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Abstract: Modern design projects typically are undertaken concurrently in a virtual enterprise network of expert 
design and manufacturing agents. The general need for agile response in turbulent environments is well 
documented and has been analysed at the manufacturing phase. This paper proposes a framework to enable analysis 
of an agile design methodology. This models the occurrence of an unexpected event in a concurrent design project. 
The redistribution of the design work can be controlled within the virtual enterprise, and the total redistribution 
impact can be measured. A four-level classification scheme for the severity of unexpected events is proposed. Each 
event level is illustrated with a design scenario. A Monte Carlo-based simulation tool is proposed for work 
redeployment policy analysis. 
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1. Introduction 
 

The concepts of Agility and Design are well 
defined. Agility is regarded as the ability to react 
rapidly to changes in the environment, whether 
expected or not. When applied to manufacturing, 
this is regarded as the ability to change a 
manufacturing resource rapidly so as to produce a 
different assembly or product. Thus, an agile 
manufacturer is able to respond rapidly to changes 
in product demand. Design is the process of 
transforming a set of potentially ill-defined 
customer requirements into a physical product. 
This process is a combination of determining 
appropriate attributes and then determining their 
values. 

 
A number of methodologies exist for 

deployment in different application areas and in 
different corporate cultures. As designs have 
become more complex, it has been necessary to 
migrate to concurrent design methods [1]. 
Concurrent design methods, however, lack the 
ability to respond to unpredicted changes in 
environmental conditions. 

 
 
 

The need for diverse design teams is a shared 
property between Agile Design and Concurrent 
Design. These are both instances of Virtual 
Enterprises, as they both lever resource networks 
to solve a design problem [2]. The distinction 
between these two methodologies is the 
responsiveness that is core to Agile Design. Given 
a design brief, both methods use competence 
profiling to allocate design tasks suitably to a pool 
of design agents. When an unpredicted event 
occurs, which could be either a late customer 
request, the failure of an agent, or some other 
external environmental impact, the concurrent 
design process is interrupted. The impact of the 
event is evaluated, and the design process is 
restructured accordingly but with minimal impact 
to unaffected agents. The aim is to minimise the 
total impact to the design process. At the same 
time, however, it is important to minimise 
communication between active agents as this 
delays progress. This is achieved not only by 
reviewing the directly impacted agents, but also 
by their interfacing agents and their associated 
latencies. These two contradicting requirements 
provide the basis for optimising the management 
of the concurrent design process, thus providing 
the agility. 
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This paper will develop a set of foundations 
that will define Agile Design and provide a set of 
requirements that must be met to enable Agile 
Design. The following three distinct Agile Design 
scenarios are classified: (1) Late customer design 
brief change; (2) In-production design modifica-
tion; and (3) Design Agent failure to meet 
requirement. Each scenario requires an agile 
reaction to ensure timely production. It also 
should be noted that while these scenarios appear 
to  be  “negative” events, there are equivalent 
positive scenarios (e.g., the identification of new 
tools that allow for more rapid design). These 
events, however, still will require a degree of 
design review, and so also can be analysed using 
this framework. 
 
2. Background 
 

At its most basic, the design process takes us 
from an initial requirements specification through 
to the final set of manufacturing plans [3]. This is 
represented by a single work thread, marked by a 
set of check points representing the design 
moving from one development phase to the next. 
It is at these check points wherein unsatisfactory 
work can be referred back, either to the start of 
that phase or further back if more significant 
errors are found. These design phases can be seen 
to consume time as a primary resource. This 
simple representation, however, does not provide 
for concurrency of work. As such, it forms the 
terminal part of a concurrent engineering project. 
 

Concurrent engineering is the distribution of 
the design work, as well as the potential 
manufacturing work, among a number of 
agents [4]. An agent in this case will be a design 
team, manufacturing shop, assembly facility, or 
some other related facility.  These agents then 
either can apply concurrent engineering again, 
recursively, or they can follow the basic linear 
design process if they are a “terminal” agent. For 
example, the design team might sub-contract 
some of the design work to another specialist 
design group. The agents are selected according to 
their known expertise [5]. These agents are 
networked through a virtual enterprise while the 
project is underway and are combining the work 
toward the end of the project. Through this 
network, agents communicate as necessary. This 

concurrent engineering approach provides a 
means for rapidly creating enterprises with high 
degrees of competency without the need to 
support these competencies during projects that do 
not require the same competency profile. Thus, 
the virtual enterprise has the benefits of a large, 
well-found enterprise, without having to pay for 
the maintenance overhead of resources that are 
not required for other projects. 
 

The concept of agility in a manufacturing 
context has emerged recently [6, 7]. Most authors 
agree that “agility” is the ability to respond 
rapidly to some external and unexpected event. 
The argument promoting agility is that it enables 
better survival in turbulent market conditions. 
Most agile responses, however, are tailored to 
changes in product demand, either in the form of 
production levels or in alternate design. The 
solutions to these tend to fall in line with 
traditional manufacturing theory (for example, by 
applying Just-in-Time methods) or design 
modification (such as mass customisation applied 
after the initial product launch). Thus, enterprises 
use the agile methods to enable them to respond to 
the market, based on a given design. 
 

Where designs require modification, change 
management methods provide a structure to 
enable managed modification of a design or 
manufacture process [8, 7]. There are two aspects 
of change management: (1) the process of 
changing a given design, and (2) the design of 
artefacts such that they are modified more easily 
when needed. In the process of changing a given 
design, care must be taken to avoid the possibility 
that a change in one part of the design might 
impact negatively on some other part. This 
requires not only an understanding of how all 
aspects of the design interact with each other, but 
also a mechanism to rectify such collisions when 
they occur. This can be particularly troublesome 
when the two conflicting design aspects are 
“owned” by different agents in a virtual 
enterprise. If change is expected to a design, then 
the original design can be made such that changes 
can be applied easily. There is relatively little 
literature on changing the design mid-way through 
the design process. This tends to be subsumed 
under failing a mid-way design check point, 
thereby sending the design back to an earlier 
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phase. Such changes, however, arise frequently 
due to the customer modifying the original 
specification. 
 

Finally, it is important to consider the human 
aspects of engineering projects. Where multiple 
agents are responsible for different but interacting 
design aspects, it is important that all parties 
cooperate. Evidence, however, shows that human 
nature tends to “hide” problems in the hope that 
they can be resolved without needing to admit 
there ever was a problem [9]. When the problem 
is not resolved, it then has an amplified effect on 
the remainder of the design when it no longer can 
be hidden. Frequently, resolving these problems 
requires changes to the design that in turn result in 
the design process moving backwards. While an 
agile design process will not change the problems 
arising due to human factors, it can mitigate the 
effects of these factors when they arise. 
 

This paper will address how the design 
process can be made agile. By using concurrent 
engineering methodology as a starting point, a 
framework will be proposed that will enable 
analysis of how unexpected events affect the 
concurrent design process. Given this analysis 
tool, it then becomes possible to test different 
design scenarios to handle an unexpected event 
occurring during the design process. This 
framework will be concerned strictly with the 
temporal aspects of a design project, and not with 
any other resource use. The underlying principle, 
however, can be adapted readily to these different 
resources. 
 
3. Analysis Framework 
 

The basis of this agile design analysis 
framework stems from concurrent engineering 
and virtual enterprise methodology. Specifically, 
given a design project, the project is decomposed 
into a number of independent tasks that are 
undertaken by different design agents. The 
concurrent engineering view assumes that the next 
global phase of the project then will be the 
combining of the component solutions into the 
final deliverable. 

 
The agile design framework considers what 

happens when some interruption occurs to a 

design agent. The interruption events to be 
considered are those that incur a time penalty to 
the project. Depending on the nature of the event 
and on how much slack was built into the project, 
such events potentially result in a global effect to 
the whole design project. For analysis purposes, 
the following four levels of (local) event severity 
have been categorised: 
 

(1) Trivial: The problem can be resolved 
completely at the local level, and a small time 
penalty is incurred. 
 

(2) Minor: The problem requires the agent to 
seek external assistance, or minor redeployment 
of part of the work to another partner within the 
virtual enterprise. 
 

(3) Major: The problem cannot be resolved 
by the agent or by another member of the virtual 
enterprise. A new member is needed to join the 
virtual enterprise, and the redeployment of work 
and initiation of the new member to the project 
incurs a serious time penalty. 
 

(4) Fatal: The problem cannot be resolved by 
the agent, and there exists no external agent that 
can provide support. Effectively, the design is 
fundamentally flawed and is not realisable. 
 

An event occurring during the design process 
effectively requires more time to be spent than 
originally planned. This can be modelled simply 
by in effect “turning the clock back” on the design 
process. In effect, this encodes an interruption as 
being an event that requires redesign work to be 
performed. So, if an event happens in the detailing 
stage, the severity of the event determines how far 
the whole project is set back. For example, a 
trivial event in the detailing stage might require 
only the affected agent to restart this stage. The 
more serious “minor” event might result in the 
agent returning to the embodiment stage, while a 
“major” event will result in a new agent starting 
this part of the design work from the start. 
Another possibility in the “minor” / “major” cases 
is that several other design agents are affected, to 
the respective degrees of the event classification. 
Finally, in the case of a “fatal” event, it is 
assumed that the whole design collapses due to 
the event. In this case, the design requires 
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fundamental rework. Hence, all agents will start 
from fresh, effectively under a new virtual 
enterprise. 
 
3.1 Event Sources 
 

External and unexpected events are the source 
of interruptions to the design process [10]. This 
paper shall distinguish three major sources of 
interrupting events: (1) late customer design brief 
change, (2) in-production design change, and 
(3) agent failure. The severity of the event will 
depend on the nature of the event and the ability 
of the relevant agent(s) to handle the event. 
 

Customers, in general, do not provide flawless 
documentation and, depending on circumstances, 
request unexpected design changes before the end 
of a project. This customer-driven change requires 
the design to be reconsidered. At the trivial level, 
it could be a simple matter of requesting a 
different material for the external body. More 
significant requests are those that change the 
functionality or core design of the artefact. 

  
In-production design changes are those that 

arise either internally due to identifying additional 
design constraints or novel design solutions. 
These can be regarded in a similar manner as 
customer-driven changes, and have similar 
characteristics. But because they are internal, 
there is in general a greater understanding of the 
nature of the problem. 
 

Finally, agent failure represents the event in 
which an agent is not capable of delivering the 
solution as originally specified. Again, the effect 
of this failure can take the full range between 
trivial, wherein the receiving agent can absorb the 
failure and otherwise continue normally through 
to fatal, wherein the failure of an agent results in 
the failure of the whole design project. The failure 
of an agent effectively causes a design change 
request, which needs to be suitably propagated 
through the virtual enterprise. 
 
3.2 Concurrent Design Representation 
 
By distributing the design tasks to independent 
agents, each agent can be seen to perform a 
classical, single-threaded design project. Using 

the Pahl and Beitz design phase categories [3], the 
normal state progression of any agent would be as 
follows: 
 
Conceptual: determine the nature of the final 
design, 
 
Embodiment: determine how the conceptual 
solution takes form, 
 
Detail: determine the exact geometry and other 
physical aspects of the solution, and 
 
Manufacture: wherein the design is realised. 
 

Depending on the design task and the agent’s 
expertise, each agent will require a different 
amount of time to complete each stage. The sum 
of these times represents the total time an agent 
requires to complete its task, assuming no 
interruptions. Note that using this scheme does 
allow for agents to specialise in particular aspects 
of the design process—for example, a 
manufacturing agent will require zero time for the 
prior design activities. 
 
3.3 Agile Design Response 
 

The state of the whole virtual enterprise then 
is taken as the sum of the agent states. When an 
interrupting event occurs to an agent, the effect 
can be propagated through use of the causal links 
of the global design project within the virtual 
enterprise. The two extreme event types (trivial 
and fatal) do not require an agile design 
methodology to mitigate, as they either are 
absorbed locally or globally destroy the project. 
The minor and major event classes, however, do 
provide an opportunity to apply agile design 
methods to minimise the total time penalty to the 
project.  

 
Responding with agility requires that when an 

event occurs in the concurrent design process, all 
design agents are able to respond accordingly. In a 
non-agile system, the penalty is accumulated 
totally by the affected agent. In the agile system, 
other agents aim to reduce the impact of the event 
by being able to self-incur trivial events. Thus, the 
required change due to the source event is, in 
effect, mitigated through the relevant partners in 
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the virtual enterprise. The aim of this analysis 
framework is to model and simulate such events, 
so as to be able to test mitigation policies under 
laboratory conditions. 
 
3.4 Simulation 
 

The agile design framework provides a means 
for performing simulation. Two assumptions must 
be made when running such simulations: (1) how 
far back the event would set back the affected 
agent, and (2) how the redesign work can be 
redistributed across the virtual enterprise. It is the 
second assumption that is the more difficult to 
make, as this will be dependent on the nature of 
the event and design project. In order to test 
redistribution policies, it is sufficient to provide a 
set of reasonable mappings between event severity 
and amount of rework that various agents in the 
virtual enterprise would take on to mitigate the 
penalty. 
 

In order to test a set of different rework 
policies (e.g., “don’t mitigate”, “moderate 
mitigation”, “global mitigation”, etc.), a Monte-
Carlo approach is used to run a series of 
experiments. The result of each experiment is the 
total time for the project. Policies then can be 
evaluated by comparing the mean and standard 
deviation of these total times. 
 
4. Illustration 
 

The simplified scenario of an aeroplane 
design and manufacturing project can be applied 
to demonstrate the effects of the scenarios 
discussed. Consider that the aeroplane design and 
manufacturing is controlled by Integrator A for 
Customer 1. The product is split into 5 modules, 
namely: fuselage, wings, engines, electronic 
systems, and landing gear. For each module, an 
agent is brought into the virtual enterprise, so as to 
design and build the aircraft, and this agent is 
controlled by Integrator A. 
 

  
 
Figure 1: A Simplified Virtual Enterprise for 
Aircraft Manufacturing. 
 

Each agent within the virtual enterprise 
follows its own design process, typically 
following the form illustrated in Figure 1. This 
scenario now can be applied to illustrate the 
effects of each of the 4 classifications of external 
events. It should be considered that the expected 
time for each agent to complete its work is the 
same period, i.e., the critical chain is dictated by 
each agent equally, and a delay to any agent 
represents a delay to the overall time of the 
process. 
 
4.1 Trivial Event 
 

Taking agent 1 as the first example, during the 
product design process, an external event that 
might impact on the time taken to convert input 
into output might be a requirements change from 
the customer. For example, the fuselage is now 
required to have 4 emergency exits along each 
side, rather than the original 3 specified. 
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Figure 2: An External Event. 
 

This external event has the effect of reducing 
how close the agent is to achieving the necessary 
output because the agent is now further from the 
desired solution than before the event. Figure 3 
illustrates this loss of work. 
 

  
Figure 3: Effect of a Trivial External Event. 
 

Figure 3 illustrates an external event at day 10 
of a design process, with a magnitude of 25% of 
the work already carried out. The time taken for 
the agent to get back to the position at which it 
was before the event is, in this case, 8 days. This 
is defined as TRe, the Time-Response to an 

external event. The amount of time the process 
should have taken without the external events is 
30 days (Tp). 

Therefore, the total time (TT) is defined as 

follows: 
 

TT=TP+ ∑
j=0

ne
 TRe,j+ ∑

j=0

ni
 TRi,j  (1) 

 
wherein TRe is the time-response for each external 
event and TRi is the time-response for each 
internal event (internal feedback), ne and ni are 

the number of external and internal events, 
respectively: TT=38 days in this example. 

 
The event illustrated is classified as a trivial 

event because it can be dealt with in-house, with a 
minimal Time-Penalty. This is not always the 
case, however. Empirical evidence suggests that 
events often require the use of additional 
resources, often of an expert nature, to resolve 
problems raised by unpredictable external events. 
 
4.2 Minor Event 
 

Minor events describe events dictating that the 
agents no longer have all the skills, resources or 
knowledge to develop an in-house solution, or that 
to do so would be more costly than the use of 
expert help. In this scenario, the agent must 
identify, rapidly, a partner with the necessary 
skills, resources or knowledge to “plug the gap” 
created by the event. This is where the agility of 
the process will allow the response time to be 
reduced and the benefits exploited. 
 

Agent 2 is responsible for the design and 
manufacture of the wings for the new aircraft. An 
external event, however, dictates that the wing 
panels no longer should be riveted, but instead 
welded to save weight, due to new technology 
becoming available. In this instance, Agent 2 does 
not possess the skills and knowledge to weld the 
wing panels satisfactorily, but the customer 
demands it for weight and, thereby, fuel and cost 
savings. Agent 2 still has the core competences to 
design and manufacture the rest of the wing 
structure, and so expert help is sought to assist 
specifically with the welding. This assistance 
normally would be found within the virtual 
enterprise, but could be assistance brought in from 
outside the enterprise if the work were to be 
assistance rather than taking control of all or part 
of a process. 
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Figure 4: Effect of a Minor External Event. 
 

This minor event has a more significant 
“knock-back” effect on the work done, and 
therefore imposes a greater Time-Penalty on the 
process. 

 
For the minor event above, the total time is 41 

days instead of the perfect 30 days. If an agile 
design process can reduce the effort lost from 
35% of work to 15%, the Time-Penalty can be 
reduced to 5 days, a savings of 6 days. Figure 5 
shows this effect. 
 

  
 

Figure 5: An Agile Design Time-Response to a 
Minor External Event. 
 
4.3 Major Event 
 

A major event is defined by the failure of an 
agent to satisfy the demands put upon it by the 

greater organisation or system; it cannot convert 
its inputs into the required outputs. 

  
An example scenario similar to one seen in 

reality might be Agent 3, responsible for the 
engines, failing to design and manufacture an 
engine sufficiently powerful to satisfy the 
customer requirements it was given. The Agent 
simply does not have the knowledge, experience 
and / or resources to meet the demands. This is 
classified as a major external event, which to the 
rest of the virtual enterprise is unpredictable. The 
Time-Penalty is likely to be serious, as the work 
completed is likely to be reset to zero. An 
alternative scenario might be that an agent goes 
bankrupt during the project and no longer can 
continue its role. 
 

  
 
Figure 6:  Time Response to a Major Event. 
 

In this situation, the agent is deemed to have 
failed and another agent is required to take control 
of that specific process and to join the virtual 
enterprise. The speed with which this can be 
achieved is a function of the agility of the 
organisation as a whole. The example shown 
below shows a 24-day delay to a process that 
should have taken 30 days, due to unpredictable 
failure after 24 days. 
 
4.4 Fatal Event 
 

The fatal event is an external event that is 
catastrophic to the design as a whole, not just to 
any individual agent. An example of a fatal event 
might be the introduction of legislation stating 
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that emissions of greenhouse gases for any mode 
of transport must be below a given level. This 
event would impact directly the agent responsible 
for the engines—in our case example, Agent 3; 
the effect, however, is that the design of the 
overall process is fundamentally flawed. No 
replacement of Agent 3 will be able to produce 
the output required for the project to be realised. 
 

These 4 classifications of event cover a broad 
spectrum of real-life events, for which agile 
design will be of significant benefit, by reducing 
to a minimum the time-response of an agent or 
overall system, and thus the time-delay of whole 
projects. 
 
5. Discussion 
 

The agile design methodology does assume, 
and requires, that the design project is being 
undertaken in a virtual enterprise environment. 
The aim of the agile design methodology is to 
enable rapid redeployment of design work when 
required due to an unforseen event occurring. 
These events are basically design change 
requirements, arising due either to customer 
request, internal request resulting from design 
work, or internal request due to an agent failing to 
fulfil its task. A classification for the severity of 
these events was proposed that covered the full 
spectrum. Within this severity spectrum, it has 
been argued that the extreme classes are not 
appropriate for agile design methods. Events 
classified away from these extremes, however, 
provide an opportunity for agile response. 
 

The agile design methodology was illustrated 
using a simplified aircraft design scenario. While 
the design process in this case was completely 
parallel, it demonstrated how the design work 
could be redistributed in each of the event classes. 
In the agile cases, it was argued that this provided 
a more rapid resolution to the events than would 
have been possible otherwise. 
 
6. Conclusions 
 

This paper introduced a framework for 
representing and analysing agile design 
methodology based on concurrent engineering. 
This illustrated how the design state could be 

mapped out onto the virtual enterprise network, 
and provided a means for representing and 
measuring the effect of how unexpected design 
events occur during the design process. The agile 
design methodology redistributes the design work 
after an event occurs according to the severity. 
The proposed framework enables virtual 
enterprises to test various work redistribution 
policies, using Monte Carlo methods to determine 
the most suitable for different event types. 
 

The next phase of this research will verify the 
event classifications with SMEs that have 
experience operating in virtual enterprises. This 
will include reviewing case studies wherein agents 
have encountered serious unplanned redesign 
work during the design process, and reviewing 
how this rework would have been distributed 
across the virtual enterprise. 
 

One aspect that has not been considered is the 
communication latency within a virtual enterprise. 
It has been assumed that when work is 
redistributed between agents, this results only in 
the affected agents “turning back the clock” on 
their design process. It was assumed that this 
resetting of the design process incorporated any 
latency rather than explicitly accounting for this. 
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