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Abstract 

Simulation-based optimization methods have been recently proposed for calibrating 
geotechnical models from laboratory and field tests. In these methods, geotechnical 
parameters are identified by matching model predictions to experimental data, i.e. by 
minimizing an objective function that measures the difference between the two. 
Expensive computational models, such as finite difference or finite element models, are 
often required to simulate laboratory or field geotechnical tests. In such cases, 
simulation-based optimization might prove demanding since every evaluation of the 
objective function requires a new model simulation until the optimum set of parameter 
values is achieved. This paper introduces a novel simulation-based “hybrid moving 
boundary particle swarm optimization” (hmPSO) algorithm that enables calibration of 
geotechnical models from laboratory or field data. The hmPSO has proven effective in 
searching for model parameter values and, unlike other optimization methods, does not 
require information about the gradient of the objective function. Serial and parallel 
implementations of hmPSO have been validated in this work against a number of 
benchmarks, including numerical tests, and a challenging geotechnical problem 
consisting of the calibration of a water infiltration model for unsaturated soils. The latter 
application demonstrates the potential of hmPSO for interpreting laboratory and field 
tests as well as a tool for general back-analysis of geotechnical case studies.  

 

Keywords: parameter identification, unsaturated soils, particle swarm optimization, 
parallel computing  
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INTRODUCTION 

During the last decade, research has been carried out on the use of optimization 

methods for the identification of geotechnical parameters from both laboratory tests [1] 

and field tests (e.g. pressuremeter tests) [2]. Optimization methods require the use of 

relevant engineering models [3] to simulate a particular test for which measurements 

are available. For laboratory tests, it is possible to use relatively simple numerical or 

analytical models to reproduce soil behaviour at stress-point level when a uniform 

distribution of stresses and strains can be reasonably assumed. On the other hand, 

more complex models (such as finite element or finite difference models) are 

necessary for field tests because of the non-uniform stress and strain fields generated 

within the soil domain. In the latter case, the use of optimization methods might 

therefore prove computationally demanding because a new model simulation must be 

performed for every single evaluation of the objective function until the optimum set of 

parameter values is achieved. 

In this paper, global optimization methods are described for minimizing nonlinear 

objective functions over a bounded search space. Mathematically, the problem is 

expressed as 

minimize  ( )xf  

           (1) 

subject to  nD∈x  and ul xxx ≤≤  

In Eqn 1 x is the vector [x1, x2, . . . , xn]T located within the range [xl , xu] of the n-

dimensional space Dn , xl and xu are the lower and upper search bounds respectively 

and f(x) is the objective function, which is calculated either from a closed-form 

mathematical solution or (as in this case) from a computer simulation of a real 

engineering problem for which measurements are available.  

For geotechnical optimization problems, the aim is to obtain a set of model parameter 

values that provide the best match between model simulations and measurements. 

Interest does not lie in finding the absolute global minimum of the objective function, as 

this merely confirms a close match between simulation and reference measurements, 

but rather in finding the global minimum within a restricted search space corresponding 
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to the range of realistic parameter values for engineering design.   

Moreover, the complexity of current engineering models can often lead to the existence 

of several local minima within the search space, each with very similar values of the 

objective function despite large differences in some of the associated parameter values. 

The number of local minima and the corresponding values of the objective function also 

depend on the particular computational model adopted for the simulations as well as on 

the accuracy of the calculations (which can sometimes lead to “noise” in the objective 

function).  Simulation-based calibration of engineering parameters therefore requires 

the combination of a global search strategy capable of coping with several local minima 

together with accurate robust computational models.  

Evolutionary Algorithms (EAs) are population-based iterative stochastic algorithms that 

have proved effective in many areas of engineering for solving complex optimization 

problems where the objective function has a large number of local minima. EAs are 

based on Darwinian theories simulating the evolutionary process of a population of 

individuals towards the best position (i.e. the final solution of the optimization problem) 

by competition and natural selection. One of the best known EAs is the Genetic 

Algorithm (GA), where the optimization process consists in finding the best position 

iteratively through operations, such as crossover and mutation, on a population of 

individuals and by application of rules for the selection of individuals into subsequent 

generations. Particle Swarm Optimization (PSO) is a newer evolutionary technique 

inspired by the observed social behaviour of bird flocks and fish schools and was first 

introduced by Kennedy and Eberhart [4]. More recently, PSO has been shown to have 

increased effectiveness and better computational efficiency over other EAs while 

maintaining simplicity [5-8]. In contrast to the GA, PSO has no evolution operators such 

as crossover and mutation which makes it ideal for asynchronous parallel 

implementation [16], an important issue for simulation-based optimization where 

parallel implementation is necessary as discussed later. An additional advantage of 

PSO over other EAs is the ease with which it can be combined with other search 

algorithms. 

Although PSO is effective in finding a global optimum, it suffers from what is termed 

“premature convergence” when the optimization process prematurely converges to a 

local optimum because it is no longer able to explore other areas of the search space 

where better positions or the global best position may lie [9]. Another weakness is that 
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PSO searching ability reduces significantly in the later stages of optimisation [10] and 

this sometimes leads to slow convergence rates. 

To overcome such known weaknesses of PSO, a hybrid optimisation approach can be 

adopted. A local search method can be incorporated into PSO to carry out quick and 

efficient explorations around potential optima at a much lower computational cost [30]. 

Local search methods tend to find the best solution around the neighbourhood of the 

starting point with a better rate of convergence than PSO in the same situation. 

However, local search methods are rarely the best approach to explore the whole 

space of potential solutions, hence the need of combining them with an effective global 

technique like PSO.  

Hybridization of a global search method with a local search method has proved very 

effective in solving optimization problems by making good use of the strengths of both 

global and local methods [5, 13-15]. For example, performance of GAs has often been 

improved through hybridization with a local search method [29] following two 

methodologies. The first is to use the local search technique during the evolutionary 

loop, i.e. local searches are regularly carried out in parallel with the evolutionary 

algorithm to accelerate convergence rate.  The second is to use the local search 

technique at the end of the evolutionary loop, i.e. one local search is carried out using 

results from the GA as initial guesses to improve the solution. Similar ideas have also 

been applied to PSO [30, 31] 

In this paper we describe the development and use of a hybrid global-local optimization 

method particularly suited to the calibration of geotechnical models by using finite 

element simulations of real engineering problems. The proposed algorithm differs from 

other proposals in two main aspects: firstly a moving-boundary PSO method is 

employed for the global search and secondly an approximate local search algorithm is 

used instead of a complete local search. We present details of the proposed hybrid 

optimization method together with its implementation in both serial and parallel 

environments. The performance of the algorithm is also demonstrated with specific 

reference to the determination of geotechnical parameters  

PARTICLE SWARM OPTIMIZATION 

The original PSO algorithm was introduced as a population-based stochastic global 

optimization method by Kennedy and Eberhart [4, 17]. It is inspired by the observed 
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social behaviour of “swarms” in which a group of independent “individuals” or “particles” 

try to achieve a goal by acting in a complex and coordinated way. As for the GA, PSO 

starts by randomly initializing a population of individuals in the search space. The 

exploration for the best solution then continues with particles changing through 

successive “generations” (a generation is an iteration of the algorithm corresponding to 

one update of the whole population) according to rules until a termination criterion is 

met. The basic PSO used in this paper is denoted as “bPSO” and was introduced by 

Shi and Eberhart [18] as a variant of the original PSO. 

Before presenting the detailed algorithm, some notation is defined. The size of the 

swarm population is Np. The current position of the ith particle is represented by the n-

dimensional vector xi in the search space and by the corresponding fitness f(xi) (this is 

the “quality” of the particle’s position measured by the value of the objective function). 

Each particle also has a “velocity” vi, which measures the change of the particle’s 

position in each generation.  The best position achieved so far by the ith particle pbest 

is identified by the point Pi and the corresponding fitness f(Pi). The best position 

achieved so far by the whole swarm gbest is identified by the point Pg and the 

corresponding fitness f(Pg) . Each particle has therefore a “memory” of its own best 

position as well as a “social” knowledge of the best position achieved by neighbouring 

particles.  With specific reference to geotechnical applications, each vector xi contains 

a different set of parameter values for an individual model simulation and the search 

space is the space of all model parameters. 

The PSO starts by randomly initializing each particle’s velocity vi and position xi and by 

calculating the corresponding fitness f(xi). After initialization, particles “fly” around in 

the search space for many generations seeking for the optimum fitness, i.e. the 

minimum of the objective function (in each generation the algorithm updates both 

velocity and position of all particles within the swarm). The rule for updating velocity is:   

( ) ( )ig22ii11i
1

i xPxPvv −+−+=+ rcrcw kkk       (2) 

where the superscripts  k,  k+1 etc. indicate the generation number, r1 and  r2 are two 

random factors in the interval [0,1], wk is the inertia weight and c1 and c2 are the 

"cognitive" and "social" weights respectively (default values for most problems are c1 = 

c2 = 2.0 [20]). To avoid the algorithm becoming divergent, the particles' velocities are 
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confined to a range -vmax < vi  < +vmax where the limit velocity vmax  determines the 

maximum change of position for a given particle. The parameter vmax is usually set 

equal to half the width of the search domain to cover the span of the parameter space. 

Updated particles’ positions at generation k+1 are obtained by incrementing the 

position at generation k with the velocity at k+1. 

The inertia weight wk [19] controls the “momentum” of the particle. A large value of the 

inertia weight favours global exploration by searching new areas, while a small value 

favours local exploration. A linear decrease of inertia weight with iterations is 

introduced to focus in on a global minimum [19]: 

( ) ( ) minminmax * wMaxIterkMaxIterwwwk +−−=      (3) 

where wk
 is the inertia weight for the kth  iteration,  MaxIter is the maximum iteration 

number and wmax  and wmin are the maximum and minimum inertia weights set by the 

user.  

LOCAL SEARCH METHOD 

Among the variety of local search methods available in the literature, the Nelder-Mead 

(NM) method [12] has been chosen in this research. Similarly to the bPSO used for the 

global search, the NM method is a “direct” algorithm, i.e. it requires evaluation of the 

objective function at different points within the search space but does not require 

information about the gradient of the objective function. This feature is particularly 

useful for simulation-based optimisation problems, such as the geotechnical 

applications considered here. For these problems, gradient measures are difficult to 

obtain from computational models, e.g. a finite difference or finite element simulation of 

an engineering boundary value problem will give no information about how results 

change when model parameters are varied.  

The NM method requires the definition of  n+1 starting points in the search space, 

where n is the dimension of the search space. These points form the initial vertices of a 

working simplex, which is then subjected to a series of “transformations” aimed at 

decreasing the values of the objective function at its vertices. Such transformations are 

governed by four operations controlling reflection, contraction, expansion and 

shrinkage of the simplex. The simplex must also remain non-degenerate throughout 
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the series of transformations. This means that, if any of the n+1 vertices is taken as the 

origin, the n vectors connecting the origin with the remaining vertices must span the n-

dimensional space or, in other words, the vertices of the simplex must not lie in the 

same hyperplane. The sequence of transformations is terminated when the size of the 

working simplex or the difference between the values of the objective function at its 

vertices become smaller than a given tolerance. Full details of the NM method can be 

found in [12].  

A HYBRID MOVING-BOUNDARY PSO WITH APPROXIMATE LOCAL SEARCH  

Since the introduction of the original PSO, various improvements have been proposed 

to reduce difficulties associated to parameter selection [21, 22], to avoid premature 

convergence [23-27] and to increase computational speed [28]. The increase of 

computational speed is achieved in this work while keeping swarm diversity to avoid 

premature convergence, by proposing a new hybrid moving-bounds PSO algorithm 

(hmPSO) that combines the effectiveness of the bPSO and NM methods for global and 

local searches respectively.  

The new algorithm operates in a normalized search space. Normalization is particularly 

important for geotechnical applications where model parameter values can vary over 

ranges of very different magnitude. For example, permeability can range from 10-3 to 

10-9 ms-1 while elastic bulk modulus can range from 104 to 107 Pa.  Normalization 

therefore facilitates comparison between all parameter scales and enables calculation 

of normalized “distances” in the search space. Such calculation is frequently performed 

during the optimization process and, if the dimensions of the search space are of 

disparate sizes, the algorithm will result in errors.   

Moreover, for those parameters whose values evenly span several orders of magnitude, 

logarithmic normalisation of the search range will allow an efficient random initialization 

of particle positions by obtaining a uniform spread across the different orders of 

magnitude. Given that PSO has a stochastic basis, the quality of the initial random 

distribution of particle positions over the search space is crucial to the performance of 

the algorithm. 
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Linear normalization of a given parameter range involves linear mapping between the 

original search range and a scaled domain. In particular, the jth component of the of 

the ith particle position xi j  is normalized by the following relationship: 

( ) NminNminNmax
jj

jj
j +−

−
−

=
lu

li
i xx

xx
x       (4) 

where jix  is the jth normalized component the ith particle position, xu j  and xl j  are the 

jth components of the upper and lower bounds of the search space while  Nmax and 

Nmin are the normalized upper and lower bounds (assumed to be the same for all 

components). 

Logarithmic normalization of a given parameter range involves linear mapping between 

the logarithmic representation of the original search range and a scaled domain. By 

using similar definitions as in Eqn 4, the jth component of the ith particle position xi j  is 

logarithmically normalized by using the following relationship: 

( ) NminNminNmax
jj

jj
j +−

′−′
′−′

=
lu

li
i xx

xx
x       (5) 

where this time the logarithms of the jth components are used in the normalization, i.e.  

jj ii xlogx =′  , jj ll xlogx =′  , jj uu xlogx =′     (6) 

In the following it is assumed that all dimensions of the search space are normalized  

(either using linear or logarithmic scaling as appropriate for each parameter) between 

the same lower and upper bounds Nmin=1 and Nmax=2 respectively. 

The sequential hmPSO algorithm 

The hybrid moving-bounds hmPSO algorithm consists of three main components: a 

global bPSO, a local bPSO and a direct local search performed by the NM method.  

The global bPSO operates over the whole search domain and employs a “global 

swarm” that is initialized only once at the start of the optimization process.  
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The local bPSO operates over a smaller search sub-domain centred on the current 

best particle position and employs a “local swarm”, whose particle positions are 

initialized every time the boundaries of the search sub-domain are updated. By using a 

contracted search range, the efficiency of the bPSO algorithm improves significantly 

[32].  

The use of global and local swarms allows simultaneous exploration of the search 

space and exploitation of the most promising search regions. The global swarm 

investigates the original search space to maintain the diversity of the population while 

the local swarm focuses on a smaller search space to increase efficiency. Particles fly 

within their respective search spaces as during normal bPSO except that particles in 

the local swarm fly over a smaller search sub-domain. Exchange of “social” knowledge 

between the two swarms is also ensured by sharing the same best particle position 

gbest.  

The Simplex routine is called every NL bPSO generations (note that each iteration 

includes updates of all particles in the global and local swarms) to undertake a fast 

exploration of the sub-region containing the best n+1 particle positions, where n is the 

dimension of the search space. If the best n+1 particle positions form a non-

degenerated simplex, they are used as initial vertices. Otherwise, a regular simplex is 

created starting from the centroid of a sub-set of best particle positions (in this work the 

centroid of the best Np/4 particle positions is used).  

The solution xL corresponding to the smallest value of the objective function found by 

the NM method is taken as the centre of the updated search sub-domain [xL-δI ,  xL+δI] 
explored by the local bPSO. The size of the search sub-domain is given by the scalar 

radius δ multiplied by the n-dimensional unit vector I.   

The convergence rate of the NM method is very sensitive to the quality of the starting 

points and is significantly improved by using the best n+1 particle positions provided by 

the bPSO as the initial vertices of the simplex. Similarly, premature convergence and 

low efficiency of bPSO are overcome by alternating sequences of bPSO generations 

with local exploration of the most promising areas of the search space.  
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A schematic representation of the algorithm is given in Figure 1 where k is the iteration 

number, particleIDs are the labels of particles allocated to the local bPSO search 

(these are chosen beforehand) and IL is the counter of local searches. 

In comparison with the original bPSO, the hmPSO requires the following sequence of 

additional computations: 

- sorting particles in accordance with their best position Pi; 

- performing a NM local search; 

- initializing the local swarm over the updated search sub-domain [xL-δI ,  xL+δI].  

These three additional computations are carried out every NL generations of the bPSO.  

The focus of the local bPSO is progressively restricted during the optimization process 

by decreasing the radius δ of the search sub-domain as the number of local searches 

IL increases. The radius δ starts from a relatively high value of 0.4 and then decreases 

linearly with the number of local searches until reaching a limit value of 0.2, 

corresponding to the maximum number of local searches set by the user. It is useful 

recalling here that the radius of the entire normalized search space is equal to 1.0.  

In hmPSO, the NM local search is halted after a maximum number of transformations 

even if the termination criterion is not met. This tends to happen especially for the first 

few local searches as the initial guesses of the simplex vertices are poor and probably 

misleading. Such earlier termination of the algorithm can save significant computational 

time and avoids getting “trapped” into minima. 

The parallel hmPSO algorithm 

EAs are renowned for being computationally expensive and the bPSO algorithm 

typically requires thousands of generations to converge. Each generation involves Np 

evaluations of the objective function and hence, for the simulation-based optimization 

process considered here, Np model simulations.  

Parallel implementation is an appealing means of increasing algorithmic efficiency by 

assigning different particles to different processors working simultaneously.  Parallel 

implementation of bPSO can either be “synchronous” or “asynchronous”. In the 



  

 11

“synchronous” implementation, generations are carried out sequentially and a new 

generation is started only after the previous generation is completed. This means that 

each particle must wait for all other particles to update their positions before moving to 

the next generation. In the “asynchronous” implementation the idea of sequential 

generations is abandoned as each particle position is continuously updated (regardless 

of the status of neighbouring particles) while an uninterrupted sequence of local 

searches is also simultaneously executed. 

In a simulation-based optimization process, each simulation may take a different 

amount of time depending on parameter values and model non-linearity. This will result 

in load unbalances among processors and, in a synchronous parallel implementation, 

the slowest processor will determine the speed of the algorithm.   

Unlike GAs, for which the synchronous parallel implementation is the only option (due 

to synchronized communication between individuals during crossover and mutation), 

bPSO lends itself to asynchronous parallel implementation. In bPSO, particles only 

share the “social” knowledge of the best position gbest and this single piece of 

information is easily distributed by using a client-server model, where each particle 

queries a central store of shared data. For distributed computing, clients and servers 

are independently placed on network nodes, which may also use different hardware 

and operating systems.  

The parallel server-client implementation of the hybrid moving-bounds hmPSO 

algorithm is schematically explained by Figure 2. The server-client model consists of 

one server and a number of clients divided in two distinct groups, i.e. the particle client 

group and the local search client group. Nodes in the particle client group request 

information directly from the server and they do not communicate among themselves. 

On the other hand, nodes in the local search client group interact according to a 

master-slave model. The master is responsible for managing and coordinating all 

slaves in the group while the server only communicates with the master of the local 

search client group. In this implementation, a single processor has been dedicated to 

NM local searches so the total number of processors Np+2, i.e. one server processor, 

Np processors for Np particles and one processor for the local searches. 

The server is responsible for storing and managing shared data, listening to queries by 

all clients and returning the relevant responses. The clients are responsible for 
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evaluating the objective function at each particle position (particle client group) or 

performing a local search (local search client group).  

The flowchart of the whole algorithm is illustrated in Figure 3 where dotted lines 

indicate the flow of data. The parallel programming library MPI [35] is used for the data 

communications among processors. The algorithm is started by initializing particle 

clients whose position is then communicated to the server. Subsequently, the algorithm 

advances as the server continues receiving and parsing different types messages from 

both particle and local search clients.  

When the server receives the best position pbest of a given client particle, a check is 

performed whether the swarm best position gbest has changed and an updated gbest is 

sent back to particle clients for calculating the next position. When the server receives 

a local search solution xL, a check is again performed whether the swarm best position 

gbest has changed. Subsequently, as particles best positions pbest are continuously 

updated by bPSO, the server asks the client to perform the next local search based on 

fresh improved initial guesses.  

Local searches are used to guide the local swarm towards global optimum and, when a 

new local search solution xL becomes available, the focus of the bPSO search sub-

domain is shifted to the region around such solution. At the same time, a request is 

sent by the server to the client particles of the local swarm to reinitialize their positions 

and velocities over the new search sub-domain. If the server receives a request to stop 

from a client (either a particle or a local search client) due to the attainment of a 

minimum of the objective function within the set tolerance, it sends an order to 

terminate the algorithm to all clients.  

Note that, in order to ensure that reasonable initial guesses are used for the very first 

local search, a preset number of bPSO evaluations must be carried out by particle 

clients before local search clients become active.  

ASSESSMENT OF ALGORITHM PERFORMANCE 

In this section, the serial and parallel implementations of the hmPSO algorithm are 

assessed for a number of benchmark tests. The benchmarks include five numerical 

tests based on artificial objective functions, with well defined mathematical forms, as 

well as one simulation-based geotechnical optimization test consisting in the calibration 
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of an unsaturated soil infiltration model. The five numerical tests are used to assess 

robustness and efficiency of the (serial) hmPSO algorithm with respect to the standard 

bPSO algorithm while the simulation-based optimization compares the performances of 

the parallel and serial implementations hmPSO.  

The termination criterion should be set to end computations when the global minimum 

of the objective function is found within a given tolerance. In real optimization problems, 

however, this is not easy task since the global minimum of the objective function is not 

known in advance. For example, in the engineering application to the identification of 

model parameters, the objective function is given by the difference between model 

simulations and measurements from laboratory or field tests; the smaller such 

difference, the more accurate the evaluation of model parameters.  

In the benchmark tests presented in this work the global minimum of the objective 

function is known a priori (and is equal to zero as shown later) so the definition of a 

suitable termination tolerance is easier than for the general optimization problem. Other 

termination criteria used in PSO include ending computations when the smallest value 

of the objective function remains unchanged over a certain number of generations and 

when the number of function evaluations exceeds a maximum value set by the user. 

This maximum value usually depends on type and dimension of the particular 

optimization problem and should be set to avoid termination when convergence might 

still be achieved. 

Numerical tests 

Numerical tests are used to assess the robustness and efficiency of hmPSO in finding 

the global minimum of five mathematical functions. The characteristics of such 

functions, which have been previously employed in the literature to test optimisation 

algorithms [34], are summarized in Table 1. Inspection of Table 1 indicates that four of 

the five test functions are multimodal, for which the search of the global minimum can 

prove particularly challenging because the large number of local minima increases the 

likelihood of premature convergence. To ensure that the algorithm is tested under the 

most general conditions, four out of five functions are shifted so that their respective 

global optima do not lie at the centre of the search space. In addition, for each function, 

the search is performed in both five-dimensional and ten-dimensional spaces, where 

the range of variation for each dimension is kept the same (see Table 1). 
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These numerical tests follow the procedures set by the 2005 IEEE Congress on 

Evolutionary Computation [34], which defined methods for evaluating algorithmic 

efficiency and robustness. To measure the performance of the algorithms accurately, 

the search for the global minimum of each function is repeated 25 times by using 

exactly the same set of parameters as given in Table 2. Indices measuring algorithm 

performance are therefore defined based on such 25 runs in a statistical sense so as to 

take randomness into account.  

For each run, the objective function ( )xf  is defined as: 

( ) ( ) ( )[ ]*xxx ggabsf −=         (7) 

where g(x) is the chosen test function, g(x*) is the global minimum of such test 

function and abs indicates the absolute value. A run is considered successful if the 

value of the objective function drops below a termination tolerance of 1.0e-5 within a 

maximum number of function evaluations equal to 10000 times the test dimension. 

Robustness is measured by the “success rate” over 25 runs, which is compared in 

Table 3 for both algorithms and all numerical tests. It can be seen that hmPSO 

significantly outperforms bPSO by a notably higher success rate in all tests with the 

only exception of the Rasgrigin function. In several tests, bPSO also failed to find the 

global minimum while hmPSO succeeded to find it. The better performance of hmPSO 

with respect to bPSO is also confirmed by Figure 4, which provides histograms of the 

mean values (in a logarithmic scale) of the objective function calculated by the two 

algorithms over 25 runs for each numerical test. In Figure 4 the largest positive and 

negative deviations from such mean values are also given as error bars. 

Similarly, Figure 5 shows histograms of the mean number of function evaluations (in a 

logarithmic scale) performed by both algorithms over a total of 25 runs for each 

numerical test. Again, the largest positive and negative deviations from such means 

are given in Figure 5 as error bars. It is worth noting that, for Shifted Rosenbrock (n=5), 

Shifted Rosenbrock (n=10) and Shifted Griewank (n=10), the number of bPSO function 

evaluations is constant for all 25 runs. This is because, for these three numerical tests, 

the bPSO algorithm failed to converge in all runs and the number of function 

evaluations was always equal to the maximum limit (i.e. 10000 times the test 

dimension). Inspection of Figure 5 indicates that hmPSO shows significantly greater 
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efficiency than bPSO by using a smaller number of function evaluations in all numerical 

tests.  

Figure 6 illustrates the convergence rate of both algorithms for the Shifted Rosenbrock 

(n=10) numerical test and provides graphical evidence of the dramatically better 

performance of hmPSO in comparison with bPSO. The sequence of NM local searches 

improves the solution in a step-wise fashion as evident from the jumps in the hmPSO 

curve of Figure 6, which correspond to the availability of new solutions from local 

searches. It is also worth pointing out that, if the NM method is used on its own without 

combination with bPSO, all numerical tests fail to converge.  

Simulation-based optimization test 

The above numerical tests demonstrate that the serial version of the hmPSO algorithm 

is both robust and efficient. This section investigates the application of the hmPSO 

algorithm to the identification of parameter values for the specific geotechnical model of 

one-dimensional water infiltration in an unsaturated soil column with a rigid soil 

skeleton. One of the challenges of such application is the lack of a priori knowledge 

about the nature of the search space and, in particular, whether the objective function 

presents a large or small number of local minima.  

This application is also used to compare the performances of the serial and parallel 

implementations of hmPSO where, in the latter, each processor is allocated to a 

different particle as previously described. The hardware for the parallel implementation 

of hmPSO is a Linux cluster “Hamilton” at Durham University. The cluster consists of 

96 dual-processor dual-core Opteron 2.2 GHz nodes with 8 GBytes of memory and a 

Myrinet fast interconnect for running MPI code as well as 135 dual-processor Opteron 

2 GHz nodes with 4 GBytes of memory and a Gigabit interconnect. The operating 

system is SuSE Linux 10.0 (64-bit) and disk storage capacity is 3.5 Terabytes. 

Water flow is modelled according to the “θ -based” form of Richards’ equation [36]: 

z
K

z
D

zt ∂
∂+⎥⎦

⎤
⎢⎣
⎡

∂
∂

∂
∂=

∂
∂ )()( θθθθ         (8) 

where K(θ) is the unsaturated hydraulic conductivity (m/s), θ is the volumetric water 

content, D(θ) is the unsaturated hydraulic diffusivity (m2/s), t is time (s) and z is the 



   

 16

vertical distance (m) measured positive upwards. The initial and boundary conditions 

are expressed as: 

( ) ohzh =0,       Lz <<0      (9) 

( ) bhth =,0        0>t      (10) 

( ) thtLh =,   or  ( ) tqtLq =,     0>t      (11) 

where L is the height of the soil column (m), h and q are the pressure head and flux (m 

and m/s) respectively, ho is the initial pressure head distribution across the column, hb 

and ht are the constant pressure heads at the bottom and top of the soil column 

respectively and qt is the constant flux imposed at the top of the soil column. 

The Mualem-van Genuchten model [36, 37] is employed to describe the soil water 

retention properties in which the relationship between the effective degree of saturation 

Se and pressure head h is given by: 

[ ] m
e hS

−
+= βα1      (12) 

where α (>0, m-1) is a parameter related to the inverse of the air-entry pressure, β (>1) 

is a dimensionless parameter related to the pore size and m is a dimensionless 

parameter depending on β through the relationship m=1–1/β. 

The effective saturation Se is given by: 

( ) ( )rsreS θθθθ −−= .     (13) 

where θs is the saturated volumetric water content and θr is the residual volumetric 

water content;  

The unsaturated hydraulic conductivity K is given as the product of the saturated 

hydraulic conductivity Ks  by the dimensionless relative permeability kr . The relative 

permeability, which is smaller than unity, accounts for partial saturation through the 

following dependency on the effective degree of saturation: 
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( ) 2
121 11 ⎥⎦

⎤
⎢⎣
⎡ −−==

mm
eesrs SSKkKK      (14) 

The unsaturated diffusivity D(θ) can be derived as: 

( )
( ) [ ]21 1121 −+

−
−== −− AAS

m
mK

d
dhKD m

e
rs

s

θθαθ
     (15) 

where A=(1-Se
1/m)m . 

The determination of the five parameters β, α, θs, θr and Ks through simulation-based 

optimization of an infiltration model has been shown to be a challenging problem [38]. 

This problem is here used as a benchmark test for the hmPSO algorithm where 

experimental measurements are replaced by the results computed from a finite 

difference model with known parameter values (the “forward” analysis). In the forward 

analysis, the height of the unsaturated soil column is assumed as L = 1.0 m and the 

parameter values are  chosen as α = 3.35m-1, β = 2, Ks = 9.22E-5 m/s, θs = 0.368 and 

θr = 0.102. These are realistic parameter values corresponding to a field site in New 

Mexico (see Celia et al. [39]). The chosen initial and boundary conditions are: 

( ) m100, −=zh            Lz <<0      (16) 

( ) m10,0 −=th              0>t      (17) 

( ) m75.0,m0.1 −=th     0>t      (18) 

In the finite difference simulation, the duration of the infiltration process is 6 hours and 

this has been divided in equal time steps of 36 seconds while the soil column was 

discretised using 100 elements along the vertical direction. The computed profiles of 

pressure head and water content at different times are illustrated in Figures 7 and 8.   

The test consists in searching through a five-dimensional space for the vector x=[α, β, 

Ks, θs, θr]T whose components are the model parameter values providing an optimum 

match to the data in Figures 7 and 8 (as if these data were experimental 

measurements). Given that these data can be perfectly matched by the model, the aim 

is to assess the ability and efficiency of the hmPSO algorithm in returning the same set 
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parameter values of the forward analysis. Table 4 shows the search ranges used in this 

optimization test for each of the five model parameters.  

Table 5 provides the algorithmic settings for the hmPSO, where the maximum number 

of evaluations of the objective function was set at a relatively high value of 500000 

considering the difficulties of this particular benchmark and to allow a reasonable 

comparison of the serial and parallel implementations of hmPSO.  

The following objective function (similar to that used in [40]) is minimized in this 

optimization test:  

( ) ( ) ( )[ ] ( ) ( )[ ]∑ ∑
= =

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
Δ−Δ+−=

p

j
jjQ

l

i
jijih tQtQwththwf

1

2*

1

2*x     (19) 

where ∆Q*(tj) and ∆Q(tj) are the cumulative water content changes for the whole soil 

column at time tj (as computed from the forward analysis and the hmPSO algorithm 

respectively), hi
*( tj) and hi(tj) are the pressure heads at a depth of zi and time tj (as 

computed from the forward analysis and the hmPSO algorithm respectively), l is the 

number of depths at which the values of pressure head are computed, p is the number 

of times when the values of pressure head and water content are computed and wh 

and wQ are weighting factors accounting for the difference in units of the two additive 

terms of pressure head and water content respectively.  

In the following example, the pressure heads and cumulative water content changes 

are computed at the six different times of 1, 2, 3, 4, 5 and 6 hours (i.e. p=6 in Eqn 19). 

At each of these times, pressure heads are computed at the six different depths of 0.05 

0.1, 0.15, 0.2, 0.25, 0.3, 0.4, 0.5, 0.6, 0.8, and 1.0 metres (i.e. l=11 in Eqn 19). The two 

weighting factors wh and wQ  are set to 1.0 and 10.0 respectively. 

Table 6 shows the results from the last five NM local searches performed during a 

typical parallel run of the hmPSO algorithm (using 20 particles and 22 processors). The 

final solution corresponds to a value of objective function below the termination 

tolerance of 1.0E-5 with an estimated set of parameter values x = [3.35, 2.00, 9.22E-5, 

0.368, 0.102]T. The perfect match with the parameter values used for the forward 

analysis confirms the ability of the hmPSO algorithm to find the global minimum of the 

objective function with remarkable accuracy. The benefits of the combination of the 
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bPSO with the NM method are also evident from inspection of Table 6. The quality of 

the initial guesses by the bPSO at the simplex vertices progressively improves with the 

number of local searches while the increased accuracy of the NM solution focuses the 

search sub-domain of the local bPSO.  

Table 7 shows the number of objective function evaluations performed by each of the 

48 processors allocated to individual particles of the swarm. Inspection of Table 7 

indicates that large differences exist in the number of objective function evaluations by 

different particles leading to significant imbalance between processors. This also 

confirms the importance of asynchronous, as opposed to synchronous, parallel 

implementation in order to limit the impact of variable computational speed among 

processors. 

Table 8 shows that, as for the numerical tests, the hmPSO achieves high success rates 

over 25 runs (in both serial and parallel implementations) while bPSO fails to converge 

in any of the 25 runs. The robustness of hmPSO is also confirmed by the fact that the 

high success rate remains practically constant when different numbers of 

processors/particles are used.  

It has also been noted that success rate starts to deteriorate when the number of 

processors exceeds 37 as the maximum allowed number of objective function 

evaluations is attained but the minimum of the objective function is still greater than the 

termination tolerance (note that the maximum number of function evaluations is fixed in 

Table 5 regardless of the number of processors). This happens because, as a larger 

number of processors is used, the overall number of function evaluations per unit time 

rises accordingly so, even if the run tends to last shorter, the number of function 

evaluations performed during the run increases. On the other hand, the number of local 

searches per unit time remains largely unchanged (see Figure 9) and hence a shorter 

computational time means a lower number of local searches. It can therefore happen 

that, when using more than 37 processors, a relatively low number of local searches is 

performed before the maximum number of function evaluations is attained. Given the 

key role played by local searches in the definition of the bPSO sub-domain, a reduced 

number of local searches might impact on the efficiency of the particle swarm and 

might lead to failure of the algorithm. 

The convergence characteristics of the hmPSO for different runs using single and 

multiple processors are illustrated in Figure 10. As previously mentioned, the overall 
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number of function evaluations becomes significantly larger when moving from a serial 

single-processor implementation to a parallel implementation with 47 processors. On 

the other hand, Table 8 shows that computational time becomes significantly smaller 

when moving from a serial single-processor implementation (around 1.5 hours) to a 

parallel implementation with 47 processors (12 minutes). The variation of 

computational time and parallel speedup with number of processors is also illustrated 

in Figure 11. 

CONCLUSIONS 

The paper presents a novel “hybrid moving boundary particle swarm optimization” 

algorithm (hmPSO) that enables calibration of geotechnical models from laboratory or 

field measurements. A simulation-based optimization process is devised to match 

experimental data to model predictions by minimizing an objective function that 

measures the difference between them.  

The hmPSO algorithm is the result of hybridization of a “basic particle swarm 

optimization” (bPSO) algorithm with a NM local search algorithm. The bPSO includes 

two distinct particle swarms flying over the “global” domain (i.e. exploring the entire 

search space) and the “local” sub-domain (i.e. exploiting the most promising search 

region) respectively.  

Serial and parallel implementations of hmPSO are described and validated on a 

number of benchmark tests. These include purely numerical tests, where the minimum 

of multimodal mathematical functions is sought, as well as a challenging geotechnical 

parameter determination based on the analysis of water infiltration in an unsaturated 

soil column. Such application clearly demonstrates the potential of hmPSO for back-

analysis of geotechnical case studies as well as for routine interpretation of laboratory 

and field tests.  

A number of important features of hmPSO have emerged during validation of the 

algorithm. The combination of bPSO with the NM local search greatly improves 

efficiency and avoids premature convergence to a local minimum. NM local searches 

are also key in moving and progressively narrowing the search sub-domain exploited 

by the local bPSO swarm. An efficient combination of bPSO and NM local searches is 

implemented in this work by using a client-server model  
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Simulation-based hmPSO applications to geotechnical problems can be 

computationally very demanding and parallel implementation has been shown very 

effective in reducing computation time. A markedly non-linear parallel speedup has 

been observed during the application of hmPSO to the unsaturated flow problem 

considered in this work. This can be explained by considering that, as more processors 

are used, the number of particle function evaluations increases but this is not matched 

by a similar increase in the number of local searches, which would be required to 

maintain algorithm scalability. 

Load unbalance between different processors is detrimental to the performance of 

parallel hmPSO but negative impact can be reduced by adopting asynchronous 

implementation, where each particle in the swarm is continuously updated regardless 

of the status of neighbouring particles.  
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TABLES 
 

Table 1: Mathematical functions for numerical tests 

Function  f(x) Features Dimension Range Global 
minimum

Rasgrigin Multimodal n=5, n=10 [-5.12, 5.12]n g (x*) =0 

Griewank Multimodal, shifted n=5, n=10 [-600, 600] n g (x*) =0 

Ackley Multimodal, shifted n=5, n=10 [-32, 32] n g (x*) =-140 

Sphere Unimodal, shifted n=5, n=10 [-100, 100] n g (x*) =-450 

Rosenbrock Multimodal, shifted  n=5, n=10 [-100, 100] n g (x*) =390 

 

 

Table 2:  Settings for hmPSO in numerical tests 

Parameter Value 

Swarm size 20 particles for n=5 
40 particles for n=10 

Range of inertia weight, [wmin , wmax] [0.4, 0.75] 

Cognitive weight,  c1 2.0 

Social weight, c2 2.0 

Maximum velocity, vmax 0.3 (xu - xl)  

Termination tolerance  1.0 e-5 

Maximum number of function evaluations 10000 n 

Range of sub-domain radius,  [δmin , δmax] [0.2, 0.4] 

Maximum iteration number of Nelder-
Mead method 300 
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Table 3: Success rates during numerical tests 

Function Algorithm Success 
rate 

Shifted Sphere 
n=5 

hmPSO 100% 
bPSO 28% 

Shifted Sphere 
n=10 

hmPSO 100% 
bPSO 8% 

Shifted Rosenbrock 
n=5 

hmPSO 100% 
bPSO 0% 

Shifted Rosenbrock 
n=10 

hmPSO 72% 
bPSO 0% 

Rasgrigin 
n=5 

hmPSO 96% 
bPSO 96% 

Rasgrigin 
n=10 

hmPSO 12% 
bPSO 16% 

Shifted Griewank 
n=5 

hmPSO 8% 
bPSO 4% 

Shifted Griewank 
n=10 

hmPSO 96% 
bPSO 0% 

Shifted Ackley 
n=5 

hmPSO 100% 
bPSO 64% 

Shifted Ackley 
n=10 

hmPSO 100% 
bPSO 12% 
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 Table 4.  Parameter ranges for the Mualem-van Genuchten model [33] 

Parameter Minimum value Maximum value 

β 1.001 3.5 

α 0.1 m-1 9.6 m-1 

θs 0.21 0.7 

θr 0.001 0.2 

Ks 5.0E-8 m/s 5.0E-4 m/s 
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Table 5:  Settings for hmPSO in simulation-based optimization test 

Parameter Value 

Swarm size 30 particles per processor 

Range of inertia weight, [wmin , wmax] [0.4, 0.75] 

Cognitive weight,  c1 2.0 

Social weight, c2 2.0 

Maximum velocity, vmax 0.3 (xu - xl)  

Termination tolerance  1.0 e-5 

Maximum number of evaluations of the 
objective function 500000 

Range of sub-domain radius,  [δmin , δmax] [0.2, 0.4] 

Maximum number of NM transformations 300 
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Table 6: Sequence of NM local searches in parallel hmPSO for a run using 20 particles 

Local 
search 
counter 

 
Objective 
function 
value 

Parameters 

  β            α         θr           θs             Ks 

1 

initial 
guesses at 
vertices of  
simplex 

1.59E+00 2.945 1.927 0.081 0.529  9.39E-05 
1.86E+00 4.096 1.994 0.210 0.347  9.54E-05 
2.51E+00 2.483 2.389 0.171 0.612  8.99E-05 
3.19E+00 4.511 2.457 0.210 0.355  3.61E-04 
3.94E+00 3.537 1.807 0.136 0.578  1.22E-04 
4.02E+00 1.684 2.634 0.051 0.554  3.34E-05 

solution 6.08E-02 2.924 2.016 0.083 0.526  1.00E-04 

2 

initial 
guesses at 
vertices of  
simplex 

6.08E-02 2.924 2.016 0.083 0.526  1.00E-04 
2.61E-01 3.561 1.961 0.087 0.395  1.23E-04 
4.79E-01 3.274 1.956 0.064 0.604  1.62E-04 
5.06E-01 4.689 1.910 0.095 0.476  3.41E-04 
5.23E-01 3.414 1.943 0.104 0.408  1.03E-04 
5.27E-01 3.948 1.911 0.050 0.851  4.07E-04 

solution 3.60E-02 3.014 2.012 0.092 0.450  8.91E-05 

3 

initial 
guesses at 
vertices of  
simplex 

3.60E-02 3.014 2.012 0.092 0.450  8.91E-05 
1.44E-01 3.414 1.976 0.101 0.382  9.95E-05 
2.22E-01 3.617 1.961 0.072 0.646  2.40E-04 
2.61E-01 3.561 1.961 0.087 0.395  1.23E-04 
4.79E-01 3.274 1.956 0.064 0.604  1.62E-04 
5.06E-01 4.689 1.910 0.095 0.476  3.41E-04 

solution 1.54E-02 3.178 2.005 0.098 0.401  8.90E-05 

4 

initial 
guesses at 
vertices of  
simplex 

1.54E-02 3.178 2.005 0.098 0.401  8.90E-05 
1.42E-01 3.160 2.001 0.090 0.498  1.16E-04 
1.44E-01 3.414 1.976 0.101 0.382  9.95E-05 
1.63E-01 3.166 2.001 0.071 0.497  1.23E-04 
1.67E-01 3.450 2.007 0.106 0.381  1.06E-04 
2.22E-01 3.617 1.961 0.072 0.646  2.40E-04 

solution 7.32E-04 3.345 2.000 0.102 0.370  9.26E-05 

5 

initial 
guesses at 
vertices of  
simplex 

7.42E-04 3.345 2.000 0.102 0.370  9.26E-05 
6.90E-02 3.602 1.993 0.079 0.657  2.53E-04 
8.91E-02 3.629 1.988 0.109 0.343  1.04E-04 
9.65E-02 3.883 1.988 0.079 0.590  2.85E-04 
1.42E-01 3.160 2.001 0.090 0.498  1.16E-04 
1.44E-01 3.414 1.976 0.101 0.382  9.95E-05 

solution 2.73E-06 3.350 2.000 0.102 0.368  9.22E-05 
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Table 7:  Number of evaluations of the objective function for different particles allocated 

to different processors (for a specific run with 48 particles and 50 processors) 

Particle no.  Function 
evaluations Particle no. Function 

evaluations Particle no.  Function 
evaluations 

1 7211  17 8383  33 8016  

2 9268  18 8049  34 6850  

3 8274  19 7164  35 7028  

4 6989  20 6994  36 6706  

5 6417  21 6555  37 7177  

6 7196  22 6845  38 6733  

7 6754  23 6976  39 6495  

8 5757  24 7140  40 7339  

9 8926  25 7505  41 6546  

10 9052  26 8139  42 7290  

11 8095  27 6988  43 6017  

12 7235  28 7117  44 7248  

13 7287  29 7172  45 6229  

14 6330  30 7300  46 6813  

15 6286  31 7284  47 7327  

16 6982  32 6065  48 7825  
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Table 8: Efficiency and success rate over 25 runs for bPSO, hmPSO (serial) and 

hmPSO (parallel)  

 No. of 
particles 

No. of 
processors 

Computational time (s) Parallel 
speedup 

Success 
rate  (%) Lowest Largest Mean 

bPSO 30 1 47921 77638 69087  0 

hmPSO (serial) 30 1 1352 46666 5595  100 

hmPSO (parallel) 

15 17 530 2278 1147 4.87 96 

20 22 349 4624 1176 4.75 100 

30 32 454 1510 903 6.19 100 

35 37 412 1292 823 6.79 100 

45 47 349 1093 719 7.77 96 
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FIGURES 

 

Fig. 1: Serial hmPSO algorithm 

  

foreach particle i = 1, . . . , Np do 
xi   ← generate random xi ∈[xl , xu]; 

vi   ← generate random vi ∈[-vmax , +vmax]; 
f(xi)    ← evaluate objective function ; 
if (f(xi) < f(Pi))  Pi← xi 
if (f(xi) < f(Pg)) Pg← xi 

end foreach 
 
k←0 
IL←0 
repeat 

 foreach particle i = 1, . . . , Np do 
  update velocity vi using Eq. 2 
  apply bounds constraints on vi 
  update position xi 

apply bounds constraints on xi 
 f(xi)    ← evaluate objective function; 

if (f(xi) < f(Pi))  Pi← xi 
if (f(xi) < f(Pg)) Pg← xi 

    end foreach particle 
    

if (mod (k, NL) =0) 
 sortParticles( )  

  xL = doLocalSearch(best n+1 particles) ; 
  restartSubSwarm (particleIDs), [xL-δI ,  xL+δI] ; 

IL← IL + 1  
    endif 
 k← k+1 
while (stop criteria is not met)  



   

 32

 
 
Fig. 2: Client-server model for parallel hmPSO 
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Fig. 3. Flowchart of the parallel hmPSO 
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Fig. 4. Objective function values during numerical tests 
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Fig. 5. Number of objective function evaluations during numerical tests 
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Fig. 6: Convergence characteristics of bPSO and hmPSO for Shifted Rosenbrock 
(n=10) function 
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Figure 7. Water pressure head profile. 
 
 
 

 
 
Figure 8. Water content profile 
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Figure 9. Number of local searches versus computational time for parallel hmPSO. 

Each point represents the average over successful runs out of a total of 25 runs when 

using 17, 22, 32, 37 and 47 processors. 
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Fig. 10: Convergence characteristics for serial and parallel hmPSO  
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Figure 11. Computational time and parallel speedup versus number of processors for 

hmPSO. Each point represents the average over successful runs out of a total of 25 

runs when using 1, 17, 22, 32, 37 and 47 processors. 
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