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Abstract

We improve upon the best known upper and lower bounds on the sizes of minimal feedback
vertex sets in butterflies. Also, we construct new feedback vertex sets in grids so that for a
large number of pairs (n, m), the size of our feedback vertex set in the grid Mn,m matches
the best known lower bound, and for all other pairs it differs from this lower bound by at
most 2.
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1 Introduction

A feedback vertex set in an undirected graph is a subset of vertices the removal of
which (along with their incident edges) results in an acyclic graph. The feedback

vertex set problem is to find a feedback vertex set of minimum cardinality in a graph
G, with the size of such a set known as the feedback vertex number τ(G). Whilst the
feedback vertex set problem is NP-hard in general, it has been extensively studied in a
wide variety of restricted classes of graphs and shown to be polynomial-time solvable
in many of these classes. Furthermore, a number of lower and upper bounds on
the feedback vertex number of graphs from these classes have been established. The
reader is referred to [4] for an extensive survey of feedback vertex set problems which
ranges over polynomially solvable cases, approximation algorithms, exact algorithms,
practical heuristics and applications.

In this paper, we are concerned with the classes of graphs known as grids and
butterflies. Such graphs are common in the study of interconnection networks for
parallel processing as they have particularly attractive properties in this regard (see,
for example, [3]). The study of feedback vertex sets in grids and butterflies has
traditionally gone hand-in-hand. In [5], Luccio proved upper and lower bounds on
the sizes of minimal feedback vertex sets in both grids and butterflies. It was shown
in [5] that the feedback vertex number of the grid Mn,m is at most
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and at least
⌈

(m − 1)(n − 1) + 1

3

⌉

,

and that the feedback vertex number of the butterfly Bd is at most

⌊

(d + 1
3 )2d + 1

3

3

⌋

(see the analysis in [2]) and at least

2d−1

⌊

d + 1

2

⌋

(definitions of Mn,m and Bd follow). Subsequently, in [1], Caragiannis, Kaklamanis
and Kanellopoulos improved the state of affairs by establishing a general lower bound
technique by which they showed that the feedback vertex number of the butterfly Bd

is at least
⌈

(d − 1)2d + 1

3

⌉

.

They also showed that the feedback vertex number of the grid Mn,m is at most

⌊

mn

3
−

m + n − 5

6

⌋

and that the feedback vertex number of the butterfly Bd is at most

⌊

(d + 1
2 )2d

3

⌋

.

Finally, more recently, Chang, Lin and Lee [2] both improved Luccio’s analysis of
the sizes of feedback vertex sets in butterflies and exhibited an algorithm which con-
structed a feedback vertex set in Bd of size
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3

3

⌋

, if d is even,

and of size
⌊

(d − 2
3 )2d

3

⌋

+
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d

2 ⌉ + 2⌊
d

2 ⌋

3
, if d is odd.

In this paper, we improve upon Chang, Lin and Lee’s algorithm and obtain a
smaller upper bound on the feedback vertex number of a butterfly Bd, when d ≥ 5.
Our algorithm is very similar to that of Chang, Lin and Lee except that our ‘starting
point’ in the recursive algorithm is improved feedback vertex sets for B5 and B6. We
find that we can use Chang, Lin and Lee’s analysis to prove our algorithm correct and
also to establish our improved bounds. We also improve upon Luccio’s lower bound
on the feedback vertex numbers of butterflies. As regards grids, we make dramatic
progress. We construct new feedback vertex sets in grids so that for a large number
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of pairs (n,m), the size of our feedback vertex set in the grid Mn,m matches the best
known lower bound (from [5]), and for all other pairs the size of our feedback vertex
set is at most this lower bound plus 2.

This paper is structured as follows. In Section 2, we provide the basic definitions,
before dealing with feedback vertex sets in grids in Section 3 and in butterflies in
Section 4. Our conclusions are given in Section 5.

2 Basic definitions

Let n,m ≥ 2. The rectangular grid with n rows and m columns (or n × m mesh),
denoted by Mn,m, is the graph with vertex set V (Mn,m) defined as {vi,j : 0 ≤ i <

n, 0 ≤ j < m} and edge set E(Mn,m) defined as

{(vi,j , vi+1,j) : 0 ≤ i < n − 1, 0 ≤ j < m}

∪{(vi,j , vi,j+1) : 0 ≤ i < n, 0 ≤ j < m − 1}.

Let d ≥ 1. The d-dimensional butterfly Bd has vertex set V (Bd) partitioned into
(d + 1) rows, whereupon each row contains 2d vertices. Every vertex of V (Bd) is
indexed by the pair (i, j) where i indicates its row and j its column in that row: as
such, we refer to the vertices of V (Bd) as {vi,j : 0 ≤ i ≤ d, 0 ≤ j ≤ 2d − 1}. The edge
set E(Bd) of Bd consists of the following edges.

• For every pair of adjacent rows, there is an edge joining corresponding vertices,
vi,j and vi+1,j , on these two rows; that is, there are edges

{(vi,j , vi+1,j) : 0 ≤ i < d, 0 ≤ j ≤ 2d − 1}.

• For every pair of adjacent rows, there is an edge joining a vertex vi,j on the
lower-indexed row to the vertex vi+1,ji

on the higher-indexed row so that the
binary representation of the integer ji differs from that of the integer j only in
the ith position (where the right-most bit is bit 0); that is, there are edges

{(vi,j , vi+1,ji
) : 0 ≤ i < d, 0 ≤ j ≤ 2d − 1}.

Grids and butterflies can be visualized as in Figs. 1 and 13, respectively.
We adopt the following notation (in line with that of Chang, Lin and Lee in [2]).

If G is a graph with vertex set V (G) and V ′ is a subset of vertices of V (G) then the
subgraph of G induced by the vertices of V ′ is denoted G[V ′] and the subgraph of G

induced by the vertices of V (G) \ V ′ is denoted G \ V ′.

3 New upper bounds for grids

In this section, we derive new upper bounds on the sizes of minimal feedback vertex
sets in two-dimensional grids. For a large number of pairs (n,m), our upper bound on
the size of a minimal feedback vertex set of Mn,m matches the lower bound from [5],
and on the other pairs it differs from this lower bound by at most 2.
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3.1 The bulk of the cases

Case (i) Let n ≥ 4 be such that n ≡ 1 (mod 3), and let m ≥ 4 be even.

Define the set of vertices Xn,m of V (Mn,m) as An,m∪Bn,m∪Cn,m∪Dn,m∪En,m∪Fn,m

where:

An,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 1 (mod 6), 2 ≤ j ≤ m − 2, j even};

Bn,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 2 (mod 6), 1 ≤ j ≤ m − 3, j odd};

Cn,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 4 (mod 6), 1 ≤ j ≤ m − 3, j odd};

Dn,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 5 (mod 6), 2 ≤ j ≤ m − 2, j even};

En,m = {vi,1 : 0 ≤ i ≤ n − 1, i ≡ 0 (mod 6)};

Fn,m = {vi,m−2 : 0 ≤ i ≤ n − 1, i ≡ 3 (mod 6)}.

The set X10,8 is shown in Fig. 1, where the vertices of X10,8 have been annotated
according to their subsets in the above definition.
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Figure 1. The set of vertices X10,8.

We claim that Xn,m is a feedback vertex set. Observe that if there is a cycle in
Mn,m \Xn,m then the inclusion of the vertices of An,m ∪Bn,m ∪Cn,m ∪Dn,m in Xn,m

means that the cycle must use only the perimeter vertices of Mn,m or the vertices on
row i, for each i ≡ 0 (mod 3). However, the vertices of En,m and Fn,m preclude any
such cycle, and so Xn,m is a feedback vertex set of Mn,m. The size of Xn,m is

(n − 1)

3
(m − 2) +

(n − 1)

3
+ 1 =

(n − 1)(m − 1)

3
+ 1,

while Luccio’s lower bound, which we denote lbn,m, is

lbn,m =

⌈

(m − 1)(n − 1) + 1

3

⌉

,

which, for n ≡ 1 (mod 3) and m even, is identical to the size of Xn,m. Hence, Xn,m

is a feedback vertex set of minimal size.
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Before continuing, let us look at the feedback vertex set Xn,m and why it is of
minimal size from a different perspective (this perspective underpins Luccio’s lower
bound construction in [5] but will be of use to us later in alternative contexts). Con-
sider the perimeter-cycle of Mn,m; this cycle must contain at least one vertex from
any feedback vertex set, so choose such a vertex to be v0,1. After removing v0,1 and
any incident edges from Mn,m, to get M1

n,m, there is a natural perimeter-cycle which
is as before except that the sub-path navigating around v0,1 is

. . . , v2,0, v1,0, v1,1, v1,2, v0,2, v0,3, . . .

Also note that the sub-graph of the original Mn,m induced by the vertices strictly
outside the perimeter-cycle but not vertices of our partial feedback vertex set (at
present, just the vertex v0,0) is acyclic.

Similarly, the perimeter-cycle of M1
n,m contains at least one vertex of any resulting

feedback vertex set; so choose the vertex v1,2 to be such a vertex. In M2
n,m, obtained

from M1
n,m by removing v1,2 and any incident edges, there is a natural perimeter cycle

and the sub-graph of the original Mn,m induced by the vertices strictly outside the
perimeter-cycle but not vertices of our partial feedback vertex set (at present, just
the vertices v0,0 and v0,2) is acyclic.

Similarly, the perimeter-cycle of M2
n,m contains at least one vertex of any resulting

feedback vertex set; so choose the vertex v2,3 to be such a vertex. In M3
n,m, obtained

from M2
n,m by removing v2,3 and any incident edges, there is a natural perimeter cycle

and the sub-graph of the original Mn,m induced by the vertices strictly outside the
perimeter-cycle but not vertices of our partial feedback vertex set (at present, just
the vertices v0,0 and v0,2) is acyclic.

Continuing in this fashion ultimately results in a perimeter-cycle the ‘breaking’
of which results in an empty perimeter-cycle, so that the sub-graph of Mn,m induced
by those vertices not in the resulting feedback vertex set is indeed acyclic. This
constructive approach to the formation of Xn,m can be visualized as in Fig. 2, where
the order in which perimeter-cycle vertices are chosen is given and where at each stage,
the edges incident with the chosen vertex and outside the resulting perimeter-cycle
are omitted. Yet another alternative way of viewing the construction of Xn,m is via
a tessellation of the grid, in a natural way. Note that given any feedback vertex set
X, a feedback vertex set Y ⊆ X can be constructed by adopting the above procedure
and making appropriate choices.

Apart from the first and last choices of the vertices of Xn,m in the above procedure,
the choices are optimal in the sense that at any stage, no other choice could decrease
the number of cells inside the perimeter-cycle more than the number resulting from
the vertex chosen (the most the number of cells can decrease by is 3, as is the case
with our choices). Indeed, the first choice of vertex is optimal in this sense too (with
a decrease of 2 cells). Initially, there are (n − 1)(m − 1) cells, and any first choice
decreases this number to at least (n−1)(m−1)−2. Subsequent choices decrease this
number by at most 3 cells per choice, and so as n ≡ 1 (mod 3), after

(n − 1)(m − 1)

3

choices, there is at least 1 cell inside the perimeter-cycle. Thus, the size of any
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feedback vertex set is at least

(n − 1)(m − 1)

3
+ 1.
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Figure 2. The set of vertices X10,8 formed by perimeter-breaking.

Case (ii) Let n ≥ 4 be such that n ≡ 1 (mod 3), and let m ≥ 7 be odd.

Partition Mn,m into two sub-grids, one, call it M ′
n,m, induced by the vertices in

columns 0, 1 and 2, and one, call it M ′′
n,m, induced by the vertices in the remaining

columns. Note that M ′′
n,m is such that it has an even number of columns. There are

two cases, depending upon whether n ≡ 1 (mod 6) or not.

Sub-case (ii.a) n ≡ 4 (mod 6).

We can build a set of vertices X ′′
n,m in M ′′

n,m, as above, except starting from the
right-hand side as opposed to the left. In particular, define X ′′

n,m as A′′
n,m ∪ B′′

n,m ∪
C ′′

n,m ∪ D′′
n,m ∪ E′′

n,m ∪ F ′′
n,m where:

A′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 1 (mod 6), 4 ≤ j ≤ m − 3, j even};

B′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 2 (mod 6), 5 ≤ j ≤ m − 2, j odd};

C ′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 4 (mod 6), 5 ≤ j ≤ m − 2, j odd};

D′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 5 (mod 6), 4 ≤ j ≤ m − 3, j even};

E′′
n,m = {vi,m−2 : 0 ≤ i ≤ n − 1, i ≡ 0 (mod 6)};

F ′′
n,m = {vi,4 : 0 ≤ i < n − 1, i ≡ 3 (mod 6)} ∪ {vn−2,3}.

In M ′
n,m, define X ′

n,m as A′
n,m ∪ B′

n,m where:

A′
n,m = {vi,1 : 0 ≤ i ≤ n − 2, i even};

B′
n,m = {vi,2 : 1 ≤ i ≤ n − 3, i odd}.

Define Xn,m = X ′
n,m ∪ X ′′

n,m. The construction of X10,11 by perimeter-breaking can
be visualized as in Fig. 3. The perimeter-breaking argument applied above yields that
Xn,m is a feedback vertex set of Mn,m.
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Case (ii.b) n ≡ 1 (mod 6).

We can build a set of vertices X ′′
n,m in M ′′

n,m, as above (starting from the left-hand
side). In particular, define X ′′

n,m as A′′
n,m ∪B′′

n,m ∪C ′′
n,m ∪D′′

n,m ∪E′′
n,m ∪F ′′

n,m where:

A′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 1 (mod 6), 5 ≤ j ≤ m − 2, j odd};

B′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 2 (mod 6), 4 ≤ j ≤ m − 3, j even};

C ′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 4 (mod 6), 4 ≤ j ≤ m − 3, j even};

D′′
n,m = {vi,j : 0 ≤ i ≤ n − 1, i ≡ 5 (mod 6), 5 ≤ j ≤ m − 2, j odd};

E′′
n,m = {vi,4 : 0 ≤ i < n − 1, i ≡ 0 (mod 6)};

F ′′
n,m = {vi,m−2 : 0 ≤ i ≤ n − 1, i ≡ 3 (mod 6)} ∪ {vn−2,3}.
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Figure 3. The set of vertices X10,11 formed by perimeter-breaking.

In M ′
n,m, define X ′

n,m as A′
n,m ∪ B′

n,m where:

A′
n,m = {vi,1 : 1 ≤ i ≤ n − 2, i odd};

B′
n,m = {vi,2 : 0 ≤ i ≤ n − 3, i even}.

Define Xn,m = X ′
n,m ∪ X ′′

n,m. The construction of X13,11 by perimeter-breaking can
be visualized as in Fig. 4. Again, the perimeter-breaking argument applied above
yields that Xn,m is a feedback vertex set of Mn,m.

In both of the above cases, the size of Xn,m is

(n − 1)(m − 4)

3
+ 1 + (n − 1) =

(n − 1)(m − 1)

3
+ 1,

and so Xn,m is a minimal feedback vertex set as in this case |Xn,m| = lbn,m.

Case (iii) Let n ≥ 9 be such that n ≡ 0 (mod 3) and let m ≥ 6 be even such that
m 6≡ 1 (mod 3) (for if m ≡ 1 (mod 3) then we can apply either Case (i) or Case (ii)).
Let M ′

n,m be the sub-grid induced by the vertices in rows 0, 1, . . . , n − 6. Using the
construction from Case (i) in M ′

n,m, starting (in the sense of the perimeter-breaking
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exposition) with either v0,1 or v0,m−2, as appropriate, we can build a feedback vertex
set X ′

n,m of M ′
n,m of size

(n − 6)(m − 1)

3
+ 1

so that vn−6,m−2 lies in this feedback vertex set.
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Figure 4. The set of vertices X13,11 formed by perimeter-breaking.

Let m′ be such that m′ ≡ 1 (mod 3) and either m = m′ + 1 or m = m′ + 2. Let
M ′′

n,m be the sub-grid induced by the vertices in rows n − 6, n − 5, . . . , n − 1 and in
columns 0, 1, . . . ,m′−1. Using the construction from Case (i) in M ′′

n,m, starting with
either vn−5,0 or vn−2,0, as appropriate, we can build a feedback vertex set X ′′

n,m of
M ′′

n,m of size
5(m′ − 1)

3
+ 1

so that vn−2,m′−1 lies in this feedback vertex set (note that even though M ′
n,m and

M ′′
n,m share a row, we do not duplicate vertices in our feedback vertex set).
Consider the partial feedback set X ′

n,m∪X ′′
n,m (note that X ′

n,m∪X ′′
n,m is a feedback

vertex set of the sub-grid of Mn,m induced by the vertices of M ′
n,m and M ′′

n,m). If
m′ = m− 2 (with m ≡ 0 (mod 3)) then the additional 3 vertices vn−4,m−2, vn−3,m−2

and vn−2,m−1 extend this set to a feedback vertex set of Mn,m. If m′ = m − 1 (with
m ≡ 2 (mod 3)) then the additional vertex vn−4,m−2 extends this set to a feedback
vertex set of Mn,m. The constructions are illustrated for M12,6 and M12,8 in Fig. 5.

Consequently, we have constructed a feedback vertex set of size

(nm − n − m + 6)

3
= lbn,m + 1 if m ≡ 0 (mod 3)
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and of size
(nm − n − m + 5)

3
= lbn,m + 1 if m ≡ 2 (mod 3).

Case (iv) Suppose now that n ≥ 9 is such that n ≡ 0 (mod 3) and m ≥ 9 is odd such
that m 6≡ 1 (mod 3).

Let M ′
n,m be the sub-grid induced by the vertices in rows 0, 1, . . . , n − 6. Using the

constructions in Case (ii), we can build a feedback vertex set X ′
n,m of M ′

n,m of size
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Figure 5. The sets of vertices X12,6 and X12,8.

(n − 6)(m − 1)

3
+ 1

so that either vn−6,m−2 or vn−6,m−3 lies in this feedback vertex set. Defining M ′′
n,m

as we did in Case (iii), we can build a feedback vertex set X ′′
n,m of M ′′

n,m of size

5(m′ − 1)

3
+ 1

so that vn−2,m′−1 lies in this feedback vertex set.
Consider the partial feedback set X ′

n,m∪X ′′
n,m (note that X ′

n,m∪X ′′
n,m is a feedback

vertex set of the sub-grid of Mn,m induced by the vertices of M ′
n,m and M ′′

n,m). If
m′ = m − 2 then the additional 3 vertices vn−5,m−2, vn−3,m−2 and vn−2,m−2 extend
this set to a feedback vertex set of Mn,m. If m′ = m − 1 then the additional 2
vertices vn−5,m−2 and vn−4,m−2 extend this set to a feedback vertex set of Mn,m.
The constructions are illustrated for M12,9 and M12,11 in Fig. 6.

Consequently, we have constructed a feedback vertex set of size

(nm − n − m + 6)

3
= lbn,m + 1 if m ≡ 0 (mod 3)
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and of size
(nm − n − m + 8)

3
= lbn,m + 2 if m ≡ 2 (mod 3).

Case (v) Let n ≥ 11 be such that n ≡ 2 (mod 3) and let m ≥ 6 be even such that
m 6≡ 1 (mod 3).
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Figure 6. The sets of vertices X12,9 and X12,11.

Let M ′
n,m be the sub-grid induced by the vertices in rows 0, 1, . . . , n − 8. Using the

construction in Case (i), we can build a feedback vertex set X ′
n,m of M ′

n,m of size

(n − 8)(m − 1)

3
+ 1

so that vn−8,m−2 lies in this feedback vertex set.
Let m′ be such that m′ ≡ 1 (mod 3) and either m = m′ + 1 or m = m′ + 2. Let

M ′′
n,m be the sub-grid induced by the vertices in rows n − 8, n − 7, . . . , n − 1 and in

columns 0, 1, . . . ,m′− 1. Using the construction from Case (i) in M ′′
n,m, we can build

a feedback vertex set X ′′
n,m of M ′′

n,m of size

7(m′ − 1)

3
+ 1

so that vn−2,m′−1 lies in this feedback vertex set.
Consider the partial feedback set X ′

n,m∪X ′′
n,m (note that X ′

n,m∪X ′′
n,m is a feedback

vertex set of the sub-grid of Mn,m induced by the vertices of M ′
n,m and M ′′

n,m). If
m′ = m−2 then the additional 4 vertices vn−6,m−2, vn−5,m−3, vn−4,m−2 and vn−2,m−1

extend this set to a feedback vertex set of Mn,m. If m′ = m − 1 then the additional
2 vertices vn−6,m−2 and vn−4,m−2 extend this set to a feedback vertex set of Mn,m
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(the situation can be visualized using similar figures to those already detailed, hence
we omit them). Consequently, we have constructed a feedback vertex set of size

(nm − n − m + 5)

3
= lbn,m + 1 if m ≡ 0 (mod 3)

and of size
(nm − n − m + 6)

3
= lbn,m + 1 if m ≡ 2 (mod 3).

Case (vi) Let n ≥ 11 be such that n ≡ 2 (mod 3) and let m ≥ 7 be odd such that
m 6≡ 1 (mod 3).

Let M ′
n,m be the sub-grid induced by the vertices in rows 0, 1, . . . , n − 8. Using the

constructions in Case (ii), we can build a feedback vertex set X ′
n,m of M ′

n,m of size

(n − 8)(m − 1)

3
+ 1

so that either vn−8,m−2 or vn−8,m−3 lies in this feedback vertex set.
Let m′ be such that m′ ≡ 1 (mod 3) and either m = m′ + 1 or m = m′ + 2. Let

M ′′
n,m be the sub-grid induced by the vertices in rows n − 8, n − 7, . . . , n − 1 and in

columns 0, 1, . . . ,m′− 1. Using the construction from Case (i) in M ′′
n,m, we can build

a feedback vertex set X ′′
n,m of M ′′

n,m of size

7(m′ − 1)

3
+ 1

so that vn−2,m′−1 lies in this feedback vertex set.
Consider the partial feedback set X ′

n,m∪X ′′
n,m (note that X ′

n,m∪X ′′
n,m is a feedback

vertex set of the sub-grid of Mn,m induced by the vertices of M ′
n,m and M ′′

n,m). If
m′ = m − 2 then the additional 5 vertices vn−7,m−2, vn−5,m−2, vn−4,m−3, vn−3,m−2

and vn−2,m−1 extend this set to a feedback vertex set of Mn,m. If m′ = m−1 then the
additional 3 vertices vn−7,m−2, vn−5,m−2 and vn−4,m−2 extend this set to a feedback
vertex set of Mn,m. Consequently, we have constructed a feedback vertex set of size

(nm − n − m + 8)

3
= lbn,m + 2 if m ≡ 0 (mod 3)

and of size
(nm − n − m + 9)

3
= lbn,m + 2 if m ≡ 2 (mod 3).

Drawing together the results of this section, we obtain the following theorem.

Theorem 1 If the pair (n,m) does not lie in the set

{(2,m), (n, 2) : n,m ≥ 2} ∪ {(3,m), (n, 3) : n,m ≥ 3} ∪ {(4, 5), (5, 4)}

∪{(5,m), (n, 5) : n,m ≥ 5} ∪ {(6, 6), (6, 8), (8, 6), (8, 8)}

then the size of a minimal feedback vertex set in the grid Mn,m is lbn,m, lbn,m + 1 or

lbn,m + 2.

11



Given any specific pair (n,m) for which Theorem 1 is relevant, an upper bound
on the size of the minimal feedback vertex set can be read from the appropriate case
considered earlier.

Ignoring the finite number of ‘isolated’ grids for which Theorem 1 does not apply
(for in each of these cases the dimensions are sufficiently small for a simple computer
program to find the size of a minimal feedback vertex set), we are left with three
(infinite) classes of grids lying outside our analysis.

3.2 Grids with 2 or 3 rows

For the class of grids with 2 rows, we can resolve the situation exactly: when (n, 2) ∈
{(n, 2) : n ≥ 2}, the size of a minimal feedback vertex set is, trivially,

⌈

n − 1

2

⌉

.

We shall turn to the situation when our grids have 3 rows after we have examined an
alternative feedback vertex set construction.

From the constructions above, we have yet to exhibit minimal feedback vertex
sets for certain grid dimensions, i.e., when neither n nor m is equivalent to 1 modulo
3. However, we have another construction which enables us to construct a minimal
feedback vertex set in some of these cases. Moreover, our construction also allows
us to use feedback vertex sets in smaller grids to build feedback vertex sets in larger
grids where the size of the constructed feedback vertex set is ‘controlled’ in terms of
the size of the original feedback vertex set.

We can expand the grid Mn,m by: ‘placing’ a new edge-vertex in the ‘middle’ of
each edge of Mn,m; ‘placing’ a new cell-vertex in the ‘middle’ of each cell of Mn,m;
and joining each new cell-vertex to the new edge-vertices on the ‘perimeter’ of its
cell. Note that the expanded grid, which we denote E(Mn,m), is actually a copy of
M2n−1,2m−1.

Let X be a feedback vertex set of Mn,m. We expand Mn,m into E(Mn,m) and define
the set of vertices E(X) to consist of the vertices corresponding to the vertices of X

in union with the set of cell-vertices of E(Mn,m). It is immediate that the set E(X)
is a feedback vertex set of E(Mn,m) (essentially, if we remove the cell-vertices from
E(Mn,m) then cycles correspond to cycles in Mn,m, and vice versa). The construction
can be visualized as in Fig. 7, where the white vertices in M9,9, on the right, are
vertices of its feedback vertex set corresponding to the vertices of the feedback vertex
set in M5,5, on the left, and the grey, square vertices in M9,9 are the added cell-vertices.

The size of the feedback vertex set E(X) of E(Mn,m) is equal to the size of the
feedback vertex set X of Mn,m plus (n − 1)(m − 1). That is,

|E(X)| = |X| + (n − 1)(m − 1).

Luccio’s lower bounds lbn,m and lb2n−1,2m−1 on the sizes of minimal feedback vertex
sets of Mn,m and M2n−1,2m−1 are

⌈

nm − n − m + 2

3

⌉

and

⌈

4nm − 4n − 4m + 5

3

⌉

,
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respectively. Hence,

|E(X)| − lb2n−1,2m−1 = |X| − lbn,m.

Thus, the ‘distance’ a feedback vertex set is away from the lower bound lbn,m in Mn,m

is preserved by the construction in M2n−1,2m−1. In particular, if X is a minimal
feedback vertex set of Mn,m of size lbn,m then E(X) is a minimal feedback vertex
set of M2n−1,2m−1 of size lb2n−1,2m−1. The feedback vertex set of M5,5 shown in
Fig. 7 is minimal (and has size lb5,5), thus we have effectively constructed minimal
feedback vertex sets in all grids M2r+1,2r+1, for r ≥ 2. Our construction generalizes,
yet simplifies, the construction of Luccio in [5].

0

1

2

3

4

5

6

7

8

2 30 1 6 74 5 8
0

1

2

3

4

2 30 1 4

Figure 7. Expanding a grid with a feedback vertex set.

Let us now return to M3,2r−1, where r ≥ 2. As M3,2r−1 = E(M2,r), we immedi-
ately obtain an upper bound of

⌈

3(r − 1)

2

⌉

for τ(M3,2r−1).
Consider the grid M3,5 and how many of the vertices in columns 0, 1, 2 and 3

must necessarily lie in a minimal feedback vertex set of M3,5: a simple case-by-case
analysis yields that at least 3 such vertices must do so. Divide M3,2r−1, where r ≥ 3,
into copies of M3,5, the first copy consisting of the vertices in columns 0, 1, 2, 3 and
4, the second copy of vertices in columns 4, 5, 6, 7 and 8, the third copy of vertices
in columns 8, 9, 10, 11, and 12, and so on. By above, at least 3 of the vertices of any
feedback vertex set of M3,2r−1 must lie in columns 0, 1, 2 and 3, at least 3 must lie
in columns 4, 5, 6 and 7, at least 3 must lie in columns 8, 9, 10 and 11, and so on.
Hence, if r ≥ 3 is odd then

τ(M3,2r−1) ≥
3(2r − 2)

4
=

3(r − 1)

2
,

and if r ≥ 4 is even then

τ(M3,2r−1) ≥
3(2r − 4)

4
+ 2 =

⌈

3(r − 1)

2

⌉
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(in the latter case, we divide M3,2r−1 into copies of M3,5 and we need at least 2
vertices to break cycles involving vertices in the ‘left-over’ columns indexed by 2r−4,
2r − 3 and 2r − 2). Thus, when r ≥ 3,

τ(M3,2r−1) =

⌈

3(r − 1)

2

⌉

.

Trivially, when r ≥ 3,

⌈

3(r − 1)

2

⌉

≤ τ(M3,2r) ≤

⌈

3(r − 1)

2

⌉

+ 1

(simply consider the copy of M3,2r−1 induced by the vertices of M3,2r in columns
0, 1, . . . , 2r − 2).

3.3 Grids with 5 rows

Finally, we are left with the grids {M5,n : n ≥ 5}. The methods above do not suffice
to deal with this case and we need to examine the situation in more detail.

We can decompose a grid M5,n in two ways. First, we consider M5,n to be the
concatenation of the grid M5,p and the grid M5,q, where n = p + q (the two smaller
grids have no vertices in common and vertices in the rightmost column of M5,p are
joined to their corresponding vertices in the leftmost column of M5,q). In this case,
we write M5,n = M5,p +M5,q, and clearly we have that τ(M5,n) ≥ τ(M5,p)+ τ(M5,q).
Second, we shall consider M5,n to be the fusion of M5,p and M5,q, where n = p+q−1,
by identifying the vertices in the rightmost column of M5,p with their corresponding
vertices in the leftmost column of M5,q. In this case, we write M5,n = M5,p ⊕ M5,q.

Suppose that we have a decomposition of M5,n (as a concatenation or a fusion)
into M5,p and M5,q, and partial feedback vertex sets in both M5,p and M5,q (that is,
designated sets of vertices). We call a grid together with a partial feedback vertex
set a tile. If M5,n is the concatenation of M5,p and M5,q, and these two grids have
partial feedback vertex sets X and Y , respectively, so that we denote these tiles as
MX

5,p and MY
5,q, then we obtain, in the natural way, a partial feedback vertex set of

M5,n. If M5,n is the fusion of MX
5,p and MY

5,q then we obtain a partial feedback vertex
set of M5,n, again in the natural way, except that we include any vertex of the fused
column of M5,n in our partial feedback vertex set if its image in M5,p is in X or its
image in M5,q is in Y (and ignore duplications). We call our fusion compatible if the
vertices of X in the fused column of M5,p correspond exactly to the vertices of Y in
the fused column of M5,q.

We shall prove the following result by induction on n.

Proposition 2 When n ≥ 2, τ(M5,n) = 11
⌊

n
8

⌋

+
⌊

3
2 (n mod 8)

⌋

− 1.

3.3.1 The base cases of the induction

Case (i) The grids M5,2 and M5,3.

It is not difficult to see that τ(M5,2) = 2 and τ(M5,3) = 3. All minimal feedback
vertex sets are depicted in Fig. 8, up to isomorphism.

14



Figure 8. The minimal feedback vertex sets of M5,2 and M5,3.

Case (ii) The grid M5,4.

We have that lb5,4 = 5, and it is not difficult to show that τ(M5,4) = 5; all minimal
feedback vertex sets are depicted in Fig. 9, up to isomorphism (these feedback vertex
sets have been generated by hand and checked by computer, and will be required
later).
Case (iii) The grid M5,5.

We have that lb5,5 = 6, and it is not difficult to show that τ(M5,5) = 6 (see Fig. 12
where we show some minimal feedback vertex sets of M5,5, which we shall need later).

Case (iv) The grid M5,6.

We have that lb5,6 = 7. Let Z be a minimal feedback vertex set of M5,6 and suppose
that |Z| = 7. Decompose M5,6 as M5,2 + M5,4. From above, there must be 2 vertices
of Z in the first two columns and 5 vertices of Z in the final 4 columns. In particular,
the minimal feedback vertex set induced on M5,2 must be isomorphic to one in Fig. 8,
and the minimal feedback vertex set induced on M5,4 must be isomorphic to one in
Fig. 9. By going through the possibilities of juxtaposing minimal feedback vertex sets
from Figs. 8 and 9, it is easy to see that we obtain a contradiction. Hence, τ(M5,6) = 8
with a typical minimal feedback vertex set given in Fig. 10.

Case (v) The grid M5,7.

We have that lb5,7 = 8. Let Z be a minimal feedback vertex set of M5,7 and suppose
that |Z| = 8. Decompose M5,7 as M5,3 + M5,4. Proceeding as in the previous case
but juxtaposing the minimal feedback vertex sets of M5,3 instead of M5,2 yields a
contradiction. Hence, τ(M5,7) = 9 with a typical minimal feedback vertex set given
in Fig. 10.

Case (vi) The grid M5,8.

We have lb5,8 = 10 and a feedback vertex set realizing this bound is shown in Fig. 11.
Let us go further. Decompose M5,8 as M5,4+M5,4 and let Z be any minimal feedback
vertex set of M5,8. By above, there must be 5 vertices of Z in the first 4 columns of
M5,8 and 5 in the last 4 columns. Also, decompose M5,8 as M5,2 + M5,6. By above,
there must be 2 vertices of Z in the first 2 columns of M5,8 and (symmetrically) 2
in the last 2 columns. Taking this into consideration and trying all possible pairs of
minimal feedback vertex sets of M5,4 from Fig. 9 yields that there are no vertices of
Z in the leftmost or rightmost column of M5,8. We shall require this fact later.

Having dealt with the base cases, we will require later one more result regarding
M5,9.
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Figure 9. The minimal feedback vertex sets of M5,4.

Figure 10. Minimal feedback vertex sets of M5,6 and M5,7.
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Figure 11. Minimal feedback vertex sets of M5,8 and M5,9.

Lemma 3 Up to isomorphism, there is exactly one minimal feedback vertex set of

M5,9, namely that shown in Fig. 11.

Proof Let Z be a minimal feedback vertex set of M5,9. By above, the number of
vertices, a, of Z in the first 4 columns is at least 5, the number of vertices, b, of Z in
the last 4 columns is at least 5 and the number of vertices of Z in the first 5 columns
is at least 6 (with |Z| = 11). The only solution is that a = b = 5 and that there
is 1 vertex of Z in the 5th column. Given that τ(M5,5) = 6 and τ(M5,9) = 11, we
must have that MZ

5,9 = MX
5,5 ⊕ MY

5,5, where this fusion is compatible. The different
situations where we have a minimal feedback vertex set of M5,5 with exactly 1 vertex
of the feedback set in the rightmost column are given in Fig. 12 (to see that this is
the case, use the classification given in Fig. 9). It is immediate that the only possible
minimal feedback vertex set of M5,9 is that shown in Fig. 11 (up to isomorphism).

Figure 12. The minimal feedback vertex sets of M5,5

with 1 vertex in the rightmost column.

3.3.2 The inductive step

Having dealt with the base cases, we now prove the following result by induction.
Proposition 2 is an immediate corollary of the bounds just established and Proposi-
tion 4.

Proposition 4 For all p ≥ 0 and so long as the grid has at least 2 columns, we have

that :
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τ(M5,8p) = 11p − 1; τ(M5,8p+1) = 11p; τ(M5,8p+2) = 11p + 2
τ(M5,8p+3) = 11p + 3; τ(M5,8p+4) = 11p + 5; τ(M5,8p+5) = 11p + 6
τ(M5,8p+6) = 11p + 8; τ(M5,8p+7) = 11p + 9.

Moreover, any minimal feedback vertex set Z of M5,8p or M5,8p+1, for p ≥ 1, is such

that neither the rightmost nor leftmost column contains a vertex of Z.

Proof The base cases tell us that the result is true when p = 0, and also that
M5,8 and M5,9 are such that neither the rightmost nor leftmost column of these grids
contains a vertex of any minimal feedback vertex set. Suppose, as our induction
hypothesis, that the result holds for some p ≥ 0. Denote the bound given for τ(M5,j)
in the statement of the proposition by the function f(j), for all j ≥ 2.

Fix i ∈ {0, 1, . . . , 7}. Let X be a minimal feedback vertex set of M5,8p+i. The
fusion of the tile MX

5,8p+i and the tile MY
5,9 depicted in Fig. 11 results in a feedback

vertex set Z of M5,8(p+1)+i of size |X| + 11 (note that the fusion results in no cycles
as there are no paths in MY

5,9 from a vertex in the leftmost column to another vertex
in the leftmost column which include vertices not in the leftmost column). By the
induction hypothesis, τ(M5,8(p+1)+i) ≤ f(8p + i) + 11 = f(8(p + 1) + i).

Consider M5,8(p+1). As M5,8(p+1) = M5,8p+2 + M5,6, we have that τ(M5,8(p+1)) ≥
τ(M5,8p+2) + τ(M5,6); consequently, by the induction hypothesis, τ(M5,8(p+1)) ≥
(11p + 2) + 8 = 11(p + 1) − 1, as required.

Let Z be some minimal feedback vertex set of M5,8(p+1) (and so Z has size 11p +
10). Suppose that column 8p has a vertex of Z in it. By the induction hypothesis
applied to the first 8p + 1 columns, these columns contain at least 11p vertices of Z.
However, if they contain exactly 11p vertices of Z then, by the induction hypothesis,
we obtain a contradiction (as at least one vertex of Z lies in the rightmost of these
8p + 1 columns). Hence, the first 8p + 1 columns contain at least 11p + 1 vertices of
Z, with the last 7 columns of M5,8(p+1) containing at most 9 vertices of Z. By the
induction hypothesis, the last 7 columns of M5,8(p+1) must contain exactly 9 vertices
of Z, with the first 8p + 1 columns of M5,8(p+1) containing exactly 11p + 1 vertices of
Z.

If columns 8p, 8p+1, . . . , 8p+7 of M5,8(p+1) contain 10 vertices of Z then we have
a minimal feedback vertex set of M5,8 with a vertex of the feedback vertex set in the
leftmost column, which yields a contradiction. Hence, columns 8p, 8p + 1, . . . , 8p + 7
contain at least 11 vertices of Z, with column 8p containing at least 2 vertices of Z

and with the first 8p columns of M5,8(p+1) containing at most 11p − 1 vertices of Z.
By the induction hypothesis, the first 8p columns of M5,8(p+1) contain exactly 11p−1
vertices of Z and there is no vertex of Z in column 8p − 1. By Lemma 3 applied to
the last 9 columns of M5,8(p+1), there is no vertex of Z in the rightmost column of
M5,8(p+1).

Alternatively, suppose that column 8p contains no vertex of Z. By the induction
hypothesis, the first 8p + 1 columns of M5,8(p+1) contain at least 11p vertices of Z

and the last 8 columns of M5,8(p+1) contain at least 10 vertices of Z. Thus, the first
8p columns of M5,8(p+1) contain exactly 11p vertices of Z and the last 8 columns
contain exactly 10 vertices of Z. By the induction hypothesis (applied to the last 8
columns of M5,8(p+1)), there is no vertex of Z in the rightmost column of M5,8(p+1).
A symmetric argument holds for the leftmost column of M5,8(p+1).
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Consider M5,8(p+1)+1. As M5,8(p+1)+1 = M5,8p+2 + M5,7, just as above we have
τ(M5,8(p+1)+1) ≥ τ(M5,8p+2) + τ(M5,7); consequently, by the induction hypothesis,
τ(M5,8(p+1)+1) ≥ (11p + 2) + 9 = 11(p + 1), as required.

Let Z be a minimal feedback vertex set of M5,8(p+1)+1. Suppose that there is at
least 1 vertex of Z in column 8p. An identical argument to that above shows that:
column 8p − 1 contains no vertices of Z; column 8p contains 2 vertices of Z; and
columns 8p+1, 8p+2, . . . , 8p+8 contain 10 vertices of Z. If the rightmost column of
M5,8(p+1)+1 contains no vertex of Z then we are done; so, assume that the rightmost
column of M5,8(p+1)+1 contains at least 1 vertex of Z. By the induction hypothesis,
columns 8p− 1, 8p, . . . , 8p + 7 contain 11 vertices of Z and column 8p + 7 contains no
vertices of Z. This yields a contradiction as column 8p+8 of M5,8(p+1)+1 must contain
exactly 1 vertex of Z and Z is supposed to be a feedback vertex set of M5,8(p+1)+1.
Alternatively, suppose that there are no vertices of Z in column 8p. An identical
argument to that above shows that there is no vertex of Z in the rightmost column
of M5,8(p+1)+1. A symmetric argument holds for the leftmost column of M5,8(p+1)+1.

Consider M5,8(p+1)+2. As M5,8(p+1)+2 = M5,8p+6 + M5,4, just as above we have
τ(M5,8(p+1)+2) ≥ τ(M5,8p+6) + τ(M5,4); consequently, by the induction hypothesis,
τ(M5,8(p+1)+2) ≥ (11p + 8) + 5 = 11(p + 1) + 2, as required.

Consider M5,8(p+1)+3. As M5,8(p+1)+3 = M5,8p+6 + M5,5, just as above we have
τ(M5,8(p+1)+3) ≥ τ(M5,8p+6) + τ(M5,5); consequently, by the induction hypothesis,
τ(M5,8(p+1)+3) ≥ (11p + 8) + 6 = 11(p + 1) + 3, as required.

Consider M5,8(p+1)+4. As M5,8(p+1)+4 = M5,8p+6 + M5,6, just as above we have
τ(M5,8(p+1)+4) ≥ τ(M5,8p+6) + τ(M5,6); consequently, by the induction hypothesis,
τ(M5,8(p+1)+4) ≥ (11p + 8) + 8 = 11(p + 1) + 5, as required.

Consider M5,8(p+1)+5. As M5,8(p+1)+5 = M5,8p+6 + M5,7, just as above we have
τ(M5,8(p+1)+5) ≥ τ(M5,8p+6) + τ(M5,7); consequently, by the induction hypothesis,
τ(M5,8(p+1)+5) ≥ (11p + 8) + 9 = 11(p + 1) + 6, as required.

Consider M5,8(p+1)+6. As M5,8(p+1)+6 = M5,8(p+1) + M5,6, just as above we have
τ(M5,8(p+1)+6) ≥ τ(M5,8(p+1)) + τ(M5,6); consequently, by above, τ(M5,8(p+1)+6) ≥
(11(p + 1)− 1) + 8 = 11(p + 1) + 7. Suppose that τ(M5,8(p+1)+6) = 11(p + 1) + 7 and
let Z be a minimal feedback vertex set of M5,8(p+1)+6. The first 8(p + 1) columns
of the tile MZ

5,8(p+1)+6 yield a minimal feedback vertex set X of M5,8(p+1) and the

last 6 columns a minimal feedback vertex set Y of M5,6. By above, column 8(p + 1)
contains no vertices of X; hence, column 8(p + 1) + 1 contains at least 2 vertices
of Y . As τ(M5,5) = 6, column 8(p + 1) + 1 must contain exactly 2 vertices of Y .
Column 8(p + 1) + 2 contains at least 1 vertex of Y , as otherwise there would be a
cycle involving vertices on columns 8(p + 1), 8(p + 1) + 1 and 8(p + 1) + 2. Also, as
τ(M5,4) = 5, column 8(p + 1) + 2 must contain exactly 1 vertex of Y . Hence, the
rightmost 5 columns of MZ

5,8(p+1)+6 induce a minimal feedback vertex set of M5,5 with

1 vertex in column 8(p + 1) + 2. Such minimal feedback vertex sets are classified in
Fig. 12 and it is easy to see that no matter which of the minimal feedback vertex sets
we try, we obtain a contradiction (this is even more apparent given that there is only
one configuration for the vertices in columns 8(p + 1) + 1 and 8(p + 1) + 2). Hence,
τ(M5,8(p+1)+6) = 11(p + 1) + 8 as required.

Consider M5,8(p+1)+7. As M5,8(p+1)+7 = M5,8(p+1)+1 + M5,6, just as above we
have τ(M5,8(p+1)+7) ≥ τ(M5,8(p+1)+1) + τ(M5,6); consequently, by the induction hy-
pothesis, τ(M5,8(p+1)+7) ≥ 11(p+1)+8. Suppose that τ(M5,8(p+1)+7) = 11(p+1)+8.
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Reasoning almost identically to as in the previous case yields a contradiction. Hence,
τ(M5,8(p+1)+7) = 11(p + 1) + 9, as required. The result follows by induction.

Consequently, we can draw all our results together in the following theorem.

Theorem 5 There exists a computable function f(n,m) such that the size of a min-

imal feedback vertex set of the grid Mn,m, where (n,m) ∈ {(n,m) : n ≥ 2,m ≥ 2}, is

one of f(n,m), f(n,m) + 1 or f(n,m) + 2.

Of course, the word ‘computable’, whilst strictly correct, is somewhat inappropri-
ate as the function f can be described very concisely according to the different cases
arising in this section. Also, τ(Mn,m) is known exactly for a lot of different cases.

4 Feedback vertex sets in butterflies

In this section, we improve known bounds on the size of minimal feedback vertex sets
in butterflies. We begin with some basic structural decompositions.

If 0 ≤ j ≤ 2d − 1 then denote by bit(d, j) the bit-string of length d that is the
binary representation of j. Also, for any bit-string b of length d, denote by bin(b)
the integer whose binary representation as a bit string of length d is b. For any two
bit-strings b and b′, denote the concatenation of b and b′ as bb′.

Fix some d ≥ 2. Let b be a bit-string whose length, |b|, is at least 1 and at most
d − 1. Define the subgraph Bb

d of Bd as the subgraph of Bd induced by the vertices
of the set

{vi,j : |b| ≤ i ≤ d, 0 ≤ j ≤ 2d − 1, j ≡ bin(b) mod 2|b|};

that is, the vertices on rows |b|, |b| + 1, . . . , d whose column names (when written in
binary) end in b. The sub-graphs B1

4 (with edges in bold) and B10
4 (with dashed

edges) are illustrated in Fig. 13.

Lemma 6 Let d ≥ 2 and let b be a bit-string whose length is at least 1 and at

most d − 1. The subgraph Bb
d of Bd is isomorphic to Bd−|b| via the isomorphism

βb : Bd−|b| → Bb
d given by βb(vi,j) = vi′,j′ , with i′ = i + |b| and j′ = bit(d − |b|, j)b.

Proof For B0
d and B1

d (that is, for the bit-strings b = 0 and b = 1), the definition
of Bd yields the result. For other bit-strings, the result then follows by a simple
induction.

Lemma 7 Let d ≥ 2 and let the set of vertices U of Bd be defined as {vi,j : 0 ≤ i ≤
d − 1, 0 ≤ j ≤ 2d − 1}. The subgraph Bd[U ] of Bd consists of two disjoint copies Bl

d

and Br
d of Bd−1 where the isomorphisms βl : Bd−1 → Bl

d and βr : Bd−1 → Br
d are

given by βl(vi,j) = vi,j and βr(vi,j) = vi,j+2d−1 .

Proof Immediate from the definition of Bd.

We are now in a position to improve the lower bound on the size of a minimal
feedback vertex set of Bd as established in [1], namely

lbCKK
d =

(d − 1)2d + 1

3
.
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Figure 13. Butterflies contained within butterflies.

Our improvement is obtained by refining the general theorem used in [1] to obtain
this lower bound.

Proposition 8 Let G = (V,E) be a graph of maximal degree δ and let F be a feedback

vertex set of G, with H the subgraph G\F . Let Fi be the set of vertices in F of degree

i in G, let P be the set of edges of G induced by the vertices of F and let c be the

number of connected components of H. Then

|E| − (Σδ
i=1i|Fi|) + |P | = |V | − |F | − c.

Proof The number of edges of E incident with a vertex of F is

(Σδ
i=1i|Fi|) − |P |.

As F is a feedback vertex set, H is a forest and so the number of edges of H is equal
to the number of vertices of H minus c; that is,

|E| − (Σδ
i=1i|Fi|) + |P | = |V | − |F | − c

and the result follows.

By applying Proposition 8 to Bd, we obtain that (with the definitions as in the
statement of Proposition 8),

3|F | − 2|F2| = (d − 1)2d + |P | + c.

Note that as |P | and |F2| are at least 0 and c is at least 1, we obtain the lower bound
lbCKK

d on the size of a feedback vertex set of Bd, as was done in [1].
However, we can use Proposition 8 to obtain an improved lower bound on the size

of a feedback vertex set of Bd.

Proposition 9 Let d ≥ 4. Any feedback vertex set of Bd has size at least

(d − 1)2d + 4

3
.
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Proof Consider Bd, for d ≥ 4, and let F be a minimal feedback vertex set of Bd.
Let H be the subgraph Bd \F of Bd. We may assume that there are no vertices of F

on row 0 nor on row d (as if, for example, the vertex v0,0 is in F then we can replace
v0,0 in F with the vertex v1,0 and still obtain a minimal feedback vertex set).

By Lemma 7, the subgraphs Bl
d and Br

d of Bd are isomorphic to Bd−1. Also, as
every cycle (of length 4) in Bd involving only vertices on rows d−1 and d must contain
at least one vertex of F (with such a vertex of F being on row d−1), there is no path
in Bd \ F from a vertex of Bl

d \ F to a vertex of Br
d \ F (also, note that Bl

d \ F and
Br

d \ F are both non-empty, as no vertex on row 0 is in F ).
Consider Bl

d. By Lemma 6, Bl
d∩B0

d and Bl
d∩B1

d are isomorphic to Bd−2. Moreover,
as every cycle (of length 4) in Bd involving only vertices on rows 0 and 1 must contain
at least one vertex of F (with such a vertex of F being on row 1), there is no path
in Bd \ F from a vertex of Bl

d ∩ B0
d to a vertex of Bl

d ∩ B1
d. Furthermore, as d ≥ 4,

both (Bl
d ∩ B0

d) \ F and (Bl
d ∩ B1

d) \ F are non-empty. Similar reasoning applies to
(Br

d ∩ B0
d) \ F and (Br

d ∩ B1
d) \ F . Thus, Bd \ F consists of at least 4 connected

components. Putting c ≥ 4 into the equation in Proposition 8 (with G taken as Bd)
yields the result.

So, if we denote our new lower bound from Proposition 9 as lbd then we have that
lbd = lbCKK

d + 1. Whilst our lower bound improvement is somewhat slight, we can
make a more significant improvement on the best known upper bound on the size of
a minimal feedback vertex set of Bd.

Definition 10 Define

Vl = V (Bl
d) = {vi,j : 0 ≤ i ≤ d − 1, 0 ≤ j ≤ 2d−1 − 1},

Vr = V (Br
d) = {vi,j : 0 ≤ i ≤ d − 1, 2d−1 ≤ j ≤ 2d − 1}

and
Vd = {vd,j : 0 ≤ j ≤ 2d − 1},

for all d ≥ 1.

Note that V (Bd) = Vd ∪ Vl ∪ Vr.

Definition 11 Define

V 1
d−1 = {vd−1,j : 0 ≤ j ≤ 2d−2 − 1},

V 2
d−1 = {vd−1,j : 2d−2 ≤ j ≤ 2d−1 − 1},

V 3
d−1 = {vd−1,j : 2d−1 ≤ j ≤ 3 · 2d−2 − 1},

V 4
d−1 = {vd−1,j : 3 · 2d−2 ≤ j ≤ 2d − 1},

for all d > 1.

Definition 12 Define

Vl,0 = {vi,j : 0 ≤ i ≤ d − 2, 0 ≤ j ≤ 2d−2 − 1},

Vl,1 = {vi,j : 0 ≤ i ≤ d − 2, 2d−2 ≤ j ≤ 2d−1 − 1},

Vr,0 = {vi,j : 0 ≤ i ≤ d − 2, 2d−1 ≤ j ≤ 3 · 2d−2 − 1},

Vr,1 = {vi,j : 0 ≤ i ≤ d − 2, 3 · 2d−2 ≤ j ≤ 2d − 1},

for all d > 1.
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Note that Bd[Vl,0], Bd[Vl,1], Bd[Vr,0] and Bd[Vr,1] are (d − 2)-dimensional butter-
flies.

We illustrate the above definitions in Figs. 14 and 15, where as well as showing the
decomposition of the butterflies B5 and B6 into their constituent parts, we also detail
two particular feedback vertex sets. We shall use these feedback vertex sets presently
and consequently we name them as FB(B5) and FB(B6), respectively. (Note that we
split B6 in Fig. 15 into two halves, due to its size.)

V 4
1

V 4
2 V 4

3
V 4

4

B [V   ]5 r,0B [V   ]5 l,0
B [V   ]5 r,1B [V   ]5 l,1

0

1

2

3

4

5

row

Figure 14. The butterfly B5 with the feedback vertex set FB(B5).

We leave it as an exercise for the reader to check that FB(B5) and FB(B6) are
indeed feedback vertex sets of B5 and B6, respectively. (Readers might find it in-
structive to first of all convince themselves that there are no cycles involving only
vertices on two subsequent levels, and then to rule out potential cycles involving ver-
tices on the bottom two levels, then cycles involving vertices on the penultimate and
antepenultimate levels, and so on.)

We are now in a position to detail our algorithm. Our algorithm outputs a feedback
vertex set for Bd which we denote FB(Bd), and we denote the feedback vertex sets of
Bd resulting from Algorithms A and L, in [2], by FA(Bd) and FL(Bd), respectively
(recall, Algorithm A is Chang, Lin and Lee’s algorithm and Algorithm L is Luccio’s
algorithm, first derived in [5]).

Algorithm B

Input: The d-dimensional butterfly Bd, where d ≥ 0.
Output: The feedback vertex set FB(Bd) of Bd.

If d ∈ {0, 1, 2, 3, 4} then return FB(Bd) = FA(Bd)
else if d = 5 then return FB(B5)
else if d = 6 then return FB(B6)
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else return FB(Bd) = (V 2
d−1 ∪ FB(Bd[Vl,0]) ∪ FL(Bd[Vl,1]))

∪(V 3
d−1 ∪ FL(Bd[Vr,0]) ∪ FB(Bd[Vr,1])).
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row
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4

5
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left-hand side of 6-dimensional butterfly

right-hand side of 6-dimensional butterfly
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B [V   ]6 r,0
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Figure 15. The butterfly B6 with the feedback vertex set FB(B6).

That is, we proceed just as Chang, Lin and Lee did except the base cases of our
recursive algorithm are different. The fact that our algorithm produces a feedback
vertex set follows from the following lemmas from [2].

Lemma 13 [2] For d > 1, suppose that Fl,0 is a feedback vertex set of Bd[Vl,0] and

that Fl,1 = FL(Bd[Vl,1]). Then Fl,0 ∪ Fl,1 ∪ V 2
d−1 is a feedback vertex set of Bd[Vl].
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Lemma 14 [2] For d > 1, suppose that Fr,0 = FL(Bd[Vr,0]) and that Fr,1 is a

feedback vertex set of Bd[Vr,1]. Then Fr,0 ∪ Fr,1 ∪ V 3
d−1 is a feedback vertex set of

Bd[Vr].

Lemma 15 [2] For d > 1, suppose that Fl ⊇ V 2
d−1 and that Fr ⊇ V 3

d−1 are feedback

vertex sets of Bd[Vl] and Bd[Vr], respectively. Then Fl ∪Fr is a feedback vertex set of

Bd.

Theorem 16 The set FB(Bd) is a feedback vertex set of Bd.

Proof The proof follows from an elementary induction using the above lemmas.

Not only can we use Chang, Lin and Lee’s tools to prove that our algorithm is
correct, we can also use their analysis to obtain the size of the feedback vertex set
FB(Bd), for each d ≥ 5.

From [2], the size fA(d) of the feedback vertex set FA(Bd) is

⌊

(3d + 1)2d + 1

9

⌋

−
2d − 1

3
, if d is even,

and
⌊

(3d + 1)2d + 1

9

⌋

−
2d − 2⌈

d

2 ⌉ − 2⌊
d

2 ⌋ + 1

3
, if d is odd.

Consequently, fA(5) = 50 and fA(6) = 114; whereas, with fB(d) denoting the size of
the feedback vertex set FB(Bd) produced by Algorithm B, fB(5) = 48 and fB(6) =
110.

A simple observation yields that

fA(7) − fB(7) = 4;
fA(8) − fB(8) = 8;
fA(9) − fB(9) = 2(fA(7) − fB(7)) = 8;
fA(10) − fB(10) = 2(fA(8) − fB(8)) = 16;
fA(11) − fB(11) = 2(fA(9) − fB(9)) = 16;
fA(12) − fB(12) = 2(fA(10) − fB(10)) = 32;
. . .

and a simple induction yields that fB(d) is equal to

⌊

(3d + 1)2d + 1

9

⌋

−
2d − 1

3
− 2

d−2

2 , if d ≥ 6 is even,

and
⌊

(3d + 1)2d + 1

9

⌋

−
2d − 2⌈

d

2 ⌉ − 2⌊
d

2 ⌋ + 1

3
− 2

d−3

2 , if d ≥ 5 is odd.

Hence, the above are upper bounds on τ(Bd).
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5 Conclusion

In this paper, we have improved the known upper and lower bounds on the sizes of
minimal feedback vertex sets in grids and butterflies. We feel that the closeness of the
resulting upper and lower bounds in grids should essentially close the investigation.
The situation for butterflies is not so clear cut. Whilst we have managed to improve
both upper and lower bonds, there is still some distance between the two bounds.
We conjecture that the feedback vertex number for butterflies lies closer to our upper
bound than our lower bound. Intuitively, we feel that our lower bound technique,
which has only been applied at the ‘extremities’ of the butterfly, should be applicable
‘within’ the butterfly. Of course, we have so far been unable to do this.
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