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Stargazer (stg) mutant mice fail to express stargazin [transmembrane AMPA receptor regulatory protein �2 (TARP�2)] and consequently
experience absence seizure-like thalamocortical spike-wave discharges that pervade the hippocampal formation via the dentate gyrus
(DG). As in other seizure models, the dentate granule cells of stg develop elaborate reentrant axon collaterals and transiently overexpress
brain-derived neurotrophic factor. We investigated whether GABAergic parameters were affected by the stg mutation in this brain region.
GABAA receptor (GABAR) �4 and �3 subunits were consistently upregulated, GABAR � expression appeared to be variably reduced,
whereas GABAR �1, �2, and �2 subunits and the GABAR synaptic anchoring protein gephyrin were essentially unaffected. We estab-
lished that the �4��2 subunit-containing, flunitrazepam-insensitive subtype of GABARs, not normally a significant GABAR in DG
neurons, was strongly upregulated in stg DG, apparently arising at the expense of extrasynaptic �4��-containing receptors. This change
was associated with a reduction in neurosteroid-sensitive GABAR-mediated tonic current. This switch in GABAR subtypes was not
reciprocated in the tottering mouse model of absence epilepsy implicating a unique, intrinsic adaptation of GABAergic networks in stg.

Contrary to previous reports that suggested that TARP�2 is expressed in the dentate, we find that TARP�2 was neither detected in stg
nor control DG. We report that TARP�8 is the principal TARP isoform found in the DG and that its expression is compromised by the
stargazer mutation. These effects on GABAergic parameters and TARP�8 expression are likely to arise as a consequence of failed
expression of TARP�2 elsewhere in the brain, resulting in hyperexcitable inputs to the dentate.
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Introduction
The stargazer (stg) mutant mouse arose by a spontaneous viral
transposon insertion into and subsequent premature transcrip-
tional arrest of the stargazin gene (Letts et al., 1998). Thus, stg
mice fail to express stargazin protein (Ives et al., 2004). Stargazin
is a member of the family of transmembrane AMPA receptor
(AMPAR) regulatory proteins (TARPs) that are involved in AM-
PAR synaptic targeting and/or surface trafficking (Chen et al.,
2000; Rouach et al., 2005). The TARPs (�2, �3, �4, and �8), of
which stargazin is TARP�2, are expressed in the brain in a tem-
poral spatially regulated manner, with some brain areas and pos-
sibly single cells expressing multiple TARP isoforms (Tomita et
al., 2003). TARP�2 is reported to be heavily expressed in the
cerebellum and moderately so in hippocampus (CA3 and den-

tate), cerebral cortex, thalamus, and olfactory bulb (Sharp et al.,
2001; Tomita et al., 2003). In the cerebellum, the consequences of
the stargazer mutation are primarily restricted to the cerebellar
granule cells (CGCs), neurons that normally only express the
TARP�2 isoform. Consequently, mossy fiber–CGC synapses in
stg are bereft of AMPARs and are subsequently electrically silent
(Chen et al., 2000), leading to a CGC-specific deficit in brain-
derived neurotrophic factor (BDNF) expression and signaling
(Qiao et al., 1998). Paradoxically, neurons in the dentate of the
hippocampal formation in stg experience spontaneous noncon-
vulsive bilaterally symmetrical 6 –7 Hz spike-wave discharges
(SWDs) (Chafetz et al., 1995), intense mossy fiber sprouting, and
intermittent elevations of BDNF expression but without exten-
sive cell injury (Qiao and Noebels, 1993b; Chafetz et al., 1995;
Nahm and Noebels, 1998). This contrasts with convulsive seizure
activity, which results in significant cell death in CA1/CA3 and
hilar cells of the dentate gyrus (DG) (Leroy et al., 2004). Chronic
depolarization of dentate granule cells after convulsive seizures
mediates an apparent adaptive modification of their inhibitory
potential, presumably to titrate the increased network excit-
ability. Such adaptations include modified GABAA receptor
(GABAR) subunit expression and subtype assembly, resulting in
altered GABAR function, pharmacology, targeting, and cluster-
ing (Clark 1998; Nusser et al., 1998; Elmariah et al., 2004; Leroy

Received Nov. 30, 2005; revised June 15, 2006; accepted July 6, 2006.
This work was funded by Wellcome Trust Grants 0543478 and 066204, Biotechnology and Biological Sciences

Research Council Grant BBS/B/09899, and Austrian Science Fund Grant P17203. H.L.P. was supported in part by
Merck Sharp and Dohme, and P.S.D. was supported by the Institut de Recherches Servier. We thank Dr. Dane
Chetkovich (Northwestern University, Chicago, IL) for TARP�3, TARP�4, and TARP�8 cDNAs, and Andrew Crawford
for Figure 1 E and Simon Kaja (Departments of Neurology and Neurophysiology, Leiden University Medical Centre,
Leiden, The Netherlands) for critical reading of this manuscript.

Correspondence should be addressed to Dr. Christopher L. Thompson, School of Biological and Biomedical Sciences,
DurhamUniversity,ScienceResearchLaboratories,SouthRoad,DurhamDH13LE,UK.E-mail:c.l.thompson@durham.ac.uk.

DOI:10.1523/JNEUROSCI.1088-06.2006
Copyright © 2006 Society for Neuroscience 0270-6474/06/268600-09$15.00/0

8600 • The Journal of Neuroscience, August 16, 2006 • 26(33):8600 – 8608



et al., 2004). Whether GABAR plasticity is also induced in the stg
DG by nonconvulsive SWDs has not been investigated. We have
shown previously that neuronal GABAR expression in vitro is
influenced by electrical activity (Ives et al., 2002), corroborated
by our observations in electrically silent CGCs in stg in vivo
(Thompson et al., 1998) in which GABAR �6 and �3 subunits
and the flunitrazepam-insensitive (BZ-IS) subtype of GABAR
were downregulated. Because electrical activity and BDNF ex-
pression is decreased in CGCs, although paradoxically increased
in the DG of stg, we hypothesized that GABAR expression may be
reciprocally compromised in the DG. Here we show that GABAR
subtypes expressed in the DG of stg are rearranged by a mecha-
nism that is not directly related to the stargazer mutation because
we show that the dentate does not normally express TARP�2.
Furthermore, these specific GABAR rearrangements are not a
common feature of absence epileptic phenotypes because they
are not reciprocated in tottering (tg) mutant mice, indicating that
a unique mechanism underpins this form of GABAR plasticity.

Materials and Methods
Materials. Anti-GABAR �4(1–14), �3L(345– 408), �2(319 –366), and
�(1– 44) subunit-specific antibodies were as described previously (Sperk
et al., 1997). Anti-GABAR �1(Cys1–15) antibody was a gift from Profes-
sor F. Anne Stephenson (School of Pharmacy, London, UK). Affinity-
purified anti-NMDA NR1, extreme C-terminus-directed anti-TARP�2
antibody (Ives et al., 2004), and N-terminus-directed anti-TARP�8 an-
tibodies (peptide sequence Cys1–14; MESLKRWNEERGLWC) were
produced as described previously (Thompson et al., 2002; Ives et al.,
2004). Anti-glutamate receptor subtype 2 (GluR2) antibody was from
Santa Cruz Biotechnology (Calne, Wiltshire, UK). Anti-�-actin antibody
was obtained from Sigma (Poole, UK). Anti-gephyrin antibody was ob-
tained from Clontech (Cowley, Oxford, UK). Vectastain Elite ABC im-
munohistochemistry kits were purchased from Vector Laboratories (Pe-
terborough, UK). Hyperfilm ECL, [ 3H]-sensitive autoradiography film,
horseradish-peroxidase-linked anti-rabbit secondary antibodies, and
[ 3H]flunitrazepam were purchased from Amersham Biosciences (Ayles-
bury, Bucks, UK). Horseradish-peroxidase-linked anti-goat secondary
antibody was obtained from Pierce (Chester, Cheshire, UK). [ 3H]mus-
cimol and [ 3H]Ro15-4513 (ethyl-8-azido-5,6-dihydro-5-methyl-6-oxo-
4 H-imidazo[1,5�][1,4]benzodiazepine-3-carboxylate) were purchased
from PerkinElmer (Boston, MA). Flunitrazepam, 8-fluoro-5,6-dihydro-
5-methyl-6-oxo-4H-imidazo[1,5�][1,4]benzodiazepine-3-carboxylate
(flumazenil; and Ro15-1788), and Ro15-4513 were a gift from Hoffmann
LaRoche (Basel, Switzerland).

Animals. Wild-type strain for stargazer (C3B6Fe�; �/�), heterozy-
gous (C3B6Fe�; �/stg) and homozygous stargazer mutant mice
(C3B6Fe�; stg/stg), and wild-type strain for tottering (C57/B6�/�) and
tottering (C57/B6 tg/tg) were maintained on a 12 h light/dark cycle with
food and water available ad libitum. All animal procedures were con-
ducted according to the Scientific Procedures Act of 1986. No differences
between �/� and �/stg mice have been noted (Qiao et al., 1998; Hashi-
moto et al., 1999); therefore, we routinely combine �/� and �/stg ma-
terial for control experiments.

Ligand autoradiography. Assays were performed according to Korpi et
al. (2002) with minor modifications. Briefly, mice were anesthetized with
a lethal dose of pentobarbitone before transcardial pressure perfusion
with ice-cold PBS–NaNO2 (0.1% w/v) for 3 min at 10 ml/min, followed
by ice-cold PBS–sucrose (10% w/v) for 10 min at 10 ml/min. Brains were
dissected and immediately frozen in isopentane (�40°C), 1 min before
sectioning (14 �m) at �21°C, and thaw mounting on polysine-coated
glass slides (VWR International, Lutterworth, Leics, UK). Sections were
air dried overnight and stored at �20°C until required. [ 3H]muscimol-
labeled sections were preincubated in assay buffer, 0.31 M Tris-acetate,
pH 7.1, for 15–20 min, before incubation in [ 3H]muscimol (20 nM) for
1 h at 4°C. GABA (1 mM) was used to define nonspecific binding.
[ 3H]Ro15-4513 (20 nM) and [ 3H]flunitrazepam (5 nM) labeled sections
were preincubated in assay buffer, 50 mM Tris-HCl, 120 mM NaCl, pH

7.4, for 15 min. Flunitrazepam (10 �M) was used to define the
flunitrazepam-sensitive (BZ-SR) and the flunitrazepam-insensitive (BZ-
ISR) subtypes. Ro15-1788 (10 �M) was used to define nonspecific
binding.

Quantification of receptor autoradiographs. Autoradiographs and cali-
bration standards were scanned at 1200 dots per inch using a flatbed
scanner. Grayscale intensities were estimated using NIH ImageJ soft-
ware. Calibration curves were constructed for each ligand/exposure pe-
riod using [ 3H] standards at 0.1–109.4 nCi/mg (Amersham Biosciences)
so grayscale intensity could be transformed into absolute radioactivity.
Five random subdomains of each dentate gyrus from a minimum of six
comparable sections per mouse strain were used to yield an estimated
mean intensity. Nonspecific binding values were subtracted from mean
intensity values to resolve specific ligand binding. Statistical analysis was
by Student’s t test, and p � 0.05 was considered to be statistically
significant.

Primary cerebellar granule cell cultures. Cerebellar granule cell cultures
were prepared from 5- to 6-d-old (postnatal day 5/6) mouse neonates as
described previously (Ives et al., 2002). Granule cells were cultured in
DMEM containing 10% (v/v) fetal calf serum, glutamine (2 mM), and
gentamycin (50 �g/ml), supplemented at 24 h, when appropriate, with
20 mM KCl (“25K” media). Fluorodeoxyuridine (80 �M) was added at
48 h to suppress the proliferation of non-neuronal cells. CGCs (7 d in
vitro) were harvested in 0.5 ml/35 mm dish of solubilizing buffer (50 mM

Tris, pH 6.8, 2% w/v SDS, and 2 mM EDTA) so that the expression levels
of GABAR subunit proteins could be determined by immunoblotting.

Immunohistochemistry. Immunohistochemistry was essentially as de-
scribed previously (Thompson et al., 2002). Adult (2– 6 months) mice
were perfusion fixed with 4% (w/v) paraformaldehyde. Free-floating sec-
tions (30 �m) were immunohistochemically stained using the Vectastain
ABC Elite kit with 3,3-diaminobenzidine (0.5 mg/ml) and H2O2 (0.02%,
v/v) in 50 mM Tris-buffered saline, pH 7.1, as horseradish peroxidase
substrate.

Antigen retrieval. When required, sections were incubated in 0.05 M

sodium citrate, pH 8.6, for 30 min at room temperature and then heated
to 90°C for 70 min as described previously (Peng et al., 2004). Sections
were cooled to room temperature and washed in TBS before processing
for immunohistochemistry.

Immunoblotting. SDS-PAGE was performed in 10% polyacrylamide
mini-slab gels (Thompson et al., 1998). Proteins were transferred to
nitrocellulose membrane and probed with primary antibody overnight at
4°C at the following concentrations: anti-TARP�2, 1– 4 �g/ml; anti-
TARP�8, 0.5 �g/ml; anti-GluR2, 0.4 – 0.8 �g/ml; anti-NMDA NR1, 1
�g/ml; anti-GABAR �4, 0.5 �g/ml; anti-GABAR �3, 0.5 �g/ml; anti-
GABAR �2, 0.5 �g/ml; anti-GABAR �, 1 �g/ml; and anti-gephyrin,
1:250. The enhanced chemiluminescence Western blotting system was
used to detect immunoreactive species on Hyperfilm. Band intensities
were quantified as described previously (Ives et al., 2002) using NIH
ImageJ software.

Immunoprecipitations. For immunoprecipitation (IP) of TARP com-
plexes, Triton X-100 (1% v/v) soluble protein in incubation buffer [10
mM HEPES, pH 7.1, 100 mM KCl, 2 mM MgCl2, 1 mM EGTA, and a
protease mixture of pepstatin-A (1 �g/ml), leupeptin (1 �g/ml), aproti-
nin (1 �g/ml), PMSF (1 mM), and benzamidine (2 mM)] was mixed with
antibody (10 �g), applied to washed protein-A beads, and incubated
overnight at 4°C. After centrifugation at 14,000 � g for 1 min, the super-
natant containing unbound proteins was removed (“unbound frac-
tion”). The beads were washed three times with 1 ml of incubation buffer.
To elute the precipitated proteins from the beads, 35 �l of 2� SDS-PAGE
sample buffer containing DTT (20 mM) was applied, incubated at 95°C
for 5 min, and then centrifuged at 14,000 � g for 1 min. The supernatant
(“immunoprecipitated fraction”) was removed and used for immuno-
blotting. To analyze the unbound fraction, 100 �l samples were chloro-
form/methanol precipitated and resuspended in 50 �l of 2� SDS-PAGE
sample buffer containing DTT (20 mM).

For immunoprecipitation of GABARs from dentate gyri, four control
and four stargazer dentate gyri were homogenized by sonication in sol-
ubilization buffer comprising Na-deoxycholate (0.5% w/v), 10 mM Tris-
Cl, pH 8.5, 150 mM NaCl, and protease inhibitors. After incubation for 30
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min at room temperature and then 1 h at 4°C, the soluble material was
isolated by centrifugation at 150,000 � g for 45 min. Soluble extract (70
�g of protein) was incubated with 15 �g of anti-GABAR �2(319 –366)
antibody overnight at 4°C. Immunoprecipitation (20 �l) in IP-low buffer
(50 �l) [containing 50 mM Tris-Cl, pH 8.0, 150 mM NaCl, 1 mM EDTA,
and Triton X-100 (0.2% v/v), supplemented with 5% (w/v) dry-milk
powder] was subsequently added and incubated for 2 h at 4°C. Precipi-
tate was pelleted by centrifugation at 2700 � g for 5 min, and the pellet
was washed three times with 500 �l of IP-low buffer before being resus-
pended in 70 �l of SDS-PAGE sample buffer (NuPage Western blotting
system; Invitrogen, Carlsbad, CA). Samples were subjected to SDS-
PAGE, and Western blots were probed with digoxigenized anti-�2(319 –
366), anti-�3(345– 408), and anti-�4(1–14) antibodies. Primary anti-
bodies were detected with anti-digoxigenin–alkaline phosphatase Fab
fragments (Roche Diagnostics, Mannheim, Germany) and CDP-Star
(Tropix, Bedford, MA). Immunoreactive species were visualized by
chemiluminescence using the Bio-Rad (Hercules, CA) Fluor-S Multiim-
ager and were quantified using Quantity One (Bio-Rad).

Characterizing anti-TARP antibodies. Full-length TARP�2, TARP�3,
TARP�4, and TARP�8 cDNAs subcloned into the mammalian expres-
sion vector pcDNA3 were a kind gift from Dr. Dane Chetkovich (North-
western University, Chicago, IL). Plasmids were transiently transfected
into HEK293 cells using Lipofectamine 2000 (Invitrogen, Paisley, UK)
according to the instructions of the manufacturer. Cells were collected in
solubilizing buffer [2% (w/v) SDS, 50 mM Tris, pH 6.8, and 2 mM EDTA]
48 h after transfection. These recombinantly expressed TARP isoforms
were used to test the specificity of our anti-TARP antibodies in
immunoblots.

Electrophysiology. Six- to 8-week-old male mice were anesthetized with
pentobarbital (120 mg/kg, i.p.), and decapitated. Brains were rapidly
dissected out into ice-cold modified artificial CSF (CSF) of the following
composition (in mM): 248 sucrose, 3 KCl, 2 MgCl2, 1 CaCl2, 1.25
NaH2PO4, 26 NaHCO3, and 10 glucose (saturated with 95% O2, 5%
CO2). Coronal slices, 300 �m thick, were cut using a vibratome
(VT1000S; Leica, Ora, Italy) and placed in a holding chamber at room

temperature (20 –24°C) in aCSF of the following composition (in mM):
124 NaCl, 3 KCl, 1 MgCl2, 2 CaCl2, 1.25 NaH2PO4, 26 NaHCO3, and 10
glucose (bubbled with 95% O2, 5% CO2). Slices were incubated under
these conditions for at least 1 h before recording began. Slices were placed
in a custom-made recording chamber on the stage of a differential inter-
ference contrast microscope (E600FM DIC; Nikon, Tokyo, Japan) and
perfused with room temperature (20 –24°C) aCSF containing 2 mM

kynurenic acid (Sigma, Castle Hill, New South Wales, Australia) at �2
ml/min. Visually identified dentate granule cells were patched with thin-
walled borosilicate electrodes (4 – 6 ��) filled with the following solu-
tion (in mM): 125 CsCl, 10 HEPES, 10 EGTA, 5 QX-314
[2(triethylamino)-N-(2,6-dimethylphenyl) acetamine], 1 Na2ATP, 0.3
LiGTP, pH 7.35 with CsOH (held at �70 mV). Input conductance was
measured using a 200 ms, 10 mV depolarizing step. Cells were held for at
least 10 min to allow the pipette solution to dialyze the cell and the series
resistance to equilibrate. If the series resistance increased above 30 M� or
changed by �10% during the course of a recording, the data from that
cell were excluded from additional analysis. Miniature IPSCs (mIPSCs)
were filtered at 3 kHz and logged at 10 kHz (micro 1401; Cambridge
Electronics Design, Cambridge, UK) to Spike 4 software. Events were
detected off-line with MiniAnalysis (Synaptosoft, Decatur, GA) with
threshold criteria of 10 pA and 50 pA/ms. For kinetic analysis, only
fast-rising (10 –90% rise time �4 ms) events (�100 per cell) with an
approximately exponential decay profile were included. We used two-
tailed, paired, and unpaired t tests for hypothesis testing, and p � 0.05
was regarded as significant.

Results
GABAR subtype expression in the dentate of stargazer
We initially investigated whether the stargazer mutation affected
the distribution and abundance of the major GABAR subtypes
expressed in the dentate gyrus. The distribution of [ 3H]musci-
mol binding in the DG of stg was mostly comparable with that in
�/� mice (Fig. 1A). The level of expression in the DG, however,

Figure 1. Distribution and abundance of GABAR subtypes expressed in the hippocampal formation of stargazer and tottering mice: in situ autoradiography. �/�, stg, and tg sections were
incubated with [ 3H]muscimol (20 nM) to highlight �4�� GABARs (A, E), [ 3H]Ro15-4513 (20 nM) to define BZ-S plus BZ-ISRs (B), [ 3H]Ro15-4513 (20 nM) plus flunitrazepam (Flu; 10 �M) to define
BZ-ISRs (�4��2) alone (C, E), and [ 3H]flunitrazepam (5 nM) to highlight BZ-SRs alone (D). Autoradiographs were quantified by grayscale densitometry using NIH ImageJ software. Five random
subdomains of each dentate gyrus from a minimum of six comparable sections per mouse strain were used to yield an estimated mean intensity. In C, ND indicates that a signal above film background
was not detected in the DG. In all cases, nonspecific binding was at the level of film background. * indicates that values are statistically significantly different at the p � 0.05 level.
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was significantly reduced by 21 	 8% ( p � 0.05; n 
 30) relative
to controls (Fig. 1A). Sections were probed with [ 3H]Ro15-4513
to analyze the spatial expression pattern and relative propensity
of the total repertoire of �-subunit containing GABARs in the
DG. No significant difference was observed in either terms of
distribution or comparative abundance (Fig. 1B) ( p 
 0.57; n 

30). Intriguingly, the subtype of [ 3H]Ro15-4513 binding sites
that are insensitive to flunitrazepam displacement (BZ-ISRs)
were strongly upregulated in stg DG (Fig. 1C) ( p � 0.01; n 
 25).
This subtype of GABAR was undetectable in this brain region of
adult control mouse (Fig. 1C, �/�). The spatial expression pat-
tern and relative abundance of the flunitrazepam-sensitive
subtype of GABARs (BZ-SRs) was qualitatively demonstrated in
autoradiograms of �/� and stg sections probed with [ 3H]fluni-
trazepam (5 nM). No overt differences in distribution of
[ 3H]flunitrazepam labeling (Fig. 1D) or in the grayscale intensity
of labeling (data not shown) were found. Because the grayscale
intensities obtained with [ 3H]flunitrazepam were beyond the
highest calibration standard available to us and thus not suitable
for quantification, we quantified the relative abundance of BZ-
SRs by subtracting values obtained for BZ-ISRs (Fig. 1C) from
total [ 3H]Ro15-4513 binding (BZ-SRs plus BZ-ISRs) (Fig. 1B).
The level of expression of BZ-SRs calculated by this route was not
significantly different (Fig. 1D bottom) ( p 
 0.39; n 
 30).

Is GABAR subtype plasticity in the DG common to all absence
epilepsy models?
To establish whether this switch in GABAR expression profile was
unique to stg or possibly a common feature of absence epilepsy
models, we performed GABAR ligand in situ autoradiography in
another well studied mouse model of absence epilepsy, tottering
(tg). We found no evidence of a decrease of high-affinity
[ 3H]muscimol binding sites or upregulation of BZ-ISRs in tg DG
(Fig. 1E).

Evaluating GABAR subunit changes in
the DG of stargazer
We next investigated whether the changes
in GABAR subtype expression were paral-
leled by changes in the distribution (im-
munohistochemistry, hippocampal sec-
tions) and/or abundance (quantitative
immunoblotting, DG membranes) of the
principal GABAR subunits (�1, �2, �4,
�1, �2, �3, �2, and �) expected to be ex-
pressed in the DG (Sperk et al., 1997) of
age- and gender-matched �/� and stg
mice. No overt changes in the cellular dis-
tribution were observed (�1, �4, �3, and �
are shown in Fig. 2), although the intensity
of staining (expression) for GABAR �4
and �3 subunits was higher in the entire
molecular layer of the DG of stg mice rela-
tive to �/� (Fig. 2). GABAR � subunit
expression, in contrast, was downregu-
lated in the entire molecular layer of the
DG of stg mice relative to �/� (Fig. 2),
although this observation was variable and
not seen in all sections from all mice stud-
ied. No consistent changes in the intensity
of staining with GABAR �1, �2, �1, �2,
and �2 specific antibodies were observed
(Fig. 2). Quantitative immunoblotting
identified GABAR �4 and �3 subunits as

the only proteins studied that were significantly changed, being
upregulated after normalization to �-actin expression by 37 	
12% (n 
 7; p 
 0.0003) and 39 	 28% (n 
 6; p 
 0.026),
respectively, relative to controls (Fig. 3A). Expression levels of
GABAR � and �2, NMDA receptor NR1, AMPA receptor GluR2,
and GABAR anchoring protein gephyrin were not significantly
different.

We asked whether the changes in GABAR subunit expression
in DG granule cells might be an adaptive response to SWDs per-
vading the hippocampal formation of stg. We subjected cultured
CGCs from �/� mice to KCl-mediated depolarization to mimic
a chronically depolarizing, seizure-like scenario in vitro. The GA-
BAR �4 subunit is not normally detected in CGCs, but, after
KCl-mediated depolarization, �4 expression was clearly switched
on (Fig. 3B). A concomitant upregulation of the �3 subunit was
also detected (Fig. 3B), whereas expression of GABAR �2 was
unaffected, supporting our in vivo data that upregulation of �4
and �3 subunits in DG granules cells of stg occur in response to
inputs from hyperexcitable afferents.

To verify that the upregulation of BZ-ISRs in the stg DG was a
consequence of increased expression of �4��2 receptors, we dis-
sected out dentate gyri from �/� and stg. Na-deoxycholate-
solubilized extracts were subsequently immunoprecipitated us-
ing anti-GABAR �2 antibodies to isolate GABAR �2-containing
receptors. As expected, �4 was barely detectable in the �2-
containing subpopulation of receptors from �/� DG, although
it was clearly detectable in stg DG (experiments not shown).
Changes in coassociation of �2 with �4 and �3 subunits were
then quantified by comparing the protein staining of the respec-
tive subunits in �2-containing receptors of �/� and stg DG. As
indicated in Table 1, protein staining for �2 subunits was com-
parable in �2 precipitates of �/� and stg, reflecting a similar
amount of �2-containing receptors in DG of these mice (Fig. 3).
The amounts of �4 subunits, however, were dramatically higher

Figure 2. Immunohistochemical mapping of GABAR �1, �4, �3, and � subunits in �/� and stg. Paraformaldehyde-fixed
adult �/� and stg sections were immunostained with anti-GABAR �1 (0.25 �g/ml), �4 (0.5 �g/ml), �3 (0.5 �g/ml), and �
(0.25 �g/ml) subunit-specific antibodies. Although the relative distribution of GABAR �1, �4, �3, and � subunits were essen-
tially unaffected by the stargazer mutation, the relative intensity of GABAR �4 and �3 subunit immunostaining was increased in
the molecular layers of the dentate gyrus of stg compared with �/�.
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(by 95%) in �2 precipitates from stg than from �/�, confirming
upregulation of assembled �4�2-containing receptors in stg.
Likewise, coassociation of �3 with �2 was also upregulated (by
�24%) in stg DG compared with �/� (Table 1).

Do the GABAR subunit changes result in modifications to
synaptic GABA function?
There was no significant difference in the input conductance of
DG granule cells from stargazer and their nonepileptic litter-
mates (0.99 	 0.13 vs 1.29 	 0.23 nS; n 
 4; p � 0.05, unpaired t
test). Bicuculline methiodide (BMI) (100 �M) sensitive GABAR-
mediated tonic currents were significantly lower in the dentate
granule cells of epileptic stg mice compared with asymptomatic
littermates (7.5 	 0.2 vs 3.5 	 0.7 pA; n 
 4 –5; p � 0.05, un-
paired t test) (Fig. 4). BMI significantly reduced the total input
conductance in both phenotypes (�/�, 0.99 	 0.13 vs 0.71 	
0.19 nS, n 
 4, p � 0.05, paired t test; Stg, 1.29 	 0.23 vs 0.98 	
0.21 nS, n 
 4, p � 0.05, paired t test). However, the mean
decrease in input conductance as a percentage of the initial con-
ductance was larger in �/� than in stg mice, although this differ-
ence did not reach statistical significance (32.4 	 10.8 vs 21.1 	

7.7%; n 
 4; p � 0.05, unpaired t test) (Fig. 4D). The amount of
tonic current was enhanced by the � selective neurosteroid tetra-
hydrodeoxycorticosterone (THDOC) (100 nM) (Stell et al.,
2003), but the amount of tonic current was still significantly
lower in stg mice in the presence of the positive allosteric modu-
lator (19.8 	 1.0 vs 11.1 	 2.6 pA; n 
 4 –5; p � 0.05, unpaired t
test) (Fig. 4). Because spillover from synaptic activity is the likely
source of the GABA that activates extrasynaptic GABARs, the
difference in GABAR-mediated tonic current could reflect a dif-
ference in phasic GABA release, but there was no significant dif-
ference in the rate (0.92 	 0.17 Hz for �/� vs 0.93 	 0.14 Hz for
stg; n 
 6; p � 0.05, unpaired t test) or amplitude (50.1 	 4.6 pA
for �/� vs 48.3 	 2.2 pA for stg; n 
 6; p � 0.05, unpaired t test)
of spontaneous IPSCs (data not shown). We postulated that the
alteration in GABAR subunit composition reported here may
result in alterations in the kinetics of phasic inhibitory currents.
mIPSCs were isolated with tetrodotoxin (500 nM), and the kinet-
ics of these events were compared between �/� and stg mice.
Averaged mIPSCs were essentially identical in epileptic and non-
epileptic animals, and there was no significant difference in area
(0.435 	 0.04 nA/ms for �/� vs 0.43 	 0.04 nA/ms for stg; n 

4; p � 0.05, unpaired t test) (Fig. 5) or amplitude (44.5 	 2.2 pA
for �/� vs 44.8 	 4.8 pA for stg; n 
 4; p � 0.05, unpaired t test)
(Fig. 5).

Are the GABAR rearrangements in the DG caused by the loss
of TARP�2 in this brain region?
To test whether the GABAR rearrangements we observed were a
direct consequence of the stargazer mutation, we used peptide
affinity-purified rabbit anti-TARP antibodies to elucidate the
distribution and abundance of TARP isoforms expressed in the
DG. A panel of our affinity-purified rabbit anti-peptide poly-
clonal antibodies to the C-terminus sequence of TARP�2 was
found to cross-react with TARP�3 and TARP�8 when screened
against recombinantly expressed TARP isoforms (data not
shown). We initially used this pan-TARP antibody as a probe in
immunoblots against whole forebrain membranes from �/�
and stg mice. Three prominent immunoreactive species were rec-
ognized in this tissue from �/�, with Mr values of �55, �48, and
36 – 41 kDa (Fig. 6A). The 36 – 41 kDa species exhibits the same
apparent molecular mass as recombinant TARP�2 and was ab-
sent in stg (essentially TARP�2�/� tissue), suggesting that the
36 – 41 kDa species corresponds to TARP�2. The �55 and �48
kDa bands likely represent other TARP isoforms that this anti-

Table 1. Western blot analysis of the relative abundance of �4 and �3 subunits
coassociated with �2 subunits in the dentate gyrus of control (�/�) and
stargazer (stg) mice

Control Stargazer

Subunits detected % of mean Mean % % of mean (controls) Mean %

�2 102 100 110 103
98 96

�4 88 100 189 195
112 200

�3 104 100 117 124
96 130

Dentate gyri from four �/� and four stg mice were extracted with deoxycholate buffer. Equivalent amounts of
extracted protein from each mouse strain was incubated with �2(319 –366) antibodies. Precipitated proteins were
subjected to immunoblotting using digoxigenized �2(319 –366), � 4(1–14), and �3(345– 408) antibodies as
probes. Immunoreactive proteins were identified by chemiluminescence, and intensity of protein staining was
quantified using the Bio-Rad Fluor-S Multi-Imager. Data are from a single experiment performed in duplicate.
Results are expressed as a percentage of the mean value of staining of the respective subunit determined for
�2-precipitated �/� extracts. The data indicated that comparable amounts of �2-containing receptors were
precipitated from �/� and stg tissue extracts. In receptors precipitated from stg, however, significantly greater
amounts of � 4 and �3 subunits were associated with �2-containing receptors than from �/�.

γ

Figure 3. GABAR �4 and �3 subunit levels are selectively upregulated in the DG of stg mice
in vivo and in chronically depolarized cerebellar granule cells in vitro. A, Dentate gyri mem-
branes from adult �/� and stg mice were analyzed by quantitative immunoblotting (mini-
mum of 4 mice of each strain and 2 immunoblots per mouse). Representative lanes of equal
protein loading for each strain are shown for comparison. Only GABAR �4 and �3 subunit levels
were significantly ( p � 0.05) affected by the mutation, being increased relative to controls by
37 	 12% (n 
 7; p 
 0.0003) and 39 	 28% (n 
 6; p 
 0.026), respectively. B, Cerebellar
granule cells were cultured under basal, “polarized” conditions (5 mM KCl) and “depolarized”
conditions (25 mM KCl), the latter to mimic chronically depolarizing seizure activity. Cells were
collected at 7 d in vitro and analyzed by immunoblotting. As in stg dentate granule cells, GABAR
�4 and �3 subunits were upregulated.
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body recognizes, e.g., TARP�8, that has a comparable mass when
expressed in heterologous cells (data not shown). Interestingly,
these bands appear less intense in whole forebrain from stg than
from �/�. When we used this antibody as a probe for immuno-
histochemical mapping of TARP isoform distribution, we ob-
served less intense immunostaining in the DG of stg relative to
�/� (Fig. 6B). The reduction in the immunostaining was con-
sistent with the ablated expression of TARP�2 in stg DG, because
the stg mice are essentially TARP�2�/� mutants. However, when
we used dentate gyri from �/� and stg for immunoblotting, we
surprisingly found that the 36 – 41 kDa TARP�2 protein, present
in whole forebrain membranes derived from �/� and absent
from stg mice (Fig. 6A), was undetectable in the DG from �/�
mice. Only the Mr �55 kDa immunoreactive species was detected
in the DG (Fig. 6A). This corresponded in mass to TARP�8, a
TARP-isoform known to be almost exclusively expressed in the
hippocampal formation (Bredt and Nicoll, 2003). We subse-
quently raised a TARP�8-specific antibody and verified that the
Mr �55 kDa species identified by the pan-TARP antibody was
TARP�8 and that its expression was reduced in stg DG. By quan-
titative immunoblotting, we estimated that the expression of this
protein was reduced by 33 	 1% in stg DG membranes relative to
�/�, in accordance with the reduced intensity of staining ob-
served in the stg DG in situ (Fig. 6B). To verify that TARP�8 was
indeed an AMPAR-associated protein, we subjected Triton

X-100-soluble DG from �/� mice to an immunoprecipitation
assay using the pan-TARP antibody. Because in the DG this an-
tibody only labels TARP�8 (Fig. 6A), it could be used to see
whether this protein is associated with AMPAR. AMPAR GluR2
was coprecipitated, verifying that the protein recognized by this
antibody was an AMPAR-associated protein (Fig. 6C). This was
further verified by performing the same immunoprecipitation
assay but using our anti-TARP�8-specific antibody. GluR2 was
likewise coprecipitated (data not shown).

Discussion
The stg mutation selectively and completely ablates expression of
TARP�2 (Ives et al., 2004), a member of the TARP family of
AMPAR synaptic targeting and/or trafficking proteins (Chen et
al., 2000; Tomita et al., 2003; Rouach et al., 2005). The effects of
this mutation, however, on the hippocampal formation and cer-
ebellum appear to be diametrically opposed. In the latter case,
mossy fiber–CGC synapses are predictably silent, and the CGCs
are functionally deafferentated and fail to express BDNF (Qiao et
al., 1998; Hashimoto et al., 1999). Paradoxically, the hippocam-
pus experiences spontaneous bursting activity and intermittent
elevations of BDNF (Qiao and Noebels, 1993b; Chafetz et al.,
1995; Nahm and Noebels, 1998).

GABAR plasticity
Inhibitory GABAergic networks adapt to changes in the strength
of their excitatory inputs (Nusser et al., 1998; Ives et al., 2002;
Leroy et al., 2004; Peng et al., 2004; Suzuki et al., 2005) and any
accompanying changes in BDNF/TrkB signaling (Yamada et al.,
2002; Elmariah et al., 2004; Jovanovic et al., 2004; Sato et al.,
2005). In electrically silent, BDNF-deficient CGCs of stg, GABAR
receptor �6 (the cerebellar counterpart of the �4 subunit in the
DG) and �3 subunits and BZ-IS receptors were downregulated,
whereas flunitrazepam-sensitive (BZ-S) receptors were unaf-
fected (Thompson et al., 1998). In electrically hyperexcitable,
BDNF overexpressing dentate granule cells of stg, we predicted

Figure 4. Tonic GABAR-mediated current in dentate gyrus granule cells. A, Representative
traces of tonic GABAR-mediated currents in granule cells from �/� mice and the effect of the
� subunit-selective neurosteroid THDOC (100 nM). Tonic currents were defined by the shift to
current baseline after application of GABA antagonist BMI (100 �M). B, Representative traces of
tonic GABAR-mediated currents in granule cells from stg mice and the effect of the � subunit-
selective neurosteroid THDOC (100 nM). C, Cells from �/� mice showed significantly more
tonic current than those from stg mice (7.5 	 0.2 vs 3.5 	 0.7 pA; n 
 4 –5; p � 0.0017,
unpaired t test). In the presence of THDOC (100 nM), the tonic current was enhanced, and cells
from �/� mice showed significantly more tonic current than those from stg mice (19.8 	 1.0
vs 11.1 	 2.6 pA; n 
 4 –5; p � 0.0245, unpaired t test). The solid black line indicates
application of BMI (100 �M) to define tonic current. D, The decrease in input conductance
caused by BMI was not significantly (NS) different between �/� and stg mice (32.4 	 10.8 vs
21.1 	 7.7%; n 
 4; p � 0.05, unpaired t test). * indicates that values are statistcally signifi-
cantly different at the p � 0.05 level.

Figure 5. Kinetic features of mIPSCs in dentate granule cells. A, Averaged mIPSCs recorded in
granule cells from stg and �/� were essentially superimposable (n 
 4). B, The mean area of
mIPSCs from granule cells from �/� mice and stg was not significantly different (0.435 	
0.039 nA/ms for �/� vs 0.429 	 0.039 nA/ms for stg; n 
 4; p � 0.05). C, The mean
amplitude of mIPSCs in granule cells from �/� mice and stg was not significantly different
(44.5 	 2.2 pA for �/� vs 44.8 	 4.8 pA for stg; n 
 4; p � 0.05).
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opposite effects, which indeed we found. Steady-state levels of
GABAR �4 and �3 and BZ-IS [ 3H]Ro15-4513 binding sites, a
pharmacological fingerprint of �4��2 subunit-containing GA-
BARs in the forebrain (Mihalek et al., 1999; Sun et al., 2004), were
upregulated in the DG of stg (Figs. 1C, 3). Expression of the BZ-S
subtype of GABARs was not significantly affected, emphasizing
the specificity of the receptor switch we observed.

In the DG of wild-type mice, �4 preferentially assembles with
� to form �4�� receptors. There is little evidence for its assembly
into �4��2 receptors unless the ability to assemble with � is
compromised, e.g., in GABAR ��/� (Mihalek et al., 1999; Korpi
et al., 2002; Sun et al., 2004). In stg, we propose that the assembly
of �4-containing receptors is compromised. By in situ autora-
diography, high-affinity [ 3H]muscimol binding selectively high-
lights �4�� GABARs in the forebrain (Mihalek et al., 1999; Korpi
et al., 2002), which constituted a smaller proportion of total �4-
containing receptors in stg compared with �/�. The �4��2 sub-
type (BZ-ISRs) however, was a prominent GABAR subtype in the

DG of stg, constituting �10% of total [ 3H]Ro15-4513 binding
sites, although it was undetectable in �/� (Fig. 1C). Thus, our
data imply that �4��2 receptors arose in stg DG at the expense of
�4�� receptors. This transformation in GABAR subtypes is en-
tirely compatible with previous observations in both temporal
lobe epilepsy (Nusser et al., 1998) and electroshock seizure mod-
els (Clark, 1998) and would predict a switch from tonic GABA
responsive, neurosteroid-sensitive extrasynaptic �4-containing
GABARs (�4��) to potentially synaptic �4-containing GABARs
that are relatively neurosteroid insensitive and respond in phasic
mode to synaptically released GABA (�4��2) (Nusser and Mody,
2002), a mechanism consistent with the recent observations of
Elmariah et al. (2004). Our electrophysiological data support this
prediction, because DG granule cells in stg show a reduced
amount of neurosteroid-sensitive tonic current compared with
their nonepileptic littermates (Stell et al., 2003). Because of the
low abundance of �4��2 receptors in DG (�10% of total recep-
tors) and the lack of drugs selectively modulating these receptors
(Sieghart and Ernst, 2005), their presence at the synapse and
function could not be investigated.

Our immunohistochemical studies indicated that � expres-
sion was downregulated in stg DG (Fig. 2). A reduction in expres-
sion of the � subunit would have been entirely compatible with
the reduction in in situ muscimol binding and with the emer-
gence of BZ-ISRs in the stg DG. However, this difference in �
immunostaining was variable between sections, a phenomenon
that could not be explained by variability in the gender or age of
animals used (our unpublished observation). Furthermore, the
level of expression of � and �2 subunits were not significantly
different in stg compared with controls when isolated dentate gyri
were analyzed by immunoblotting (Fig. 3), nor did we see vari-
ability in our autoradiographic studies, in which all stg sections
investigated showed evidence of the switch in GABAR subtypes.
Studies in an appropriate dynamic cell system will be required to
elucidate the mechanism that underpins the switch from �4�� to
�4��2 GABARs. Interestingly, we found that chronically depo-
larizing cerebellar granule cells in vitro upregulates �4 and �3
subunits in an L-type voltage-gated calcium channel-sensitive
manner (H. L. Payne, J. H. Ives, W. Sieghart, and C. L. Thomp-
son, unpublished observations). Calcineurin phosphatase activ-
ity downregulates GABAR � expression (Sato et al., 2005); thus,
activity-dependent calcium signaling-mediated upregulation of
GABAR �4 and �3 and downregulation of � offers a tentative
mechanistic framework for future studies to evaluate what dic-
tates the balance between expression and assembly of extrasyn-
aptic (�4�� receptors) and synaptic (�4��2 receptors) GABARs
in the dentate granule cells.

One potential avenue for additional study is the influence of
BDNF on GABAR plasticity in stg because the contrasting effects
on GABAR expression in the DG and CGCs are mirrored by
reciprocal effects on BDNF expression. BDNF/TrkB signaling has
been implicated in the induction of both hyperexcitable mossy-
fiber reentrant circuits in the DG (Koyama et al., 2004) and
GABAergic plasticity. The latter included increased expression,
surface trafficking and presumably stabilization of GABAR �3
subunit-containing receptors (Yamada et al., 2002; Jovanovic et
al., 2004), increased GABAR cluster number, and synaptic local-
ization (Elmariah et al., 2004). These features are all consistent
with those reported here in stg.

The GABAR rearrangements we report in stg DG are, how-
ever, not a landmark feature of absence epilepsy. The absence
epileptic mouse model tottering experiences a frequency of burst
activity in the hippocampal formation that is similar to that re-

Figure 6. Characterizing TARP expression in the dentate gyrus. Ai, �/� and stg forebrain
membranes were probed with our anti-pan-TARP antibody. Three prominent immunoreactive
species were identified, with Mr values of �55, �48, and 36 – 41 kDa; only the 36 – 41 kDa
TARP�2 protein is totally absent from stg. The �55 and �48 kDa species possibly represent
TARP isoforms and are clearly less prominent in stg versus �/�, despite equal protein loading
per lane. Aii, TARP�2 is undetectable in the DG of �/�, and only the Mr �55 kDa protein is
detected. This immunopositive species was also recognized by the TARP�8-specific antibody in
�/� and stg DG, identifying it as TARP�8. B, Paraformaldehyde-fixed sections from �/�
and stg mice were immunohistochemically probed with our anti-pan-TARP antibody. The DG in
�/� was clearly more heavily stained than the corresponding area in stg. C, TARP�8 and its
associated interacting proteins were immunoprecipitated from Triton X-100 (1% v/v) soluble
extracts of DG from �/� mice using the anti-pan-TARP antibody. Input (�/� DG) is Triton
X-100-soluble extract of DG from �/� mice. UB is material that remained in the soluble
supernatant after the immunoprecipitation. IP is immunoprecipitated material. These samples
were probed with anti-GluR2 antibody to screen for the presence of interacting AMPAR. The
GluR2 signal in the input lane represents 35% of material used in the IP.
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ported in stg (�6 Hz), but the abnormal DG GABAR profile is
not reciprocated (Fig. 1E). However, the rate and duration of
burst activity in tottering is approximately half that recorded in
stg, and mossy-fiber axon collateralization is less extensive, as is
the severity of their epileptic phenotype (Qiao and Noebels,
1993a; Zhang et al., 2002), leading us to propose that a threshold
of hyperexcitability needs to be surpassed to activate the mecha-
nisms responsible for the GABAergic plasticity evident in stg
mice. It has been proposed recently that GABAergic plasticity is a
homeostatic neuronal response that aims to balance network ex-
citability (Elmariah et al., 2004). This may explain why high-
frequency SWDs entering the hippocampal formation illicit re-
wiring similar to convulsant seizures but fail to induce the cell
death that is a prominent feature of the latter.

TARP expression in the dentate
To rationalize the contrasting effects of the stargazer mutation in
the cerebellum and hippocampus, we proposed two possibilities.
(1) If TARP�2 is expressed in the DG, then it must selectively
regulate the activity of inhibitory networks, thus, burst activity in
the stg hippocampus. (2) Alternatively, the failure to express
TARP�2 in other brain regions in stg (Qiao and Noebels, 1993a)
was responsible for increased excitatory drive entering the stg
DG. Using our pan-TARP and TARP�8-specific antibodies, we
showed that TARP�2 is not present in the DG of �/� mice. Our
data provide compelling evidence that the dentate expresses the
TARP�8 isoform exclusively. Furthermore, TARP�8 was down-
regulated in stg DG (Fig. 6C), consistent with the reduced immu-
nostaining seen in situ (Fig. 6A), thus providing evidence that
TARP�8 expression is regulated by electrical activity. Because
TARP�2 is not expressed in DG, downregulation of TARP�8,
mossy-fiber axon collateralization, and receptor plasticity in the
stg hippocampus (Chafetz et al., 1995; Nahm et al., 1998) has to
arise through failed expression of TARP�2 elsewhere in the star-
gazer brain. Despite the reduction of TARP�8 expression in stg
DG, we found no evidence of significant changes in the expres-
sion levels of AMPAR subunits (Fig. 3). This is in contrast to the
TARP�8�/� mouse, in which hippocampal GluR expression was
found to be severely compromised (Rouach et al., 2005). We
assume that the minor reduction of TARP�8 expression in the stg
DG is too small for us to detect any associated changes in the
levels of AMPAR subunits.

In conclusion, we have shown that TARP�2 is not expressed in
the granule cells or interneurons of the dentate gyrus. The func-
tion of TARPs in the DG would appear to be the exclusive respon-
sibility of the TARP�8 isoform, which we show operates as an
AMPAR-interacting protein (Fig. 6D). The inability of stg to ex-
press TARP�2 results in expression of the GABAR �4�3�2 sub-
type in the DG that would be predicted to confer unique
GABAergic properties to the DG and impart the potential for
relocalization of �4�3 subunits to inhibitory synapses at the ap-
parent expense of �-associated �4�3 subunits in extrasynaptic
domains. Whether these GABAR rearrangements are adaptive
responses to high-frequency excitatory oscillations from DG af-
ferents has yet to be fully resolved. Nonetheless, this provides an
intriguing system with which to study mechanisms that dictate
GABAR expression, assembly, and targeting.
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