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Emergence of coherent flow structures over a gravel surface:

A numerical experiment

Richard J. Hardy,1 Stuart N. Lane,' Robert I. Ferguson,1 and Daniel R. Parsons’
Received 1 February 2006; revised 21 October 2006; accepted 2 November 2006; published 16 March 2007.

[11 Gravel bed rivers have complex, porous, and irregular surfaces, characterized by a
range of morphological forms. These topographical structures determine the flow
structures that develop over the river bed, primarily by the shedding of vortices in the
downstream wake of protruding clasts. Previous research into these flow structures has
come from experimental studies, which have used either flow visualization or single-point
measurements techniques. Here we present a numerical experiment where large-eddy
simulation (LES) is used to study the generation, evolution, and destruction of these flow
structures over a naturally water worked gravel surface. The numerical simulations
reported in this paper show that there are two distinct scales of boundary influence upon
the shallow flow and emphasize that the measured flow variability at any one point in a
natural river will contain both locally derived and upstream-inherited flow structures,
according to the range of scales of bed topography present.
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1. Introduction

[2] Flow in gravel bed rivers is usually very shallow in
relation to the height of the roughness elements forming the
bed. The relative submergence (ratio of mean flow depth, d,
to typical roughness height, k) seldom exceeds 10—20 in
flood conditions, and can be less than 5 in normal flows. In
such shallow flows the detailed microtopography of the bed
exerts a significant effect on the flow [Wiberg and Smith,
1991; Dinehart, 1992]. An average velocity profile may be
approximately logarithmic at d/ks ~ 10, but will have
substantial local variation near the bed. These near-bed
features relate in the first place to the wakes of individual
obstacle clasts, and jets between such clasts, and as such
would not be expected to extend much above the tops of the
obstacles. Yet, field measurements and laboratory visuali-
zation suggest that shallow flows over gravel beds contain
coherent macroturbulent structures, often described as con-
sisting of full depth “wedges” of alternately slower- and
faster-than-average flow [Falco, 1977; Roy et al., 2004].
The origin of these macroturbulent phenomena, and their
relationship to the ensemble of individual roughness ele-
ments forming the bed, is not well understood.

[3] In this paper we approach this problem in a novel way
using large-eddy simulation (LES). Most computational
fluid dynamics (CFD) applications to natural gravel bed
rivers have represented the channel geometry using bound-
ary fitted coordinates and simulated the time average flow
using a turbulence closure scheme to represent the effect of
turbulent stresses introduced through Reynolds averaging.
Several of the authors of such applications of CFD have
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commented on the ambiguity of whether the bed micro-
topography should be represented physically as part of the
channel geometry or parametrically through an exaggerated
value of the roughness height in a log law representation of
flow in the cells adjacent to the bed [Hodskinson and
Ferguson, 1998; Sinha et al., 1998; Gessler et al., 1999;
Nicholas and Smith, 1999; Bradbrook et al., 2000; Booker
et al., 2001; Ferguson et al., 2003]. Here we take advantage
of a recently developed alternative approach to CFD sim-
ulation of rivers with irregular beds where detailed bed
geometry is represented explicitly through a porosity algo-
rithm approach [Lane et al., 2002; Lane et al., 2004; Hardy
et al., 2005]. Because the grid is geometrically rectangular,
it is possible to represent the larger scales of turbulence
explicitly using LES (see Keylock et al. [2005] for a
summary of fluvial applications). Here we apply the tech-
nique to a shallow flow over a digital elevation model
(DEM) based on a natural gravel bed river. The results show
that the method works for this natural situation; more
importantly, they contain macroturbulent features that
resemble those inferred from field measurements and labo-
ratory visualization. The LES results give high spatial
resolution in three dimensions through time, in a way that
is currently difficult to match by laboratory measurements
and impossible to match in the field using currently avail-
able technology. The methodology is therefore seen as
having considerable potential for elucidating flow structures
in shallow streams.

[4] Previous studies of the generation of flow structures
in depth-limited boundary flows have principally concen-
trated on well sorted beds composed of homogenous par-
ticles [Grass, 1971; Grass et al., 1991; Krogstad et al.,
1992]. In these studies, a skimming flow develops, where
the momentum exchange mechanism shows strong similar-
ities with bursting processes over smooth surfaces [Smith,
1996; Grass and Mansour-Tehrani, 1996]. There have been
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far fewer studies of turbulence in flows over rough natural
gravel surfaces. In this environment, the flow structures
which occur in the downstream wake of protruding clasts
and/or bed forms, result in the shedding of vortices from the
lee of protruding objects [Robert et al., 1993; Kirkbride,
1993; Buffin-Bélanger and Roy, 1998]. These vortices scale,
in the near bed region, with respect to grain size [Clifford et
al., 1992; Clifford and French, 1993]. As with flow over
smooth beds, larger structures may be created by the
coalescence and amalgamation of numerous smaller-scale
structures [Head and Bandyopadhyay, 1981, Smith et al.,
1991]. They take the form of high- and low-speed wedges
and develop in the outer layer of the flow [Falco, 1977;
Kirkbride and Ferguson, 1995; Ferguson et al., 1996; Roy
et al., 2004].

[s] These depth scale (or macroturbulent) eddies are
closely linked to the bursting phenomenon in boundary
layers [Grishanin, 1990; Yalin, 1992]. The fluid ejections/
sweeps have a quasi-cyclic pattern and are not just restricted
to the near bed region, but influence the entire flow field
irrespective of bed roughness [Grass, 1971; Talmon et al.,
1986; Shen and Lemmin, 1999]. The ejected low-momentum
fluid moves through the entire flow depth up to the water
surface, while high-momentum fluid moves from the
water surface toward the bed [Grass et al, 1991]. This
gives rise to rolling structures [e.g., Klaven, 1966; Klaven
and Kopaliani, 1973; Imamoto and Ishigaki, 1986a, 1986b].
There is a general consensus as to the pattern of the bursting
phenomenon in the near bed region [Nezu and Nakagawa,
1993]. However, opinion differs about the ordered depth
scale motions in open channel flows [Shvidchenko and
Pender, 2001]. Observations have reported streamwise
spacing length scales of between 2 and 7 times the water
depth (d) for these bursting events [Sumer and Deigaard,
1981; Nezu and Nakagawa, 1993; Best, 1993; Nikora and
Goring, 1999; Sechet and Le Guennec, 1999; Shvidchenko
and Pender, 2001]. Furthermore, Yalin [1992] argues that
the depth scale eddies are neither permanent nor do they
originate in their full size (d), but are generated near the
bed as a result of a burst and then grow until the size
becomes nearly equal to d. They are then destroyed,
promoting a generation of new eddies and causing a cycle
of positive feedback. The complete cycle occurs over a
distance of 6 d [Shvidchenko and Pender, 2001], although
the definition of d over these complex surfaces is difficult. It
also remains unclear as to why high- and low-speed regions
exist alternately in the streamwise and spanwise direction in
turbulent flow [Nychas et al., 1973; Falco, 1977; Kirkbride
and Ferguson, 1995; Ferguson et al., 1996; Buffin-Belanger
et al., 2000; Roy and Buffin-Belanger, 2000]. Some authors
have explained this in terms of the bursting phenomenon
[Yalin, 1992; Nezu and Nakagawa, 1993]. Others have
explained the sequence of high- and low-speed regions by
the downstream motion of large-scale turbulent eddies
[Shvidchenko and Pender, 2001].

[6] Given the above, it is clear that a full understanding of
the cause and regularity of macroturbulent fluctuation in
shallow flows over gravel beds does not exist. Process
information derived from data collected from laboratory
experiments and field studies provides contradictory evi-
dence. Some studies have been interpreted as showing low-
frequency velocity fluctuations corresponding to a spatial
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scale of the order of the flow depth [Komori et al., 1982;
Grinvald and Nikora, 1988; Clifford et al., 1992; Lapointe,
1992; Nezu and Nakagawa, 1993; Robert et al., 1993; Roy
et al., 1996; Cellino and Graf, 1999; Shen and Lemmin,
1999]. Other authors do not detect any regular period in
turbulent fluctuations [Grinvald, 1974; Nikora and Smart,
1997], which suggests coherent structures are randomly
distributed in time and space [Nychas et al., 1973; Smith,
1996; Nikora and Goring, 1999]. Studies of turbulent
structures in gravel bed rivers in the field are limited
because of the challenges of instrumentation [Roy et al.,
1996]. This has considerable significance if a high-
resolution (individual particle) understanding of sediment
transport is to be developed in such an environment as a
complete understanding of the driving forces is required.

2. Methodology

2.1. Numerical Simulation of Flow Over Complex
Microtopography

[7] The incorporation of complex microtopographies
(individual particles) within a CFD scheme has been prob-
lematic to date as the representation of large-scale topo-
graphic features has required the application of boundary
fitted coordinates (BFCs), which involve mesh deformation
in the Cartesian space (though not in the computational
space). Mesh deformation may increase the numerical
diffusion in a CFD model application and lead to uncer-
tainties as to whether observed changes in process repre-
sentation are due to topographic effects or grid adjustment
effects. Moreover, the mesh distortion increases as the
resolution of spatial discretization increases as the topo-
graphic information becomes more complex. Second, the
subgrid-scale topography (e.g., grain surface morphology,
grain interactions) within the CFD scheme has traditionally
been represented using a roughness parameter which repre-
sents the frictional retardation of the flow in the cell
touching the bed. Most commonly, the representation of
topographic variability involves specification of a friction
height (z,) in some sort of wall function and the multipli-
cation upward of the equivalent sand grain roughness. In a
3-D modeling framework, this assumes that the topographic
variability that is not included in the model geometry is
represented as a subgrid-scale effect through this upscaling.
There is debate over which grain parameter to upscale and
by how much. For instance, field investigations suggest that
z,, should, including upscaling, take a value of about 0.1 Dgy
[Whiting and Dietrich, 1990; Wiberg and Smith, 1991] or
when specified as k, (where k; = 30 z,) 3.5 Dg4 or 6.8 Ds
[Hey, 1979; Bray, 1982], which has been derived from
either fitting the log law to a single velocity profile or from
cross-sectional average mean velocities. These estimates of
roughness height may be problematic for 3-D CFD appli-
cations where the wall function is only applied to the
boundary cells, not full (or even part) of the flow profile.
Furthermore, it has been shown that the multiplication of
roughness length represents a measure of total flow resis-
tance that incorporates contributions from both individual
grains and larger bed forms [Wiberg and Smith, 1991,
Clifford et al., 1992].

[8] These uncertainties aside, the wall function approach
is associated with a number of problems in 3-D CFD
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applications. These include (1) the multiplier of roughness
length will need to be spatially variable and scale depen-
dent, in relation to both mesh resolution and the topographic
content of the data set used to describe the surface,
(2) reduced numerical stability and solution accuracy for
flows characterized by high relative roughness [e.g., Nicholas
and Smith, 1999] because of the existence of an upper limit
of k, for a given near-bed cell thickness [Nicholas, 2001],
and (3) the basic problem of setting the reference height of
the bed in a numerical mesh: normally, it is assumed
implicitly that the effective bed surface in mass conservation
terms is the same as the bed surface sampled during field
survey.

[v] An alternative approach has recently been developed
for incorporating complex river bed topographies into
regular structured meshes, without the need to use boundary
fitted coordinates [Lane et al., 2002, 2004; Hardy et al.,
2005]. It uses a porosity method based upon the work of
Olsen and Stokseth [1995] and involves the use of a regular
structured grid in which all control volumes are orthogonal
in both computational and Cartesian space, with the bed
topography specified using cell porosities (P). This
approach has been successfully validated using digital
particle image velocimetry (DPIV) as applied to an irregular
arrangement of cuboidal roughness elements [Hardy et al.,
2005] and for the case of time-averaged flow over rough
gravel beds [Lane et al., 2004]. The development of this
method has allowed an understanding of the way in which a
complex gravel bed surface interacts with the associated
flow field and provides the opportunity for understanding
the interaction between gravel bed topography and the
associated 3-D flow field.

2.2. Large-Eddy Simulation

[10] In this paper, we couple the porosity bed form
representation method to large-eddy simulation (LES) in
order to study time-dependent flow structures over a gravel
surface. Modeling flows over complex topography is prob-
lematic [Patel, 1998] and only recently have attempts been
made to model such flows using LES [Ciofalo and Collins,
1992; Lee, 2002]. Recent applications of LES to fluvial
problems include flow at a parallel channel confluence
[Bradbrook et al., 2000]; flow and sediment transport over
both two and three dimensional bed ripples [Zedler and
Street, 2001]; and flow over surface-mounted transverse ribs
[Cui et al., 2003].

[11] LES calculates the properties of all eddies larger
than the filter size and models those smaller than this scale
by a subgrid-scale (SGS) turbulence transport model
[Gullbrand and Chow, 2003]. There are several theoretical
summaries of the principles of LES [Lesieur and Métais,
1996; Lesieur et al., 1997; Rodi et al., 1997; Sagaut, 1998;
Meneveau and Katz, 2000; Piomelli and Balaras, 2000;
Frohlich and Rodi, 2002; Moin, 2002; Keylock et al.,
2005]. Central to LES is one core principle: the grid size
that is resolved is sufficient to represent the scales of time-
dependent features present in the flow. This means that
mesh design issues are crucial. The porosity algorithm
described above is important: it maintains a constant mesh
size in space and so allows simulation of time-dependent
flow structures using LES.

[12] There are two important factors which need consid-
eration in the construction of a LES scheme: (1) the choice
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of filter and (2) the subgrid-scale model (SGS). In LES a
length scale is required to determine a filter size. This is
often taken to be equal to the grid size employed in the
solution of the equations: then eddies larger than the filter
scale are solved directly; and the effects of eddies less than
the filter scale are modeled using a subgrid-scale treatment.
A series of appropriate filters were initially defined by
Leonard [1974]. Since then, the box (top hat) filter has
been the most common choice [Deardorff, 1970a; Clark et
al., 1979; Silveira Neto et al., 1991], although Gaussian
filters [Vreman et al., 1994] and spectral cutoff filters
[Hdrtel and Kleiser, 1998] have also been used. It has been
suggested that the choice of filter makes little difference to
the solution [Hdrtel, 1996; Hdrtel and Kleiser, 1997] and
the choice of the SGS is more important.

[13] SGS models represent the exchange of energy
between the grid and subgrid scales. In turbulent flows
energy transfer is typically from the larger to the smaller
eddies (energy cascade) although this process may not be
continuous especially where eddies impinge upon either a
solid surface or in shear layers. Here an inverse transfer of
energy between scales is possible and is important for the
growth of turbulence in wall-bounded flows [Piomelli et al.,
1990]. Therefore an ideal SGS model should be able to
capture both the forward and inverse energy transfers. This
has proven to be a major stumbling block for the develop-
ment of SGS models. Indeed, there are several SGS models
that can be applied and a considerable amount of literature
on the problem.

[14] The original SGS model, from which most schemes
have evolved, is the Smagorinsky SGS model [Smagorinsky,
1963]. This is an eddy viscosity model which is abso-
lutely dissipative: it only accounts for energy transfer
from large to small eddies. This model was initially adopted
by Deardorff [1970a, 1970b] to study turbulent channel
flow and the planetary boundary layer. It has proved to be
particularly popular in a range of literatures [Bedford and
Babajimopoulos, 1980; Moin and Kim, 1982; Cai and
Steyn, 1996] although the scheme has been criticized as
being over reliant on the Smagorinsky constant, Cs. The
value for C; has been obtained theoretically from the
Kolmogorov constant Cy; the constant in the Kolmogorov
energy cascade of turbulence from large to small scales.
Constant values range from 0.17 [Schumann, 1991] to 0.1
for turbulent channel flow [Deardorff, 1970a; Moin and
Kim, 1982] and have been shown to be both a function of
time and space that varies between 0.07 and 0.24 [Rogallo
and Moin, 1984]. Thus C varies with the type of flow as
different processes contribute to the value of Cg [Canuto
and Cheng, 1997]. With these limitations in mind, several
alternate SGS models have been proposed.

[15] One of the simpler alternatives is the scale similarity
model [e.g., Bardina et al., 1980] which is based on the
assumption that the most important unresolved eddies are
those of a size just smaller than the filter size. Here a double
filter is implemented which has the advantage that it is
potentially possible for backscatter effects to be mimicked
at the subgrid scales. However, the scale similarity model
does not dissipate sufficient energy and is therefore often
employed in combination with the Smagorinsky model. It is
also possible to define a spectral eddy viscosity [e.g.,
Chollet and Lesieur, 1981] (see Lesieur et al. [1999] for a
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complete review]) where the effective eddy viscosity is
obtained as a function of the cutoff wave number by
assuming a spectrum with a slope of —5/3 and a cutoff at
the boundary between the resolved and unresolved scales.

[16] Another development in SGS modeling has been
dynamic methods, where a second “test™ filter is employed
to evaluate Cg as a function of both time and space
[Germano et al., 1991; Germano, 1992; Meneveau and
Katz, 1999]. This approach uses the smallest scales of the
resolved turbulence to provide information about the local
value for the SGS model coefficient through a dynamic
Smagorinsky coefficient (Cq4). The Germano approach
relates the resolved turbulent stresses to the subgrid and
subtest-scale stresses where the coefficient is moved outside
of the filtering operation and locally chosen, thus minimiz-
ing the residual error. Since the original methodology there
have been several modifications. One of the most significant
was that of Lilly [1992] who introduced a least squares
technique to evaluate C4 to give a local dynamic model.
However, there are some important theoretical and practical
difficulties with the original dynamic model formulation.
These have been addressed with the development of
enhanced dynamic SGS modeling. By moving the coeffi-
cient outside of the filter, the relation between neighboring
values for the coefficient is eliminated. This leads to too
much variability in the coefficient field, including the
production of negative eddy viscosities. Potentially this
allows the possibility of representing an inverse energy
transfer, but it tends to destabilize the numerical solution
as regions of negative viscosity persist and grow. It is
possible to deal with this by “clipping” negative values
to positive [Zang et al., 1993] and/or assuming at least one
homogeneous direction in the flow and averaging the
coefficient over this direction to generate a more smoothly
varying field for Cq [Moin et al., 1991].

[17] Another method of incorporating the inverse energy
cascade is to add a stochastic term into the SGS modeling
[Mason and Thomson, 1992]. However, if the backscatter is
modeled as noise which is not temporally autocorrelated,
there is an implicit scale separation between the smallest
resolved eddies and the eddies just smaller than the filter
size [Ghosal et al., 1995]. Stochastic representation of the
inverse cascade within the framework of dynamic localiza-
tion has been developed by introducing an eddy force at
both the grid and test filter scale, which was modeled as a
zero-centered white noise process [Carati et al., 1995]. To
prevent the global minimization becoming a stochastic
problem, the errors resulting from using modeled as
opposed to known values for C; were averaged over the
possible realizations of the noise for a particular velocity
field. This removed any effect due to mean behavior, but
retained an effect upon the flow energy. However, these
approaches are computationally demanding.

[18] In order to reduce computational demands, several
developments have occurred. These include an approxima-
tion to the integral required in the dynamic localization
method based on time extrapolation [Piomelli and Liu,
1995] as well as ensemble averaging to determine the effect
of small scales on the modeled flow [Meneveau et al.,
1996]. This approach defines the temporal averaging: A
timescale based on the smallest resolved eddies calculated
from a Lagrangian trajectory of fluid packets. The defined
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averaging is sufficiently flexible to allow a shorter time
frame for averaging in regions of high strain and to permit
less weight to be attached to values representing backscatter.
Furthermore, the simulation of eddy structures showed that
the use of Lagrangian averaging reduced the dissipation for
ejection events, giving more realistic results than standard
averaging [Meneveau et al., 1996]. Moreover, a scale-
dependent dynamic subgrid-scale model has been devel-
oped which unlike the traditional dynamic model does not
rely on the assumption that the model coefficient is scale
invariant [Porté-Agel et al., 2000]. This approach is based
on introducing a secondary test filter that, in addition to the
traditional test filter, is used to determine both the coeffi-
cient and how it changes across scales [Porté-Agel et al.,
2000]. Validation experiments of the new model, looking at
velocity spectra from simulations of an atmospheric bound-
ary layer, show that the model improves the predictions of
spectral slopes at different heights from the ground as in the
near-surface region, the traditional Smagorinsky model is
too dissipative and traditional dynamic models are not
dissipative enough [Porté-Agel et al., 2000].

[19] Finally, another approach for subgrid-scale models
has been to optimize the scales that are available in the LES.
This has been called both “inverse modeling” [Geurts,
1997] and ‘‘approximate deconvolution” [Domaradzki
and Saiki, 1997; Domaradzki and Loh, 1999; Stolz and
Adams, 1999; Stolz et al., 2001]. Hughes et al. [1998,
2001a, 2001b] and Collis [2001] have demonstrated a
variational multiscale method where better LES results are
obtained if the solved equations are split into small- and
large-scale representations and only the shear stresses
extracted at the smaller and unresolved scales are modeled.

[20] The above review demonstrates the range of devel-
opments in LES from the original Smagorinsky model. It is
acknowledged that the original Smagorinsky model has
limitations and considerable improvements have been made,
especially in terms of dynamic modeling procedures. This
paper is the first that uses a LES approach to study flow
over and around individual gravel particles to gain insight
into process representation at the river bed. Thus we begin
with an application of a standard Smagorinsky model within
the porosity algorithm framework to see if the approach
produces physically realistic results, and prior to the appli-
cation of a more complex formulation.

2.3. Experimental Design: Laboratory Data Collection

[21] The experimental setup used for model development
was the same as used by Lane et al. [2004]. It is based upon
water worked gravels in a 0.30 m wide and 8.0 m long
tilting flume. A bulk sample of sediment from the River
Affric, Scotland was placed in the flume (Dso = 0.020 m;
Dg, = 0.069 m, max length scale 0.056 m) and water
worked until a stable bed (no sediment transport) with a
realistic structure was obtained. Once the gravels had been
water worked, the surface morphology was measured using
two media digital photogrammetry (see Butler et al. [2002]
for full explanation). The experimental setup allowed gen-
eration of DEMs at a spacing of 0.001 m. These DEMs have
been subject to intensive data quality tests, in terms of point
precision and accuracy and surface precision and accuracy
[e.g., Butler et al., 1998, 2001, 2002]. The topography
(Figure 1) had a mean surface error of 0.0008 m and the
standard deviation of error was +0.0017 m.
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Figure 1. Digital elevation model of the flume bed used in this study. The scale represents the

topographic height in the DEM.

2.4. Application of Numerical Model

[22] We used a 0.70 m long and 0.20 m wide section of
river bed gravels to define the bed geometry. The compu-
tational domain was regular in the x (downstream), y (cross
stream) and z (vertical) directions, with a grid resolution of
0.002 m. In the vertical, to allow inclusion of topography
data using the porosity treatment, the maximum extent of
the domain was set at 0.06 m. Thus the computational grid
comprised 350 x 110 x 30 = 115 500 cells. With a depth
average inlet velocity of 0.24 m s™' the flow has a Reynolds
number of approximately 11 000 and a Froude number of
0.31. This is a very shallow flow (d/Dsy = 3, d/Dg4 = 1)
corresponding to a low discharge in the prototype river. A
RANS simulation of flow over this surface has been
validated for a flume experiment with a mean flow depth
of 0.24 m against velocity profiles collected with a NorTek
acoustic Doppler velocimeter (ADV) measuring at 0.010 m
intervals above the bed at the planform locations [Lane et
al., 2004]. We needed to reduce the flow depth to a
maximum 0.06 m for computational reasons in this study,
which precluded validation of the scheme used. Further,
Lane et al. [2004] also show that the ADV measuring
volume is too coarse in relation to model resolution: it
commonly contains 5 x 4 x 4 grid cells which means that it
does not resolve local flow gradients fully. Instead, we
undertake a higher level validation (see below) by exploring
how model predictions compare with our general under-
standing of shallow flows over gravel beds obtained from
flume and field studies.

[23] In this study, we began by obtaining a steady state
solution using a RNG two-equation k-¢ turbulence model as
the initial condition for an unsteady simulation with the LES
model. In this application the full non linear, filtered Navier
Stokes equations are solved. Here, a cutoff point is defined
in the spectrum of turbulent scales based on the grid
dimensions, in this case 0.002 m. Eddies capable of being

resolved by the computational grid are allowed to evolve
according to the Navier-Stokes equations and a turbulence
model [Smagorinsky, 1963] is only employed to represent
the effects of turbulence at subgrid scales (SGS). The
Navier-Stokes equations are averaged over the cell volume
[Schumann, 1975] and, as with Reynolds averaging, pro-
duce unknown stresses related to SGS motion. These
stresses (7;) are given by

Ty = —2pv,S;; (1)

where p is the fluid density, v, is the eddy viscosity and Sj; is
the local mean strain rate:

_ 6“1' 6”1

where u; is the component of velocity in the direction x;.

The eddy viscosity is determined using a mixing length
relationship:

ou\?
v =P (254-,» a—Z) (3)
J

The mixing length, /, is the characteristic length of
unresolved eddies, defined as

[ = min(Csh, K.dyan) 4)
where C; is the Smagorinsky constant, « is the von Karman

constant (taken as 0.4), d,,.; is the normal distance to the
nearest wall, and % is the representative mesh interval:

dx? + dy* + dz*
h:,/% (s)
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which simplifies to
h=Vdx? as dv® = dy? = d7* (6)

where dx, dy, dz are the local mesh dimensions in the three
coordinate directions. This eddy viscosity model is isotropic
and implicitly assumes the SGS turbulence is in equilibrium
with the large eddies at the scale at which it is applied and
adjusts itself instantaneously to changes of the large-scale
velocity gradients.

2.5. Boundary Conditions

[24] Boundary conditions needed to be specified at the
upstream inlet, downstream outlet, sidewalls and free sur-
face. For the steady state solution the upstream inlet is
calculated from the experimentally acquired ADV data and
the downstream outlet is specified as a fully developed flow
profile with the hydrostatic pressure set at the surface at the
downstream outlet. For the LES simulation cyclic boundary
conditions were applied, implying that the domain is infi-
nitely long. At the sidewall, no-slip conditions were applied.
At the free surface, we use a method applied by Bradbrook
et al. [2000]. This uses a symmetry plane at the surface
across which all normal resolutes are set to zero. To
represent the effects of water surface variation, nonzero
pressure terms on the symmetry plane are introduced to the
momentum equations, commonly referred to as a rigid lid
treatment. This allows for the effects of both water surface
superelevation and depression with respect to the plane in
terms of the momentum equations. However, if the mass
conservation equations are not corrected, it will lead to
under estimation of velocities in zones of water surface
depression and over estimation of velocities in zones of
water surface superelevation. To deal with this, we intro-
duce an effective surface cell thickness (AZ;) into the
continuity equation, which scales the equivalent cell face
area in the cross-stream and downstream directions accord-
ing to the pressure (Py;) on the symmetry plane at cell (i, /)

Pxi' - pgha“)
AZsi' == _W T + AZ, 7
= (P , )

where £, is the elevation of the surface grid cell at location
(i, J). Bradbrook et al. [2000] show that this yields a stable
approximation of free surface elevation provided spatial
gradients of water surface are not too great, and normally
not greater than AZ; This is evaluated with each
application of the model.

[25] A finite volume method is used to discretize the
equations, and in this case a Cartesian mesh is applied. The
interpolation scheme used is hybrid upwind where upwind
differences are used in high convection areas (Peclet
number > 2) and central differences where diffusion dom-
inates (Peclet number < 2). Use of the Peclet number
guarantees that in situations where diffusion dominates, a
higher-order solution is used which reduces the tendency for
numerical diffusion. This method is also stable and as the
aim is to investigate periodic aspects of the flow, this
approach is important in order to avoid the introduction of
spurious oscillations in the solution which can occur
with some higher-order numerical schemes. Coupling of
the pressure and momentum equations is achieved using
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SIMPLEST, a variation on the SIMPLE algorithm of
Pantankar and Spalding [1972].

3. Results

[26] We interpret model output in four stages. Initially,
visual analyses of the numerical results are presented. This
is followed by analyzing the results in terms of correlation
in the downstream (') and vertical (w') velocity deviations
in order to match classical approaches to interpreting field
and flume data. Next, the results are analyzed in terms of
quadrant analysis. Quadrant analysis has previously been
used to discriminate boundary layer turbulent events by
examining the instantaneous deviations of velocity from the
mean values [e.g., Lu and Willmarth, 1973; Bogard and
Tiederman, 1986; Bennett and Best, 1995]. For this reason,
it is the focus of the analysis in this paper. Applying the
standard definition of Lu and Willmarth [1973], four quad-
rants can be defined around a zero mean: (1) quadrant 1
describes outward interactions (positive # component, posi-
tive w component), (2) quadrant 2 describes ejections (neg-
ative u component, positive w component), (3) quadrant 3
describes inward interactions (negative u component, neg-
ative w component, and (4) quadrant 4 describing inrush
events (positive u component, negative w component. In a
turbulent boundary layer, quadrant two (ejection) and quad-
rant four (sweep) events are dominant. Finally the energy
spectra for the downstream velocity component are calcu-
lated at 0.2 and 0.8 z/k for two profiles located at 0.21 and
0.61 x/I. The limitation of the Smagorinsky SGS model is
that it is too dissipative [Mason and Thomson, 1992]. The
dissipation characteristics of the model have a direct impact
on the turbulent kinetic energy of the resolved velocity field,
which in turn affects the shape of the mean velocity profile
[Porte-Agel et al., 2000]. In order to assess the model’s
performance the energy spectra are calculated to assess the
decay at high wave numbers.

3.1.

[27] Figure 2 shows a series of velocity magnitude (the
resolved components of u, v, and w) plots in plan view
(x y slices), 0.036 m from the bed. Each image is spaced 1
second apart. The images show a strongly streaky pattern,
with areas of fast flow around large particles (A in Figure 2a)
and wakes in the lee of such particles (e.g., B in Figure 2a).
In region A (Figure 2a) a region of high flow velocity
arising from flow separation around a large protruding
particle can be observed. This appears to be quasi stationary,
its core being present in all of the images covering the 10 s
period. The structure of this feature has similar character-
istics to the horseshoe vortex observed in classic fluid
mechanics. In region B there is a relatively stable region
comprising a low-momentum recirculation cell (i.e., a wake)
with possibly an arch vortex similar to that identified by
Hunt et al. [1978]. Typically these features would have been
predicted by the application of a RANS turbulence closure
model [e.g., Lane et al., 2004], although time averaged
turbulence models (e.g., the two equation k-¢ model) are
poor at predicting separation lengths [Hardy et al., 2005].
However, region C marked on Figure 2b comprises a region
of flapping, downstream from the object. This region is
downstream of the high topography (Figure 3) and in a zone
of deeper flow. Here time-dependent flow structures evolve

Flow Visualization
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Figure 2. Plan view of the velocity magnitude at a horizontal slice 0.036 cm above the bed through
time. The white regions are zones of pebbles blocked out of the numerical domain by the porosity

algorithm. Figure 2a is 100 s into the simulation.

and complex flapping of structures can be easily observed.
This is considered further in terms of time series analysis
below.

[28] Figure 3 shows a series of w (vertical) component
velocity plots for the centre line. In Figures 3a—3d, upward
flow can be observed as the flow interacts with the first
large clast (x// = 0.27) and shows similarities to classical
junction vortex flow. Downstream from this object, the flow
is periodic. For example, in the deepening section of the
flow (x/ = 0.8) oscillation between upward and downward
flow can be observed. This oscillation extends throughout

the flow depth and, as such, appears to be very similar to the
fluid wedges which have previously been observed in
gravel bed rivers. In qualitative terms, these results are
encouraging.

3.2. Time Series of Fluctuating Velocities

[20] Figure 4 shows example time series of the vertical
component for a 5 s period for a zone of flow shallowing
(i.e., the stoss of a particle, Figures 4a and 4b) and a zone of
flow deepening (i.e., as in the lee of a particle, Figures 4c
and 4d). These plots show clear quasiperiodicity in the
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the simulation.

turbulence signal. From x// = 0.21 to x/[ = 0.27, the flow
shallows, and the result is a reduction in the magnitude of
vertical velocity fluctuations at all heights within the flow,
coupled to slight stretching of the wavelengths. At x// =0.21
(Figure 4a), flow which is closer to the surface (z/4 = 0.8)
leads flows at the bed. By x// = 0.27, this lead is diminished,
and the fluctuations are more synchronous as well as being
of smaller magnitude. This probably reflects the growing
influence of the bed as the flow shallows, with resistance
having a greater effect closer to the bed, and fluctuations in
velocity from upstream traveling more slowly at the bed. As
the bed shallows, the effects of resistance are more strongly
felt throughout the flow, and the fluctuations are more
synchronous, and reduced in magnitude. As the flow deep-
ens (Figures 4c and 4d), the fluctuations are more variable
in terms of magnitude and timescale and, as a result, appear
to be less organized.

[30] The level of organization is greater as the flow starts
to deepen (x// = 0.50, Figure 4c) than when it becomes
deeper (x/[ = 0.61, Figure 4d), with flow at the bed weakly
leading flow at the surface. As the flow enters the deeper
zone, the reverse of flow shallowing occurs, with the
magnitude of fluctuations increasing and their time (and
length scales) decreasing. However, these changes are
considerably less coherent than in the flow shallowing zone.
This is associated with large-scale separation downstream
from the region of very shallow flow (i.e., high bed
elevations) such that flow recirculation effects (including
eddy shedding) are superimposed upon the effects of bed
resistance on flow structures. At elevations z/A = 0.4 and
z/h = 0.6, the increase in magnitude of fluctuations is
greater and the compression is greater. This is probably
the zone of maximum influence from the eddy shedding
process. The eddy shedding results in highly irregular,
variable magnitude and quite complex flow. In time-aver-
aged measurements or models, this would correspond to the

zone of maximum turbulent stresses where the main flow
connects with the separation zone.

[31] Figure 5 plots the correlation between downstream
(1) and vertical (") velocity deviations against distance for
the complete time series down the centre line of the model
simulations for four elevations above the bed. This has a
notable pattern: up to x// = 0.21, the strength of correlation
increases with elevation above the bed. At x// = 0.27, the
correlations have similar values, in the range —0.28 to
—0.36. Between x// = 0.27 and x/I = 0.61, the patterns are
reversed, with very strong negative correlations near the
bed, and much weaker correlations higher in the flow. This
pattern reverses once more at x// = 0.61, with the exception
of the results at x// = 0.70.

3.3. Quadrant Analysis

[32] Figure 6 shows how these correlations are linked to
changes in the percentage of time found in each quadrant.
As expected in a turbulent boundary layer, quadrant two
(ejection) and quadrant four (sweep) events are dominant.
Close to the bed (z/h = 0.2, Figure 6a) and until x// = 0.27,
the distribution of events is relatively similar, with quadrant
two (ejection) and four (sweep) events weakly dominant.
From x// = 0.21, the percentage of quadrant two (ejection)
and four (sweep) events increases, with them becoming
strongly dominant from x// = 0.46, initially in quadrant 2
(ejection), and later in quadrant 4 (sweeps). As with the time
series, there is a switch back at x// = 0.61, with the exception
of data at x// = 0.70. This is mirrored, but to a lesser degree,
at z/h = 0.4 (Figure 6b). Higher in the flow (at z/A = 0.6 and
z/h = 0.8, Figures 6¢ and 6d) the percentage of events in
each quadrant is, in relative terms, more constant, with
quadrant two (ejection) and four (sweep) events weakly
dominant throughout. Thus the correlation patterns shown
in Figure 5 are related to a near-bed strengthening in the
contribution of sweeps and ejections in shallowing flows: as
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Figure 4. Time series of instantaneous vertical velocities (w') for x/I = (a) 0.21, (b) 0.27, (c) 0.50, and
(d) 0.61. Pluses represent the flow at z/h = 0.2, circles represent flow at z/h = 0.4, diamonds represent
flow at z/h = 0.6, and no marker indicates flow at z/h = 0.8.

the flow shallows, ejection events become dominant at the
bed. Once the shallowest parts of the flow are reached, there
is a transition from ejection events to sweep events becom-
ing dominant. As the flow deepens the dominance of
ejections and sweeps is reduced, except for localized points
where individual clasts are found, and where ejections and
sweeps are more dominant at the bed.

3.4. Spectral Analysis

[33] Finally we consider energy spectra. It has been
shown that the traditional Smagorinsky model is too dissi-
pative [Mason and Thomson, 1992]. In LES, the dissipation
characteristics of the model have a direct impact on the
turbulent kinetic energy of the resolved field, which in turn
affects the shape of the mean velocity profile. There is
evidence that the streamwise velocity spectra will follow a
Kolmogorov k> dependence [Soulsby, 1981] and devia-
tion from this criterion may be used to identify the scale at
which the scheme becomes too dissipative.

[34] The two profiles which have been identified are
located at 0.21 and 0.6 x/I for the vertical heights of
0.2 and 0.8 z/h. The power spectral density graphs are
shown in Figure 7. The spectral signals show classical
characteristics with higher power at lower frequencies.

0.2r

Distance (x/1)

Figure S. Correlations of the vertical and downstream
instantaneous flow velocities for the whole time series.
Pluses represent flow at z/h = 0.2, circles represent flow at
z/h = 0.4, diamonds represent flow at z/h = 0.6, and stars
represent flow at z/h = 0.8.
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Figure 6. Cumulative percentage of events found in each quadrant downstream. (a). Quadrant events at
0.2 z/h. (b) Quadrant events at 0.4 z/h. (c) Quadrant events at 0.6 z/A. (d) Quadrant events at 0.8 z/A.

Moreover, all four profiles are similar. In assessing the
performance of the Smagorinsky scheme it is clear
(Figures 7a—7d) that the spectra decays significantly faster
than the —5/3 gradient for frequencies greater than 2 Hz.
This implies that the model dissipates kinetic energy at an
excessive rate at these higher frequencies [Porté-Agel et al.,
2000]. The excessive dissipation of turbulent kinetic energy
is greater in the shallowing zone, as would be expected, due
to the shear flow as it moves over a protrusion. The standard
Smaogorinsky scheme is under performing at these higher
frequencies, as has been demonstrated in different environ-
mental applications and requires improving to a scale-
dependent dynamic model [Porté-Agel et al., 2000]. This
explains the relatively smooth nature of the time series in
Figure 4 as compared with much nosier time series com-
monly measured in the field and laboratory studies [e.g.,
Clifford and French, 1993; Ferguson et al., 1996; Nikora
and Smart, 1997; Roy et al., 1996; Buffin-Bélanger et al.,
2000]. However, the macroscale (<1 Hz) variability
described within this study is likely to be relatively unaf-
fected by this process showing that the longer timescale
fluctuations probably do have meaning.

4. Discussion

[35] This paper has presented a methodology which
enables the inclusion of complex topography within a

Cartesian framework, which in turn has allowed the appli-
cation of large-eddy simulation over a gravel surface. The
application of LES has allowed time-dependent flow struc-
tures to be calculated interacting with a range of topographic
scales from individual particles to micro topographic forms
in the bed surface. Classical fluvial hydraulic structures such
as arch vortices [Hunt et al., 1978], in addition to regions of
momentum exchange in the downstream wake of protruding
clasts, have been detected and visualized which are similar
to structures that have been previously measured in the field
[cf. Robert et al., 1993; Kirkbride, 1993; Buffin-Bélanger
and Roy, 1998]. These features have previously been
speculated from field-based measurements to exist in gravel
bed rivers, although the hypotheses have come from several
at-a-point measurements rather than studying the whole
flow field as a continuum. This methodology has provided
a technique for both the quantification and visualization of
the complex flow structures formed by the interaction
between form and flow.

[36] The numerical simulations reported in this paper
have shown the importance of the localized topographic
gradient on the generation of flow structures. There appears
to be a difference in processes operating, and therefore the
shape of the flow structures, between regions of flow
shallowing and deepening. As the flow shallows, the effects
of individual clasts are more strongly felt throughout the
flow, where turbulent fluctuations are more synchronous
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Figure 7. Streamwise velocity spectra for a shallowing region (0.21 x//) and deepening zone (0.61 x/I).
The slope of —5/3 is shown. (a) Streamwise velocity spectra at 0.21 x// at height 0.8 z/h. (b) Streamwise
velocity spectra at 0.21 x// at height 0.2 z/h. (c) Streamwise velocity spectra at 0.61 x/I at height 0.8 z/A.
(d) Streamwise velocity spectra at 0.61 x// at height 0.2 z/h.

and reduced in magnitude. In addition, as the flow shallows,
ejection events become dominant at the bed. These struc-
tures then evolve until they become nearly the equal to the
flow depth, showing a similarity to those observed by Yalin
[1992]. Once the shallowest part of the flow is reached,
there is a transition from ejection events to sweep events
becoming dominant. Finally, in shallowing zones structures
are coherent as there is limited spatial scale (mainly vertical)
for processes such as large-scale separation or flow recir-
culation (including eddy shedding) to occur and the effect of
individual clasts upon flow structures is dominant, generat-
ing flow structures similar to those observed previously [cf.
Komori et al., 1982; Grinvald and Nikora, 1988; Clifford et
al., 1992; Lapointe, 1992, Nezu and Nakagawa, 1993;
Robert et al., 1993; Roy et al., 1996; Cellino and Graf,
1999; Shen and Lemmin, 1999].

[37] As the flow deepens the fluctuations are more variable
in terms of magnitude and timescale and, as a result, appear
to be less organized. This agrees with others who do not
detect any regular period in turbulent fluctuations [e.g.,
Grinvald, 1974; Nikora and Smart, 1997] suggesting coher-
ent structures are randomly distributed in time and space
[Nychas et al., 1973; Smith, 1996; Nikora and Goring, 1999].

Moreover, as the flow deepens the dominance of ejections
and sweeps is reduced, except for localized points where
individual clasts are found. As the flow enters a deeper zone,
there is a reverse of the processes observed in regions of flow
shallowing, with the magnitude of turbulent fluctuations
increasing and their time (and length scales) decreasing.

[38] In summary, there are two distinct scales of boundary
influence upon the shallow flow studied here. The first,
larger, scale is associated with clusters of particles which
create undulations in the bed surface. This leads to water
depth variation which in turn results in changes in the time
and length scales and magnitudes of the associated turbu-
lence. The second scale relates to especially large or isolated
clasts which result in similar processes, but over a smaller
length scale. This emphasizes that the measured flow
variability at any one point in a natural river will contain
both locally derived flow structures and structures inherited
from upstream, according to the range of scales of topog-
raphy present.

[39] The LES results give high spatial resolution in three
dimensions, in a way that is currently difficult to match by
laboratory measurements and impossible to match in the
field using currently available technology. The methodology
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is therefore seen as having considerable potential for eluci-
dating flow structures in shallow streams and opens up
exciting possibilities for exploring this effect and using it to
develop new methods for parameterizing shear stress in
sediment transport models. Ongoing research into this
problem is addressing the SGS model where the introduc-
tion of a scale-dependent dynamic subgrid-scale model
[e.g., Porte-Agel et al., 2000] is being considered. This
approach is both stable and robust and shows improved
dissipative properties leading to more realistic spectra and
mean velocity profiles being calculated [Porté-Agel et al.,
2000]. This approach seems to be able to resolve eddy
structure more accurately, which will be advantageous to
those studies that consider the detailed interaction between
turbulent flows and sediment transport.
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