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Fig. 1. A simple 3-node fault tree.

1 Introduction

Consider the 3-node fault tree depicted in Fig. 1. It is convenient to think of A and
B as events of failure of the two components of a parallel system. Node C then
represents the failure of the whole system. The fault tree describes how failures
propagate: the whole system fails if and only if both components A and B fail.

In many systems, components are generally tested prior to assembly. For instance,
they may be produced, tested, and assembled in separate locations. Hence, often
we have test data of each component separately. In this paper, for the system
depicted in Figure 1, we shall imagine a series of tests on component A only, a
series of tests on component B only, and a series of tests on C only, i.e. observing
failure of the whole system C without directly observing the components A and
B as well.

So, we are given test data as follows: in a series of N = NA+NB+NC experiments,
A failed nA out of NA times, B failed nB out of NB times, and C failed nC out
of NC times. What do these data tell us about the probability of failure of the
components of the system? More precisely, what can we say about the (interval-
valued) posterior predictive probability of a particular component of the system
failing upon a further single test or use of the system, taking differing assumptions
about the data and the dependence of components A and B into account?

We will first use the standard Bayesian framework with a binomial model and beta
prior (beta-binomial model), and then generalize this to allow classes of priors (as
in Walley’s book [1], and a special case of his imprecise Dirichlet model [2]). Re-
stricted to the standard Bayesian approach, this is just a simple special case of
system reliability inference with multilevel failure information, which was theoret-
ically developed in the 80’s [3, p. XI-24], with computational methods (MCMC)
presented by Hamada et al. [4], who also provide details of the earlier literature.
Coolen [5] discusses the use of the imprecise Dirichlet model for inference on life-
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times in reliability based on data including right-censored observations. Similar
approaches to reliability with imprecise probabilities, in different settings, have
been pursued by Utkin and Gurov [6] and Utkin [7]. A general overview of impre-
cise methods in reliability is presented by Utkin and Coolen [8].

As we go, we extend various features of the imprecise Dirichlet model to accommo-
date the particular problem at hand, and we study various statistical assumptions
about how the sample was generated. The simple example depicted in Fig. 1 al-
lows us to pin-point a number of interesting effects on the precision of the posterior
probabilities under varying assumptions, and also admits an analytical analysis.
We also stress that we only look at posterior probabilities on the next observation,
and not at the full posterior. Upscaling these extensions to more complex systems
and making more involved inferences still presents a major challenge.

The paper is organized as follows. In Section 2 we model the 3-node fault tree
through a beta-binomial model, additionally assuming that A and B are statisti-
cally independent. Section 3 is concerned with dropping the independence assump-
tion, and with studying the effect of selection bias. We conclude in Section 4: we
look at how the various structural assumptions affect the precision of the posterior,
and suggest an alternative approach to approximating lower and upper posterior
probabilities. The appendix contains relevant formulas for quick reference, and
deals with the tedious calculation of one of the posteriors.

2 Independent components

Let θx be the Bernoulli parameter related to failure of component x = A,B, let
Fx = 1(0) denote failure (success) of x = A,B,C, so P (Fx = 1|θx) = θx for
x = A,B, and P (FC = 1|θA, θB) = θAθB, assuming that failure of A is statistically
independent from failure of B.

We denote the data on x = A,B,C by Dx = (Nx, nx) meaning nx failures out
of Nx observations, with 0 ≤ nx ≤ Nx. All data together are denoted by D =
(DA, DB, DC). Then the likelihood function is

L(θA, θB|D) ∝ θnA
A (1− θA)NA−nA

× θnB
B (1− θB)NB−nB

× (θAθB)nC (1− θAθB)NC−nC .
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2.1 Precise Bayesian approach

A convenient (and standard) choice of prior p(θA, θB) is derived by assuming prior
independence of these two parameters, and choosing conjugate priors per param-
eter:

p(θA) ∝ θstA−1
A (1− θA)s(1−tA)−1

and

p(θB) ∝ θstB−1
B (1− θB)s(1−tB)−1,

with s > 0, and tA and tB ∈ (0, 1). The parameter tA is the prior mean of θA;
similarly for tB. The parameter s determines the shape of each prior: for high
values the prior will peak around its mean, and for low values the distribution will
have a more uniform shape. We are using the same value s for the prior both on
θA and θB: this is not essential, but it simplifies the formulas; generalization is
straightforward.

The joint posterior distribution follows directly:

p(θA, θB|D) ∝ θnA+stA−1
A (1− θA)NA−nA+s(1−tA)−1

× θnB+stB−1
B (1− θB)NB−nB+s(1−tB)−1

× (θAθB)nC (1− θAθB)NC−nC , (1)

where the proportionality constant follows from normalization, and will be a func-
tion of the data, and the hyper-parameters s, tA, and tB. The posterior predictive
probabilities of interest are

P (FC = 1|D) =
∫ 1

0

∫ 1

0
θAθBp(θA, θB|D)dθAdθB, (2)

P (FA = 1|D) =
∫ 1

0

∫ 1

0
θAp(θA, θB|D)dθAdθB.

Of course, P (FB = 1|D) follows from P (FA = 1|D) by swapping A and B.

The above integrals are not straightforward to calculate analytically. If we have
observed any successful tests of the whole system (NC−nC > 0) then the posterior
is not a product of a function of θA times a function of θB. However, perhaps
surprisingly, we can still calculate Eq. (2) analytically. In Appendix C it is shown
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that

P (FC = 1|D) =
NC−nC∑
m=0

γ̃A,Bm

nA + stA + nC
NA + s+ nC +m

× nB + stB + nC +m

NB + s+NC

, (3)

=
NC−nC∑
m=0

γ̃B,Am

nB + stB + nC
NB + s+ nC +m

× nA + stA + nC +m

NA + s+NC

, (4)

and

P (FA = 1|D) =
NC−nC∑
m=0

γ̃A,Bm

nA + stA + nC
NA + s+ nC +m

, (5)

=
NC−nC∑
m=0

γ̃B,Am

nA + stA + nC +m

NA + s+NC

, (6)

where γ̃A,Bm and γ̃B,Am are defined in the Appendix, Eqs. (C.5)–(C.6). They are
non-negative real numbers depending on NA, nA, NB, nB, NC , nC , s, tA, and tB,
satisfying

NC−nC∑
m=0

γ̃A,Bm =
NC−nC∑
m=0

γ̃B,Am = 1. (7)

The analytical properties of the coefficients γ̃A,Bm and γ̃B,Am are not easily captured,
although they can be easily calculated numerically, as is apparent from Eq. (C.5).
To allow analytical investigation, we shall bound the predictive probabilities.

First, observe that the factors that follow γ̃A,Bm and γ̃B,Am in Eqs. (3)–(6) are mono-
tone functions of m. For example, in Eq. (3), nA+stA+nC

NA+s+nC+m
× nB+stB+nC+m

NB+s+NC
is an

increasing function of m if NA+s ≥ nB+stB, and decreasing otherwise. Hence, we
immediately infer useful bounds for the probabilities (set m = 0 or m = NC−nC):

P (FC = 1|D)

∈
[
nA + stA + nC
NA + s+ nC

× nB + stB + nC
NB + s+NC

,
nA + stA + nC
NA + s+NC

× nB + stB +NC

NB + s+NC

]
∩
[
nB + stB + nC
NB + s+ nC

× nA + stA + nC
NA + s+NC

,
nB + stB + nC
NB + s+NC

× nA + stA +NC

NA + s+NC

]
(8)

(where [a, b] = {x : min{a, b} ≤ x ≤ max{a, b}}) and

P (FA = 1|D) ∈
[
nA + stA + nC
NA + s+NC

,
nA + stA + nC
NA + s+ nC

]
. (9)

These bounds allow us to state a number of interesting results. Further on, they
will allow us to bound the imprecise posterior probabilities analytically as well.
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2.1.1 No observations of C

If NC = 0, and hence nC = 0, then the intervals in Eq. (8) reduce to a singleton,

P (FC = 1|D) =
nA + stA
NA + s

× nB + stB
NB + s

,

and similarly, from Eq. (9),

P (FA = 1|D) =
nA + stA
NA + s

, P (FB = 1|D) =
nB + stB
NB + s

.

In this case, the posterior probability of FC = 1 is simply a product of the posterior
probabilities of FA = 1 and FB = 1, because the joint posterior probability on
(θA, θB) is a product of Dirichlet posteriors.

2.1.2 Only observations of C

If NA = NB = 0, we expect inferences about A and B still to depend largely on
the parameters of the prior, because in each case where C does not fail, there is
no way of telling whether A or B have failed.

Regarding C, Eq. (8) reduces to

P (FC = 1|D) ∈
[
stA + nC
s+ nC

× stB + nC
s+NC

,
stA + nC
s+NC

× stB +NC

s+NC

]
∩
[
stB + nC
s+ nC

× stA + nC
s+NC

,
stB + nC
s+NC

× stA +NC

s+NC

]
and regarding A, Eq. (9) becomes

P (FA = 1|D) ∈
[
stA + nC
s+NC

,
stA + nC
s+ nC

]
.

It is instructive to investigate the limit of Eqs. (3) and (5) for s → 0 in case
NC > nC > 0. From Eq. (1), one can see that the limit s→ 0 maximizes the effect
of the data on the posterior. In Appendix C.3 it is shown that

lim
s→0

P (FC = 1|D) =
nC
NC

, lim
s→0

P (FA = 1|D) =
(1− tB) + (1− tA) nC

NC

2− tA − tB
.

So, P (FA = 1|D) is a weighted average of 1 and the relative frequency of C, with
tA and tB determining the weights. In conclusion, regardless of the size of NC , the
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posterior probabilities of A and B will still depend largely on the parameters tA
and tB of the prior, whereas the posterior probability of C does not depend on the
prior at all, in case we observe just C. For larger values of s, the impact of the
prior on the posterior increases. Therefore, in those cases, the posterior will vary
even more as a function of tA and tB.

We shall come back to this issue and provide a more in-depth explanation at the
end of Section 2.2.

2.2 Imprecise beta model

In many applications of interest, especially in reliability theory (for instance, see
[3, p. XI-9]), it is hard to assess prior probabilities. Along the lines of Walley’s
imprecise beta model [1, §5.3, pp. 217–222] (which is of course the 2-categories
special case of his imprecise Dirichlet model [2]), we take all beta priors into
account, that is for all values tA and tB in the open interval (0, 1) and for a fixed
value of s. We then arrive at a set of posteriors instead of just a single one by
application of Eq. (1) on each prior.

For example, the lower and upper probabilities P(FC = 1|D) and P(FC = 1|D)
are then the infimum and supremum, respectively, of the set of corresponding
predictive posterior probabilities P (FC = 1|D) for all possible values of the prior
parameters tA and tB. Using the bounds for the precise posterior probabilities
obtained in Eq. (8) and Eq. (9)—which should not be confounded with lower and
upper probabilities—and taking into account that the interval bounds can swap,
we arrive at the following bounds for the imprecise posterior probabilities:

max

min

 nA+nC

NA+s+nC
× nB+nC

NB+s+NC
,

nA+nC

NA+s+NC
× nB+NC

NB+s+NC

 ,min

 nB+nC

NB+s+nC
× nA+nC

NA+s+NC
,

nB+nC

NB+s+NC
× nA+NC

NA+s+NC




≤ P(FC = 1|D) ≤ P(FC = 1|D)

≤ min

max

 nA+s+nC

NA+s+nC
× nB+s+nC

NB+s+NC
,

nA+s+nC

NA+s+NC
× nB+s+NC

NB+s+NC

 ,max

 nB+s+nC

NB+s+nC
× nA+s+nC

NA+s+NC
,

nB+s+nC

NB+s+NC
× nA+s+NC

NA+s+NC


 , (10)

[P(FA = 1|D),P(FA = 1|D)] ⊆
[

nA + nC
NA + s+NC

,
nA + s+ nC
NA + s+ nC

]
. (11)

The two special cases discussed in Sec. 2.1 generalize straightforwardly.
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2.2.1 No observations of C

If NC = 0, and hence nC = 0, then (where we have equality because of similar
arguments as in Sec. 2.1.1)

[P(FC = 1|D),P(FC = 1|D)] =
[

nA
NA + s

× nB
NB + s

,
nA + s

NA + s
× nB + s

NB + s

]
, (12)

and

[P(FA = 1|D),P(FA = 1|D)] =
[

nA
NA + s

,
nA + s

NA + s

]
. (13)

2.2.2 Only observations of C

If NA = NB = 0 then from Eq. (10)

[P(FC = 1|D),P(FC = 1|D)] ⊆
[

nC
nC + s

× nC
NC + s

,
nC + s

NC + s

]
. (14)

For nC � s, Eq. (14) is approximately equal to [ nC

NC+s
, nC+s
NC+s

] which is the interval
we would obtain from the usual imprecise Dirichlet model with the same hyper-
parameter s. Next,

[P(FA = 1|D),P(FA = 1|D)] ⊆
[

nC
NC + s

, 1
]
. (15)

The right hand side of Eq. (15) is a result of only learning about θA × θB in case
we only observe C. Indeed, recall the limit of P (FC = 1|D) and P (FA = 1|D) for
s→ 0, in the precise case:

lim
s→0

P (FC = 1|D) =
nC
NC

, lim
s→0

P (FA = 1|D) =
(1− tB) + (1− tA) nC

NC

2− tA − tB

Taking the infimum and supremum of these expressions over tA and tB, we find

lim
s→0

[P(FC = 1|D),P(FC = 1|D)] =
{
nC
NC

}
,

lim
s→0

[P(FA = 1|D),P(FA = 1|D)] =
[
nC
NC

, 1
]

These results admit a very interesting interpretation: because in the limit we only
learn that θA × θB equals nC

NC
, it must hold that θA belongs to [ nC

NC
, 1], and this

interval is the best we can do without additional prior information.
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3 Dropping the independence assumption

In Section 2, we assumed statistical independence of the components A and B.
Although there are scenarios where this assumption is reasonable, it is difficult to
justify in many situations. In this section, we explore the inferences without any
assumptions about independence between A and B.

3.1 Partial observations

Because the 3-node fault tree involves observations not just from exclusive cate-
gories, we cannot apply the imprecise Dirichlet model directly. Let us investigate
this problem in more detail.

The simplest sample space which fully models all possible outcomes of the fault
tree consists of four elements:

A Ac

B 1 2

Bc 3 4

Category 1 obtains when both A and B fail, 2 when B fails but A does not, 3
when A fails but B does not, and 4 if both do not fail. C corresponds to category
1.

Recall, we are given N = NA +NB +NC observations, which can be summarized
in the following table:

event A Ac B Bc C Cc

count nA NA − nA nB NB − nB nC NC − nC

But, not all of our observations correspond to the observation of a single category.
We are dealing with partial observations : for instance, during the NA experiments
where A was monitored, we have not been told whether B failed or not. During
these experiments, we only learn that category belongs to either {1, 3} or {2, 4},
but nothing more.
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3.2 An imprecise Dirichlet model for partial observations

Partial observations can be dealt with by a straightforward extension of the im-
precise Dirichlet model. Assume we have k categories, and let Ω = {1, . . . , k} be
the sample space. A multinomial sampling model generates a series of N outcomes
(ω1, . . . , ωN) where each ωi is independently chosen from Ω with an identical prob-
ability distribution θθθ = (θ1, . . . , θk).

Consider a series of events (O1, . . . , ON) where each of these events can be identified
with a subset of Ω. The likelihood of observing this series of events is given by

N∏
i=1

∑
j∈Oi

θj

 =
∏
O⊆Ω

∑
j∈O

θj

nO

where nO is the number of times event O occurs in the series (O1, . . . , ON). This
can also be written as (see Appendix B and explanation of

∑
νO,j

further on)

=
∑
νO,j

 ∏
O⊆Ω

(
nO

νO,j; j ∈ O

) ∏
j∈O

θ
νO,j

j


and if we write νO,j briefly as νOj,

=
∑
νOj

 ∏
O⊆Ω

(
nO

νO1, . . . , νOk

)
k∏
j=1

θ
νOj

j


=
∑
νOj

 ∏
O⊆Ω

(
nO

νO1, . . . , νOk

) k∏
j=1

θ

∑
O⊆Ω

νOj

j


where it is understood that the sum over νOj runs over all tuples (νOj;O ⊆ Ω, j ∈
Ω) which satisfy

∑
j∈O νOj = nO for all O ⊆ Ω and νOj = 0 whenever j 6∈ O. Again,

the likelihood depends on the observations only through nnn = (nO;O ⊆ Ω).

If we are unsure about the true value of θθθ, it is convenient to model our knowledge
about θθθ by a Dirichlet prior with parameters (s, t1, . . . , tk) = (s, ttt), where s > 0,
0 < tj < 1, and

∑k
j=1 tj = 1:

π(θθθ|s, ttt) ∝
k∏
j=1

θ
stj−1
j . (16)

The set of all feasible values of ttt will be denoted by T . Using this Dirichlet prior,
after observation of the series of events (O1, . . . , ON), by Bayes rule, we have a
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posterior distribution

π(θθθ|s, ttt,nnn) =

∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

)
k∏
j=1

θ
stj+

∑
O⊆Ω

νOj−1

j

∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

)∏k
j=1 Γ(stj +

∑
O⊆Ω νOj)

Γ(s+N)

. (17)

where we use that for any real numbers α1, . . . , αk > 0 it holds that

∫
θα1−1

1 · · · θαk−1
k dθθθ =

∏k
j=1 Γ(αj)

Γ(
∑k
j=1 αj)

, (18)

The posterior is now a convex combination of Dirichlet distributions.

In similar spirit to the imprecise Dirichlet model, if we start out with the setM0 of
all Dirichlet priors with parameters (s, ttt), where s is a fixed constant and ttt varies
over all possible values in T , we end up with a set of posteriorsMnnn, each posterior
in the set being a convex combination of Dirichlet distributions. As an example,
we investigate the lower probability of the next observation to belong to the set
S ⊆ Ω. We now have

P(ωN+1 ∈ S|s,nnn)

= inf
ttt∈T

∫ ∑
`∈S

θ`


∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

)
k∏
j=1

θ
stj+

∑
O⊆Ω

νOj−1

j

∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

)∏k
j=1 Γ(stj +

∑
O⊆Ω νOj)

Γ(s+N)

dθθθ

= inf
ttt∈T

∑
`∈S

∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

)
k∏
j=1

Γ

stj +
∑
O⊆Ω

νOj

 st` +
∑
O⊆Ω νO`

s+N

∑
νOj

∏
O⊆Ω

(
nO

νO1, . . . , νOk

)
k∏
j=1

Γ

stj +
∑
O⊆Ω

νOj

 (19)

An expression for P(ωN+1 ∈ S|s,nnn) follows by replacing inf by sup in Eq. (19).
Clearly, we have to rely on numerical methods for calculating the infimum and the
supremum.
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However, as in Sec. 2.2, we can easily come up with bounds for Eq. (19):

[P(ωN+1 ∈ S|s,nnn),P(ωN+1 ∈ S|s,nnn)]

⊆
[
inf
νOj

∑
O⊆Ω νOS
N + s

, sup
νOj

∑
O⊆Ω νOS + s

N + s

]
(20)

where we denote by νOS the partial sum of νO` over all ` ∈ S:

νOS =
∑
`∈S

νO`.

Eq. (20) can be interpreted in terms of selection bias, which we address in the
following section.

3.3 Compensating for selection bias

It is an interesting observation that the containing interval obtained in Eq. (20)
exactly entails taking possible selection bias into account. One could, for instance,
imagine a mechanism which reports specific events O for specific outcomes of the
multinomial process.

For example, in case of our fault tree, we could imagine A only to be tested if
B did not fail, for example for economic reasons or perhaps even in an attempt
to make component A come out better in the resulting statistics. The statistics
will be biased towards component A, but unless such crucial details about the
experimental setup are revealed, we have no way to tell in general how much bias
there is towards this or that event.

Another instance of selection bias happens when the data is reorganized to report
only particular events if particular categories have been observed, effectively se-
lecting part of the data. For example, one could report failure of only B whenever
actually both components failed, so all failures of C would be reported as failures
of B, and all failures of A would be instances where B did not fail. In this way
one explicitly removes information: data is missing. But, even if we know the data
may have been tampered with, we usually do not know what selecting mechanism
was used.

The proper way to model such situations where we cannot exclude the possibility
of selection bias or missing data, but we wish to account for it, is by considering
the set of all likelihood functions induced by all possible selection mechanisms,
or equivalently, all possible completions νOj of the counts nO (see De Cooman
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and Zaffalon [9], and Utkin [10]). Those completions νOj are exactly the counts
introduced in Sec. 3.2:

L(θθθ|νOj) =
∏
O⊆Ω

∏
j∈O

θ
νOj

j =
∏
j∈O

θ

∑
O⊆Ω

νOj

j (21)

Hence, applying the imprecise Dirichlet model, but now with a set of likelihood
functions, and hence, a set of counts of the form nj =

∑
O⊆Ω νOj running over all

possible completions νOj, we immediately recover the right hand side of Eq. (20).

3.4 Application to the 3-node fault tree

Applying Eq. (20) to our example, we immediately arrive at

[P(FC = 1|D),P(FC = 1|D)] ⊆
[
nC

N + s
,
nA + nB + nC + s

N + s

]
(22)

[P(FA = 1|D),P(FA = 1|D)] ⊆
[
nA + nC
N + s

,
nA +NB +NC + s

N + s

]
(23)

For example, the lower bound for P(FC = 1|D) obtains exactly when in all nA
failures of A, B did not fail, and in all nB failures of B, A did not fail (a full
compensation effect). The upper bound for P(FC = 1|D) corresponds to the case
in which, for all failures of A, B failed as well, and vice versa.

The lower bound for P(FA = 1|D) obtains when A never failed in case Cc, B, or
Bc was observed. The upper bound obtains if A always failed if Cc, B, or Bc was
observed.

Note that in general these bounds are very imprecise, even when the counts are
large. If we have no model of the selection mechanism, then additional observations
do not necessarily improve precision.

If NC = 0, then

[P(FC = 1|D),P(FC = 1|D)] ⊆
[
0,
nA + nB + s

NA +NB + s

]
, (24)

[P(FA = 1|D),P(FA = 1|D)] ⊆
[

nA
NA +NB + s

,
nA +NB + s

NA +NB + s

]
. (25)
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If NA = NB = 0, then

[P(FC = 1|D),P(FC = 1|D)] ⊆
[

nC
NC + s

,
nC + s

NC + s

]
, (26)

[P(FA = 1|D),P(FA = 1|D)] ⊆
[

nC
NC + s

, 1
]
. (27)

4 Concluding remarks

Independence has an obvious effect on the imprecision of the posterior. This effect
is most clear in case we have no observations about C, i.e., when NC = 0. In case
we make no assumptions regarding the independence of A and B, and even take
possible selection bias into account, then the posterior predictive probability inter-
vals for both A and C usually become wider. These intervals will also not converge
to points as more data become available. In conclusion, wrongfully assuming inde-
pendence, we may end up with a too precise posterior and thereby underestimate
the true risk of the system. This stresses the need for making good assumptions
about data, and in particular the importance of modeling dependencies correctly.

A huge issue is how these calculations can be expanded to larger systems used in
practice. For example, can we formulate simple rules by which imprecision propa-
gates in a fault tree along particular gates?

Next, we note that there is an alternative, and intuitively more appealing approach
to arrive at the bounds given in Sec. 2: simple bounds can be attained by making
extreme assumptions on the data, in this case on the numbers of non-failures
observed for C, such as to keep the factorization of the joint posterior, which
keeps the posterior integral simple to calculate. Such an approach can often be
used to obtain conservative bounds quickly. Suppose one needs to make decisions
with such posteriors as inputs, then a quick lower bound for the lower probability
(and upper for the upper) might provide sufficient information on which to base
a decision. For many monotone systems (which are such that reliability of the
system never improves if that of a component becomes worse), such bounds can
be derived pretty easily, although it is certainly not always as trivial as below.

For example, in our problem, posterior dependence between θA and θB occurred
due to lack of detailed information on the components’ failure in case of system
observations which are not failures (there are NC−nC such observations). Clearly,
in this monotone system, the predictive posterior probability for the event FC = 1
is decreasing as function of the numbers of failures observed, nC , for fixed NA, NB,

14



and NC . Hence, a lower bound for this lower probability corresponds to the case
where all NC − nC non-failing system tests actually related to both components
A and B not failing. Let us denote the data with this additional assumption as
Dl, which therefore is equal to data with the information on components A and B
being respectively (NA+NC , nA+nC) and (NB+NC , nB+nC). Hence, to arrive at
a lower bound for the posterior probability of FC = 1, we can use the distribution

p(θA, θB|Dl) ∝ θnA+nC+stA−1
A (1− θA)NA−nA+NC−nC+s(1−tA)−1

× θnB+nc+stB−1
B (1− θB)NB−nB+NC−nc+s(1−tB)−1

∝ p(θA|Dl,A)× p(θB|Dl,B)

where Dl,x = (Nx + NC , nx + nC) for x = A, B. Now we are back to the simple
situation of posterior independence of the parameters θA and θB. Because the joint
posterior distribution is just the product of two beta distributions, the correspond-
ing posterior lower probability of failure of C is the product of the posterior lower
probabilities of failure of A and B (attained at tA = tB = 0), leading to

P (FC = 1|D) ≥ P (FC = 1|Dl) =
nA + nC

NA +NC + s
× nB + nC
NB +NC + s

Note that the approximation obtained in Eq. (10) is slightly tighter.

For the upper probability, we can do the same, but as the information on NC−nC
non-failing system tests can only imply, in the most pessimistic scenario (corre-
sponding to upper probability of system failure for monotone systems), that for
each of these observations either A or B failed, but not both, we must take all the
following cases into account: assume that, for these successful system tests, actu-
ally A failed y times, and B failed NC−nC−y times, with y ∈ {0, 1, . . . , NC−nC}.
This, again, results for every single value of y in posterior independence for θA and
θB, and then we can maximize the resulting posterior predictive probability over
y. Details are left to the reader.

Another interesting question for future research is how various forms of dependence
between the components A and B can be taken into account, and how one can
learn about such dependence from the data. There are, of course, many ways to
take dependence into account. Identical components—when we know a priori that
θA = θB—is clearly one important case of dependence. This could be studied either
analytically along similar lines as in Sec. 2, or by making extreme assumptions as
demonstrated above in this section if quick bounds are sufficient. More generally, it
may be difficult to learn about the form of dependence from the data. In particular,
it is not clear how to arrive at a model which allows updating of dependencies.
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A The Gamma function and Binomial Coefficients

A basic property of the Gamma function is that Γ(x + 1) = xΓ(x) for any real
number x > 0. For any real number x and any natural number n ≥ 0 define

{
n
x

}
=

Γ(x+ n)

Γ(x)
=

(x+ n− 1)(x+ n− 2) · · ·x if n ≥ 1,

1 otherwise.
(A.1)

The Beta function and binomial function are defined as

B(x, y) =
Γ(x)Γ(y)

Γ(x+ y)

(
x+ y

x

)
=

Γ(x+ y + 1)

Γ(x+ 1)Γ(y + 1)

If the right hand side in any of the above expressions has a zero denominator, the
analytical extension is assumed. For example, if m and n are natural numbers,
then (

m− n− 1

m

)
=

(−1)m
(
n
m

)
if m ≤ n,

0 if m > n.
(A.2)

We shall need the following properties:

B(x+ 1, y) =
x

x+ y
B(x, y) (A.3){

n+m
x+y

}
B(x+ n, y +m) =

{
n
x

}{
m
y

}
B(x, y) (A.4){

n
x+y

}
B(x+ n, y) =

{
n
x

}
B(x, y) (A.5){

n
y−n

}
B(x+ n, y − n) =

{
n
x

}
B(x, y) (A.6)
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B Multinomial Sums

The following equality holds: n∑
j=1

aj

m =
∑

µ1+µ2+···+µn=m

(
m

µ1, µ2, . . . , µn

)
n∏
j=1

a
µj
j ,

where (
m

µ1, µ2, . . . , µn

)
=

m!

µ1!µ2! . . . µn!
.

Also, recall that
n∏
i=1

 mi∑
µ=1

aiµ

 =
m1∑
µ1=1

· · ·
mn∑
µn=1

n∏
i=1

aiµi

Therefore, it holds that

∏̀
i=1

 ni∑
j=1

aij

mi

=
∏̀
i=1

∑
µ1+···+µni=mi

(
mi

µ1, µ2, . . . , µni

)
ni∏
j=1

a
µj
ij ,

=
∑

µ11+···+µ1n1=m1

· · ·
∑

µ`1+···+µ`n`
=m`

∏̀
i=1

ni∏
j=1

(
mi

µi1, µi2, . . . , µini

)
a
µij
ij

C Calculating the posterior probabilities

C.1 An integral

First, we find an analytic expression for the following integral:∫ 1

0

∫ 1

0
xa−1(1− x)a−1yb−1(1− y)b−1(xy)c(1− xy)cdxdy

=
∫ 1

0
yb+c−1(1− y)b−1

∫ 1

0
xa+c−1(1− x)a−1(1− xy)cdxdy

and using [11, p. 558, §15.3.1], with ã = −c, b̃ = a+ c, and c̃ = a+ a+ c,

=
∫ 1

0
yb+c−1(1− y)b−1 Γ(b̃)Γ(c̃− b̃)

Γ(c̃)
F (ã, b̃; c̃; y)dy
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where F is the hypergeometric function, and by [11, p. 558, §15.3.4]

=
∫ 1

0
yb+c−1(1− y)b−1(1− y)−ã

Γ(b̃)Γ(c̃− b̃)
Γ(c̃)

F (ã, c̃− b̃; c̃; y

y − 1
)dy

and by [11, p. 556, §15.1.1],

=
Γ(b̃)Γ(c̃− b̃)

Γ(c̃)

Γ(c̃)

Γ(ã)Γ(c̃− b̃)

∞∑
m=0

Γ(ã+m)Γ(c̃− b̃+m)

Γ(c̃+m)∫ 1

0
yb+c−1(1− y)b+c−1 ym

(−1)m(1− y)mm!
dy

and, now by [11, p. 258, §6.2.1]

=
Γ(b̃)

Γ(ã)

∞∑
m=0

(−1)m

m!

Γ(ã+m)Γ(c̃− b̃+m)

Γ(c̃+m)
B(b+ c+m, b+ c−m)

=
∞∑
m=0

(−1)m

m!

Γ(ã+m)

Γ(ã)

Γ(b̃)Γ(c̃− b̃+m)

Γ(c̃+m)
B(b+ c+m, b+ c−m)

=
∞∑
m=0

(−1)m
Γ(m− c− 1 + 1)

Γ(m+ 1)Γ(−c− 1 + 1)
B(b̃, c̃− b̃+m)B(b+ c+m, b+ c−m)

=
∞∑
m=0

(−1)m
(
m− c− 1

m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m)

and by Eq. (A.5), Eq. (A.6) and Eq. (A.2) (assuming c is a natural number),

= B(a+ c, a)B(b+ c, b+ c)
c∑

m=0

(
c

m

) {
m
a

}
{

m
a+a+c

}
{

m
b+c

}
{

m
b+c−m

}

C.2 The posterior probabilities of failure of C and A

With a = nA + stA, b = nB + stB, c = nC , a = NA − nA + s(1 − tA), b =
NB − nB + s(1− tB), and c = NC − nC ,

P (FC = 1|D) =
∫ 1

0

∫ 1

0
θAθBp(θA, θB|D)dθAdθB

=

∑c
m=0

(
c
m

)
B(a+ c+ 1, a+m)B(b+ c+m+ 1, b+ c−m)∑c

m=0

(
c
m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m)
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and by Eq. (A.3)

=

∑c
m=0

(
c
m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m) a+c

a+a+c+m
b+c+m
b+b+c+c∑c

m=0

(
c
m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m)

and now applying Eq. (A.5) and Eq. (A.6)

=

c∑
m=0

(
c

m

) {
m
a

}
{

m
a+a+c

}
{

m
b+c

}
{

m
b+c−m

} a+ c

a+ a+ c+m

b+ c+m

b+ b+ c+ c

c∑
m=0

(
c

m

) {
m
a

}
{

m
a+a+c

}
{

m
b+c

}
{

m
b+c−m

}
(C.1)

=

NC−nC∑
m=0

γA,Bm

nA + stA + nC
NA + s+ nC +m

nB + stB + nC +m

NB + s+NC

NC−nC∑
m=0

γA,Bm

(C.2)

=
NC−nC∑
m=0

γ̃A,Bm

nA + stA + nC
NA + s+ nC +m

nB + stB + nC +m

NB + s+NC

(C.3)

and by symmetry also

=
NC−nC∑
m=0

γ̃B,Am

nB + stB + nC
NB + s+ nC +m

nA + stA + nC +m

NA + s+NC

(C.4)

where we defined

γA,Bm =

(
c

m

) {
m
a

}
{

m
a+a+c

}
{

m
b+c

}
{

m
b+c−m

} .
=

(
NC − nC

m

){ m
NA−nA+s(1−tA)

}
{

m
NA+s+nC

}
{

m
nB+stB+nC

}
{

m
NB−nB+s(1−tB)+NC−nC−m

} (C.5)

and

γ̃A,Bm =
γA,Bm

NC−nC∑
m′=0

γA,Bm′

(C.6)

and γB,Am and γ̃B,Am by swapping A and B in the above expressions.
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Similarly,

P (FA = 1|D) =
∫ 1

0

∫ 1

0
θAp(θA, θB|D)dθAdθB

=

∑c
m=0

(
c
m

)
B(a+ c+ 1, a+m)B(b+ c+m, b+ c−m)∑c

m=0

(
c
m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m)

and by Eq. (A.3)

=

∑c
m=0

(
c
m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m) a+c

a+a+c+m∑c
m=0

(
c
m

)
B(a+ c, a+m)B(b+ c+m, b+ c−m)

and hence, along similar lines,

=
NC−nC∑
m=0

γ̃A,Bm

nA + stA + nC
NA + s+ nC +m

=
NC−nC∑
m=0

γ̃B,Am

nA + stA + nC +m

NA + s+NC

(C.7)

The result for P (FB = 1|D) follows by swapping A and B in the above expression.

C.3 Special case

In this section we consider the special case NA = NB = 0, NC > 0, and s → 0. If
NC > nC > 0, we have

lim
s→0

γA,Bm = lim
s→0

(
NC − nC

m

){ m
s(1−tA)

}
{

m
s+nC

}
{

m
stB+nC

}
{

m
s(1−tB)+NC−nC−m

}

=


1 if m = 0
1−tA
1−tB

if m = NC − nC
0 otherwise,

if nC = 0, then

lim
s→0

γA,Bm =


1 if m = 0
1−tA
1−tB

tB if m = NC

0 otherwise,

and finally, if nC = NC , then γA,B0 = 1.
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Hence, in the limit s→ 0, if NC > nC > 0, from Eq. (C.2) we deduce that

lim
s→0

P (FC = 1|D) =
nC

nC

nC

NC
+ 1−tA

1−tB
nC

NC

NC

NC

1 + 1−tA
1−tB

=
nC
NC

, (C.8)

and similarly from Eq. (C.7)

lim
s→0

P (FA = 1|D) =
nC

nC
+ 1−tA

1−tB
nC

NC

1 + 1−tA
1−tB

=
(1− tB) + (1− tA) nC

NC

2− tA − tB
(C.9)

If nC = 0, then lims→0 P (FC = 1|D) = 0, and

lim
s→0

P (FA = 1|D) =
tA + 0

1 + 1−tA
1−tB

tB
=
tA − tAtB
1− tAtB

(C.10)

If nC = NC , then lims→0 P (FC = 1|D) = lims→0 P (FA = 1|D) = 1.
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