
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

A Trajectory-Preserving Synchronization Method for

Collaborative Visualization

Lewis W.F. Li, Frederick W.B. Li, and Rynson W.H. Lau

Abstract—In the past decade, a lot of research work has been conducted to support collaborative visualization among remote
users over the networks, allowing them to visualize and manipulate shared data for problem solving. There are many applications
of collaborative visualization, such as oceanography, meteorology and medical science. To facilitate user interaction, a critical
system requirement for collaborative visualization is to ensure that remote users will perceive a synchronized view of the shared
data. Failing this requirement, the user’s ability in performing the desirable collaborative tasks will be affected. In this paper, we
propose a synchronization method to support collaborative visualization. It considers how interaction with dynamic objects is
perceived by application participants under the existence of network latency, and remedies the motion trajectory of the dynamic
objects. It also handles the false positive and false negative collision detection problems. The new method is particularly well
designed for handling content changes due to unpredictable user interventions or object collisions. We demonstrate the
effectiveness of our method through a number of experiments.

Index Terms—Collaborative visualization, network latency, motion synchronization, distributed synchronization.

1 INTRODUCTION
Collaborative visualization [10] allows geographically separated
users to access a shared virtual environment to visualize and
manipulate datasets for problem solving without physical travel.
Example works include fluid dynamics visualization [27], volume
visualization [1] and medical data visualization [26]. In contrast to
those working individually with standalone visualization applications,
research studies have found that users working in groups through
collaborative visualization applications can often work out a better
solution for a given problem [17]. To facilitate collaborative dataset
manipulation for visualization, CSpray [21] was designed to
comprise a “spray-paint can metaphor” for users to edit a dataset in a
graphical way. A control mechanism is provided for users to modify
the dataset in a mutually exclusive manner. If a user changes the
dataset, updates of the dataset will be broadcasted to remote users.
However, the system does not address the inconsistency problem of
dynamic objects due to network latency. Hence, if we conduct
visualization on a time-dependent dataset [9], such as thunderstorms
and tornados, synchronization of the dataset among remote users
would be difficult. First, as this type of dataset changes continuously
over time, it is difficult to guarantee that each of these changes will
be reported timely to the remote users throughout the collaboration
session. Second, as different users may be connected to each other or
to the server via different network routes, they may perceive
different amounts of network latency, and hence delay, in receiving
the update messages. Although it is possible to introduce a further
delay for the updated information to be presented to the users at a
synchronized moment [7], it will substantially affect the interactivity
of the collaboration.

Recently, we have developed a method to support global-wise
synchronization for collaborative applications [14]. The method runs
a reference simulator for each dynamic object on the application
server. Each of the clients interested in the object, including those
that access the objects as well as the owner of the object, will
execute a gradual synchronization process on the local copy of the

object to align its motion to that of the reference simulator running at
the server. Our results show that the method effectively reduces the
network latency by half and quickly align the motion of the
replicated object to that of the original dynamic object. However, the
method still suffers from a high error during the period when an
interaction has just occurred and before the interaction message has
reached the client, causing the users to make inappropriate decisions.
It may also leads to the false positive and false negative collision
problems as discussed later.

In this paper, we present a trajectory-preserving synchronization
method, which significantly extends our previous work [14] to
support collaborative visualization. It considers how spatial changes
and interactions of dynamic objects are affected by network latency.
A set of procedures have been developed to correct the motion
trajectory of the dynamic objects. In addition, solutions have also
been provided to handle the false positive and false negative
collision detection problems. To demonstrate the effectiveness of our
method, we have conducted experiments on a prototype system for
flow visualization [25]. With this prototype, users may manipulate
dynamic objects with the CyberGloves, which are electronic gloves
for sensing hand and finger motions, to intervene the flow of a
dataset for visualization. The dynamic and interactive nature of this
prototype provides an efficacious testbed for verifying the
effectiveness of the new method.

The rest of the paper is organized as follows. Section 2 briefly
summarizes related work. Section 3 outlines the foundation of our
method. Section 4 presents in detail our trajectory-preserving
synchronization method. Section 5 shows how the new method
handles object collisions. Section 6 studies the performance of the
proposed method with a number of experiments. Finally, Section 7
briefly concludes the work presented in this paper.

2 RELATED WORK

2.1 Collaborative Applications
A unique characteristic of collaborative applications is the need to
distribute state updates to remote sites over the network to update the
states of the shared objects at these sites. Because of network latency,
different remote sites may receive the updates after different amounts
of delay, causing the view discrepancy problem at these sites.
Nevertheless, traditional applications such as [2] and [12] may still
work well under the existence of network latency as long as the state
updates are received by the remote sites in a correct order. This is

 Lewis W.F. Li is with Department of Computer Science at City University

of Hong Kong, Hong Kong, E-Mail: kwfli@cs.cityu.edu.hk.
 Frederick W.B. Li and Rynson W.H. Lau are with Department of Computer

Science at University of Durham, United Kingdom., E-Mail:
{Frederick.Li | Rynson.Lau} @durham.ac.uk.

Manuscript received 31 March 2006; accepted 1 August 2006; posted online 6
November 2006.
For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org.

989

1077-2626/06/$20.00 © 2006 IEEE Published by the IEEE Computer Society

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

because these applications typically have a large time gap between
any two consecutive updates as compared with the network latency.
As such, the network latency becomes insignificant and the users can
implicitly perceive synchronized application content at all times.

However, collaborative applications that involve time-dependent
data and continuous user interaction may be different from the above
applications. The state update events in these applications are
continuous [18] in nature. In order for users to interact with the
system based on the same updated view of the data, the updates need
to be presented to the remote users either without any delay or at
least within a very short period of time. However, this is not trivial to
achieve. An early attempt to explore the discrepant views among
remote users on shared data due to network latency was done in
DEVA3 [22], which claimed that inconsistency may be tolerated if
latency is small enough. Some works have been conducted to study
how the delay in delivering state updates will affect the interactivity
of collaborative applications [4, 21]. To cope with the latency
problem, adaptations could be performed at either the user or the
system side. For user side adaptation, [24] proposes to explicitly
disclose delay information to the users and let the users adjust their
behavior by themselves to cope with the state discrepancy problem.
Unfortunately, this arrangement is subjective to different users and
would heavily slow down the user interaction.

For system side adaptation, a popular approach is to use dead
reckoning [16]. With this approach, the controlling client of a
dynamic object runs a motion predictor for the object. Other clients
accessing the object also run the same motion predictor to drive the
motion of the local copies of the object. The controlling client is
required to keep track of the error between the actual and predicted
motions of the object, and sends the updated motion information to
the other clients when the error is higher than a given threshold.
Although this approach is very simple, it does not guarantee that the
state of a shared object could be synchronized among all the remote
clients.

In [18], a local-lag mechanism is proposed to address this
problem. When the controlling client issues a state update of the
dynamic object, the update will be sent to the remote clients
immediately but not to the sender itself until a local-lag period is
expired. This is to reduce the discrepancy between the sender and the
receivers. However, as different pairs of clients may suffer from
different amounts of latency, a single value of local-lag can only be
used to synchronize two clients, the sender and the receiver, but not
among a number of clients. In [3], users make use of the reference
state information from the server to correct the states of their local
copies of the dynamic objects. Again, there is no control mechanism
to guarantee that the states generated at a client would be
synchronized with those at other clients.

2.2 Clock Synchronization
The synchronization problem has also been studied by researchers
working on clock synchronization. In particular, Network Time
Protocol (NTP) [19] has been adopted as a standard for computers
connected via the Internet to synchronize their clocks to within 10ms
of error. It relies on selecting and filtering time information from a
set of time servers. On the other hand, there are also different
strategies proposed in adjusting the local clock when the correct time
information is received [10, 12, 20]. Backward correction [11] and
forward correction [23] are two approaches, which make a backward
or a forward adjustment on the clock value, respectively.
Undesirably, they introduce a time discontinuity problem to the
clock. [13] addresses this problem by speeding up or slowing down a
clock to synchronize it against a reference clock. However, it incurs
a severe run-time overhead as it needs to adjust the time once at
every clock tick. Hence, it generally requires hardware support. To
reduce the overhead, [15] proposes an adaptive method for clock
synchronization. It uses a time server to propagate time information
to the clients via a re-synchronization process for the clients to
determine their clock drift rates. The time between two consecutive

re-synchronization processes will be shortened or lengthened based
on the drift rate of a client clock. It is set inversely proportion to
clock drift rate. At the client, clock correction is performed by
extrapolating the clock continuously with the newest clock drift rate
determined in the latest re-synchronization process.

Although methods used in clock synchronization appear to
address the synchronization problem in collaborative visualization, it
is difficult to apply them directly to address the problem. First, the
time value in clock synchronization is only a parameter with a single
degree-of-freedom, while the motion parameters of the datasets for
visualization may have three or higher degrees-of-freedom. Second,
the clock information is periodic, i.e., the occurrence of a time event
is predictable. This simplifies the synchronization problem. In
contrast, the motion of the datasets for visualization is likely
unpredictable, especially when user interactions or object collisions
are possible. Third, in clock synchronization, the time server is the
prime reference for all clocks, which only need to synchronize to the
changes from the time server. In collaborative visualization, however,
any user may initiate its own actions to manipulate a dataset and
such actions need to be synchronized among all the users.

3 FOUNDATION

3.1 Consistency Control Model
In [14], we proposed a relaxed consistency control model to
synchronize the object states among remote clients in collaborative
applications. We observed that application users would likely pay
more attention on the state trajectory of a dynamic object, i.e., the
continuous sequence of state changes of the object, rather than on the
individual states of the object in order for them to determine their
actions to respond. Hence, we proposed to relax the strict time-
dependent consistency control requirement on individual states of a
replicated object among all relevant clients to allow the state
trajectories of the replicated object among the relevant sites to
deviate from that of the correct one by an acceptable amount.
Formally speaking, given that the states of a replicated object at two
remote sites at time t are si(t) and sj(t), the state discrepancy D of the
object between the two sites during any time period Ta and Tb should
be smaller than an application specific tolerance, . Therefore,

b

a

T

T ji dttstsD |)()(| (1)

This relaxed model could be reverted back to the original strict
time-dependent consistency control model if we shorten the time
period so that Ta = Tb and set tolerance = 0.

3.2 Gradual Synchronization
To implement the consistency control model, we have developed a
gradual synchronization method [14] to trade accuracy of individual
states of a dynamic object for the preservation of the state trajectory
of the object. We assume that a collaborative application has a client-
server architecture. The server runs a simulator, called a reference
simulator, for each dynamic object. This reference simulator serves
as a standard reference for synchronizing the motion of all copies of
the object at different remote clients. Each client interested in an
object will also run a simulator as a local copy of the object. This
method effectively reduces the latency of a client to obtain the
updated state of an object from a double round-trip time delay to a
single one.

To simulate object motions, we need to apply appropriate motion
equations [8] to drive the motion of the objects. For example, we
may apply a first-order predictor (or a more advanced method [5]) to
drive an object when it is under the user’s control:

Vtppnew (2)

where p is the current position of the dynamic object, t is the time
difference between p and pnew, and V is the motion vector of the

990

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

LI ET AL.: A TRAJECTORY-PRESERVING SYNCHRONIZATION METHOD FOR COLLABORATIVE VISUALIZATION

object. When we need to simulate object interactions and responses,
we may apply a second-order predictor instead:

 22AtVtppnew
AtVVnew

(3)
(4)

where A is the acceleration vector of the dynamic object, and t is the
time difference between V and Vnew. For the simulation of flows,
such as water, smoke or fire, we may apply appropriate motion
equations according to their behaviors [6].

During run-time, two motion timers Ts and Tc are maintained at
the server and the client, respectively. They are the virtual clocks
indicating how long a dynamic object has been performing certain
movement as perceived by the server and by the client. Hence, they
represent t in Eq. (2) to (4). When a dynamic object changes its
motion, each interested client will gradually align the motion of its
local copy of the object to that of the reference simulator at the
server by adjusting the increment rate of Tc of the object. The
simulator of the object at the client and the reference simulator of the
object at the server are said to be synchronized when Tc = Ts.

In general, this method successfully maintains the consistency of
dynamic objects in collaborative applications, except between the
period when an interaction has just occurred and before the update
message reaches the remote client. During this period, the two sites
can have a very high discrepancy. Although this discrepancy will be
settled shortly after the update message is received at the remote
client, it still produces a high visual error during this period. This can
be serious if the interactions occur frequently.

4 TRAJECTORY-PRESERVING SYNCHRONIZATION
The new synchronization method extends our earlier method [14] by
considering how interactions are perceived by the remote users or the
server in the existence of network latency. It includes separate
mechanisms for handling client-server and client-client
synchronizations. To simplify our discussion, Figures 1 to 3 help
illustrate our method graphically. We assume that client A initiates a
motion change to a dynamic object, which can be a user controlled
object or a primitive object of a dataset in flow simulation. A motion
command is then generated as a result of the motion change and sent
to the server to update the motion of the corresponding reference
simulator S. Concurrently, client B is visualizing the change of the
object and needs to gather updates of the object from the reference
simulator running at the server.

4.1 Client-Server Synchronization
As shown in Figure 1, before a new motion occurs at Pinit, the
motions of the dynamic object at client A and of its reference
simulator S are synchronized. When the object is driven to move in a
new direction Vnew by a script, by a user interaction or by an object
collision, a motion command is generated. However, as it will take
time for this motion command to reach the server, S will continue to
move in its current direction until Pstart, when the server receives the
motion command. This discrepant motion is represented as the
expected motion vector Vr, and its motion would last for the time
duration of a half round-trip delay.

To remedy the state discrepancy problem during motion change,
we propose to adjust the motion of the dynamic object at A gradually
to align with that of S. This motion remediation method helps
minimize the state discrepancy raised during a motion change while
preserving the motion trajectory as much as possible. It is shown by
the blue arrows in Figure 2. First, instead of driving the dynamic
object at A solely with Vnew, we let it move in the direction of the
vector sum of Vnew and Vr for the time duration est

SAT , where est
SAT is

the estimated latency between client A and the server collected from
recent statistics [14]. Note that est

SAT is used instead of the real
latency (half round-trip time) TA–S, since the most updated TA–S is not
currently available at the client. After that, we set the motion of the
dynamic object to move in the direction of Vnew. Once the server has
received the new motion command from A, it will reply the client by

sending it the values of Pstart and Ts. Upon the reception of such
information, A will evaluate the residual state discrepancy Vdis as the
vector difference between Pcurr of the object at the server and the
current position of the object at A, where Pcurr = Pstart + (TA–S + Ts) ×
Vnew and TA–S is the most updated latency. With the value of Vdis, we
may further remedy the motion of the dynamic object at A to move
in the direction of the vector sum of Vnew and Vdis. Hence, such
motion could eventually be synchronized with that of S at Psync.
Finally, we again resume the motion of the object at A to move in the
direction of Vnew.

Fig. 1. The state discrepancy problem during motion change.

Server applies
the new motion

Client starts
a new motion (Vnew)

Reception of
Pstart and Ts

New motion at server

New motion at client

State discrepant vector
(Vdis)

Synchronized motion

Amended client motion

Vector sum of
Vnew and Vr

Vdis
Pcurr

Pstart

Psync

Fig. 2. Motion remediation in client-server synchronization.

4.2 Client-Client Synchronization
Figure 3 shows our motion remediation process to address the state
discrepancy problem in client-client communications. Using the
same scenario and notation as in the client-server synchronization
example, we consider the situation that client B is interested in the
motion of the dynamic object driven by client A. Hence, the server
needs to propagate the motion information of the object to B. Before
the object is driven to move in a new direction, the motions of S at
the server and the local copy of the object at B are synchronized at
Pstart. Assuming that S is driven to move in a new direction Vnew
when an interaction occurs, Vnew will then be propagated to B. Again,
it will take time for this motion command to arrive at B. Thus, the
local copy of the object at B is expected to continuous moving in its
current direction until client B receives Vnew. Then, B will estimate
the state discrepancy Vdis as the vector difference between Pcurr of the
object at the server and the current position of it at B, where

new
est

BSstartcurr VTPP . Note that est
BST is the estimated latency

between client B and the server collected from recent statistics. With
Vdis, we may amend the motion of the object in B to move in the
direction of the vector sum of Vnew and Vdis such that it could
eventually be closely synchronized with that of S at Psync. At this
point, we resume the motion of the local copy of the object to move
in the direction of Vnew. This adjusted client motion is shown as
brown arrows in Figure 3. Hereafter, when client B receives the most
updated latency TS–B, it will adjust the increment rate of Tc using TS–B,
which is the gradual synchronization process for client B to remedy
any residual state discrepancy [14].

991

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

Fig. 3. Motion remediation in client-client synchronization.

4.3 Synchronization at an Arbitrary Moment
One important advantage of the new method is that a prior
synchronized state between a dynamic object and its reference
simulator is not required before a new synchronization cycle could
be taken place. Hence, our method can synchronize new motion
commands generated at any arbitrary moment, including during
motion remediation. We explain this with the example shown in
Figure 4. While client A is executing a motion remediation process,
it sends out another motion command to indicate that the motion of
the dynamic object has been changed to Vnew. Although the previous
object motion command at A has still not been synchronized with the
reference simulator at the server, we may start a new client-server
synchronization process for the new motion command by applying
the new motion on the object immediately.

Instead of moving in Vnew, the dynamic object at A moves in the
direction of the vector sum of Vnew and Vr for the time duration of

est
SAT , followed by the direction of Vnew until the client has received

Pstart and Ts from the server. Upon receiving such information, the
client evaluates the residual state discrepancy Vdis as the vector
difference between Pcurr of the object at the server and the current
position of the object at A, in the same way as described in Section
4.1. With Vdis, we may further amend the motion of the object at A to
move in the direction of the vector sum of Vnew and Vdis such that this
motion and that of S could eventually be synchronized at Psync.
Finally, we resume the motion of the object at A to move in the
direction of Vnew.

Fig. 4. Motion remediation at an arbitrary moment.

5 HANDLING OF OBJECT COLLISIONS
Another critical issue in collaborative visualization is to assert a
consistent view among remote users in object collisions. This issue
typically does not exist in a standalone visualization application,
since updated states of dynamic objects are maintained and presented
within a single client, where delay can be neglected. However,
because of network latency and since each user may suffer from a
different amount of network latency, object collision information
may be presented to different users at different time moments. This

may lead to inconsistent object collision results. This problem is still
an open research topic.

To our knowledge, [20] is the only work that attempts to address
this problem. It uses dead reckoning to guide the motions of dynamic
objects and addresses the inconsistency problem as follows. First,
when a client needs to detect possible collisions between two remote
objects or between one remote object and one static object, it uses
the local state information of these objects to compute a temporary
collision result for visual presentation. The collision result may then
be overridden by an updated one from the remote client when it is
available. This may, however, introduce temporary inconsistency on
the collision results among remote users. Second, when a client
predicts that a collision will likely occur between its own controlled
object and a remote object, the system would instruct the remote
client to propagate the state of the remote object more frequently to
this client. This helps decrease the error in evaluating the collision
detection result at the client. This unfortunately would increase the
network loading. In addition, the false positive and false negative
collision results, which will be discussed next, are not considered in
this method.

5.1 The Collision Problem
In our method, when an object collision occurs, we evaluate and
interpret the collision response as motion commands according to the
reactions of the colliding objects. The motion commands would then
be fed as input to the motion predictors of the objects to update the
object motions. In this way, our synchronization method could
natively support the global-wise consistency of object collisions
among the participants, i.e., the participating clients and the server.
However, because of network latency, the new motion commands
will still be received and interpreted by each participant at a different
time moment. This may lead to a false positive or a false negative
collision detection result, which corresponds to an invalid or a
missing collision instance of an object, respectively.

We have identified all possible false positive and false negative
collision detection results as shown in Table 1. We assume that the
roles of the clients and of the server are the same as those mentioned
in Section 4. From Table 1, there are mainly two reasons leading to
the collision problem. First, when an object in client A changes its
motion during motion remediation, i.e., same situation as Section 4.3,
the motion of this object at client A and that of the reference
simulator at the server will be different temporarily. Second, as it
takes time for the motion commands to be delivered to client B, the
motion of the object in B will also be different from that of the
reference simulator at the server. In both cases, inconsistent collision
results may be produced.

5.2 The Algorithm
To address the collision problem, we follow our reference simulator
scheme, where the motion of a dynamic object maintained at a client
only needs to be synchronized with that of the reference simulator at
the server. Thus, if we could resolve the collision problem between
each client (either client A or client B) with the server, we would
then have handled the problem globally among all participants.
Based on this observation, we convert the collision problem shown
in Table 1 into two simpler problems, involving only two parties:
client A – server (Table 2) and client B – server (Table 3). To
address the collision problem, we may just handle individual cases
shown in Tables 2 and 3 as follows:

 Cases (a), (d), (e) and (h): As the collision problem does not

exist, no actions are required.

 Cases (c) and (g): A false positive collision occurs at the server.
When a dynamic object changes its motion, the server will send
an update message to client B to update the state of the object at
B. To trade transient discrepancy of client A for global
consistency, the collision event detected at the server will be sent

992

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

LI ET AL.: A TRAJECTORY-PRESERVING SYNCHRONIZATION METHOD FOR COLLABORATIVE VISUALIZATION

to both clients A and B to override the object motion there so
that they will both have the same object state.

 Case (b): A false negative collision result occurs at the server.
Since the server does not detect a collision, it will not send out a
collision event, causing an inconsistency with client A. This
problem only occurs when client A issues a new motion
command during motion remediation, which leads to a collision.
To trade transient discrepancy of client A for global consistency,
we inhabit client A to perform collision detection until the
motion remediation process has finished, which typically takes a
round-trip time.

 Case (f): A false positive collision result occurs at client B. This
happens only while the server is sending a motion command to
client B but the original motion of the object at B has already led
to a collision. This problem could not be avoided but could be
quickly corrected by the new motion command from the server,
and the inconsistent state could only last for a half round-trip
time. As in case (b), to maintain global consistency, we inhabit
client B to perform collision detection until the motion
remediation process has finished. This situation would last for
another half round-trip time.

6 RESULTS AND DISCUSSIONS
To study the performance of our method, we have developed a
prototype to support flow visualization and dynamic user interaction.
We have tested it on a set of PCs with a P4 2.0GHz CPU, 1GBytes
RAM and a GeForce4 Ti4200 graphics card. Each client machine has
a CyberGlove with a 3D tracker connected to it to capture the user’s
hand gesture and position. The CyberGlove allows a user to
manipulate the objects in an intuitive way inside the prototype
environment, where each unit of spatial distance is defined as 1m.
The user may apply force to an object and use the object to intervene
a flow simulation. In addition, we have connected the machines
through TCP connections, which handle the packet lost problem
automatically, and use timestamps to ensure message ordering.
Figure 5 shows a series of screenshots from one of our experiments
on flow visualization.

Before the experiments, we first collected the latency statistics of
different network connections as show in Table 4. (Connection
Overseas 1 measures the latency between Hong Kong and US, while
Overseas 2 is created to model a long latency connection.)

Table 4. Latency information for different network connections

Latency (ms) Category
Mean Max. Min

LAN (within a department) 5 7 0
Intranet (within a university) 40 57 32
Overseas 1 (modeling two nearby countries) 160 186 132
Overseas 2 (modeling two distant countries) 325 537 294

6.1 Experiment 1
This experiment compares the performance of the new method with
our original synchronization method [14] and dead reckoning [16] in
terms of accuracy. It measures the object position discrepancy
experienced by relevant machines when two users are connected via
an overseas link with a network latency of roughly 160ms as shown
in Figure 6. In the experiment, we use first-order and second-order
polynomials to model the motion of the object when it is being
grasped to move and thrown out by a user, respectively.

To simplify the discrepancy measurement without loss of
generality, we observe in this experiment the motion of a selected
object, which is spherical in shape. The users have a full control on
the motion of this object and use the object to intervene a flow
simulation. However, to simplify this experiment, we have confined
the motion of all the tiny particles of the flow so that they do not
affect the motion of the selected object. During the experiment, a
user (client A) is asked to pick up the selected object and move it
around arbitrarily with a velocity of 1 m/s. After around 4 seconds,
the user throws the object out with a velocity of 3m/s under 9.8m2/s
gravity, it hits the floor and bounces up and down several times. The
elastic coefficient of the object is 0.7. Such interaction is observed by
a remote user (client B). We have measured the position discrepancy
of the object between client A – server (Figure 6(a)), server – client
B (Figure 6(b)), and client A – client B (Figure 6(c)) during a fixed
period of time. The position discrepancies exhibited by our original
method, and the new method, and dead reckoning are shown in each
of the three diagrams.

We assume that the positions of the object in the three machines
are synchronized at 1s. As the user sudden changes the motion of the
object, we can see that there is an increase in discrepancy in all three
diagrams of Figure 6. In Figure 6(a), as dead reckoning does not
perform any correction until when the server receives the update

Table 2. Client A and server
collision problems

Case Client A Server
(a) × ×
(b) O ×
(c) × O
(d) O O

Table 3. Server and Client B
collision problems

Case Server Client B
(e) × ×
(f) × O
(g) O ×
(h) O O

Table 1. Possible false positive and false negative collision problems (× indicates no collision and O indicates a collision)

Client A Server Client B Collision Problem and Its Causes
× × × No collisions occur. The collision problem does not exist.

× × O Before the new motion command arrives at client B, the motion of the object at B leads to a collision. False
positive collision occurs.

× O × Client A issues a new motion command during motion remediation, which does not lead to a collision.
However, such command causes a false positive collision when it reaches the server.

× O O Client A issues a new motion command during motion remediation, which does not lead to a collision, while
client B inherits the same state from the server. False positive collision occurs.

O × ×
Client A issues a new motion command during motion remediation, which leads to a collision. However, this
command does not cause a collision when it reaches the server, while client B inherits the same state from the
server. False negative collision occurs.

O × O

Client A issues a new motion command during motion remediation, which leads to a collision. However, the
new command does not cause a collision when it reaches the server. False negative collision occurs.
On the other hand, before the new command arrives at client B, the motion of the object at B leads to a
collision, which does not correspond to the one at client A. False positive collision occurs.

O O × Client B does not receive the state update in time. False negative collision occurs.
O O O Collision is detected correctly at all parties. No collision problems arise.

993

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

message from client A, the discrepancy rises much more rapidly. In
addition, it also lasts for longer as dead reckoning does not send out
an update message to the server until the error between the actual
and the predicted motions is high enough. With our previous method,
when the object at client A changes motion, A would send out an
update message to the server immediately and move the object at a
reduced speed to minimize its discrepancy with the server. Hence, its
discrepancy rises much slower than dead reckoning. The method that
we propose here is even more aggressive. It modifies the motion of
the object at client A to anticipate for the latency existed between A
and the server. Hence, its discrepancy is further reduced.

When the server has received and applied the update to the object,
the object discrepancy using dead reckoning drops immediately. This
happens at around 1.2s. For our original and the new methods, we
receive the update message at around 1.16s, after 160ms of latency.
The reason for our methods to receive the update message slightly
earlier than dead reckoning is that we do not need a thresholding
process. Our original method would also have a sudden drop as we
update the object position at the server to the actual position where
the object started to change motion at client A. However, the
discrepancy would not drop to zero as the object in client A has
already moved some distance. This discrepancy will be further
reduced as the object in client A continues to move in a reduced
speed than that of the server until they are synchronized. With the
new method, the discrepancy gradually reduces to zero
(approximately) as we continue to correct the object motion at client
A until it is synchronized with that in the server.

In Figure 6(b), the discrepancy of dead reckoning suddenly
increases as the server suddenly correct the object location when it
receives the update message from client A. This discrepancy
continues to increase as the object in client B continues to move in
its current direction until B receives the update message from the
server. Then, the discrepancy suddenly drops to zero as B applies the
update to the object. With our original method, the rise in
discrepancy is similar to dead reckoning except that here it happens
earlier at about 1.16s instead of 1.2s and drops earlier at about 1.32s.
However, the discrepancy would not drop to zero as we move the
object at client B to the location where the object started to change
motion at the server. This discrepancy will be further reduced as the
object in client B speeds up until it catches up with the object at the
server. With the new method, the discrepancy gradually reduces to
zero as we continue to correct the object motion at client B.

At about 4s, client A throws the object out, which hits the floor
and bounces up and down several times. This leads to a series of

object collisions. We discuss the performance of our method when
we apply it to collision detection in the next experiment.

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

Time(sec) 1.00 2.00 3.00 4.00 5.00 6.00

Po
si

tio
n

D
is

cr
ep

an
cy

 (m
)

New Method

Original Method

Dead Reckoning

(a)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

Time(sec) 1.00 2.00 3.00 4.00 5.00 6.00

Po
si

tio
n

D
is

cr
ep

an
cy

 (m
) (b)

0.000

0.100

0.200

0.300

0.400

0.500

0.600

0.700

0.800

Time(sec) 1.00 2.00 3.00 4.00 5.00 6.00

Po
si

tio
n

D
is

cr
ep

an
cy

 (m
) (c)

Fig. 6. Position discrepancies of the three methods, observed between:
(a) client A and the server, (b) the server and client B, and (c) client A
and client B.

In general, we may observe from Figure 6 that although the dead
reckoning method is very simple, it produces high discrepancy
during motion changes. Our original method is successful in
reducing the discrepancy. However, through motion adjustment as

Fig. 5. Screen shots of our prototype for collaborative visualization.

994

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

LI ET AL.: A TRAJECTORY-PRESERVING SYNCHRONIZATION METHOD FOR COLLABORATIVE VISUALIZATION

well as using the server as a reference, the new method not only
further reduces the discrepancy but also shorten the duration of
discrepancy, as observed in Figure 6(c).

6.2 Experiment 2
In this experiment, we follow similar settings as in Experiment 1 but
focus more on the accuracy of the new method in handling object
collisions under different types of network connection as shown in
Table 4. The experiment is conducted by 4 users, clients A to D.
Each of the users is connected to the server with a different network
connection and takes turn to act as the controller, who throws the
selected object out to initiate collisions, and the other three users
would be the observers, who monitor the motion of the selected
object. When throwing the object, the controller simply throws the
object up to the sky and let it fall down on to the floor. Then, the
object will bounce up and down a few times before it rests on the
floor. During the experiment, we record the position discrepancy of
the object between each of the users and the server. The results are
shown in Figure 7, with each user taking turn to be the controller.

0.000

0.100

0.200

0.300

0.400

Time(sec) 1.00 2.00 3.00 4.00

Po
si

tio
n

di
sc

re
pa

nc
y

(m
)

A: Controller (LAN)

B: Observer (Intranet)

C: Observer (Overseas 1)

D: Observer (Overseas 2)

(a)

0.000

0.100

0.200

0.300

0.400

Time(sec) 1.00 2.00 3.00 4.00

Po
si

tio
n

di
sc

re
pa

nc
y

(m
) A: Observer (LAN)

B: Controller (Intranet)

C: Observer (Overseas 1)

D: Observer (Overseas 2)

(b)

0.000

0.100

0.200

0.300

0.400

Tim e(sec) 1.00 2.00 3.00 4.00

Po
si

tio
n

di
sc

re
pa

nc
y

(m
)

A: Observer (LAN)

B: Observer (Intranet)

C: Controller (Overseas1)

D: Observer (Overseas2)

(c)

0.000

0.100

0.200

0.300

0.400

Tim e (s e c) 1.00 2.00 3.00 4.00

Po
si

tio
n

di
sc

re
pa

nc
y

(m
)

A : Obs e rve r (LAN)

B: Obs e rve r (Intrane t)

C: Obs e rve r (Ove rs e as 1)

D: Controlle r (Ove rs e as 2)

(d)

Fig. 7. Position discrepancies, during object collisions, of the four
clients relative to the server when (a) client A, (b) client B, (c) client C,
or (d) client D, is acting as the controller.

Since the controller throws out the selected object at around 0.3s,
we can see from the four diagrams of Figure 7 that the position
discrepancy between the controller and the server suddenly increases
at 0.3s in all four diagrams. In Figure 7(a), as client A (the controller)
has a rather low network latency with the server, it can quickly

synchronize with the server and the discrepancy begins to drop until
around 0.6s when the object reaches its highest point in the sky.
Other observers will gradually synchronize with the server
depending on their network latencies with the server. Once the server
has received the message that the object has been thrown out from
the controller’s hand, the simulation program running in the server
will take over the motion of the object. At 0.6s, the simulation
program determines that the object should begin to fall down and
accelerates as it falls due to gravity. Due to the error in the measured
network latency as well as the fluctuation (or jittering) of the latency,
which is further magnified by the acceleration of the object, the
discrepancies between the four clients and the server gradually
increase again until about 1.2s when the object hits the floor and
rebounds.

Figures 7(b), 7(c) and 7(d) exhibit similar behavior, except that
their observers’ discrepancies with the server start at a later time
after the controller has thrown the object out. This is due to the
increase in network latency between the controller and the server.

7 CONCLUSION AND FUTURE WORK
In this paper, we have proposed a synchronization method to support
collaborative visualization. It considers how interaction with
dynamic objects is perceived by application participants under the
existence of network latency, and remedies the motion trajectory of
the dynamic objects. It also handles the false positive and false
negative collision detection problems. The new method is
particularly well designed for handling content changes due to
unpredictable user interventions or object collisions. Experimental
results show that our method could effectively provide a good
consistency control to support collaborative visualization.

Despite the merits of our proposed method, it does have some
limitations. For example, it assumes using connection-oriented
network protocols and message loss is not considered. We would like
to address this as our future work. In addition, as haptic interfaces
are becoming popular and it may widen the application of
collaborative visualization by providing user with force feedback, we
would also like to extend our work to handle haptic rendering as well.

ACKNOWLEDGEMENTS
We would like to thank the reviewers for their valuable comments
and suggestions. The work described in this paper was partially
supported by two CERG grants from the Research Grants Council of
Hong Kong (Ref. Nos.: PolyU 5188/04E and CityU 1133/04E).

REFERENCES
[1] V. Anupam, C. Baja, D. Schikore, and M. Schikore, “Distributed and

Collaborative Visualization,” IEEE Computer, 27(7):37-43, Jul. 1994.
[2] P. Bernstein and N. Goodman, “Concurrency Control in Distributed

Database Systems,” ACM Computing Surveys, 13(2):185-221, 1981.
[3] Y. Bernier, “Latency Compensating Methods in Client/Server In-game

Protocol Design and Optimization,” Proc. of the Game Developers
Conference, 2001.

[4] S. Butner and M. Ghodoussi, “Transforming a Surgical Robot for
Human Telesurgery,” IEEE Trans. on Robotics and Automation,
19(5):818-824, Oct. 2003.

[5] A. Chan, R. Lau, and B. Ng, “Notion Prediction for Caching and
Prefetching in Mouse-Driven DVE Navigation,” ACM Trans. on
Internet Technology, 5(1):70-91, Feb. 2005.

[6] O. Deusen et al., “The Elements of Nature: Interactive and Realistic
Techniques,” ACM SIGGRAPH 2004 Course Note #31, Aug. 2004.

[7] C. Diot and L. Gautier, “A Distributed Architecture for Multiplayer
Interactive Applications on the Internet,” IEEE Networks Magazine,
13(4):6-15, Jul.-Aug. 1999.

[8] DIS Steering Committee, “IEEE Standard for Distributed Interactive
Simulation - Application Protocols,” IEEE Standard 1278, 1998.

[9] V. Jaswal, “CAVEvis: Distributed Real-Time Visualization of Time-
Varying Scalar and Vector Fields Using the Cave Virtual Reality
Theater,” Proc. of IEEE Visualization, pp.301-308, Oct. 1997.

[10] G. Johnson and T. Elvins, “Introduction to Collaborative Visualization,”
Proc. of ACM SIGGRAPH, pp. 8-11, May 1998.

995

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 12, NO. 5, SEPTEMBER/OCTOBER 2006

[11] H. Kopetz and W. Ochsenreiter, “Clock Synchronization in Distributed
Real-Time Systems,” IEEE Trans. on Computers, 36(8):933-940, Aug.
1987.

[12] L. Lamport, “Time, Clocks, and the Ordering of Events in a Distributed
System,” Communications of the ACM, 21(7):558-565, 1978.

[13] L. Lamport and P. Melliar-Smith, “Synchronizing Clocks in the
Presence of Faults,” Journal of ACM, 32(1):52-78, Jan. 1985.

[14] F. Li, L. Li, and R. Lau, “Supporting Continuous Consistency in
Multiplayer Online Games,” Proc. of ACM Multimedia, pp. 388-391,
Oct. 2004.

[15] C. Liao, M. Martonosi, and D. Clark, “Experience with an Adaptive
Globally-Synchronizing Clock Algorithm,” Proc. of ACM SPAA,
pp.106-114, Jun. 1999.

[16] M. Macedonia, M. Zyda, D. Pratt, P. Barham, and S. Zeswitz,
“NPSNET: A Network Software Architecture For Large Scale Virtual
Environments”, Presence: Teleoperators and Virtual Environments,
3(4):265-287, 1994.

[17] G. Mark, A. Kobsa, and V. Gonzalez, “Do Four Eyes See Better Than
Two? Collaborative Versus Individual Discovery in Data Visualization
Systems,” Proc. of IEEE Information Visualization, pp. 249-255, Jul.
2002.

[18] M. Mauve, J. Vogel, V. Hilt, and W. Effelsberg, “Local-lag and
Timewarp: Providing Consistency for Replicated Continuous
Applications,” IEEE Trans. on Multimedia, 6(1):47-57, 2004.

[19] D. Mills, “Internet Time Synchronization: the Network Time Protocol,”
IEEE Trans. on Communications, 39(10):1482-1493, 1991.

[20] J. Ohlenburg, “Improving Collision Detection in Distributed Virtual
Environments by Adaptive Collision Prediction Tracking,” Proc. of
IEEE VR, pp. 83-90, Mar. 2004.

[21] A. Pang and C. Wittenbrink, “Collaborative Visualization with Cspray,”
IEEE Computer Graphics and Applications, 17(2):32-41, Mar.-Apr.
1997.

[22] S. Pettifer, J. Cook, J. Marsh, and A. West, “DEVA3: Architecture for a
Large-Scale Distributed Virtual Reality System,” Proc. of ACM VRST,
pp. 33-40, Oct. 2000.

[23] T. Srikanth and S. Toueg, “Optimal Clock Synchronization,” Journal of
ACM, 34(3):626-645, Jul. 1987.

[24] I. Vaghi, C. Greenhalgh, and S. Benford, “Coping with Inconsistency
due to Network Delays in Collaborative Virtual Environments,” Proc.
of ACM VRST, pp.42-49, Dec. 1999.

[25] J. Wijk, “Flow Visualization with Surface Particles,” IEEE Computer
Graphics and Applications, 13(4):18-24, Jul. 1993.

[26] J. Wood, H. Wright and K. Brodlie, “Collaborative Visualization,” Proc.
of IEEE Visualization, pp. 253-259, Oct. 1997.

[27] M. Gerald-Yamasaki, “Cooperative Visualization of Computational
Fluid Dynamics,” Proc. of Eurographics, pp.497-508, Sept. 1993.

996

Authorized licensed use limited to: IEEE Xplore. Downloaded on October 8, 2008 at 09:13 from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.6
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 36
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 36
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 36
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU (Use these settings with Distiller 7.0 or equivalent to create PDF documents suitable for IEEE Xplore. Created 29 November 2005. ****Preliminary version. NOT FOR GENERAL RELEASE***)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

