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Abstract

Analytical backward Euler stress integration is presented for a deviatoric yielding criterion
based on a modified Reuleaux triangle. The criterion is applied to a cone model which allows
control over the shape of the deviatoric section, independent of the internal friction angle on
the compression meridian. The return strategy and consistent tangent are fully defined for all
three regions of principal stress space in which elastic trial states may lie. Errors associated
with the integration scheme are reported. These are shown to be less than 3% for the case
examined. Run time analysis reveals a 2.5-5.0 times speed-up (at a material point) over the
iterative Newton-Raphson backward Euler stress return scheme. Two finite-element analyses
are presented demonstrating the speed benefits of adopting this new formulation in larger
boundary value problems. The simple modified Reuleaux surface provides an advance over
Mohr-Coulomb and Drucker-Prager yield envelopes in that it incorporates dependencies on
both the Lode angle and intermediate principal stress, without incurring the run-time penal-
ties of more sophisticated models.

Keywords: Closest Point Projection, computational plasticity, analytical stress return, energy-
mapped stress space, consistent tangent

1 Introduction

While a vast body of constitutive models has been generated over the last decades, very few of the
advanced formulations have gained widespread use. This has been largely a consequence of their
computational burden. Developing algorithmically efficient and fully robust constitutive models
for engineering materials has therefore become just as important as providing realism, in order to
allow detailed three dimensional non-linear deformation analyses to be undertaken.

In this paper we offer a simple cone-type (frictional) elasto-plastic formulation, which allows
an analytical backward Euler (BE) stress integration on the curved surface and exact integration
in the regions where singularities appear. The BE scheme gives a fully implicit approximation.
The popularity of this approach over explicit schemes (for example [15]) is due to its high level of
accuracy for a given numerical effort, particularly when large strain increments are applied [13].
The associated perfect plasticity model presented here may be thought of as a simple hybrid sitting
between the Drucker-Prager (D-P) and Mohr-Coulomb (M-C) formulations. The D-P yield surface
exhibits no Lode angle dependency, θ. The M-C surface has no sensitivity to the intermediate
principal stress, σ2. Yet multiaxial experiments show that both factors influence yielding and peak
stress. Their inclusion in constitutive models appears necessary in order to capture the deformation
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of geotechnical structures [2]. The attraction of the proposed model is the improved fit to deviatoric
yielding (the formulation has a sensitivity to θ and σ2) and a one-step integration scheme. The
consequences of neglecting Lode angle and σ2 dependencies are discussed further in Section 2.

The layout of the paper is as follows. In Section 2 the particular form of the deviatoric section
is introduced. Section 3 describes the stress return strategies for the three regions where the
elastic trial stress may lie. The approach, when returning to the compression meridian or tensile
apex, follows Clausen et al.’s method [4]. When returning elsewhere, finding the closest point to
the surface in energy-mapped space [5] requires the solution of a quartic. Section 3 also gives
the consistent tangent expressions for each region and quantifies the errors associated with the
analytical stress return. Section 4 presents a run time comparison between the standard iterative
BE stress return and the proposed analytical single step return. Two finite-element simulations
are presented in Section 5. The analysis of a single 3D finite-element toy problem illustrates the
asymptotic quadratic convergence of the global Newton-Raphson (N-R) solution scheme. A larger
rigid footing plane-strain finite-element analysis compares solutions obtained from the proposed
model with those obtained from D-P, M-C and Willam-Warnke (W-W [16]) cones. A number of
other forms of Lode angle dependencies on the yield surface have been proposed in the literature
[1,3,10,17]. These can improve on the relatively poor fit of the D-P and M-C idealisations, yet none
offer the advantage of a closed form BE integration solution which is available in the formulation
proposed here.

In all that follows {·} and [·] denote vectors and matrices respectively, (̂·) and (·) identify terms
associated with principal and shear components of generalised stiffness matrices and {·}T denotes
a vector transpose. We adopt a tension positive convention and assume the following ordering of
the principal stresses σ1 ≤ σ2 ≤ σ3.

2 Modified Reuleaux

For the plasticity models under consideration, the yield surfaces may be defined using Haigh-
Westergaard cylindrical coordinates ξ, ρ and θ. The normalised deviatoric radius, ρ = ρ/ρc, is
employed; where ρc is the radius on the compression meridian (θ = π/6) and ρ is a function of the
Lode angle θ ∈ [−π/6, π/6]

θ =
1
3

arcsin

(
−3
√

3
2

J3

J
3/2
2

)
. (1)

Here J2 = (tr[s]2)/2, J3 = (tr[s]3)/3, [s] = [σ] − ξ[1]/
√

3, ξ = tr[σ]/
√

3 and [1] denotes the third-
order identity matrix.

From geometric considerations (see Figure 1) the modified Reuleaux (MR) Lode angle depen-
dency may be obtained as

ρ(θ) =
√

a2 + r2 − 2ar cos(φ), (2)

where

r =
ρ2

e − ρe + 1
2ρe − 1

, a = r − ρe and ρe =
ρe

ρc
. (3)

ρe ∈ [0.5, 1] gives the relative size of the radius under triaxial extension (σ1 = σ2 < σ3) with
respect to that under triaxial compression (σ1 < σ2 = σ3). The arc angle, φ, is defined as

φ =
π

6
+ θ − arcsin

(
a sin(5π/6− θ)

r

)

.

(4)
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If the arc centres coincide with the singularities on the compression meridians (that is, if r = 1+ρe

so that a = 1) then the shape of the deviatoric section is a Reuleaux triangle. Although this
shape was used in cam-actuated steam engine regulators in the 1830s, the first written discussion
of the geometry appears to have been provided by Franz Reuleaux in 1876, when considering a
family of curved shapes of constant breadth (that is, rolling polygons which maintain a constant
height) [9,11]. Allowing the location of the arc centres to vary along projections of the compression
meridians gives rise to the modified Reuleaux triangle. As ρe → 0.5 both r and a tend to ∞ and the
deviatoric section becomes an equilateral triangle. If ρe = 1 then ρ = 1 and we recover a circular
deviatoric section centred on the hydrostatic axis (as found in the D-P model).

Figure 2 compares the proposed deviatoric section with those attributed to M-C, W-W and
Bhowmik-Long (B-L, [3], with a normalised deviatoric radius of ρs = 0.73 on the shear meridian,
θ = 0) for ρe = 0.656. The multiaxial experimental data on Monterey sand [8] shown in the figure
indicate that this material has both a Lode angle dependancy (Figure 2(A)) and a sensitivity to
the intermediate principal stress (Figure 2(B)). Unlike the other models mentioned above, a D-P
surface provides no variation in ρ with respect to θ (ρ would equal 1 in Figure 2(A)). The effective
friction angle in Figure 2(B) is calculated from the expression given by Griffiths

ψ = arcsin

( √
3η cos(θ)√

2 + η sin(θ)

)
, (5)

where η = ρ/ξ [7]. In that Figure, the M-C envelope exhibits no sensitivity to σ2. It is evident that
the proposed MR deviatoric section offers an improved fit over the D-P and M-C surfaces while
maintaining a relatively simple mathematical form. Although the W-W and B-L envelopes provide
more satisfactory fits to the experimental data when the intermediate stress ratio 0.5 < b < 0.95
(where b = (σ2 − σ3)/(σ1 − σ3)), neither the W-W nor the B-L model are able to offer analytical
BE stress integration solutions for arbitrary strain increments. Thus they can incur significant
computational overheads (compared with D-P and M-C models) when introduced into a large-
scale elasto-plastic stress analysis. It is worth adding that a number of geotechnical problems
satisfy plane strain conditions, where b typically lies close to 0.3 [12]. The MR solution provides a
good fit to the multiaxial data in this region.

The MR cone can be defined as

f(η, θ) = αρ− η = 0 (6)

where α is the opening angle of the cone, α = − tan(ψMC). ψMC is the M-C internal friction angle
of the material under triaxial compression. Thus (6) defines a cone with a MR deviatoric section
and linear meridians, pinned at the stress origin with the space diagonal (σ1 = σ2 = σ3) as the
cone’s axis, see Figure 3. The MR cone can be seen as a hybrid surface, lying between the D-P
and M-C envelopes, allowing some control over the shape of the deviatoric section, independent of
the cone opening angle.

3 Stress return and consistent tangent

Consider the trial elastic stress {σt} (given by a trial elastic strain {εe
t}) lying outside the yield

surface (f > 0). For this state there are three distinct stress return regions associated with the MR
cone, as shown in Figure 3, namely:

A. Return to the stress origin (point),

B. Return to the compression meridian (line),

C. Return to the non-planar surface.

The Closest Point Projection (CPP) and consistent tangent are considered for each region in
Sections 3.2-3.4.
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3.1 Energy-mapped stress space

Simo and Hughes [13] showed that the BE integration corresponds to the minimisation of
{{σr} − {σt}

}T [
Ce

]{{σr} − {σt}
}
, (7)

with respect to the return stress {σr} (where
[
Ce

]
is the elastic compliance matrix), which repre-

sents a CPP. The minimisation is subject to the following constraints

f ≤ 0, γ̇ ≥ 0, f γ̇ = 0. (8)

(·)t and (·)r denote quantities associated with the trial state and the return state respectively,
where f is the yield function and γ̇ is the plastic multiplier. The return stress is not generally
the closest point geometrically in standard stress space, but rather the stress that minimises the
energy square norm (7). In this paper we make use of energy-mapped {ς} space [5], where

1
E
{ς}T {ς} = {σ}T

[
Ce

]{σ}, (9)

and E is the Young’s modulus of the elastically isotropic material. This allows us to find the
geometric closest point (in {ς} space) through use of the following transformation

{ς} =
[
T

]{σ}. (10)

For isotropic linear elasticity, [T ] is solely a function of Poisson’s ratio v. Given the elastic compli-
ance matrix

[
Ce

]
=

1
E




1 −v −v 0 0 0
−v 1 −v 0 0 0
−v −v 1 0 0 0

0 0 0 2(1 + v) 0 0
0 0 0 0 2(1 + v) 0
0 0 0 0 0 2(1 + v)




,

(11)

[T ] becomes

[
T

]
=




t1 t2 t2 0 0 0
t2 t1 t2 0 0 0
t2 t2 t1 0 0 0
0 0 0 t3 0 0
0 0 0 0 t3 0
0 0 0 0 0 t3




,

(12)

where

t1 =
√

1− 2v + 2
√

1 + v

3
, t2 =

√
1− 2v −√1 + v

3
, t3 =

√
2(1 + v). (13)

This mapping leads to a squashing and a stretching of the yield surface in the hydrostatic and
deviatoric directions respectively (see Figure 4).

ςξ = ξ
√

1− 2v, ςρ = ρ
√

1 + v, ςθ = θ, (14)

where ς(·) denotes a quantity associated with energy-mapped space. The energy-mapped opening
angle of the cone, ςα, is

ςα =
α
√

1 + v√
1− 2v .

(15)

Once the closest point solution in energy-mapped stress space has been found, the solution can
be transformed back to conventional stress space. Note that we need only operate with principal
stresses (conventional and energy-mapped) in the solution process for an isotropic model.
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3.2 Stress origin return

If fa < 0 then the trial stress point {ςt} will be returned onto the apex of the MR cone, with

{ςcp} = {σcp} = {0}, (16)

where (·)cp denotes quantities associated with the closest point. The apex yield function is given
by

fa =
1

ςαρ
+ ςη = 0. (17)

3.2.1 Stress origin consistent tangent

As Clausen et al. [4] have shown, the elasto-plastic consistent tangent for a hydrostatic apex return
is simply given by

[
Dalg

]
= [0]. (18)

3.3 Compression meridian return

The trial arc angle φt should be checked against φcr to determine if the trial point returns onto
the compression meridian, where

φcr = arcsin

(√
3

2r

)

.

(19)

If φt ≥ φcr then

θcp = π/6, ςρcp = ςα ςξcp.

One obtains the solution for this case by considering a plane normal to the compression meridian
of the energy-mapped yield surface. The closest point and trial point will lie in the same normal
plane. We make use of

{ςn}T
{{ςcp} − {ςt}

}
= 0, (20)

where {ςn} is the normal to the plane; which in this case is the vector defining the corner line of
the energy-mapped yield surface. {ςn} is given by

{ςn} =
{

1−
√

2 ςα 1 + ςα/
√

2 1 + ςα/
√

2
}T

,
(21)

and any {ς} on this line is given by

{ς} =
ςξ√
3

{
1−

√
2 ςα 1 + ςα/

√
2 1 + ςα/

√
2
}T

.
(22)

Substituting (21) and (22) into (20) we obtain an equation which can be solved for ςξcp

ςξcp =
(ςt2 + ςt3)

(
1 + ςα/

√
2
)

+ ςt1
(
1−√2 ςα

)
√

3(1 + ςα2) .

(23)

Subsequently ςξcp and ςρcp can transformed back into conventional stress space to calculate the
final return stress {σcp} using the Haigh-Westergaard solution

{σ} =
ξ√
3
{1}+

√
2
3
ρ
{

sin(θ − 2π/3) sin(θ) sin(θ + 2π/3)
}T

,
(24)

where {1} = {1 1 1}T . These stresses are then transformed back from principal to generalised
stress space through use of the eigenvectors associated with the generalised trial stress state.
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3.3.1 Compression meridian consistent tangent

The consistent tangent for a corner return is obtained following the approach given by Clausen et
al. [4]. By considering the vector orientation of the edge

{n} =
{

1−
√

2α 1 + α/
√

2 1 + α/
√

2
}T

,
(25)

we obtain the third-order elasto-plastic tangent matrix (in principal form) as

[
D̂ep

]
=

{n}{n}T

{n}T
[
Ĉe

]{n}
,

(26)

where
[
Ĉe

]
is the third-order (principal) elastic compliance matrix. The generalised (sixth-order)

elasto-plastic tangent matrix is then given by

[
Dep

]
=

[ [
D̂ep

]
[0]

[0] (E/2(1 + v)) [1]

]

.

(27)

The consistent tangent follows as
[
Dalg

]
=

[
Q

][
Dep

]
, (28)

where
[
Q

]
is calculated from

[
Q

]
=

(
[I] + ∆γ

[
Ce

]−1
[

∂2f

∂σ2
cp

])−1

,

(29)

where [I] is the sixth-order identity matrix [4]. In principal stress space [Q] can be calculated as

[Q] =
[

[1] [0]
[0] [Q]

]

,

(30)

where

[Q] =




1 + ∆σp
1−∆σp

2
σ1−σ2

0 0

0 1 + ∆σp
2−∆σp

3
σ2−σ3

0

0 0 1 + ∆σp
1−∆σp

3
σ1−σ3




−1

.

(31)

{∆σp} = ∆γ[Ce]−1{f,σ } = {σt} − {σcp} is the plastic stress corrector increment associated with
the return path. Using the fact that σ2 = σ3 for a return onto the corner, [Q] can be simplified to

[Q] =




σ1−σ2
σt1−σt2

0 0
0 0 0
0 0 σ1−σ3

σt1−σt3




,

(32)

where σti are the principal trial stresses. From (28) and (32) the consistent tangent, for the line
return, can be written as

[
Dalg

]
=

[ [
D̂ep

]
[0]

[0] (E/2(1 + v)) [Q]

]

.

(33)

Once the consistent tangent has been formed in principal stress space (33) it must be transformed
back to generalised stress space, see Clausen et al. for more details [4].
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3.4 Non-planar surface return

If we consider an elastic trial stress {ςt}, outside the yield surface, returning onto the non-singular
portion of the surface, we can define a length l as the distance between that trial point and a point
on the surface at the same θt in any deviatoric plane at a given ςξ (see Figure 5)

l2 = (rt − r)2 + ( ςξ − ςξt)2, (34)

where r = r ςα ςξ. The deviatoric distance of the trial point from the arc axis is given by

r2
t = a2 + ςρ2

t − 2a ςρt cos
(

5π

6
− θt

)
, (35)

where a = a ςα ςξ. Substituting (35) and (3) into (34), we obtain

l =
√

B1
ςξ2 − 2 ςξ ( ςξt + B2 + r ςαrt) + ςξ2

t + ςρ2
t , (36)

where

B1 = a2 ςα2 + r2 ςα2 + 1, B2 = a ςα ςρt cos
(

5π

6
− θt

)
. (37)

Equating the partial derivative of (36) with respect to ςξ to zero, we obtain the closest point on
the MR cone to the trial point in {ς} space

ςξ4
cpA1 + ςξ3

cpA2 + ςξ2
cpA3 + ςξcpA4 + A5 = 0, (38)

where

A1 = a2 ςα2B2
1 − 4a4r2 ςα6,

A2 = 12a2r2 ςα4B2 − 2a2 ςα2B1( ςξt + B2)− 2B2
1B2,

A3 = a2 ςα2( ςξt + B2)2 + B2
1ρ2

t + 4B1B2( ςξt + B2)− 9r2 ςα2B2
2 − 4a2r2 ςα4 ςρ2

t , (39)
A4 = 6r2 ςα2 ςρ2

t B2 − 2B1( ςξt + B2) ςρ2
t − 2B2( ςξt + B2)2,

A5 = ςρ2
t (

ςξt + B2)2 − ςρ4
t r

2 ςα2.

This quartic can be solved for ςξcp, see Simo and Hughes page 138 [13], amongst others, for more
details. Once ςξcp is known, then the other quantities identifying the position of the closest point
on the MR surface can be calculated (Figure 6). φcp is given by the sine rule

φcp = arcsin
(

ςρt sin(5π/6− θt)
rt

)

,

(40)

where rt is calculated at the solution ςξcp using (35). ςρcp is given by (2) and θcp determined from
the cosine rule

θcp =
5π

6
− arccos

(
a2

cp + ςρ2
cp − r2

cp

2acp
ςρcp

)

,

(41)

where rcp and acp are values associated with ςξcp.

3.4.1 Non-planar consistent tangent

The consistent tangent for the surface return is calculated by minimising
{ {εe} − {εe

t}+ ∆γ{f,σ }
f

}
=

{ {0}
0

}

,

(42)
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with respect to {εe
t}, thereby obtaining

[ [
Ce

]
+ ∆γ[f,σσ ] {f,σ }
{f,σ }T 0

]{ {dσ}
d∆γ

}
=

{ {dεe
t}

0

}

.

(43)

Rearranging we have
{ {dσ}

d∆γ

}
=

[ [
Dalg

] {D12}
{D21} D22

]{ {dεe
t}

0

}

,

(44)

where (·),σ and (·),σσ, in (42) and (43), denote the first and second partial derivatives of (·) with
respect to {σ}. Recalling (6), the first derivative of f with respect to {σ} is given by

{f,σ } = α{ρ,σ } − {η,σ }, (45)

where

{η,σ } =
{ρ,σ }ξ − ρ{ξ,σ }

ξ2
.

(46)

Operating only with the derivatives with respect to the principal stresses, we obtain

{ρ,σ } = {s}/ρ, {ξ,σ } = {1}/
√

3. (47)

The derivative of ρ with respect to {σ} is given by

{ρ,σ } = ρ,ρρ ρ2,φ φ,θ {θ,σ }, (48)

where

ρ,ρρ =
1
2ρ ,

ρ2,φ = 2a r sin φ, φ,θ = 1 +
a cos(5π/6− θ)

r
√

1− (a sin(5π/6− θ)/r)2
,

(49)

{θ,σ } =
−√3

2 cos 3θ

(
J
−3/2
2 {J3,σ } − 3

2
J3J

−5/2
2 {s}

)

︸ ︷︷ ︸
{β}

, (50)

and

{J3,σ } = {s2s3 s1s3 s1s2}T +
J2

3
{1}. (51)

When the return is to the extension meridian (θ = −π/6), (50) is indeterminate. Here l’Hôpital’s
rule is used to construct the derivative

{θ,σ } =
ρ

2
√

6

[
β,σ

] {1 − 1 0}T
, (52)

where the derivative of {β} (see (50)) with respect to {σ} is given by (61). The second derivative
of f with respect to {σ} is given by

[
f,σσ

]
= α

[
ρ,σσ

]− [
η,σσ

]
, (53)

where

[
η,σσ

]
=

[ρ,σσ ]
ξ

− {ρ,σ }{ξ,σ }T

ξ2
− {ξ,σ }{ρ,σ }T

ξ2
+

ρ{ξ,σ }{ξ2,σ }T

ξ4
(54)
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and

{ξ2,σ } =
2ξ√
3
{1}, [ρ,σσ ] =

ρ
[
J2,σσ

]− {ρ,σ }{s}T

ρ2
,

[
J2,σσ

]
=

1
3

(
3[I]−{1}{1}T

)
. (55)

The second derivative of ρ with respect to {σ} is given by
[
ρ,σσ

]
= {ρ,σρ }{ρ,σ }T + {ρ,σφ }{φ,σ }T + ρ,σφ,σ

[
φ,σσ

]
, (56)

where

{ρ,σρ } = −ar sin φ

ρ2 {φ,σ }, {ρ,σφ } =
ar cos φ

ρ
{φ,σ }, ρ,σφ,σ =

ar sin φ

ρ .

(57)

The second derivative of φ with respect to {σ} is given by
[
φ,σσ

]
= {φ,σθ }{θ,σ }T + φ,θ

[
θ,σσ

]
, (58)

where

{φ,σθ } =
a

r

(
Sr2

(
1− (Sa/r)2

)2 − a2SC2

r2(1− (Sa/r)2)
√

1− (Sa/r)2

)
{θ,σ }, (59)

C = cos(5π/6− θ) and S = sin(5π/6− θ). The second derivative of the Lode angle, θ, with respect
to {σ} is given by

[
θ,σσ

]
= 3 tan(3θ){θ,σ }{θ,σ }T −

√
3

2 cos(3θ)
[
β,σ

]
,

(60)

where the derivative of {β} with respect to {σ} is given by

[
β,σ

]
= −3

2
J
−5/2
2

({s}{J3,σ }T + {J3,σ }{s}T + J3

[
J2,σσ

])
+J

−3/2
2

[
J3,σσ

]
+

15
4

J3J
−7/2
2 {s}{s}T

,

(61)

and

[
J3,σσ

]
=

2
3




s1 s3 s2

s3 s2 s1

s2 s1 s3




.

(62)

We now have the all derivatives required for (44). These have been determined in principal stress
form. The full sixth-order consistent tangent is given by

[
Dalg

]
=

[ [
D̂alg

]
[0]

[0]
(
E/2(1 + v)

)
[Q]

]

,

(63)

where
[
D̂alg

]
is the consistent tangent in principal form, from (44), and [Q] is given by [4]

[Q] =




σ1−σ2
σt1−σt2

0 0
0 σ2−σ3

σt2−σt3
0

0 0 σ1−σ3
σt1−σt3




.

(64)

9



3.5 Stress return error analysis

The accuracy of the stress return algorithm was assessed for 1 ≤ ρt/(αρ(θt)ξt) ≤ 6 and−π/6 ≤ θt ≤
π/6. A Young’s modulus of 100MPa and a Poisson’s ratio of 0.2 were used for the material’s elastic
properties. α = −0.25 and ρe = 0.8 define the MR cone. A hydrostatic pressure of ξt = −1MPa was
used for all of the elastic trial stresses. In this analysis, the starting stress state was positioned on
the yield surface at the shear meridian (θ = 0). The constitutive model was then subjected to an
elastic strain increment corresponding to the elastic trial stress state, see Figure 7(B). The return
stress from this single strain increment was compared with the solution obtained by splitting the
strain increment into 10,000 sub-increments.

The following error measure was used to assess the accuracy of the stress return algorithm

e =

√{
{σcp} − {σe}

}T {
{σcp} − {σe}

}

√
{σe}T {σe} ,

(65)

where {σe} is the ‘exact’ stress return corresponding to the sub-incremented solution and {σcp} is
the one-step analytical return. A stress iso-error map is given in Figure 7(A). This analysis revealed
a maximum error of 2.56%, corresponding to a trial stress on the extension meridian (θ = −π/6)
at ρt/(αρξt) = 4.1. Zero error appears along the locus θt = 0, ρt/(αρξt) = 1 to θt → −0.2160,
ρt/(αρξt) →∞. Much of the trial area has an error of less than 0.5%. Larger errors are associated
with trial stresses near the extension meridian and in the vicinity of the compression meridian
return region. These are due to the increased tangential component of the trial stress increment.
The non-smooth (stepped) region close to θt = π/12 is a consequence of the finite grid size either
side of the return region B-C boundary.

4 Run time analysis

The run time of the single-step analytical BE return is compared with a conventional iterative BE
stress return in Figure 8. The analysis considered trial stresses between 1 ≤ ρt/(αρ(θt)ξt) ≤ 6 and
−π/6 ≤ θt ≤ π/6. A Young’s modulus of 100MPa and a Poisson’s ratio of 0.2 were again used
for the material’s elastic properties. Similarly, α = −0.25 and ρe = 0.8 define the MR cone and a
hydrostatic pressure of ξt = −1MPa was used for all of the elastic trial stresses. The constitutive
model was then subjected to a strain increment corresponding to the elastic trial stress state,
see Figure 8(B). When returning to the corner or the apex, both the approaches (analytical and
numerical BE) use the same single-step return discussed in the preceding sections. However, when
returning onto the non-planar surface, the conventional (numerical) BE method requires multiple
local iterations to obtain convergence. The number of iterations and the ratio of the numerical
to analytical BE run times are presented in Figure 8(A). The analytical return demonstrates a
2.5-5.0 times speed-up over the iterative numerical method. The increase in time required for the
iterative approach is due, in part, to repeatedly calculating the first and second derivatives of the
yield function with respect to stress.

5 Finite-element performance

5.1 Single element test

A simple small-strain finite-element analysis was first undertaken to assess the constitutive model’s
performance within a general purpose 3D code. A single unit-cube 8-noded hexahedral element
constrained on its lower horizontal, and two vertical, faces (see Figure 9(A)) was loaded under
hydrostatic compression to −1MPa in a single (elastic) loadstep. Subsequently, a vertical point
load of −0.12MN was applied to the element’s unconstrained top corner, via 10 equal loadsteps. A
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Young’s modulus of 100MPa and a Poisson’s ratio of 0.2 were again used for the material’s elastic
properties. α = −0.25 and ρe = 0.85 were adopted to define the MR, M-C and W-W cones. The
load-displacement curves for the unconstrained corner in the vertical direction are shown in Figure
9(A). Figure 9(B) illustrates the MR global convergence properties of the N-R iterations for each
of the 11 loadsteps. Loadsteps 1-6 resulted in an elastic material response, whereas for loadsteps
7-11 the material behaviour was elasto-plastic. The latter demonstrate the asymptotic quadratic
convergence of the N-R procedure. The following measure of (residual) out of balance force

|{fr}| =
√{

{fext} − {fint}
}T {

{fext} − {fint}
}

(66)

was used to assess convergence, where {fext} and {fint} are the external and internal forces,
respectively. |{fr}| for loadsteps 7-11 are given in Table 2. The tolerance in steps (d) and (e) of
the algorithm in Table 1 was set to 1 × 10−12, which corresponds to a N-R absolute tolerance of
1.2× 10−7N.

The results obtained from the three constitutive models are qualitatively similar, with the W-W
and MR cones producing marginally stiffer responses when compared against the M-C simulation.
A run time comparison for the single element test is presented in Table 3, where

∑
(NRit) is

the total number of global N-R iterations, max(NRit) is the maximum number of iterations in any
loadstep and t/tM-C is the run time normalised with respect to the M-C run time. The analytical BE
MR approach (MRAn) was just 4.6% slower than the (over-simplified) M-C scheme. The analytical
BE MR algorithm gave a 34.1% speed gain over the iterative BE MR approach (MRNum). More
significantly, the Willam-Warnke (W-W) formulation, which produced similar results to the MR
cone, required a 25.9% increase in the run-time.

5.2 Rigid strip footing analysis

A plane strain incremental finite-element analysis of a 1m wide rigid strip footing bearing onto a
weightless soil was performed to assess the MR model’s performance within a larger finite-element
problem. Due to symmetry, only one half of the problem was considered. The same finite-element
discretisation as presented in [6] was used, to allow comparisons to be made. The mesh had a depth
and width of 5m (Figure 10). 135 eight-noded quadrilaterals, with reduced four-point quadrature,
modelled the problem. The footing was assumed to be rigid and smooth with an imposed vertical
displacement, u. Identical material properties as used in [6] were adopted here. These were: a
Young’s modulus of 10GPa, Poisson’s ratio of 0.48, cohesion, c, of 490kPa, friction angle of 20◦

and ρe = 0.8 (to coincide with ρe for M-C). The material constants were common for the M-C,
W-W and MR analyses.

Figure 11 presents the normalised pressure-displacement results for the three constitutive mod-
els. The M-C simulation gave a close agreement with the results presented by de Souza Neto et
al. [6]. The normalised peak pressure approached the theoretical Prandtl solution (p/c = 14.8) to
within 1.1%. Results for the MR cone using ρe = 0.51 and ρe = 0.99 demonstrate the model’s abil-
ity to provide solutions spanning between those provided by the M-C and D-P cones. With ρe = 0.8
the MR cone produced a stiffer response when compared against the M-C solution. The limit load
tended to p/c = 19.36. Results obtained from the W-W cone were quite similar; approaching a
limit of p/c = 20.69.

Table 4 gives run-time comparisons for the three constitutive models at a vertical displace-
ment of 2mm. npGp is the number of Gauss points which underwent plastic deformation by
the end of the analysis. t/NRit gives the run time per global N-R iteration, whereas the ratio
(tNRit)/(tM-CNRM-C

it ) gives this time normalised with respect to the M-C iteration time. The
W-W model required a 28.7% longer run-time than the MR solution. The computational savings
would be higher if a more efficient linear solver were used. Here the finite-element algorithm was
coded in MATLAB m-script; using the backslash operator to solve the linear system. While the
benefits of the MR formulation are already evident, a tuned pre-conditioned element-by-element
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Krylov solver [14], for example, would probably have reduced the CPU time associated with the
linear solve, relative to the time spend on elasto-plastic stress integration. If this were the case,
then the overall run-time advantage of the MR model would be even greater.

6 Conclusion

The Drucker-Prager and Mohr-Coulomb models are amongst the most widely used simple pressure-
sensitive perfect plasticity formulations in geomechanics. However, they fail to incorporate both
the Lode angle and intermediate principal stress dependency typically seen in geomaterials. This
omission has been shown by others to lead to errors in finite-element simulations [2]. Many con-
stitutive models now include such dependencies, but the algebraic expressions describing those
formulations are relatively complex. This necessitates iterative numerical schemes to integrate the
stresses. This can present a significant computational burden when undertaking detailed 2D and
3D analyses.

This paper presents the complete formulation for an associated perfect plasticity cone model
which includes sensitivities to the Lode angle and the intermediate principal stress. It is based
on a conical surface with modified Reuleaux deviatoric sections. The model allows the stresses to
be integrated exactly when the previous and elastic trial stresses fall within the fan zones of the
tensile apex or compression meridian (zones A and B respectively in Figure 3). Small integration
errors associated with the backward Euler scheme may be introduced when returning to the curved
surface (Figure 7). For all regions, a single step procedure is all that is required for the backward
Euler approach.

The paper has demonstrated that the model offers an attractive alternative to the Drucker-
Prager and Mohr-Coulomb models. Through material point and 2D plus 3D finite-element simula-
tions, it has been shown that the computational advantages over a W-W cone model are significant
(Tables 4 and 3). The paper provides all the expressions for the consistent tangent appropriate
for the three stress return regions on the yield surface. The model is simple to code (see Table 1)
and will be of interest to those simulating the behaviour of geomaterials and powders where the
response is governed by frictional slip.
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Figure 1: Modified Reuleaux triangle definition.
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Figure 2: Modified Reuleaux deviatoric function compared with other functions and experimental
data from Lade and Duncan [8]: (A) Lode angle dependency and (B) intermediate principal stress
dependency .

Figure 3: Modified Reuleaux cone stress return regions.

Figure 4: Modified Reuleaux cone energy-mapped {ς} space transformation.
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Figure 5: Geometric solution in energy-mapped {ς} space for the surface stress return.

Figure 6: Modified Reuleaux closest point in a deviatoric plane.
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Table 1: Pseudo code for the modified Reuleaux stress return algorithm. The tolerance (tol) in
steps (d) and (e) is typically set to 1× 10−12.

Table 2: Residual out of balance force |{fr}| values for the finite-element simulation.
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Figure 7: (A) Errors associated with the single-step analytical backward Euler stress return (B)
Geometric interpretation of the error analysis.

Figure 8: (A) Run time comparison between conventional iterative backward Euler and the single-
step analytical backward Euler stress return (B) Geometric interpretation of the run time analysis.

Table 3: Single 3D finite-element run time comparison.
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Figure 9: (A) Force-displacement (B) Convergence results for the single 3D finite-element simula-
tion.

Figure 10: Rigid strip footing plane-strain finite-element discretisation.
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Figure 11: Normalised pressure-displacement for the rigid strip footing plane-strain finite-element
analysis.

Table 4: Rigid strip footing plane-strain finite-element run time comparison.
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