U(x, k), since it is anti-reflexive and transitive
on L(Ω). A maximal element X of a subset K of L(Ω) with respect to AP is
easily seen to be a point-wise undominated element of K that maximises the lower
prevision: P(X) ≥ P(Y ) for all Y ∈ K.

We can consider as optimal in U(x, k) those admissible paths (x, k, u·) for which
the associated gain gamble J(x, k, u·) is a maximal element of J (x, k) with re-
spect to AP ; they are the paths (x, k, u·) that maximise the ‘lower expected gain’
P(J(x, k, u·)) and whose gain gambles J(x, k, u·) are point-wise undominated.

Definition 7 Let k ∈ [0, N ], x ∈ Xk and V ⊆ U(x, k). A path (x, k, u∗· ) in V is
called P -maximin, or AP -optimal, in V if no path in V is strictly preferred to
(x, k, u∗· ), i.e., (x, k, u·) 6AP (x, k, u∗· ) for all (x, k, u·) ∈ V. We denote the set of the
P-maximin paths in V by optAP

(V). The operator optAP
is called the optimality

operator induced by AP , associated with U(x, k).

Proposition 8 P-maximinity implies P-maximality. For a linear prevision P,
P-maximinity is equivalent to P-maximality.

10



PROOF. Consider a set of gambles K and assume that X is a maximal element
of K with respect to AP . In order to prove that X is also a maximal element of
K with respect to >P , it obviously suffices to show that P(X − Y ) ≥ 0 for all
Y ∈ K. We know that P(X) ≥ P(Y ) for any Y ∈ K, and consequently, taking
into account coherence (see [2, Section 2.6.1(e)]):

P(X − Y ) ≥ P(X) + P(−Y ) = P(X)− P(Y ) ≥ 0.

If P is a linear prevision P , assume that X is a maximal element of K with respect
to >P . In order to prove that X is also a maximal element of K with respect to
AP , it suffices to show that P(X) ≥ P(Y ) for all Y ∈ K. Since we know that for
any Y ∈ K, P(X−Y ) ≥ 0, and that P(X−Y ) = P(X)−P(Y ), the desired result
follows at once.

The existence of maximal elements with respect to AP in an arbitrary set of
gambles K is obviously not guaranteed. But if K is compact, then we may easily
infer from the continuity of any coherent lower prevision P , that the counterparts
of Theorem 4 and Corollary 5 hold for AP .

2.3 M-Maximality

There is a tendency, especially among robust Bayesians, to consider an imprecise
probability model as a compact convex set of linear previsions M⊆ P(Ω), where
P(Ω) is the set of all linear previsions on L(Ω).M is assumed to contain the true,
but unknown, linear prevision PT that models the available information [12,13].

A gamble X is then certain to be strictly preferred to a gamble Y under the true
linear prevision PT if and only if it is strictly preferred under all candidate models
P ∈ M. This observation leads to the definition of a ‘robustified’ strict partial
order >M on L(Ω).

Definition 9 X >M Y if X >P Y for all P ∈M.

Since M is assumed to be compact and convex, it is not difficult to show that
the strict partial orders >M and >P are one and the same, where the coher-
ent lower prevision P is the so-called lower envelope of M, defined by P(X) =
inf {P(X) : P ∈M} for all X ∈ L(Ω). 7 Conversely, given a coherent lower previ-
sion P , the strict partial orders >M(P) and >P are identical, where

M(P) = {P ∈ P(Ω) : (∀X ∈ L(Ω))(P(X ) ≥ P(X ))}

is the set of linear previsions that dominate P . These strict partial orders have the
same maximal elements, and lead to the same notion of optimality.

7 Since M is compact, this infimum is actually achieved.
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But there is in the literature yet another notion of optimality that can be associated
with a compact convex set of linear previsionsM: a gambleX is considered optimal
in a set of gamblesK if it is a maximal element ofK with respect to the strict partial
order >P for some P ∈M. This notion of optimality is called ‘E-admissibility’ by
Levi [14, Section 4.8]. It does not generally coincide with the ones associated with
the strict partial orders >M and >P , unless the set K is convex [2, Section 3.9].
We are therefore led to consider a third notion of optimality, associated with a
lower prevision P , or a set of linear previsions M.

Definition 10 Let x ∈ X , k ∈ [0, N ] and V ⊆ U(x, k). A path (x, k, u∗· ) ∈ V is
said to be M-maximal in V if it is P-maximal in V for some P in M, i.e., if it is
≥-maximal in V and maximises P(J(x, k, u·)) over V for some P ∈ M. The set
of all M-maximal elements of V is denoted by optM (V).

Interestingly, for any set of paths V ⊆ U(x, k):

optM (V) =
⋃

P∈M
opt>P

(V) . (3)

3 Dynamic Programming

3.1 A General Notion of Optimality

So far, we have discussed three different ways of associating optimal paths with a
lower prevision P , all of which occur in the literature. We now propose to find out
whether, for these different types of optimality, we can use the ideas behind the dy-
namic programming method to solve the corresponding optimal control problems.
To do this, we take a closer look at Bellman’s analysis as described in Section 1,
and we investigate which properties a generic notion of optimality must satisfy for
his method to work. Let us therefore assume that there is some property, called
∗-optimality, which a path in a given set of paths P either has or does not have.
If a path in P has this property, we say that it is ∗-optimal in P . We shall denote
the set of the ∗-optimal elements of P by opt∗ (P). By definition, opt∗ (P) ⊆ P .
Further on, we shall apply our findings to the various instances of ∗-optimality
described above.

Consider Figure 3, where we want to find the ∗-optimal paths from state a to
state e. Suppose that after one time step, we can reach the states b, c and d from
state a. The ∗-optimal paths from these states to the final state e are known to
be α, γ, and δ and η, respectively. For the dynamic programming approach to
work, we need to be able to infer from this a generalised form of the Bellman
equation, stating essentially that the ∗-optimal paths from a to e, a priori given
by opt∗ ({λα, λβ, µγ, νδ, νε, νη}), are actually also given by opt∗ ({λα, µγ, νδ, νη}),
i.e., the ∗-optimal paths in the set of concatenations of λ, µ and ν with the re-
spective ∗-optimal paths α, γ, and δ and η. It is therefore necessary to exclude

12
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that the concatenations λβ and νε with the non-∗-optimal paths β and ε can be
∗-optimal. This amounts to requiring that the operator opt∗ should satisfy some
appropriate generalisation of Bellman’s principle of optimality that will allow us
to conclude that λβ and νε cannot be ∗-optimal because then β and ε would be
∗-optimal as well. Definition 13 below provides a precise general formulation.

But, perhaps surprisingly for someone familiar with the traditional form of dynamic
programming, opt∗ should satisfy an additional property: the omission of the non-
∗-optimal paths λβ and νε from the set of candidate ∗-optimal paths should not
have any effect on the actual ∗-optimal paths: we need that

opt∗ ({λα, λβ, µγ, νδ, νε, νη}) = opt∗ ({λα, µγ, νδ, νη}) .

This is obviously true for the simple type of optimality that we have looked at in
Section 1, but it need not be true for the more abstract types that we want to
consider here. Equality will be guaranteed if opt∗ is insensitive to the omission of
non-∗-optimal elements from {λα, λβ, µγ, νδ, νε, νη}, in the following sense.

Definition 11 Consider a set S 6= ∅ and an optimality operator opt∗ defined on
the set ℘(S) of subsets of S such that opt∗ (T ) ⊆ T for all T ⊆ S. Elements of
opt∗ (T ) are called ∗-optimal in T . The optimality operator opt∗ is called insensi-
tive to the omission of non-∗-optimal elements from S if opt∗ (S) = opt∗ (T ) for
all T such that opt∗ (S) ⊆ T ⊆ S.

The following proposition gives an interesting sufficient condition for this insensi-
tivity in case optimality is associated with a (family of) strict partial order(s): it
suffices that every non-optimal path is strictly dominated by an optimal one.

Proposition 12 Let S be a non-empty set provided with a family of strict partial
orders >j, j ∈ J . Define for T ⊆ S, opt>j

(T ) = {a ∈ T : (∀b ∈ T )(b 6>j a)} as the
set of maximal elements of T with respect to >j, and let optJ (T ) =

⋃
j∈J opt>j

(T ).
Then opt>j

, j ∈ J and optJ are optimality operators. If for some j ∈ J ,

(∀a ∈ S \ opt>j
(S))(∃b ∈ opt>j

(S))(b >j a), (4)

then opt>j
is insensitive to the omission of non->j-optimal elements from S. If

Condition (4) holds for all j ∈ J , then optJ is insensitive to the omission of
non-J-optimal elements from S.

13



PROOF. Consider j in J , and assume that Condition (4) holds for this j. Let
opt>j

(S) ⊆ T ⊆ S, then we must prove that opt>j
(S) = opt>j

(T ). First of all,
if a ∈ opt>j

(S) then b 6>j a for all b in S, and a fortiori for all b in T , whence
a ∈ opt>j

(T ). Consequently, opt>j
(S) ⊆ opt>j

(T ). Conversely, let a ∈ opt>j
(T )

and assume ex absurdo that a 6∈ opt>j
(S). It then follows from (4) that there

is some c in opt>j
(S) and therefore in T such that c >j a, which contradicts

a ∈ opt>j
(T ).

Next, assume that (4) holds for all j ∈ J . Let optJ (S) ⊆ T ⊆ S, then we must
prove that optJ (S) = optJ (T ). Consider any j ∈ J , then opt>j

(S) ⊆ optJ (S) ⊆
T ⊆ S, so we may infer from the first part of the proof that opt>j

(S) = opt>j
(T ).

By taking the union over all j ∈ J , we find that indeed optJ (S) = optJ (T ).

We are now ready for a precise formulation of the dynamic programming approach
for solving optimal control problems associated with general types of optimality.
We assume that we have some type of optimality, called ∗-optimality, that allows
us to associate with the set of admissible paths U(x, k) starting at time k in initial
state x, an optimality operator opt∗ defined on the set ℘(U(x, k)) of subsets of
U(x, k). For each such subset V , opt∗ (V) is then the set of admissible paths that
are ∗-optimal in V . The principle of optimality states that the optimality operators
associated with the various U(x, k) should be related in a special way.

Definition 13 (Principle of Optimality) ∗-optimality satisfies the principle of
optimality if it holds for all k ∈ [0, N ], x ∈ Xk, ` ∈ [k,N ] and (x, k, u·) in U(x, k)
that if (x, k, u·) is ∗-optimal in U(x, k), then (x`, `, u·) is ∗-optimal in U(x`, `).

This may also be expressed as:

opt∗ (U(x, k)) ⊆
⋃

(x,k,u·)`∈U(x,k)`

(x, k, u·)` ⊕ opt∗ (U(x`, `)) .

The Bellman equation now states that applying the optimality operator to the
right hand side suffices to achieve equality. (Usually this is stated with ` = k+ 1.)

Theorem 14 (Bellman Equation) Let k ∈ [0, N ] and x ∈ Xk. Assume that ∗-
optimality satisfies the principle of optimality, and that the optimality operator opt∗
for U(x, k) is insensitive to the omission of non-∗-optimal elements from U(x, k).
Then for all ` ∈ [k,N ]:

opt∗ (U(x, k)) = opt∗

 ⋃
(x,k,u)`∈U(x,k)`

(x, k, u)` ⊕ opt∗ (U(x`, `))

 ,
that is, a path is ∗-optimal if and only if it is a ∗-optimal concatenation of an
admissible path (x, k, u·)` and a ∗-optimal path of U(x`, `).
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PROOF. Fix k in [0, N ], ` ∈ [k,N ] and x ∈ Xk. Define

V1 =
⋃

(x,k,u)`∈U(x,k)`

(x, k, u)` ⊕ opt∗ (U(x`, `)) , and,

V2 =
⋃

(x,k,u)`∈U(x,k)`

(x, k, u)` ⊕ (U(x`, `) \ opt∗ (U(x`, `))) .

Obviously, U(x, k) = V1∪V2 and V1∩V2 = ∅. We have to prove that opt∗ (U(x, k)) =
opt∗ (V1). By the principle of optimality, no path in V2 is ∗-optimal in U(x, k), so
V2 ∩ opt∗ (U(x, k)) = ∅. This implies that opt∗ (U(x, k)) ⊆ V1 ⊆ U(x, k), and since
opt∗ is assumed to be insensitive to the omission of non-∗-optimal elements from
U(x, k), it follows that opt∗ (U(x, k)) = opt∗ (V1).

Let us now apply these general results to the specific types of optimality introduced
in the previous section. For all three optimality operators opt>P

, optM and optAP
,

we shall check whether we can use a Bellman equation to solve the corresponding
optimal control problem.

3.2 P-Maximality

We first consider the optimality operator opt>P
that selects from a set of gambles

(or paths) S those gambles (or paths) that are the maximal elements of S with
respect to the strict partial order >P . The following lemma roughly states that
the preference amongst paths with respect to >P is preserved under concatena-
tion and truncation. It yields a sufficient condition for the principle of optimality
with respect to P -maximality to hold. Moreover, the lemma, and the principle of
optimality, do not necessarily hold for preference with respect to P -maximinity.

Lemma 15 Let k ∈ [0, N ] and ` ∈ [k,N ]. Consider the paths (x, k, u·)` in U(x, k)`
and (x`, `, v·), (x`, `, w·) in U(x`, `). Then (x`, `, v·) >P (x`, `, w·) if and only if
(x, k, u·)` ⊕ (x`, `, v·) >P (x, k, u·)` ⊕ (x`, `, w·).

PROOF. Let X, Y and Z be gambles on Ω. The statement is proven if we can
show that Y >P Z impliesX+Y >P X+Z. Assume that Y >P Z. If P(Y −Z) > 0,
then P((X + Y ) − (X + Z)) = P(Y − Z) > 0. If Y ≥ Z, then X + Y ≥ X + Z,
and finally, if Y 6= Z, then X + Y 6= X + Z. It follows that X + Y >P X + Z.

Proposition 16 (Principle of Optimality) Let k ∈ [0, N ], x ∈ Xk and (x, k, u∗· ) ∈
U(x, k). If (x, k, u∗· ) is P-maximal in U(x, k) then (x`, `, u

∗
· ) is P-maximal in

U(x`, `) for all ` ∈ [k,N ].
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PROOF. If (x`, `, u
∗
· ) is not P -maximal, there is a path (x`, `, u·) such that

(x`, `, u·) >P (x`, `, u
∗
· ). By Lemma 15 we find that

(x, k, u∗· )` ⊕ (x`, `, u·) >P (x, k, u∗· )` ⊕ (x`, `, u
∗
· ) = (x, k, u∗· ).

This means that (x, k, u∗· )` ⊕ (x`, `, u·) is preferred to (x, k, u∗· ), and therefore
(x, k, u∗· ) cannot be P -maximal, a contradiction.

As a direct consequence of Corollary 5 and Proposition 12, we see that if J (x, k) is
compact, then the optimality operator opt>P

associated with U(x, k) is insensitive
to the omission of non->P -optimal elements. Together with Proposition 16 and
Theorem 14, this allows us to infer a Bellman equation for P -maximality.

Corollary 17 Let k ∈ [0, N ] and x ∈ Xk. If J (x, k) is compact, then for all
` ∈ [k,N ]

opt>P
(U(x, k)) = opt>P

 ⋃
(x,k,u)`∈U(x,k)`

(x, k, u)` ⊕ opt>P
(U(x`, `))

 , (5)

that is, a path is P-maximal if and only if it is a P-maximal concatenation of an
admissible path (x, k, u·)` and a P-maximal path of U(x`, `).

Corollary 17 results in a procedure to calculate all P -maximal paths. Indeed,
opt>P

(U(x,N)) = {u∅} for every x ∈ XN , and opt>P
(U(x, k)) can be calculated re-

cursively through Eq. (5). It also provides a method for constructing a P -maximal
feedback: for every x ∈ Xk, choose any (x, k, u∗· (x, k)) ∈ opt>P

(U(x, k)). Then

φ(x, k) = u∗k(x, k) realises a P -maximal feedback.

3.3 M-Maximality

We now turn to the optimality operator optM, defined through (3). If we recall
Proposition 12, we see that optM is insensitive to the omission of non-M-maximal
elements of U(x, k) whenever J (x, k) is compact. By Proposition 16, optM satisfies
the principle of optimality (indeed, if a path is M-maximal, then it must be P -
maximal for some P ∈ M, and by the proposition any truncation of it is also
P -maximal, hence also M-maximal). This means that the Bellman equation also
holds forM-maximality under similar conditions as for P -maximality. As already
mentioned in Section 2.3, both types of optimality coincide if J (x, k) is convex.

3.4 P-Maximinity

Finally, we come to the type of optimality associated with the strict partial order
AP . It follows from Proposition 12 and the discussion at the end of Section 2.2
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that if J (x, k) is compact, the optimality operator optAP
for U(x, k) is insensitive

to the omission of non-AP -optimal paths from U(x, k). But, as the following coun-
terexample shows, we cannot guarantee that the principle of optimality holds for
AP -optimality, and therefore the dynamic programming approach may not work
here. Essentially, this is because the partial order AP is not a vector ordering on
L(Ω)—it is not compatible with gain additivity: contrary to expected gains, lower
expected gains are not additive.

Example 18 Consider the dynamical system depicted in Figure 4. Let Ω = {], [}
and denote the gamble ] 7→ x, [ 7→ y by 〈x, y〉. Let P be the vacuous lower
prevision on Ω, defined by P(〈x, y〉) = min{x, y}. Assume that J(α) = 〈2, 0〉,
J(β) = 〈0,−1〉 and J(γ) = 〈−2, 0〉 (there is zero gain associated with the final
state). Then αβ 6AP αγ: indeed, 〈2,−1〉 does not dominate 〈0, 0〉 point-wise, and
P(〈2,−1〉) = min{2,−1} 6> min{0, 0} = P(〈0, 0〉) or equivalently 〈0, 0〉 maximises
the smallest expected gain. Hence, we find that αγ is P-maximin. But β AP γ:
indeed, P(〈0,−1〉) = min{0,−1} > min{−2, 0} = P(〈−2, 0〉), which means that γ
is not P-maximin. The “principle of P-maximin optimality” does not hold here.

The following theorem gives a sufficient condition for P -maximality to satisfy the
principle of optimality. It seems that this condition is implicitly assumed to hold
in most of the literature studying maximin-strategies by dynamic programming.

The idea that underlies this theorem is simple: the principle of optimality will hold
if there is additivity of lower expected gains. In order to formulate the theorem
in a way that is sufficiently general, we need to introduce a new concept. Assume
that the set Ω is a Cartesian product of non-empty sets Ω0, Ω1, . . . , ΩN . Let P be
a lower prevision defined on L(Ω). Then we call P externally additive relative to
Ω0, Ω1, . . . , ΩN if for all Xk in L(Ωk), where k = 0, . . . , N , it holds that

P

(
N∑
k=0

Xk

)
=

N∑
k=0

P(Xk),

where we have identified gambles on the Ωk with the corresponding gambles on Ω
that only depend on the ωk (their so-called cylindrical extensions).

Theorem 19 Suppose that Ω = Ω0 × Ω1 × · · · × ΩN and assume that the gain
gambles g(xk, uk, k) are a function of ωk only, and similarily, that h(xN) is a
function of ωN only. Let the coherent lower prevision P on L(Ω) be externally
additive relative to the sets Ω0, Ω1, . . . , ΩN , Then the principle of optimality holds
for P-maximinity.
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PROOF. Under the conditions of the theorem, it holds that

P(J(x, k, u·)) = P

(
N−1∑
k=0

g(xk, uk, k) + h(xN)

)
=

N−1∑
k=0

P(g(xk, uk, k)) + P(h(xN)).

This tells us that from the perspective of optimal control, the system is equivalent
to a classical optimal control system with precisely known gains g′(xi, ui, i) :=
P(g(xi, ui, i)) and h′N(xN) := P(h(xN)). Hence, the principle of optimality holds.

The conditions of this theorem will of course not be satisfied in general, but they
will hold in a number of important special cases. Sometimes the structure of the
problem may impose some type of independence for the lower previsions that model
the gain uncertainty at different time points. This usually occurs when the system
lends itself to a game-theoretic interpretation, see for instance [5,15]. We mention
in passing that external additivity will typically be satisfied if the lower prevision P
on L(Ω) is some type of independent product of marginal coherent lower previsions
Pk defined on the sets L(Ωk). Special cases that lead to external additivity are
for instance the forward irrelevant product [16], the independent natural extension
[2,17,18], the Kuznetsov extension [19,20] and the strong independent product [17],
also called the type-I product [2,18]. Finally, for a number of very simple impre-
cise probability models, such as the ones used in Section 4, external additivity is
implicitly satisfied.

3.5 Yet Another Type of Optimality

We end this discussion with another type of optimality associated with a strict
partial order, sometimes called interval dominance, and suggested in a dynamic
programming algorithm by Harmanec in [9, Definition 3.4]. In our setting (precisely
known system dynamics), its definition basically reduces to

X >?
P Y if P(X ) > P(Y ) or (X ≥ Y and X 6= Y ).

It can be shown easily that if J (x, k) is compact, the optimality operator induced
by >?

P for U(x, k) is insensitive to the omission of non->?
P -optimal paths from

U(x, k). But, as the following counterexample shows, we cannot guarantee that
the principle of optimality holds for >?

P -optimality, and therefore the dynamic
programming approach may not work here. Again, this is because the partial
order AP is not compatible with gain additivity. It also indicates that by solving
the Bellman-type equation advocated in [9], we will not necessarily get paths that
are optimal in the sense described above.

Example 20 Consider again the dynamical system depicted in Figure 4. As be-
fore, let Ω = {], [}, let P be the vacuous lower prevision on Ω, and denote the
gamble ] 7→ x, [ 7→ y by 〈x, y〉. Assume that J(α) = 〈2, 0〉, J(β) = 〈0, 0〉
and J(γ) = 〈−1,−1〉 (there is zero gain associated with the final state). Then
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αβ 6>?
P αγ: indeed, 〈2, 0〉 does not dominate 〈1,−1〉 point-wise, and, P(〈2, 0〉) =

min{2, 0} 6> max{1,−1} = P(〈1,−1〉). Hence, we find that αγ is >?
P -maximal.

But β >?
P γ: indeed, 〈0, 0〉 dominates 〈−1,−1〉 point-wise, which means that γ is

not >?
P -maximal. The “principle of >?

P -maximal optimality” does not hold for this
example.

4 A numerical example

Suppose we have a total amount of money x at our disposal, which we can invest
into two companies, denoted by 0 and 1. We denote our investment in company 0
by u0, and in company 1 by u1. Observe that x, u0 and u1 are non-negative real
numbers, and u0 + u1 ≤ x. The total gain is

T (x, u0, u1) = ω0u0 + ω1u1 + ω2(x− u0 − u1),

where ω0 > 0, ω1 > 0 are gain factors (for companies 0 and 1), and ω2 > 0 is the
devaluation factor (of the money we have not invested). We wish to maximise the
gain, but, we are uncertain about ω0, ω1 and ω2. 8 We know that ω0 = 1+g0+ε and
ω1 = 1 + g1 + ε. g0 and g1 model the productivities of the companies, and ε models
economical variations that affect each company in the same way, such as the global
economical state. We do not make any assumption about the dependence between
g0, g1, ε and ω2. We only know that g0 ∈ [0.0, 0.3], g1 ∈ [0.1, 0.2], ε ∈ [−0.1, 0.2] and
ω2 ∈ [0.85, 0.95]. This leads to the following lower prevision on L(Ω0 × Ω1 × Ω2):

P(X) = inf
{
X(1 + g0 + ε, 1 + g1 + ε, ω2) :

g0 ∈ [0.0, 0.3], g1 ∈ [0.1, 0.2], ε ∈ [−0.1, 0.2], ω2 ∈ [0.85, 0.95]
}
.

We refer to [18] for a detailed discussion about why this lower prevision really
captures the available information. We now wish to find all u0 and u1 such that the
gain J(x, u0, u1) is P -maximal. Observe that this is a two-dimensional optimisation
problem.

We formulate this problem in terms of a dynamical system. If we define x0 = x
and, recursively xk+1 = xk−uk, the total gain is precisely equal to J(x, u·, 0), with
g(xk, uk, k, ω) = ωkuk and h(x2, ω) = ω2x2. Each state xk represents the money
we can invest in companies ` ≥ k, and should therefore be non-negative. There is
gain additivity, and the set of admissible gain gambles is compact. Corollary 17
applies: we can solve this problem using dynamic programming.

For k = 1, we find that the control u1 = x1 is optimal from state x1 at time 1.
Indeed, first observe that all controls are maximal with respect to the point-wise

8 To ensure that gain gambles are bounded, we can assume that the ωi belong to some
(sufficiently large) bounded closed real intervals.
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order. In that case, optimality of u1 is equivalent to P(J(x1, u1, 1)−J(x1, v1, 1)) ≥ 0
for all v1. This holds iff

sup
{

(1 + g1 + ε− ω2)(u1 − v1) :

g1 ∈ [0.1, 0.2], ε ∈ [−0.1, 0.2], ω2 ∈ [0.85, 0.95]
}
≥ 0,

and thus, iff u1 ≥ v1 for all v1. Hence, optimal paths maximise u1. The highest u1

we can choose such that x2 is still non-negative is u1 = x1.

For k = 0, the dynamic programming argument says that we only have to consider
concatenations of (x0, u0, 0)1 with optimal paths from state x1 = x0−u0, of which
there is only one, (x1, x1, 1), as we showed. Again all controls are maximal with
respect to the point-wise order. But

P
(
J((x0, u0, 0)1⊕ (x0− u0, x0− u0, 1))− J((x0, v0, 0)1⊕ (x0− v0, x0− v0, 1))

)
≥ 0

also holds for any u0 and any v0. Indeed, the inequality is equivalent to

sup
{

(g0 − g1)(u0 − v0) : g0 ∈ [0.0, 0.3], g1 ∈ [0.1, 0.2], ε ∈ [−0.1, 0.2]
}
≥ 0

which obviously holds for any choice of u0 and v0. Thus, all paths (x0, u0, 0)1 ⊕
(x0 − u0, x0 − u0, 1) are optimal.

In conclusion, the information implies that we should invest all money x, but we
cannot infer how we should divide x over the two companies.

By our dynamic programming approach we have have managed to solve this two-
dimensional optimisation problem by reducing it to two one-dimensional ones,
which are each very easy to solve. In the more general case of uncertain investment
with n companies, we initially have a n-dimensional optimisation problem, and
dynamic programming reduces this to n very simple one-dimensional optimisation
problems.

5 Conclusion

The main conclusion of our work is that the method of dynamic programming can
in principle be extended to deterministic systems with an uncertain gain, where
the uncertainty about the gain is modelled by a coherent lower prevision, or by a
set of linear previsions (probability measures).

But our general study of what conditions a generalised notion of optimality should
satisfy for the Bellman approach to work is of some interest in itself too. In particu-
lar, besides an obvious extension of the well-known principle of optimality, another
condition emerges that relates to the nature of the optimality operators per se:
the optimality of a path should be invariant under the omission of non-optimal
paths from the set of paths under consideration. If optimality is induced by a
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strict partial ordering of paths, then this second condition is satisfied whenever
the existence of dominating optimal paths for non-optimal ones is guaranteed.

Another important observation is that, in contradistinction to P -maximality and
M-maximality, the dynamic programming method cannot be used to solve opti-
misation problems corresponding to P -maximinity in general: for this notion the
principle of optimality is not guaranteed to not hold, in particular when the ex-
ternal additivity property is not satisfied.

It is possible to refine our results by considering an additional equivalence rela-
tion on paths expressing some notion of indifference—relating, for instance, paths
with the same expected gain. This allows us to partition a set opt∗ (V) of optimal
elements into equivalence classes of mutually indifferent paths. Any two paths in
opt∗ (V) that belong to different equivalence classes are necessarily incomparable:
the available information, modelled through P , does not allow us to choose be-
tween these two paths. A discussion of such matters presents no great conceptual
difficulties, but has been omitted from the present paper due to limitations of
space.

Throughout the paper we have assumed the system dynamics to be deterministic,
that is, independent of ω. This greatly simplifies the discussion, still encompasses
a large number of interesting applications, and does not suffer from the computa-
tional problems often encountered when dealing with non-deterministic dynamical
systems—simply because in general the number of possible (random) paths tends
to grow exponentially with the size of the state space X . However, we should note
that dropping this assumption still leads to a Bellman-type equation, connecting
operators of optimality associated with random states x : Ω → X . We intend to
present our results about and views on this issue elsewhere.
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