

Volume 9, Issue 1
© 2006 ISAM

Foundations of an Agile Design Methodology

P. C. Matthews*, C. D. W. Lomas*, N. D. Armoutis* and P. G. Maropoulos†
*School of Engineering, University of Durham, Durham, UK

†Dept. of Mechanical Engineering, University of Bath, Bath, UK
E-mail: p.c.matthews@durham.ac.uk

Abstract: Modern design projects typically are undertaken concurrently in a virtual enterprise network of expert
design and manufacturing agents. The general need for agile response in turbulent environments is well
documented and has been analysed at the manufacturing phase. This paper proposes a framework to enable analysis
of an agile design methodology. This models the occurrence of an unexpected event in a concurrent design project.
The redistribution of the design work can be controlled within the virtual enterprise, and the total redistribution
impact can be measured. A four-level classification scheme for the severity of unexpected events is proposed. Each
event level is illustrated with a design scenario. A Monte Carlo-based simulation tool is proposed for work
redeployment policy analysis.

Key Words: Agile, Design, Unexpected Events, Concurrent Engineering.

1. Introduction

The concepts of Agility and Design are well
defined. Agility is regarded as the ability to react
rapidly to changes in the environment, whether
expected or not. When applied to manufacturing,
this is regarded as the ability to change a
manufacturing resource rapidly so as to produce a
different assembly or product. Thus, an agile
manufacturer is able to respond rapidly to changes
in product demand. Design is the process of
transforming a set of potentially ill-defined
customer requirements into a physical product.
This process is a combination of determining
appropriate attributes and then determining their
values.

A number of methodologies exist for

deployment in different application areas and in
different corporate cultures. As designs have
become more complex, it has been necessary to
migrate to concurrent design methods [1].
Concurrent design methods, however, lack the
ability to respond to unpredicted changes in
environmental conditions.

The need for diverse design teams is a shared
property between Agile Design and Concurrent
Design. These are both instances of Virtual
Enterprises, as they both lever resource networks
to solve a design problem [2]. The distinction
between these two methodologies is the
responsiveness that is core to Agile Design. Given
a design brief, both methods use competence
profiling to allocate design tasks suitably to a pool
of design agents. When an unpredicted event
occurs, which could be either a late customer
request, the failure of an agent, or some other
external environmental impact, the concurrent
design process is interrupted. The impact of the
event is evaluated, and the design process is
restructured accordingly but with minimal impact
to unaffected agents. The aim is to minimise the
total impact to the design process. At the same
time, however, it is important to minimise
communication between active agents as this
delays progress. This is achieved not only by
reviewing the directly impacted agents, but also
by their interfacing agents and their associated
latencies. These two contradicting requirements
provide the basis for optimising the management
of the concurrent design process, thus providing
the agility.

IJAM

Foundations of an Agile Design Methodology

This paper will develop a set of foundations
that will define Agile Design and provide a set of
requirements that must be met to enable Agile
Design. The following three distinct Agile Design
scenarios are classified: (1) Late customer design
brief change; (2) In-production design modifica-
tion; and (3) Design Agent failure to meet
requirement. Each scenario requires an agile
reaction to ensure timely production. It also
should be noted that while these scenarios appear
to be “negative” events, there are equivalent
positive scenarios (e.g., the identification of new
tools that allow for more rapid design). These
events, however, still will require a degree of
design review, and so also can be analysed using
this framework.

2. Background

At its most basic, the design process takes us
from an initial requirements specification through
to the final set of manufacturing plans [3]. This is
represented by a single work thread, marked by a
set of check points representing the design
moving from one development phase to the next.
It is at these check points wherein unsatisfactory
work can be referred back, either to the start of
that phase or further back if more significant
errors are found. These design phases can be seen
to consume time as a primary resource. This
simple representation, however, does not provide
for concurrency of work. As such, it forms the
terminal part of a concurrent engineering project.

Concurrent engineering is the distribution of
the design work, as well as the potential
manufacturing work, among a number of
agents [4]. An agent in this case will be a design
team, manufacturing shop, assembly facility, or
some other related facility. These agents then
either can apply concurrent engineering again,
recursively, or they can follow the basic linear
design process if they are a “terminal” agent. For
example, the design team might sub-contract
some of the design work to another specialist
design group. The agents are selected according to
their known expertise [5]. These agents are
networked through a virtual enterprise while the
project is underway and are combining the work
toward the end of the project. Through this
network, agents communicate as necessary. This

concurrent engineering approach provides a
means for rapidly creating enterprises with high
degrees of competency without the need to
support these competencies during projects that do
not require the same competency profile. Thus,
the virtual enterprise has the benefits of a large,
well-found enterprise, without having to pay for
the maintenance overhead of resources that are
not required for other projects.

The concept of agility in a manufacturing
context has emerged recently [6, 7]. Most authors
agree that “agility” is the ability to respond
rapidly to some external and unexpected event.
The argument promoting agility is that it enables
better survival in turbulent market conditions.
Most agile responses, however, are tailored to
changes in product demand, either in the form of
production levels or in alternate design. The
solutions to these tend to fall in line with
traditional manufacturing theory (for example, by
applying Just-in-Time methods) or design
modification (such as mass customisation applied
after the initial product launch). Thus, enterprises
use the agile methods to enable them to respond to
the market, based on a given design.

Where designs require modification, change
management methods provide a structure to
enable managed modification of a design or
manufacture process [8, 7]. There are two aspects
of change management: (1) the process of
changing a given design, and (2) the design of
artefacts such that they are modified more easily
when needed. In the process of changing a given
design, care must be taken to avoid the possibility
that a change in one part of the design might
impact negatively on some other part. This
requires not only an understanding of how all
aspects of the design interact with each other, but
also a mechanism to rectify such collisions when
they occur. This can be particularly troublesome
when the two conflicting design aspects are
“owned” by different agents in a virtual
enterprise. If change is expected to a design, then
the original design can be made such that changes
can be applied easily. There is relatively little
literature on changing the design mid-way through
the design process. This tends to be subsumed
under failing a mid-way design check point,
thereby sending the design back to an earlier

P. C. MATTHEWS, C. D. W. LOMAS, N. D. ARMOUTIS AND P. G. MAROPOULOS

phase. Such changes, however, arise frequently
due to the customer modifying the original
specification.

Finally, it is important to consider the human
aspects of engineering projects. Where multiple
agents are responsible for different but interacting
design aspects, it is important that all parties
cooperate. Evidence, however, shows that human
nature tends to “hide” problems in the hope that
they can be resolved without needing to admit
there ever was a problem [9]. When the problem
is not resolved, it then has an amplified effect on
the remainder of the design when it no longer can
be hidden. Frequently, resolving these problems
requires changes to the design that in turn result in
the design process moving backwards. While an
agile design process will not change the problems
arising due to human factors, it can mitigate the
effects of these factors when they arise.

This paper will address how the design
process can be made agile. By using concurrent
engineering methodology as a starting point, a
framework will be proposed that will enable
analysis of how unexpected events affect the
concurrent design process. Given this analysis
tool, it then becomes possible to test different
design scenarios to handle an unexpected event
occurring during the design process. This
framework will be concerned strictly with the
temporal aspects of a design project, and not with
any other resource use. The underlying principle,
however, can be adapted readily to these different
resources.

3. Analysis Framework

The basis of this agile design analysis
framework stems from concurrent engineering
and virtual enterprise methodology. Specifically,
given a design project, the project is decomposed
into a number of independent tasks that are
undertaken by different design agents. The
concurrent engineering view assumes that the next
global phase of the project then will be the
combining of the component solutions into the
final deliverable.

The agile design framework considers what

happens when some interruption occurs to a

design agent. The interruption events to be
considered are those that incur a time penalty to
the project. Depending on the nature of the event
and on how much slack was built into the project,
such events potentially result in a global effect to
the whole design project. For analysis purposes,
the following four levels of (local) event severity
have been categorised:

(1) Trivial: The problem can be resolved
completely at the local level, and a small time
penalty is incurred.

(2) Minor: The problem requires the agent to
seek external assistance, or minor redeployment
of part of the work to another partner within the
virtual enterprise.

(3) Major: The problem cannot be resolved
by the agent or by another member of the virtual
enterprise. A new member is needed to join the
virtual enterprise, and the redeployment of work
and initiation of the new member to the project
incurs a serious time penalty.

(4) Fatal: The problem cannot be resolved by
the agent, and there exists no external agent that
can provide support. Effectively, the design is
fundamentally flawed and is not realisable.

An event occurring during the design process
effectively requires more time to be spent than
originally planned. This can be modelled simply
by in effect “turning the clock back” on the design
process. In effect, this encodes an interruption as
being an event that requires redesign work to be
performed. So, if an event happens in the detailing
stage, the severity of the event determines how far
the whole project is set back. For example, a
trivial event in the detailing stage might require
only the affected agent to restart this stage. The
more serious “minor” event might result in the
agent returning to the embodiment stage, while a
“major” event will result in a new agent starting
this part of the design work from the start.
Another possibility in the “minor” / “major” cases
is that several other design agents are affected, to
the respective degrees of the event classification.
Finally, in the case of a “fatal” event, it is
assumed that the whole design collapses due to
the event. In this case, the design requires

Foundations of an Agile Design Methodology

fundamental rework. Hence, all agents will start
from fresh, effectively under a new virtual
enterprise.

3.1 Event Sources

External and unexpected events are the source
of interruptions to the design process [10]. This
paper shall distinguish three major sources of
interrupting events: (1) late customer design brief
change, (2) in-production design change, and
(3) agent failure. The severity of the event will
depend on the nature of the event and the ability
of the relevant agent(s) to handle the event.

Customers, in general, do not provide flawless
documentation and, depending on circumstances,
request unexpected design changes before the end
of a project. This customer-driven change requires
the design to be reconsidered. At the trivial level,
it could be a simple matter of requesting a
different material for the external body. More
significant requests are those that change the
functionality or core design of the artefact.

In-production design changes are those that

arise either internally due to identifying additional
design constraints or novel design solutions.
These can be regarded in a similar manner as
customer-driven changes, and have similar
characteristics. But because they are internal,
there is in general a greater understanding of the
nature of the problem.

Finally, agent failure represents the event in
which an agent is not capable of delivering the
solution as originally specified. Again, the effect
of this failure can take the full range between
trivial, wherein the receiving agent can absorb the
failure and otherwise continue normally through
to fatal, wherein the failure of an agent results in
the failure of the whole design project. The failure
of an agent effectively causes a design change
request, which needs to be suitably propagated
through the virtual enterprise.

3.2 Concurrent Design Representation

By distributing the design tasks to independent
agents, each agent can be seen to perform a
classical, single-threaded design project. Using

the Pahl and Beitz design phase categories [3], the
normal state progression of any agent would be as
follows:

Conceptual: determine the nature of the final
design,

Embodiment: determine how the conceptual
solution takes form,

Detail: determine the exact geometry and other
physical aspects of the solution, and

Manufacture: wherein the design is realised.

Depending on the design task and the agent’s
expertise, each agent will require a different
amount of time to complete each stage. The sum
of these times represents the total time an agent
requires to complete its task, assuming no
interruptions. Note that using this scheme does
allow for agents to specialise in particular aspects
of the design process—for example, a
manufacturing agent will require zero time for the
prior design activities.

3.3 Agile Design Response

The state of the whole virtual enterprise then
is taken as the sum of the agent states. When an
interrupting event occurs to an agent, the effect
can be propagated through use of the causal links
of the global design project within the virtual
enterprise. The two extreme event types (trivial
and fatal) do not require an agile design
methodology to mitigate, as they either are
absorbed locally or globally destroy the project.
The minor and major event classes, however, do
provide an opportunity to apply agile design
methods to minimise the total time penalty to the
project.

Responding with agility requires that when an

event occurs in the concurrent design process, all
design agents are able to respond accordingly. In a
non-agile system, the penalty is accumulated
totally by the affected agent. In the agile system,
other agents aim to reduce the impact of the event
by being able to self-incur trivial events. Thus, the
required change due to the source event is, in
effect, mitigated through the relevant partners in

P. C. MATTHEWS, C. D. W. LOMAS, N. D. ARMOUTIS AND P. G. MAROPOULOS

the virtual enterprise. The aim of this analysis
framework is to model and simulate such events,
so as to be able to test mitigation policies under
laboratory conditions.

3.4 Simulation

The agile design framework provides a means
for performing simulation. Two assumptions must
be made when running such simulations: (1) how
far back the event would set back the affected
agent, and (2) how the redesign work can be
redistributed across the virtual enterprise. It is the
second assumption that is the more difficult to
make, as this will be dependent on the nature of
the event and design project. In order to test
redistribution policies, it is sufficient to provide a
set of reasonable mappings between event severity
and amount of rework that various agents in the
virtual enterprise would take on to mitigate the
penalty.

In order to test a set of different rework
policies (e.g., “don’t mitigate”, “moderate
mitigation”, “global mitigation”, etc.), a Monte-
Carlo approach is used to run a series of
experiments. The result of each experiment is the
total time for the project. Policies then can be
evaluated by comparing the mean and standard
deviation of these total times.

4. Illustration

The simplified scenario of an aeroplane
design and manufacturing project can be applied
to demonstrate the effects of the scenarios
discussed. Consider that the aeroplane design and
manufacturing is controlled by Integrator A for
Customer 1. The product is split into 5 modules,
namely: fuselage, wings, engines, electronic
systems, and landing gear. For each module, an
agent is brought into the virtual enterprise, so as to
design and build the aircraft, and this agent is
controlled by Integrator A.

Figure 1: A Simplified Virtual Enterprise for
Aircraft Manufacturing.

Each agent within the virtual enterprise
follows its own design process, typically
following the form illustrated in Figure 1. This
scenario now can be applied to illustrate the
effects of each of the 4 classifications of external
events. It should be considered that the expected
time for each agent to complete its work is the
same period, i.e., the critical chain is dictated by
each agent equally, and a delay to any agent
represents a delay to the overall time of the
process.

4.1 Trivial Event

Taking agent 1 as the first example, during the
product design process, an external event that
might impact on the time taken to convert input
into output might be a requirements change from
the customer. For example, the fuselage is now
required to have 4 emergency exits along each
side, rather than the original 3 specified.

Foundations of an Agile Design Methodology

Figure 2: An External Event.

This external event has the effect of reducing
how close the agent is to achieving the necessary
output because the agent is now further from the
desired solution than before the event. Figure 3
illustrates this loss of work.

Figure 3: Effect of a Trivial External Event.

Figure 3 illustrates an external event at day 10
of a design process, with a magnitude of 25% of
the work already carried out. The time taken for
the agent to get back to the position at which it
was before the event is, in this case, 8 days. This
is defined as TRe, the Time-Response to an

external event. The amount of time the process
should have taken without the external events is
30 days (Tp).

Therefore, the total time (TT) is defined as

follows:

TT=TP+ ∑
j=0

ne
 TRe,j+ ∑

j=0

ni
 TRi,j (1)

wherein TRe is the time-response for each external
event and TRi is the time-response for each
internal event (internal feedback), ne and ni are

the number of external and internal events,
respectively: TT=38 days in this example.

The event illustrated is classified as a trivial

event because it can be dealt with in-house, with a
minimal Time-Penalty. This is not always the
case, however. Empirical evidence suggests that
events often require the use of additional
resources, often of an expert nature, to resolve
problems raised by unpredictable external events.

4.2 Minor Event

Minor events describe events dictating that the
agents no longer have all the skills, resources or
knowledge to develop an in-house solution, or that
to do so would be more costly than the use of
expert help. In this scenario, the agent must
identify, rapidly, a partner with the necessary
skills, resources or knowledge to “plug the gap”
created by the event. This is where the agility of
the process will allow the response time to be
reduced and the benefits exploited.

Agent 2 is responsible for the design and
manufacture of the wings for the new aircraft. An
external event, however, dictates that the wing
panels no longer should be riveted, but instead
welded to save weight, due to new technology
becoming available. In this instance, Agent 2 does
not possess the skills and knowledge to weld the
wing panels satisfactorily, but the customer
demands it for weight and, thereby, fuel and cost
savings. Agent 2 still has the core competences to
design and manufacture the rest of the wing
structure, and so expert help is sought to assist
specifically with the welding. This assistance
normally would be found within the virtual
enterprise, but could be assistance brought in from
outside the enterprise if the work were to be
assistance rather than taking control of all or part
of a process.

P. C. MATTHEWS, C. D. W. LOMAS, N. D. ARMOUTIS AND P. G. MAROPOULOS

Figure 4: Effect of a Minor External Event.

This minor event has a more significant
“knock-back” effect on the work done, and
therefore imposes a greater Time-Penalty on the
process.

For the minor event above, the total time is 41

days instead of the perfect 30 days. If an agile
design process can reduce the effort lost from
35% of work to 15%, the Time-Penalty can be
reduced to 5 days, a savings of 6 days. Figure 5
shows this effect.

Figure 5: An Agile Design Time-Response to a
Minor External Event.

4.3 Major Event

A major event is defined by the failure of an
agent to satisfy the demands put upon it by the

greater organisation or system; it cannot convert
its inputs into the required outputs.

An example scenario similar to one seen in

reality might be Agent 3, responsible for the
engines, failing to design and manufacture an
engine sufficiently powerful to satisfy the
customer requirements it was given. The Agent
simply does not have the knowledge, experience
and / or resources to meet the demands. This is
classified as a major external event, which to the
rest of the virtual enterprise is unpredictable. The
Time-Penalty is likely to be serious, as the work
completed is likely to be reset to zero. An
alternative scenario might be that an agent goes
bankrupt during the project and no longer can
continue its role.

Figure 6: Time Response to a Major Event.

In this situation, the agent is deemed to have
failed and another agent is required to take control
of that specific process and to join the virtual
enterprise. The speed with which this can be
achieved is a function of the agility of the
organisation as a whole. The example shown
below shows a 24-day delay to a process that
should have taken 30 days, due to unpredictable
failure after 24 days.

4.4 Fatal Event

The fatal event is an external event that is
catastrophic to the design as a whole, not just to
any individual agent. An example of a fatal event
might be the introduction of legislation stating

Foundations of an Agile Design Methodology

that emissions of greenhouse gases for any mode
of transport must be below a given level. This
event would impact directly the agent responsible
for the engines—in our case example, Agent 3;
the effect, however, is that the design of the
overall process is fundamentally flawed. No
replacement of Agent 3 will be able to produce
the output required for the project to be realised.

These 4 classifications of event cover a broad
spectrum of real-life events, for which agile
design will be of significant benefit, by reducing
to a minimum the time-response of an agent or
overall system, and thus the time-delay of whole
projects.

5. Discussion

The agile design methodology does assume,
and requires, that the design project is being
undertaken in a virtual enterprise environment.
The aim of the agile design methodology is to
enable rapid redeployment of design work when
required due to an unforseen event occurring.
These events are basically design change
requirements, arising due either to customer
request, internal request resulting from design
work, or internal request due to an agent failing to
fulfil its task. A classification for the severity of
these events was proposed that covered the full
spectrum. Within this severity spectrum, it has
been argued that the extreme classes are not
appropriate for agile design methods. Events
classified away from these extremes, however,
provide an opportunity for agile response.

The agile design methodology was illustrated
using a simplified aircraft design scenario. While
the design process in this case was completely
parallel, it demonstrated how the design work
could be redistributed in each of the event classes.
In the agile cases, it was argued that this provided
a more rapid resolution to the events than would
have been possible otherwise.

6. Conclusions

This paper introduced a framework for
representing and analysing agile design
methodology based on concurrent engineering.
This illustrated how the design state could be

mapped out onto the virtual enterprise network,
and provided a means for representing and
measuring the effect of how unexpected design
events occur during the design process. The agile
design methodology redistributes the design work
after an event occurs according to the severity.
The proposed framework enables virtual
enterprises to test various work redistribution
policies, using Monte Carlo methods to determine
the most suitable for different event types.

The next phase of this research will verify the
event classifications with SMEs that have
experience operating in virtual enterprises. This
will include reviewing case studies wherein agents
have encountered serious unplanned redesign
work during the design process, and reviewing
how this rework would have been distributed
across the virtual enterprise.

One aspect that has not been considered is the
communication latency within a virtual enterprise.
It has been assumed that when work is
redistributed between agents, this results only in
the affected agents “turning back the clock” on
their design process. It was assumed that this
resetting of the design process incorporated any
latency rather than explicitly accounting for this.

P. C. MATTHEWS, C. D. W. LOMAS, N. D. ARMOUTIS AND P. G. MAROPOULOS

References

1. Kusar, J., Duhovnik, J., Grum, J. and M. Starbek,

2004, “How to Reduce New Product
Development Time,” Robotics and Computer-
Integrated Manufacturing, 20, 1-15.

2. Camarinha-Matos, L. M. and H. Afsarmanesh,

2003, “Elements of VE Infrastructure,”
Computers in Industry, 51, 139-163.

3. Pahl, G. and W. Beitz, 1996, Engineering Design:

A Systematic Approach, Springer-Verlag London,
second edition.

4. Carter, D. E. and B. S. Baker, 1991, Concurrent

Engineering: The Product Development
Environment for the 1990s, Addison-Wesley.

5. Armoutis, N. D. and J. Bal, 2003, Building the

Knowledge Economy: Issues, Applications, and
Case Studies, chapter E-Business through
Competence Profiling, 474–482. IOS Press.

6. Lau, H. C. W., Wong, C. W. Y., Pun, K. F. and

K. S. Chin, 2003, “Virtual Agent Modelling of an
Agile Supply Chain Infrastructure, Management
Decision, 41(7), 625-634.

7. Jiang, Z. and R. Y. K. Fung, 2003, “An Adaptive

Agile Manufacturing Control Infrastructure Based
on TOPNs-CS Modelling,” International Journal
of Advanced Manufacturing Technology, 22, 191-
215.

8. Terwiesch, C., Loch, C. H. and A. De Meyer,

2002, “Exchanging Preliminary Information in
Concurrent Engineering: Alternative Coordination
Strategies,” Organization Science, 13(4), 402-
419.

9. Ford, D. N. and J. D. Sterman, 2003, “The Liar’s

Club: Concealing Rework in Concurrent
Development,” Concurrent Engineering: Research
and Applications, 11 (3), 211-219.

10. Ye, N., 2002, “Information Infrastructure of

Engineering Collaboration in a Distributed Virtual
Enterprise,” International Journal of Computer
Integrated Manufacturing, 15 (3), 265-273.

Biographies

Peter Matthews received
his B.A. in Mathematics
and a Ph.D. in the
application of A.I. tools at
the University of Cam-
bridge. He is now the
Lecturer in Design Infor-
matics at the School of
Engineering at the Uni-
versity of Durham, resear-
ching the application of
stochastic and other
modelling techniques to
the early engineering
design phases.

Chris Lomas graduated
from the University of
Durham in 2003 with a
Masters degree in Engin-
eering. He is a Ph.D.
candidate and his research
interest relates to Agile
Design.

Nikolaos Armoutis is a
Research Fellow in the
School of Engineering at
Durham University. He is
currently involved in
identifying and assessing
competencies in engineer-
ing companies with a
view to forming collabor-
ating alliances and virtual
organizations.

Paul Maropoulos is a
Professor of Engineering
at the Innovative Manu-
facturing Research Centre
at Bath University. He is
director of the Global
Digital Enterprise Resea-
rch Laboratory (GDERL)

