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Abstract

We prove that a very basic class of program schemes augmented with access to a queue
and an additional numeric universe within which counting is permitted, so that the
resulting class is denoted NPSQ (1), is such that the class of problems accepted by
these program schemes is exactly the class of recursively enumerable problems. The
class of problems accepted by the program schemes of the class NPSQ(1) where only
access to a queue, and not the additional numeric universe, is allowed is exactly the
class of recursively enumerable problems that are closed under extensions. We define
an infinite hierarchy of classes of program schemes for which NPSQ(1) is the first
class and the union of the classes of which is the class NPSQ. We show that the class
of problems accepted by the program schemes of NPSQ is the union of the classes
of problems defined by the sentences of all vectorized Lindstrém logics formed using
operators whose corresponding problems are recursively enumerable and closed under
extensions; and, as a result, has a zero-one law. Moreover, we also show that this
class of problems can be realized as the class of problems defined by the sentences
of a particular vectorized Lindstrom logic. Finally, we show how our results can be
applied to yield logical characterizations of complexity classes and provide logical
analogues to a number of inequalities and hypotheses from computational complexity
theory involving (non-deterministic) complexity classes ranging from NP through to
ELEMENTARY.
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1 Introduction

Descriptive complexity theory is the study of the relationship between the
computational complexity of a problem and the logical definability of the prob-
lem (as such, descriptive complexity theory forms a substantial research area
within finite model theory). The subject essentially originated with Fagin’s
Theorem [15] which states that a problem (more precisely, an encoding of a
problem) can be accepted by a non-deterministic Turing machine running in
polynomial-time if, and only if, it can be defined by a sentence of existential
second-order logic; and since then the relative relationships of a whole range of
complexity classes and logics have been examined (see, for example, [14, 26],
which we also use as our references for finite model-theoretic concepts and
notions not given in this paper; whereas we refer the reader to [17] for defi-
nitions of the standard complexity classes considered in this paper). Having
logical equivalents of hypotheses in complexity theory (for example, NP = co-
NP if, and only if, existential second-order logic and universal second-order
logic define the same class of problems) enables different lines of attack on
these hypotheses using (inexpressibility) tools from finite model theory, such
as Ehrenfeucht-Fraissé games and zero-one laws, which are not available in the
traditional Turing machine-based setting.

The connection between a complexity class and a logic need not be as tight
as it is in Fagin’s Theorem. For example, it is known that a problem is in P
if, and only if, it can be defined by a sentence of inductive fixed-point logic,
and that a problem is in PSPACE if, and only if, it can be defined by a
sentence of partial fixed-point logic, but in both cases under the assumption
that every finite structure comes with a linear order of its elements (in the
form of a binary relation describing a successor relation), i.e., when we deal
with ordered finite structures [24, 38]. It turns out that on the class of all finite
structures there are problems in P (resp. PSPACE) which are not definable
by any sentence of inductive (resp. partial) fixed-point logic. Furthermore,
these problems can by trivial in a complexity-theoretic sense: one such is
PARITY, the problem consisting of those finite structures, over some fixed
signature, of even size (PARITY is definable in neither inductive nor partial
fixed-point logic). Whilst having logical characterizations of complexity classes
on the class of ordered finite structures is very useful on a number of counts,
having logical characterizations on the class of all finite structures is much
more preferable. For instance: ordered structures are much more difficult to
work with when applying the inexpressibility tools of finite model theory; in
applications of descriptive complexity theory, to database theory for example,
it is almost always the case that finite structures are not ordered; and it is often
undecidable as to whether a formula is well-formed when we restrict ourselves
to the class of ordered finite structures (we shall return to this remark later



when we discuss what it means for a logic to be a logic!).

Whilst it remains unknown as to whether there is a logic capturing P (or
indeed any complexity class for which the expectation is that it is properly
contained in NP) on the class of all finite structures, Abiteboul and Vianu
proved the following result [2, 3]: P = PSPACE if, and only if, the classes of
problems, on the class of all finite structures, defined by the sentences of induc-
tive fixed-point logic and partial fixed-point logic, respectively, are one and the
same (we reiterate that there are trivial problems, in a complexity-theoretic
sense, not definable in inductive and partial fixed-point logic). It is particu-
larly interesting that a complexity-theoretic statement like P = PSPACE has
an equivalent formulation in logic where there is a such a mismatch between
the complexity class and the class of problems defined in the respective logic.
Abiteboul, Vardi and Vianu [1] and Dawar [12] subsequently obtained similar
results involving a range of complexity classes including P, NP, the classes of
the Polynomial Hierarchy PH, PSPACE and EXPTIME. One thing all of
the logics involved in these results have in common is that they can be realised
as fragments of bounded-variable infinitary logic £% , (one property of which
is that it has a zero-one law on the class of all finite structures; and so there
is no chance of a tight relationship between the respective complexity classes
and logics).

In obtaining their result, Abiteboul and Vianu developed a model of com-
putation known as a loosely coupled generic machine which was renamed a
relational machine in [1]. Essentially, a relational machine is a Turing machine
augmented with a relational store and the ability to perform relational opera-
tions on this store. Also, the input to a relational machine is a finite structure
and not the encoding of such as a string of symbols (encoding an input as
a string of symbols, as is the case with a standard Turing machine, means
essentially providing an order on the elements of the underlying finite struc-
ture). Relational machines can actually be regarded as an effective fragment
of LY, ,. However, Abiteboul and Vianu are not the only researchers in recent
times to work with models of computation taking finite structures as their
inputs. Perhaps the best known computational model taking finite structures
as inputs is the abstract state machine (formerly called evolving algebra) due
to Gurevich [22].

Continuing this theme of developing computational models taking finite
structures, and not the encodings of such, as their inputs, the expressive power
of different classes of program schemes has recently been considered. Program
schemes are similar in flavour to relational machines and abstract state ma-
chines. They form a model of computation that is closer to the notion of
a high-level program than a logical formula is; yet they remain amenable to
logical manipulation. Program schemes (of various sorts) originated in the
70s (for example, see [8, 9, 16, 31]), without much regard being paid to an



analysis of resources, before a closer complexity analysis was undertaken in,
mainly, the 80s (for example, see [23, 27, 29, 37]: though the analysis tended
to be on ordered finite structures). In [18, 32, 34, 35, 36], the computational
power of different classes of program schemes, on the class of all finite struc-
tures, is compared with the expressive power of logics previously considered
in descriptive complexity theory (and also with the computational power of
resource-bounded classes of Turing machines).

A crucial difference between program schemes and the traditional logics
of descriptive complexity theory is that program schemes can be augmented
with ‘computational’ constructs not immediately available in logic, such as
stacks and arrays; although it is sometimes the case that the resulting classes
of problems have arisen previously in a different guise. For example: in [5],
it was shown that the program schemes of the class NPS accept exactly the
class of problems defined by the sentences of Immerman’s transitive closure
logic [25], and that the program schemes of the class NPSS (essentially, the
program schemes of NPS augmented with access to a stack) accept exactly the
class of problems defined by the sentences of path system logic [20, 28, 33];
in [34], the program schemes of the class NPSA (essentially, the program
schemes of NPS augmented with access to arrays) were shown to have a zero-
one law and to accept problems not definable in £%, ; and in [18], the class of
problems accepted by the program schemes of the class REDPS (obtained by
incorporating for-loops as opposed to while-loops into program schemes) was
shown to be a proper sub-class of the polynomial-time solvable problems, to
contain every problem defined by the sentences of inductive fixed-point logic,
and to contain problems not in the class of problems known as Choiceless
Polynomial-Time, due to Blass, Gurevich and Shelah [6].

In this paper, we augment the basic class of program schemes NPS(1) (the
first class of program schemes in the infinite hierarchy which defines NPS)
with a queue and an extra ‘numeric’ universe. We prove that when both
augmentations are present, the class of problems accepted by the resulting
class of program schemes NPSQ, (1) is exactly the class of recursively enu-
merable problems, i.e., the class of problems RE; and when only the queue
is added, the class of problems accepted by the resulting class of program
schemes NPSQ(1) is exactly the class of recursively enumerable problems that
are closed under extensions, i.e., the class of problems RE N EXT. Intu-
itively, the class of program schemes NPSQ(1) caters for first-order existential
quantification through its ability to guess. We proceed to introduce univer-
sal quantification by constructing an infinite hierarchy of classes of program
schemes obtained by interleaving the application of universal quantification
with the basic constructs of the program schemes of NPSQ(1). We denote the
union of the classes of the resulting hierarchy by NPSQ. It turns out that the
class of problems accepted by the program schemes of NPSQ has an alternative



‘semantic’ characterization as the class of problems defined by the sentences
of any vectorized Lindstréom logic for which the problem corresponding to the
operator is recursively enumerable and closed under extensions. It follows as
a corollary that this class of problems has a zero-one law. We remark that
by a result of [34], there are problems in NP that are accepted by program
schemes of NPSQ(1) but which are not definable in £% , which is an encom-
passing logic for many of the logics studied in finite model theory (as well as
for the relational machines of Abiteboul and Vianu). Furthermore, we show
that NPSQ can actually be realized as a vectorized Lindstrom logic (and not
just as the union of such) where the operator defining the logic corresponds
to a problem complete for NPSQ(1) (resp. RE) via quantifier-free first-order
translations (resp. with a numeric universe).

The fact that NPSQ, (1) accepts exactly the recursively enumerable prob-
lems enables us to restrict the resources (time and space) used by these
program schemes so that we can logically capture many complexity classes
ranging from NP through to ELEMENTARY. (By ‘logically capture’ we
mean equate the problems in a complexity class with the problems defined
by the sentences of a logic, where by ‘logic’ we mean according to Gure-
vich’s definition [21], which we shall detail later . Harking back to an earlier
remark on logical characterizations of complexity classes on the class of or-
dered finite structures, such characterizations are not always ‘logical’ in the
sense of Gurevich.). By looking at the respective classes of program schemes
where access to the numeric universe is removed, we move from the com-
plexity class to its fragment of problems closed under extensions. In doing
so, we show that many complexity-theoretic inequalities, e.g., NEXPTIME
# 2-NEXPTIME, and hypotheses, e.g., NEXPTIME # EXPSPACE,
are equivalent to these inequalities and hypotheses for the fragments, e.g.,
NEXPTIMENEXT # 2-NEXPTIMENEXT and NEXPTIMENEXT #
EXPSPACENEXT; and that these fragments can be logically captured (in
the sense of Gurevich: it is not immediately obvious that a semantic restriction
such as NEXPTIMENEXT can be captured syntactically by a logic). Hence,
even though a conjecture such as NEXPTIME # EXPSPACE might ap-
pear to live solely within the realm of Turing machines, it has equivalent formu-
lations in logic: one involving resource-bounded classes of program schemes
involving a numeric universe which capture exactly the complexity classes
NEXPTIME and EXPSPACE, and another involving resource-bounded
classes of program schemes without access to a numeric universe which capture
the classes of problems NEXPTIMENEXT and EXPSPACENEXT. This
is interesting for the same reason that the equivalence results of Abiteboul at
al. are interesting, i.e., given that complexity-theoretic trivial problems, like
PARITY, can not be accepted by any of the program schemes in any of the
fragments such as NEXPTIMENEXT and EXPSPACENEXT .



Whilst our equivalence results are similar to those of Abiteboul et al., they
involve different logics: recall, we mentioned earlier that there are problems
in NP that are accepted by program schemes of NPSQ(1) but which are not
definable in L& ,. Also, whereas the logics involved in the results due to
Abiteboul el al. have a zero-one law (because they are fragments of £ ), the
classes of program schemes involved in our equivalence results define prob-
lems closed under extensions and so have a ‘one-law’ (apart from the program
scheme, over some fixed signature, which accepts no finite structures).

In Section 2, we give the basic definitions concerning the program schemes
encountered in this paper, before explaining how to relate classes of finite
structures and sets of strings of symbols in Section 3. In Section 4, we prove
our basic results concerning the classes of program schemes NPSQ, (1) and
NPSQ(1); and we extend the class of program schemes NPSQ(1) to an infinite
hierarchy NPSQ in Section 5. Our applications are given in Section 6, and
Section 7 contains our conclusions and some directions for further research.

2 Program schemes with queues

Throughout, all our signatures consist of a finite tuple of relation symbols (of
various arities) and constant symbols; and we assume that every signature
has at least one relation symbol. A finite structure A over the signature o
consists of: a finite universe (or domain), denoted |Al; a relation R4 C |A|®
for every relation symbol R of o of arity a; and a constant C* € |A| for every
constant symbol C of o (henceforth, we do not always differentiate between
relations and relation symbols and between constants and constant symbols:
this causes no confusion). If the universe |A| of the finite structure A has
size n then we say that A has size n, and we denote the size of A by | A]| too
(again, this causes no confusion). Throughout, all our structures are finite and
of size at least 2. A problem is an isomorphism-closed class of finite structures
over some fixed signature. If A and B are both finite o-structures such that
|A| C |B| and B restricted to |A| is A (and so, in particular, C* = OB € | A]
for every constant symbol C' of o) then B is an eztension of A and we write
A C B. If Q is a problem, over the signature o, for which: A and B are
finite o-structures; A C B; and A € 2, imply that B € €2, then  is said to
be closed under extensions. We denote the class of problems that are closed
under extensions by EXT.

Program schemes are more ‘computational’ means for defining classes of
problems than are logical formulae. A program scheme p € NPS(1) involves
a finite set {x1,x9,...,x} of variables, for some k£ > 1, and is over a sig-
nature o. It consists of a finite sequence of instructions where the first in-
struction is ‘input(zi,x2,...,Zp)’, for some m < k, and the variables of



{z1,z9,...,2m} are known as the input-output variables, with the variables
of {Zm+1, Tm42,--.,%k} being the free variables. The remaining instructions
are one of the following;:

e an assignment instruction of the form ‘z; := y’, where i € {I,2,
...,m} and where y is a variable from {z,z9,...,x;} or a constant
symbol of o;

e a guess instruction of the form ‘guess x;’, where i € {1,2,...,m};

e a while instruction of the form ‘while ¢ do ay;a9;...;q4 od’, where
 is a quantifier-free first-order formula over o, involving variables from
{z1,z2,..., 21}, and where each of oy, g, ...,y is another instruction
of one of the forms given here (note that there may be nested while
instructions); or

e an accept instruction accept or a reject instruction reject.

A program scheme p € NPS(1) over o with k—m free variables takes expan-
sions A’ of o-structures with £ —m constants as input (one constant for each
free variable) and computes on A’ in the obvious way except that: execution
of an instruction ‘guess z;’ non-deterministically assigns an element of |A’| to
the variable z;; initially, every input-output variable is non-deterministically
assigned a value from |A'|; and if a computation encounters an accept or a
reject instruction then the computation halts. Note that the value of a free
variable never changes throughout a computation: the free variables appear as
if they were constant symbols. The structure A’ is accepted by p, and we write
A’ E p, if, and only if, there exists a computation of p such that an accept in-
struction is reached (note that some computations might not be terminating).
We can easily build the usual ‘if’ and ‘if-then-else’ instructions using while
instructions (see, for example, [32]): henceforth, we shall assume that these
instructions are at our disposal. Note that the class of structures accepted by
a program scheme of NPS(1) is a problem, i.e., closed under isomorphisms.

Remark 1 The class of program schemes NPS(1) was defined slightly differ-
ently in [5] in that two ‘built-in’ constants were always assumed to be available
and acceptance was determined by the values of the input-output variables at
an appropriate point in the computation. This is of no significance to us in
that the classes of problems defined by our class of program schemes NPS(1)
and the identically-named class of program schemes from [5] are one and the
same. Also, the parameter ‘1’ in NPS(1) reflects the fact that this class of
program schemes is the first class in an infinite hierarchy of classes of program
schemes. We shall return to such hierarchies later. O



Whereas a stack and arrays were incorporated into the program schemes
of NPS(1) in [5, 34, 35, 36], let us now augment these program schemes with
access to a queue, i.e., a first-in, first-out store. In addition to the above
instructions, we include the instructions ‘push z;’ and ‘z; := pop’ although
in this latter instruction we insist that z; must be an input-output variable,
whereas in the former it can also be a free variable. The first instruction takes
the current value of the variable x; and pushes this value onto the end of the
queue (the value of z; does not change and the length of the queue increases by
1), and the second takes the current value from the head of the queue and sets
x; to have this value (with the length of the queue decreasing by 1). Initially,
the queue is empty and if ever we attempt to pop from an empty queue then
that particular computation is deemed not to be accepting. We denote the
program schemes of NPS(1) augmented with a queue by NPSQ(1).

We can also augment our program schemes with a numeric universe. That
is, we can assume that the variables of a program scheme are of one of two
types: variables of the first type, the element type, take values from the do-
main of the input structure (as they have done so far); and variables of the
second type, the numeric type, take values from the numeric universe, namely
{0,1,...,n—1}, where the input structure has size n (we assume that the uni-
verse of the input structure and the numeric universe are disjoint). We insist
that all variables of numeric type must be input-output variables and that they
are initialized to 0. Additionally, there are two constant symbols 0 and max
which are always interpreted as the numbers 0 and n — 1. The instructions

available to the variables of numeric type, t1, %2, ..., 4, say, are assignments of
the form ‘¢; := t;’,*¢; := 0’and ‘t; := max’, and assignments adding one to
the value of a variable, of the form ‘¢; := ¢; + 1’ (if the variable ¢; has value

n — 1 then execution of this instruction causes that particular computation to
reject the input); and ‘¢; = t;°, ‘t; = 0, ‘4; = maz’ and their negations can
appear as atoms and negated atoms in quantifier-free first-order formulae used
as tests in while instructions (these quantifier-free first-order formulae might
be combinations of atoms involving variables of both element and numeric
type). Note that we do not allow numeric values to be pushed onto the stack
(if we did then we would have to deal with the possibility of a type mismatch
when popping values off the stack). The class of program schemes NPSQ(1)
augmented with a numeric universe, as above, is denoted NPSQ (1). Again,
the classes of structures accepted by the program schemes of NPSQ (1) are
problems.



3 Finite structures and Turing machines

Finite structures are abstract objects and, as such, there is generally no canon-
ical representation of a finite structure as a string over {0,1}, i.e., as a bit-
string. Nevertheless, we can still arrange for finite structures to be input
to Turing machines (throughout this paper all our Turing machines are non-
deterministic).

Consider the signature o consisting of the relation symbols Ri, Ro,
..., R, of arities ay, a9, ..., a,, respectively, and the constant symbols C, Cs,
..., 0. Let A be a o-structure of size n. Encode A in the following way.
First, choose a linear ordering wug,u1,...,u,_1 of the elements of |A|. Next,
encode each relation R;“ as the bit-string of length n® where the jth bit is
1 (resp. 0) if the tuple (ukl,uk2,...,ukai), where (ki,ka,. .., kq,) is the jth
tuple in the lexicographic ordering of the elements of {0, 1,...,n—1}% is such
that R;(uk,, Uk, - - ,ukai) holds (resp. does not hold) in A. Next, encode the
constant C#! as the ([logy(n)])-bit binary representation of the integer & for
which the constant C{A has the value uy. Finally, take the encoding e, (A) of A
to be the concatenation of the bit-strings encoding R, Ra, ..., R,,Cy,Co, ...,
and C,. Of course, our encoding scheme is non-deterministic in that we chose
one of the n! linear orderings of the elements of |.A| upon which to base our
encoding of A.

We say that a problem 2 over o is accepted by a Turing machine M if M
accepts exactly those bit-strings encoding structures in © (with respect to any
one of the above encoding schemes: our Turing machine need not halt on inputs
not accepted); and so, in particular, as to whether an encoding e, (.A) of any
o-structure A is accepted by M is independent of the particular linear order
chosen when encoding A. Note that the length of e, (A) is also independent
of the particular linear ordering chosen; and if |A| = n then we denote this
length by e, (n). Define RE as the class of problems accepted by some Turing
machine. Note that not every Turing machine accepts a problem and that RE
is not the class of recursively enumerable languages but the class of recursively
enumerable problems'. However, any (resp. recursively enumerable) language
can be realized as a problem over the signature o consisting of the binary
relation symbol L and the unary relation symbol B (resp. accepted by a
Turing machine). A string over {0,1} can be considered as a o-structure
A (in fact, as a class of o-structures) whose binary relation L“ describes a
successor relation, i.e., a relation {(ug,u1), (u1,up),. .., (Un—2,un—1)}, where
|A| = {wog,u1,...,up—1}, which details the bit positions of the string, and
whose unary relation B details which bits are 0 and which bits are 1 (with

'In the extended abstract of this paper, referenced earlier, we called the class of problems
accepted by some Turing machine the class of recursive problems and denoted it REC. This
was misleading and we have altered our definition and notation accordingly in this paper.



respect to this successor relation).

4 Recursively enumerable problems

We begin by proving that the class of program schemes NPSQ, (1) consists
of the recursively enumerable problems. Throughout, we identify a class of
program schemes (resp. a logic, a class of Turing machines) with the class of
problems accepted by those program schemes (resp. defined by the sentences
of the logic, accepted by those Turing machines).

Theorem 2 A problem is accepted by a program scheme of NPSQ (1) if, and
only if, it can be accepted by a Turing machine; that is, NPSQ (1) = RE.

Proof Suppose that the problem (2 is accepted by some (non-deterministic)
Turing machine M. We shall construct a program scheme p of NPSQ_ (1)
which simulates M. Without loss of generality, we can assume that: the
Turing machine M has a two-way infinite work-tape and a read-only input-
tape; the work-tape alphabet is {0, 1,b}; and the input-tape has a left-hand
marker symbol [ and a right-hand marker symbol r which delimit the input
string.

Essentially, the queue of our program scheme p will hold a description of
the tapes of the Turing machine. We start with the work-tape. Let u and
v be distinct elements of an input structure (we can guess these elements as
the first act of our program scheme). In our description of the work-tape, we
encode the work-tape symbol 0 as the triple (u,u,u), the work-tape symbol
1 as the triple (v,v,v) and the blank symbol b as the triple (u,u,v); and we
use the triples (v, u,u) and (v,v,u) as delimiters. Let the work-tape at some
instantaneous description (ID) of M be of the form:

W1, W2,y v oy Wiy ooy Win,

reading from left to right where wy (resp. wy,) is the first blank symbol to the
left (resp. right) of the work-tape head beyond which the work-tape is entirely
blank. Furthermore, suppose that the work-tape head is scanning the symbol
w;. The queue will consist of: the triple encoding wy; the triple encoding ws;
...; the triple (v,u,u) (to denote that the head is scanning the next symbol);
the triple encoding wy; . ..; the triple encoding w,,; and the triple (v,v,u) (to
denote that we have reached the end of our description of the work-tape). In
particular, by popping and pushing symbols from and onto the queue until
we find the triple (v, u,u), we can ascertain the symbol the work-tape head is
currently scanning; and having the description of the ID appear on the queue
‘cyclically shifted’ does not result in any information loss.

10



We shall describe the state of the Turing machine M in any ID using a
constant number of variables of our program scheme p. For example, if M has
q states then: we could encode the first state by setting the tuple of (input-
output) variables (z1,z2,...,24) of p to (u,v,...,v); we could encode the
second state by setting the tuple of variables (z1, 22, ...,24) to (v,u,v,...,v);
and so on. Also, should our program scheme p know which move of the Turing
machine M to simulate and the effect upon the work-tape and the work-tape
head, we could easily simulate this move by making appropriate manipulations
of the queue, i.e., repeated popping and pushing.

Consequently, we are left with the problem of dealing with the input tape.
This is more complicated as initially our program scheme is not given an
encoding of the input structure A, which has size n, say: it simply has access
to the raw finite structure itself. However, we can build our own encoding of
A. Prior to any simulation of the Turing machine M, our program scheme
guesses a linear ordering on |4| and stores this linear ordering on the queue
(protected by delimiters). Note that because we have access to the (disjoint)
domain {0,1,...,n — 1}, the capacity to count using the elements of this
domain and the integers 0 and n — 1 (through the constants 0 and maz), we
can ensure that our guessed linear order contains every element of | 4| exactly
once (this is the only place in p where we use the numeric universe and the
add-one operation with its associated constants).

Suppose that our guessed linear order is ug, ¢1, ..., up—1. This linear order
defines a concrete encoding of our input structure (see the discussion at the
beginning of this section) and it is this encoding which we assume is presented
to the Turing machine M (note that because of our stipulation that M accepts
either every encoding of A or no encoding of A, we can work with any encoding
we choose to). We use our linear order to write a description of the input-tape
of M on our queue. In more detail, suppose that we wished to describe the
encoding of a binary relation E4 on our queue. Within p, we would have
two variables in which to store the particular bit of E“ we were dealing with
(starting with the bit indexed by (ug,ug)). Using while-loops, our linear order
and repeated poppings and pushings, we would register the bits of E* indexed
by the pairs:

(uo,u0), (o, u1),- -, (w0, un—1), (w1, up), (U1,61), ..., (Up—1,Up—1)

on the queue. We encode constants similarly; although note that we use the
linear order, and not the numeric universe and the add-one operation, in our
calculation of the binary representation of the index of our constant (this will
be of relevance in a later proof). As with the work-tape, the input-tape head
position is registered using delimiters.

It is now straightforward, given descriptions of the input-tape and the

11



work-tape on the queue, to simulate the computation of M. The converse,
that any problem in NPSQ, (1) is in RE, is trivial. O

Our strategy to simulate a Turing machine in the proof of Theorem 2
depended upon us being able to guess a linear order and also to check that
this was a bona fide linear order by counting in our numeric universe. The

question remains as to what sort of problems can be accepted by program
schemes of NPSQ(1).

Theorem 3 A problem is accepted by a program scheme of NPSQ(1) if, and
only if, it can be accepted by a Turing machine and is closed under extensions;

that is, NPSQ(1) = RENEXT.

Proof Let A and B be o-structures such that A C B. If A is accepted
by some program scheme p of NPSQ(1) then we can mirror an accepting
computation in a computation of p on B (essentially, because our tests in
while instructions are quantifier-free). Hence, NPSQ(1) CRENEXT.

Conversely, suppose that €2 is a problem, over the signature o, in RE N
EXT. In particular, € is accepted by some Turing machine M. Construct a
program scheme p’ of NPSQ(1) as in the proof of Theorem 2 except that when
the linear order is guessed, the checks made are that every element appears
in the linear order at most once and that every constant appears in the linear
order. Note that when the input-tape is described on the queue of p', the
parameter n used in the description is not the size of the input structure but
the number of elements in the domain of the linear order. Also, whenever p’
makes a guess, include code to ensure that the guess is always an element in
the domain of the linear order (essentially, ‘keep guessing until a good guess
is made’).

Suppose that the o-structure A is in ; that is, every encoding of A is
accepted by M. Then there is a computation of p’ on input A which guesses a
linear order whose domain is the whole of |.A|; and as a result, this computation
of p’ on input A simulates that of M on the respective encoding of A. Thus,
A is accepted by p'.

Suppose that the o-structure A is accepted by p’. Then there is an accept-
ing computation where this computation guesses a linear order whose elements
come from the subset B of |A| (and B contains all constants of A). Let B
be the restriction of A to B (and so A is an extension of B). The accepting
computation of p’ on input A simulates an accepting computation of M on
input the respective encoding of B (because any guess results in an element
of B). Hence, this encoding of B is accepted by M and thus B € . But Q is
closed under extensions and so A € 2. The result follows. O
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5 Hierarchies and Lindstrom logics

We can extend our class of program schemes NPSQ(1) to a hierarchy of classes
of program schemes essentially by interleaving applications of universal quan-
tifiers with the basic constructs of the program schemes of NPSQ(1). In more
detail, assume that we have defined a class of program schemes NPSQ(2m—1),
for some m > 1, and that any program scheme has associated with it: a set of
input-output variables; a set of free variables; and a set of bound variables (this
is certainly the case when m = 1, with the associated set of bound variables
being empty).

Definition 4 Let the program scheme p € NPSQ(2m — 1) be over the sig-
nature o. Suppose that p has: input-output variables zi,zo,...,z; free
variables i1, k42, ..., Tr+s; and bound variables X541, Zhtrs+2,- -, Thtstt
(note that if m = 1 then p has no bound variables: this may not be the case
if m > 1). Let z;,2;,,...,%;, be free variables of p, for some p (and so
E+1<i; <ipg<...<ip<k+s). Then:

VIL‘Z'IVIL‘Z'Q e V]?ipp

is a program scheme of NPSQ(2m), which we denote by p', with: no input-
output variables; free variables those of {zgi1, Tk12, .- Tets} \ {Ziy) Tins - -,
z;, }; and the remaining variables of {x1, 2, ..., %454} as its bound variables.

A program scheme such as p’ takes expansions A’ of o-structures A by
adjoining s — p constants as input (one for each free variable), and p' accepts
such an expansion A’ if, and only if, for every expansion A" of A’ by p addi-
tional constants (one for each variable z;;, for j € {1,2,...,p}), A" |= p (the
computation on such an expansion A" always starts with the queue initialized
as empty). O

Definition 5 A program scheme p’ € NPSQ(2m — 1), for some m > 2, over
the signature o, is defined exactly as is a program scheme of NPSQ(1) except
that the test in any while instruction is a program scheme p € NPSQ(2m —2).
The bound variables of p’ consist of the bound variables of any test in any
while instruction; all free variables in any test in any while instruction are
input-output or free variables of p’; and there may be other free and input-
output variables (appearing in p’ at the ‘top level’ but not in any test). Of
course, any free variable never appears on the left-hand side of an assignment
instruction, in a guess instruction or in a pop instruction in p’ (at the ‘top
level’).

Suppose that a program scheme p' € NPSQ(2m — 1) has s free variables.
Then it takes expansions A’ of o-structures A by adjoining s constants as input
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and computes on A’ in the obvious way; except that when some while instruc-
tion is encountered, the test, which is a program scheme p € NPSQ (2m — 2),
is evaluated according to the expansion of A’ by the current values of any rele-
vant input-output variables of p’ (which may be free in p). In order to evaluate
this test, the queue associated with p is initialized as empty and when the test
has been evaluated the computation of p’ resumes accordingly with its queue
and input-output and free variables being exactly as they were immediately
prior to the test being evaluated. In particular, queues can not be ‘passed
across’ in the evaluation of tests: the values of variables can be but they are
never amended in the process. O

Consequently, we obtain a hierarchy of classes of problems:
NPSQ(1) C NPSQ(2) C ... CU{NPSQ(i): i =1,2,...} = NPSQ

(we use the inclusion relation between consecutive classes because this is how
they are related as classes of problems). Similar hierarchies have been defined
previously. In [5], the basic NPS hierarchy was considered (where the program
schemes have no access to a queue or any other sort of additional storage), as
was the NPSS hierarchy where the program schemes of NPS are given access
to a stack; in [34], the NPSA hierarchy was considered where the program
schemes of NPS are given access to arrays; and in [36], the NPSB hierarchy
was considered where the program schemes of NPSA are restricted so that
the arrays are, in a sense, ‘binary write once’. The semantics of the program
schemes of NPSS, NPSA and NPSB are similar to those of NPSQ in that
neither stacks nor arrays can be ‘passed across’ in the evaluation of tests. We
have that:
NPS C NPSS € NPSB C NPSA,

with analogous inclusions holding at each level of the corresponding hierar-
chies. It is straightforward to simulate access to and from an array using a
program scheme with a queue. Consequently, we have that NPSA C NPSQ
(and, again, inclusions hold at each level of the hierarchies).

The classes of program schemes NPS, NPSS, NPSB and NPSA have two
important properties in common: they all have equivalent formulations as
certain vectorized Lindstrom logics, and, as a consequence, have zero-one laws.
Let us now define these concepts.

We start with the notion of a zero-one law. For the moment, fix the domain
of any finite structure of size n as {0,1,...,n — 1}. We say that a problem
has a zero-one law if the fraction defined as the number of o-structures of size
n in  divided by the total number of o-structures of size n tends to either
0 or 1 as n tends to infinity. It is not difficult to see that if any (non-trivial)
problem has a zero-one law then it must be over a relational signature, i.e., a
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signature devoid of constant symbols. A logic (resp. class of program schemes)
has a zero-one law if the problems over relational signatures defined by the
sentences of the logic (resp. accepted by the program schemes of the class)
all have a zero-one law. We now revert back to the domains of our structures
being arbitrary finite sets.

Suppose that the problem €2 is over the signature o, where 0 = (Ry,..., R,,
Cy,...,C.), with each relation symbol R; having arity a; and each C; being a
constant symbol. The logic (££2)*[FO] consists of those formulae built using
the usual constructs of first-order logic and also the operator (or, more pre-
cisely, vectorized sequence of Lindstrom quantifiers) €2, where the operator
is applied as follows.

e Suppose that 11 (x',y),¥2(x2,y),..., ¥, (x",y) are well-formed formulae
of (£0)*[FO] such that:

— each x’ is a ka;-tuple of distinct variables, for some fixed k£ > 1 and
for each i € {1,2,...,1};

— y is an m-tuple of distinct variables, for some m > 0, each of which
is different from any variable of x',x2,...,x"; and

— all free variables of any 1); are contained in either x or y, for each
ie{l,2,...,r}.

e Suppose that d',d?,...,d¢ are k-tuples of variables and constant sym-
bols from the underlying signature (these variables and constant symbols
need not be distinct).

e Then

QP‘XIQ/)I (Xla Y)a X21/)2(X27 Y)a tee 7xr1/)7‘(xr7 y)](d17d27 s 7dc)

is a formula of (£Q)*[FO] whose free variables are the variables of y
together with any other variables appearing in d',d?,...,d°.

Note that applications of the operator {2 can be nested, appear within the
scope of quantifiers, appear negated, and so on.

If ® is a sentence of the form Q[Ax!ey(x!), x24ho(x2), ..., x ", (x7)](d?,
d?,...,d°), as above, over some signature o', then we interpret ® in a o'-
structure A inductively as follows (note that as ® is a sentence, the variables
of y, above, are absent and the tuples d',d?,...,d¢, which are only there if
there are constant symbols in o, consist entirely of constant symbols of o).
First, we build a o-structure ®(A).

e The domain of the o-structure ®(A) is |A*.

e For each i € {1,2,...,r}, the relation R; of ®(.A) is defined via:
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— for any u € |®(A)|% = |A|*%, R;(u) holds in ®(A) if, and only if,
1;(u) holds in A.

e For each j € {1,2,...,c}, the constant C; of ®(A) is defined via:
— ()} is the interpretation of the tuple of constants d; in A.

We define that A |= @ if, and only if, ®(A) € Q (the situation where ® has free
variables is similar except that ® is interpreted in expansions of ¢’-structures
by an appropriate number of constants).

Logics such as (£Q)*[FO] are called vectorized Lindstrom logics. Vec-
torized Lindstrom logics play an important role in finite model theory. For
example, there are a number of characterizations of complexity classes as the
classes of problems definable, sometimes only on the class of ordered finite
structures (which we discuss soon), by the sentences of (fragments of) certain
vectorized Lindstrom logics (see [14, 26]); and Dawar [11] has shown that if
the complexity class P can be captured on the class of all finite structures by
any logic then it can be captured by a vectorized Lindstrém logic (we discuss
later what it means to be a ‘logic’).

The realizations in [5, 34, 36] of NPS, NPSS, NPSB and NPSA as vectorized
Lindstrom logics are through operators corresponding to the transitive closure
problem (see, for example, [25]), the path system problem (see, for example,
[20, 28, 33]) and two problems whose instances involve Petri nets, respectively.

The following lemma will be required later. Given operators ; and 9
(corresponding to problems ©; and €Qs9), we denote by (£, £09)*[FO] the
vectorized Lindstrom logic built using the constructs of first-order logic and
both operators 1 and Q5. Obviously, we can use more than two such operators
and the resulting logic is denoted similarly.

Lemma 6 Let Q1 and §d9 be problems that are in RENEXT. Then there
exists a problem Q € RENEXT such that the class of problems defined by the
sentences of (£8y,+Q9)*[FO] is identical to the class of problems defined by
the sentences of (£Q)*[FO].

Proof Suppose, for simplicity, that the problem 2; is over the signature
o1 = (R,C), where R is a relation symbol of arity 1 and C is a constant
symbol, and that the problem Qs is over the signature oo = (11, T5), where T
and T, are relation symbols of arities 1 and 2, respectively (the general case is
similar). Define the signature o = (R, Ty, T, C, Dy, D1), where Dy and D, are
additional constant symbols. Define the problem €2 over ¢ to consist of those
o-structures A such that either Dg' = D{* and A restricted to the symbols of
o1 is in €4, or D()‘l # D{4 and A restricted to the symbols of o9 is in §2s.
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Any formula of (£Q)*[FO] of the form:

QP‘Xl/)a xll/)b X21/)27 ] (Y7 Zl ) Z2)

(where 9 describes a relation corresponding to R, 11 describes a relation
corresponding to 77 and o describes a relation corresponding to 75, with all
tuples of variables of appropriate lengths) is logically equivalent to the formula:

(z' =22 A QU Dxy)(y)) V (2! # 27 A Q2 Ax 41, x%4ho)).
The formula Q;[Ax](y) is logically equivalent to the formula:
Jz(QPxy, x! (x' = x1),x*(x* = x%)|(y,2,2)),

and similarly for the formula Qo[Ax!4;,x%¢p5]. The result follows as Q €
RENEXT. 0

Theorem 7
NPSQ = | J{(£Q)* [FO] : Q € RENEXT}.

Proof Fix ¢ > 0. Assume, as our induction hypothesis, that every problem
accepted by a program scheme of NPSQ(7), where 7 < 2¢ + 1, can be defined
by a sentence of a vectorized Lindstrom logic (££2)*[FO] where the problem
QeERENEXT.

Let p be a program scheme of NPSQ(2c + 1) over the relational signature
o = (Ry, Ry, ..., Ry), where the relation symbol R; has arity a; (w.l.o.g. we
may suppose that p does not contain if and if-then-else instructions, only while
instructions). Suppose further that p has input-output variables =1, zs, ...,z
and ¢ while instructions. Let the tests, i.e., program schemes of NPSQ(2k), in
these instructions be p1, p2, ..., pg, and w.Lo.g. assume that the free variables
of p; are z1,2,...,2p, for i € {1,2,...,¢}.

Amend p so that it becomes a program scheme py of NPSQ(1) over the sig-
nature og = o U (T, T»,...,Ty), where T, Ts, ..., T, are new relation symbols
of arity p, by replacing the test p; with the atomic formula Tj(z1, z2, ..., z}),
for each i € {1,2,...,q}.

Define the problem €y over g as:

{A is a op-structure : A = po}.

By Theorem 3, €y is in RE N EXT. Let ¢’ be the expansion of o with
p additional constant symbols and consider each p; as accepting a problem
over ¢'. For each i € {1,2,...,q}, the induction hypothesis applied to p;
yields that there is a problem Q; € RE N EXT such that the problem over
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o' accepted by p; is defined by a sentence ®; of the logic (££;)*[FO]. For
each i € {1,2,...,q}, let the formula ¢;(z1,2,...,2,) be obtained from ®;
by replacing the additional constant symbols by the variables z1,z2,..., 7).
Then, for every o-structure A, A |= p if, and only if,

A= QxR (xY), ..., xRy (x™), ¥ 01 (¥1), - -, y904(¥)],

where x is an a;-tuple of variables, for each i € {1,2,...,m}, and y' is a
p-tuple of variables, for each i € {1,2,...,¢q}. By Lemma 6, the problem
accepted by p can be defined by a sentence of a vectorized Lindstrom logic
(£0Q)*[FO] where the problem Q € RENEXT.

The base case of our induction is when p € NPSQ(1). Let € be the
problem accepted by p. By Theorem 3, the problem Q € RENEXT and it is
trivially the case that 2 can be defined by a sentence of (£)*[FO]. Hence, by
induction, any problem of NPSQ can be defined by a sentence of a vectorized
Lindstrém logic (£Q)*[FO] where Q € RENEXT.

Conversely, suppose, as our induction hypothesis, that for any formula
o(x) of U{(£Q)*[FO] : @ € RENEXT} of symbolic length less then m,
there is a program scheme p of NPSQ, with free variables x, accepting exactly
the same class of structures (with the free variables considered as constant
symbols) that ¢ defines. If the formula ¢’ of J{(£Q)*[FO] : Q € RENEXT}
is of the form: Vx;p; Iz;0; —; @1 A wa; or 1V a2, where the formulae ¢; and
2 have symbolic length less than m, then there is a clearly a program scheme
p' of NPSQ accepting the same class of structures that ¢’ defines (again, with
any free variables regarded as constant symbols). The only interesting case
is when ¢’ is formed from formulae of J{(£Q)*[FO] : @ € RENEXTY, of
symbolic length less than m, by an application of an operator €y, with the
problem corresponding to €y being in RENEXT.

Let ¢’ be over the signature ¢’ and let £y be over the signature oy. As
Qp € RENEXT, there is a program scheme py of NPSQ(1) accepting Q.
If A’ is a o'-structure then in order to ascertain whether A |= ¢', we build
a og-structure ®(A4) (as we did when defining the semantics of a vectorized
Lindstrom logic), with domain |.A|¥, and check whether ®(A) is in 2. We
can amend the program scheme pg so that it works with k-tuples of elements,
rather than single elements, and so that tests involving symbols of o are
replaced with the appropriate sub-formulae of ¢'. In this amended program
scheme, assignments, for example, will be replaced k separate assignments,
and a pop from the queue will be replaced with k separate pops. The result is
a program scheme of NPSQ that takes a o’-structure A as input and accepts
if, and only if, A |= ¢'. The result follows (as the base case of the induction
is trivial). 0
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Essentially, Corollary 7 equates the ‘syntactically-defined’ class of prob-
lems NPSQ with the ‘semantically-defined’ class of problems definable using
first-order constructs in tandem with ‘recursively enumerable extension-closed’
operators.

An immediate corollary of Theorem 7 is that NPSQ has a zero-one law.

Corollary 8 The class of program schemes NPSQ has a zero-one law.

Proof By [34] (a simple extension of a result in [13]), it was shown that
any logic of the form (£Q)*[FO], where Q € EXT, has a zero-one law. The
corollary follows from Theorem 7. O

Although Theorem 7 does not imply that the class of problems NPSQ can
be realized as a vectorized Lindstrom logic (££2)*[FO], for some problem {2
(as can the classes of problems NPS, NPSS, NPSB and NPSA), it turns out
that this is indeed the case. Let C be some class of problems and let 2 be
some problem (as defined prior to the statement of Lemma 6). If Q € C and
any problem in C can be defined by a sentence of (£0)*[FO] of the form:

Qxtpy (xh), x%4ho (x2), ..., x b, (x7)](dY, d?, . .., d)

where each 1; is quantifier-free first-order and each d’ is a tuple of constant
symbols, then we say that the problem 2 is complete for C via quantifier-free
first-order translations.

Theorem 9 There exists a problem $, that is complete for NPSQ(1) via
quantifier-free first-order translations. Consequently, NPSQ = (£8,)*[FO).

Proof Let p be a program scheme of NPSQ(1), over some signature o, which
contains [ instructions (we write the instructions of our program schemes se-
quentially, one per line, and we split while, if and if-the-else instructions so
that the test is written on one line with the instructions within the while loop
on the lines thereafter: the first instruction is the input instruction). W.l.o.g.
we may assume that: p has no free variables; the input-output variables of p
are xi,s,...,%, for some k > 1; any push onto the queue is done via the
instruction ‘push x;’; any pop from the queue is done via the instruction ‘z;
:= pop’; and the accept instruction appears once as the last instruction, i.e.,
instruction number [.

Let A be a o-structure of size n > 2. An element u = (ug, u1,...,ur) of
{1,2,...,1} x | A]¥ encodes a partial ID of p on input A via: a computation of
p on input A is about to execute instruction ug and the variables z1, x2, ..., Tk
currently have the values wuq,uo, ..., u, respectively. Henceforth, we identify
partial IDs of p and the elements of {1,2,...,1} x |A|¥. A (full) ID is a partial
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ID augmented with a queue (that is, a list of elements of |.A4|, possibly with
repetitions).

We now build a digraph G = (V, F') using p and A. The vertex set V is
({1,2,...,0} x |JA*) x ({1,2,...,1} x |A]¥) and there is an edge from (u, V) to
(u’,v') if it is possible for p, on input A4, to move from partial ID u to partial ID
u, and v = (L,uy,uq,...,u1) and v/ = (L,u),u),...,u}) (the point of having
the current value of the variable 1 in a partial ID u duplicated in the second
component of a vertex (u,v) will become apparent when we logically encode
digraphs such as G). Of course, as to whether such a move can occur might
depend upon the element currently at the head of the queue (in a computation
of p on A). Nevertheless, the edges of G reflect the possible moves of p on
input A. We now register possible dependence or influence on the queue by
labelling some of the edges of F. If an edge of F' corresponds to a push
instruction then we label the edge with the symbol +, and if it corresponds
to a pop instruction then we label it with the symbol — (note that because
all pushes and pops only involve z1, we do not need to worry about detailing
the variable involved in the push or pop). Given our labelled digraph G, we
can now simulate exactly any computation of p on input A if we augment
this digraph with a queue whose values correspond to elements of |A|. All we
have to remember is that: the traversal of a ‘positive’ edge ((u,v), (u’,v')) of
F pushes the second component v onto the queue, i.e., the current value of
the variable z1; the traversal of a ‘negative’ edge ((u,v), (u’,v')) of F is only
possible if prior to the traversal of this edge, the value at the head of the queue
is the value v/, i.e., the new value of the variable z1; and after the traversal
of a ‘negative’ edge of F', the head of the queue has to be thrown away.

It is trivial to see that A = p if, and only if, there is a path (with the edge
traversals obeying the above rules) from a source vertez of the form

((17u17u27' .. 7“]47)7 (17u17u17 v 7u1))

to a sink verter of the form

(Ll uly o), (Lu,ul, ... u))).

We can ‘logically encode’ our labelled digraph above over the signature
o =(E,E*,E~,S,T), where E, ET and E~ are relation symbols of arity 4
and S and T are binary relation symbols. The relation F details the edges
without labels; the relation ET details the edges labelled +; the relation E~ de-
tails the edges labelled —; the relation relation S details the source vertices (of
the form ((1, uq,ug, ..., ug), (1, u1,u,...,u1)), above); and the relation details
the sink vertices (of the form ((I,u},u), ..., up), (1,u],u],...,u})), above).
(Note that an arbitrary o4-structure, when thought of as an edge-labelled di-
graph whose vertices are pairs of domain elements, might have multiple edges.
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This is of no consequence.) Define the problem (2, as:

Q, ={G € STRUCT(0,) : it is possible to traverse a path in the labelled
digraph G from a vertex of S to a vertex of T'}

(of course, by ‘traverse a path’ we mean according to the above rules, and
starting with an empty queue).

When we consider the labelled digraph G, built above, as a o4-structure G,
it is straightforward to see that G can be described in terms of A by quantifier-
free first-order formulae (although the encoding process may introduce addi-
tional isolated vertices which have no bearing on whether the resulting struc-
ture G is in , or not). Hence, as ), can trivially be accepted by a program
scheme of NPSQ(1), €2, is complete for NPSQ(1) via quantifier-free first-order
translations. Proceeding as in the proof of Theorem 7 yields the result. O

Not only can we have the notion of a quantifier-free first-order translation
but we can clearly also have the notion of a quantifier-free first-order transla-
tion with a numeric universe; that is, where the defining formulae (as detailed
prior to Theorem 9) are interpreted over a structure A , of size n, adjoined
with a numeric universe {0, 1,...,n—1} and the binary relation add (for which
add(u,v) holds if, and only if, v = u+1). The definition of such a translation is
made more complicated by having variables of both element type and numeric
type, with the result that the domain of a structure ®(A), as defined prior to
Lemma 6 (when we defined the semantics of a vectorized Lindstrém logic), is
of the form |A¥ x {0,1,...,n — 1}™; and so the size of such a structure is
n*+tm_ We do not explicitly define the notion of a quantifier-free first-order
translation with a numeric universe as, given the above clarifying remark, it
is analogous to that of a quantifier-free first-order translation. Theorem 2 and
the proof of Theorem 9 immediately yield the following corollary.

Corollary 10 The problem Q is complete for RE = NPSQ (1) via quanti-
fier-free first-order translations with a numeric universe. O

As far as we know, this is the first completeness result for the class of re-
cursively enumerable problems, RE, via very restricted logical reductions (of
course, completeness via reductions such as quantifier-free first-order transla-
tions with a numeric universe implies completeness via more standard reduc-
tions such as log-space and polynomial-time reductions).

We can also define a hierarchy NPSQ, whose levels are NPSQ, (i), for
1 > 1, analogous to the hierarchy NPSQ but where we also have variables of
numeric type. The only qualification we should add is that numeric variables
can only appear as input-output variables in any program scheme of NPSQ
(and so, in particular, numeric values can not be ‘passed across’ to component
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program schemes via free variables). The question remains as to what exactly
is the class of problems accepted by the program schemes of NPSQ, . Whilst
we can not give an exact answer to this question, we can provide a satisfactory
answer to a related question concerning the program schemes of NPSQ when
restricted to ordered structures.

We say that a problem (2, over the signature o, is defined by a logical
sentence ¢’ on ordered structures (or, equivalently, with a built-in successor
relation) if ¢’ is over the signature o' = o U (succ, first,last), where succ is a
binary relation symbol and first and last are constant symbols, and for every
o-structure A:

e A € Q if, and only if, every extension of A to a o’-structure A’ by a
successor relation for which first and last are the least and greatest
elements, respectively, satisfies ¢'; and

e A ¢ Q if, and only if, no extension of A to a o'-structure A’ by a
successor relation for which first and last are the least and greatest
elements, respectively, satisfies ¢’.

Note that given some logic L, it might not be the case that every sentence of
L is ‘well-formed’ on ordered structures (as implied by the above definition)
as the satisfiability of a sentence of L in some appropriate structure might
not be order-invariant, with respect to the ‘built-in’ successor relation (as the
definition above demands). In fact, it is undecidable as to whether a first-
order sentence is well-formed on ordered structures; that is, whether first-
order logic on ordered structures has a recursive syntax (we say a bit more
about this difficulty in the next section but the reader is referred to [30] for a
full discussion). We denote the fact that we are considering some vectorized
Lindstrém logic (£€)*[FO] on ordered structures by writing (+Q)*[FOs].

It should be clear that not just logical sentences can define problems on
ordered structures but, in exactly the same way, program schemes can too. We
define the hierarchy NPSQg, whose levels are NPSQ,(7), for ¢ > 1, analogously
to the hierarchy NPSQ but where every program scheme defines a problem on
ordered structures (note that we now face the problem of whether a program
scheme of NPSQ over some signature o U (suce, first,last) is well-formed). In
the same way, we obtain the notion of a quantifier-free first-order translation
with a built-in successor relation.

Proposition 11 RE = NPSQ, (1) = NPSQ, (2) = NPSQ,(1) = NPSQ,(2).
For i >3, NPSQ (i) C NPSQ(i); and so NPSQ, C NPSQ;,.

Proof Let the problem {2 be such that it is accepted by the program scheme
p in NPSQ, (1). We simulate p with a program scheme p’ of NPSQq(1) as
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follows. In p', use the built-in successor relation to simulate the numeric
values of a computation in p. That is, we simulate p directly except that we
model a numeric variable, ¢, say, of p having some value ¢ as a new variable
', in p/, having the value of the (7 + 1)th element of the linear order described
by the built-in successor relation. We can ‘increment’ and ‘decrement’ the
value of ¢’ by setting it as the preceding or succeeding element of this linear
order, respectively. The resulting program scheme p’ is clearly well-formed
and accepts 2.

Conversely, let Q be the problem accepted by some program scheme p in
NPSQs(1). We simulate p with a program scheme p’ of NPSQ (1) as follows.
We begin by guessing, and checking (using our numeric variables), a successor
relation which we store on the queue. We then use this successor relation to
directly simulate a computation of p (of course, we manipulate the queue in
order to gain access to our successor relation). The resulting program scheme
p" accepts Q. Given that, by Theorem 2, RE = NPSQ, (1) = NPSQ,(1), it is
trivial that RE = NPSQ, (2) = NPSQ,(2).

Let € be the problem accepted by some program scheme p in NPSQ (i),
for some 7 > 3. A construction analogous to that above enables us to construct
a suitable program scheme of NPSQ,(7) accepting . O

It is worth pointing out why we have been unable to extend the proof,
above, that NPSQ_ (1) € NPSQ,(1) to a proof that NPSQ, () € NPSQ_ (¢),
for 4 > 3. Take ¢ = 3, for example. Any computation of a program scheme
p in NPSQq(3) will, in general, involve a number of tests which are program
schemes of NPSQ,(2). The built-in successor relation might be used in all of
these tests; and note that it is the same successor relation that is used each
time a test is evaluated. If we were to pursue the construction in the proof
of Proposition 11 then we would, essentially, build our own successor relation
every time we evaluated a test; and these successor relations could well be
different (remember that our semantics are such that we can not pass across
the contents of queues to program schemes involved in tests). At present,
we do not know whether NPSQ, (i) € NPSQ, (), for ¢ > 3; and whether
NPSQ, € NPSQ,.

Proposition 11 and the proof of Theorem 9 immediately yield the following
corollary.

Corollary 12 The problem €, is complete for RE = NPSQ,(1) via quanti-
fier-free first-order translations with a built-in successor relation (or, equiva-
lently, on ordered structures). Consequently, NPSQ, = (£Q,)*[FO]. O

Unlike the situation for NPSQ,, we can give an alternative characteri-
zation of the class of problems NPSQ;. The class of problems accepted by
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log-space deterministic oracle Turing machines with access to an oracle from
RE is denoted by L™¢.

Theorem 13 L = NPSQ,(3) = NPSQ, = (£2,)*[FOs]. Moreover, every
problem in L™ can be defined by a sentence of the logic (£4)*[FO;] of the
form:

Fy13y2 - -y (Q[Axp(x,y), X0 (X,Y), X0 (X,y), 2005 (2,Y), 207 (2, y)]
AQ X (X, y), x ¢ (X, y), X' (X, y). 2'5(2, y), 2 ¢ (2, y)])

where P P—s P+ 1/)5’, 1/)T, (pla (pLa ‘P,er T/)ls and d)é"’ are quantiﬁer—free ﬁ’l"St-
order with a built-in successor relation.

Proof We use results, due to Gottlob in [19], concerning the logical capture
of classes of problems accepted by log-space deterministic oracle Turing ma-
chines. Let CC be a complexity class that is closed under NP-reductions,
conjunctions, disjunctions and marked unions (see [19] for more details as re-
gards these definitions); and let © be a problem such that € is complete for
CC via quantifier-free first-order translations with a built-in successor rela-
tion. Gottlob proved in Theorem 5.2 of [19] (with reference to Remark 9 of
Section 6 of [19]) that if this is the case then any problem in CC can be
defined by a sentence of the logic (£)*[FOs] (of a particular normal form);
and in Theorem 4.6 and Corollary 3.3 of [19] (again, with reference to Remark
9 of Section 6 of [19]) that the class of problems defined by the sentences of
(£Q)*[FO;] is L€C. The class of problems RE satisfies the above hypothe-
ses and, by Corollary 10, €2, is complete for RE via quantifier-free first-order
translations with a built-in successor relation. Hence, by Corollary 12 and
[19], any problem in NPSQ, = (££,)*[FO] can be defined by a sentence, of
(£94)*[FOs], of the form:

3y13y2 N Elyk(QqP\X(,D(X, y)? XQ+ (X, y)a Xp— (Xa Y)a ZQ/)S (Z7 y)a ZI/JT (Za Y)]
A=A (X, y), X' ¢l (X, y), X' (%, ), 295 (2, y), 2" (2, y)))

where @, o_, oy, s, Y7, @', @, ¢\, Y and 9 are quantifier-free first-order
formulae; and the class of problems defined by the sentences of NPSQ; is L™*¢.
The result follows. O

Note that NPSQ,(2) C NPSQ,(3) as L®¢ is closed under complementation
whereas RE is not.

6 A simple application

It is a question of great importance in finite model theory and database theory
as to whether there is a logic which captures exactly the class of polynomial-
time solvable problems. Of course, one has to be precise about what one means
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by a logic and Gurevich [21] has formulated a definition which has been widely
adopted. A logic L is given by a pair of functions (Sen, Sat) satisfying the
following conditions. The function Sen associates with every signature o a
recursive set Sen (o) whose elements are called L-sentences over o. The func-
tion Sat associates with every signature a recursive relation Sat, (A, ), where
A is a o-structure and ¢ is a sentence of L. We say that A satisfies ¢ (and
write A = ¢) if Sat, (A, @) holds. Furthermore, we require that Sat, (A, @)
if, and only if, Sat, (B, ¢) when A and B are isomorphic o-structures.

Whilst many complexity classes containing NP (including NP itself) can
be captured by logics (on the class of all finite structures) as yet no-one has
exhibited a logic (in Gurevich’s sense) to capture any mainstream complexity
class (for which the expectation is that it is properly) contained in NP. Logical
characterizations of complexity classes on the class of ordered finite structures
usually suffer from the difficulty that deciding whether a formula of the logic
is order-invariant is undecidable. The reader is referred to, for example, [14]
and [21] for a further discussion on capturing complexity classes by logics.

It is straightforward to verify that the classes of program schemes NPSQ
(together with the classes of the hierarchy therein) and NPSQ (1) are logics
in the sense of Gurevich; and so, for example, Theorem 3 (resp. Theorem 2)
implies that RE NEXT (resp. RE) can be logically captured. However, the
characterization RE = NPSQ,(1) is not a logical characterization of RE (as
any first-order sentence can be effectively transformed into a program scheme
of NPSQ(1)).

By imposing resource conditions upon our program schemes, we can log-
ically capture other classes of problems. We begin by making explicit the
resources used by a Turing machine to accept a problem. A problem €2, over
some signature o, is accepted by a non-deterministic Turing machine M in
time f(x) (resp. using space g(x)) if M accepts 2 and for every encoding
ey (A) of any o-structure A of size n in Q, there is an accepting computation
of M on input e, (A) taking time at most f(e,(n)) (resp. using space at most
g(es(n))). In particular, the complexity of M on input e, (A) is measured in
terms of e,(n) and not n, although the two measures are polynomially related
(recall that o contains at least one relation symbol).

In contrast, the time and space complexities of a program scheme of
NPSQ4 (1) or NPSQ(1) on some input structure are measured in terms of the
size of the input structure. In order to evaluate the time taken or the space
used in some computation of a program scheme of NPSQ (1) or NPSQ(1) on
some input structure of size n, we treat the execution of every assignment,
quantifier-free test, pop, push, etc., as taking one unit of time, and we regard
a variable or a place on the queue as occupying one unit of space. As for
a non-deterministic Turing machine, the complexity of a program scheme of
NPSQ.4 (1) or NPSQ(1) is derived using accepting computations only.
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For any function f(z), let POLY(f(z)) denote

{po(2).(f(a0(2))* + pr(@).(f (@ ()" + ...
oot e (®)-flgr-1(2)) + pr(2)
k> 0,po,p1,--- Pk, q0,41,--->qk—1 are polynomials with

integer coefficients}.

If C is a class of functions then POLY(C) = U (zyec POLY(f (7).

For example, if f(x) is the identity function then POLY(f(z)) is the class
of polynomials in 2 (with integer coefficients); if f(z) = 2* then POLY(f(x))
is the class of polynomial combinations of exponentials of the form 2P(*) where
p(x) is some polynomial; and if f(z) = 22" then POLY(f(x)) is the class of
polynomial combinations of exponentials of the form 22° | where p(z) is some
polynomial. Many classes of functions of interest in complexity theory can be
realized as POLY(f(x)), for some function f(x).

Let © be some problem over the signature o. The proof of Theorem 2
yields the following.

Corollary 14 (i) If Q can be accepted by a non-deterministic Turing ma-
chine in time f(x) (resp. using space g(x)) then there exists a program
scheme p of NPSQ, (1) accepting Q2 such that every o-structure in Q of
size n is accepted in time F(n) (resp. using space G(n)), for some F(z)

in POLY(f(xz)) (resp. G(x) in POLY(g(x))).

(i) If Q can be accepted by a program scheme of NPSQ4 (1) in time f(z)
(resp. wusing space g(x)) then there is a non-deterministic Turing ma-
chine M accepting Q such that every encoding of a o-structure in € of
size n s accepted in time F(ey,(n)) (resp. using space G(ey(n))), for

some F(x) in POLY(f(z)) (resp. G(z) in POLY(g(x))). 0
The proof of Theorem 3 yields the following.

Corollary 15 (i) If Q can be accepted by a non-deterministic Turing ma-
chine in time f(x) (resp. using space g(x)) and Q is in EXT then there
exists a program scheme p of NPSQ(1) accepting Q2 such that every o-
structure in Q of size n is accepted in time F(n) (resp. using space

G(n)), for some F(zx) in POLY(f(x)) (resp. G(z) in POLY(g(x))).

(73) If Q2 can be accepted by a program scheme of NPSQ(1) in time f(x) (resp.
using space g(x)) then Q is in EXT and there is a non-deterministic
Turing machine M accepting 2 such that every encoding of a o-structure
in Q of size n is accepted in time F(es(n)) (resp. using space G(es(n))),

for some F(x) in POLY(f(x)) (resp. G(xz) in POLY(g(x))). 0
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Denote the class of non-deterministic Turing machines that accept prob-
lems in time (resp. using space) f(x) where f(z) is a function from the
class of functions C as NTM*(C) (resp. NTM?*(C)), with NPSQ’(1)(C) and
NPSQ’ (1)(C) (resp. NPSQ?(1)(C) and NPSQS (1)(C)) defined likewise (of
course, these denotations also refer to the classes of problems accepted by
such Turing machines or program schemes). The following is immediate from
above.

Corollary 16
NTM'(POLY(C)) = NPSQ".(1)(POLY(C)),

NTM'(POLY(C)) NEXT = NPSQ'(1)(POLY(C)),
NTM?*(POLY(C)) = NPSQ’ (1)(POLY(C)),

and

NTM*(POLY(C)) N EXT = NPSQ*(1)(POLY(C)),

for any class of functions C. O

We can regard NPSQ!(1)(POLY(C)), for example, as a logic (in Gure-
vich’s sense) by identifying program schemes with pairs (p, F'(z)), where p
is a program scheme of NPSQ(1) and F(z) is a function from POLY(C). Of
course, this requires that the functions of C form a recursive set and that there
is a Turing machine which when given a function f(z) from C and a positive
integer n, computes the value f(n). Henceforth, we assume that this is the
case for any of our classes of functions C. Thus, Corollary 16 can be used to
logically capture a whole host of complexity classes including NP, PSPACE,
NEXPTIME, EXPSPACE, 2-NEXPTIME, 2-EXPSPACE, ..., ELE-
MENTARY (note that k-NEXPSPACE = k-EXPSPACE, for all k£ > 1).
However, Corollary 16 can also be used to logically characterize ‘fragments’ of
(the above) complexity classes obtained by intersecting the complexity class
with the class of problems EXT. Note that this is a ‘semantic’ rather than
a ‘syntactic’ restriction and so it is not immediately obvious as to whether
such a fragment of a complexity class can be logically captured. Furthermore,
existing complexity-theoretic inequalities or hypotheses can be used to derive
analogous inequalities or hypotheses for the respective fragments of the com-
plexity classes in question obtained by intersecting with the class of problems

EXT.

Corollary 17 Let C and D be classes of functions and let €,6 € {t,s}. The
following are equivalent.

(i) NPSQS(1)(POLY(C)) = NPSQ’.(1)(POLY(D)).
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(il) NTM¢(POLY(C)) = NTM°(POLY(D)).
(iii) NTMS(POLY(C)) NEXT = NTM°(POLY(D)) NEXT.
(iv) NPSQ(1)(POLY(C)) = NPSQ’(1)(POLY(D)).

Proof Implications (i) = (ii), (ii) = (ii1) and (744) = (iv) follow immedi-
ately from Corollary 16. As for implication (iv) = (i), let Q be some problem
in NPSQ¢ (1)(POLY(C)), over the signature o, where the witnessing program
scheme is p. Let ¢’ be the signature o augmented with a binary relation sym-
bol L and two constant symbols C and D (we assume that these symbols do
not already appear in o). We shall now construct a program scheme p' of
NPSQ(1)(POLY(C)) which takes o’-structures as input.

Let A" be a o'-structure of size n and let A be the o-structure obtained
from A’ by restricting to the symbols of . On input A’, the program scheme
p' interprets the relation LA as a linear order with minimum element C*" and
maximum element D*’, and writes this linear order onto the queue. Of course,
the triple (LAI, C’A’, DA') might not encode a linear order at all. However, this
does not concern us. All we are interested in is that an ordering is written
onto the queue, with minimal element C**', which may or may not be a linear
ordering of the elements of |A’| with maximum element D*'. Of course, if,
in the construction of this ordering, an ordering with maximum element D4
can not be ‘decoded’ from (LA,, C’AI,DA,) and written on the queue then this
particular computation halts and rejects. In the case that (LAI, CcA, DA') en-
codes a linear order, we insist that this linear order is duplicated on the queue.
Next, the program scheme p’ uses this ordering to simulate the computation
of the program scheme p on the input A restricted to the domain of the linear
ordering (as in the proof of Theorem 3). The resulting program scheme p' is a
program scheme of NPSQ¢(1)(POLY(C)). Consequently, A |= p if, and only
if, there exists a o’-structure A’ that is an extension of A with a linear order
(L,C, D) of |A| such that A" = p'.

By hypothesis, there is a program scheme plj of NPSQ’(1)(POLY (D))
accepting exactly the same problem as p’. Consider the following program
scheme py of NPSQ’ (1)(POLY(D)). On input a o-structure A, the program
scheme py begins by guessing a linear order and writing this linear order onto
its queue (of course, it verifies that a guessed linear order is indeed a linear
order). Then the program scheme py simulates the computation of p} on
the o'-structure A’ obtained from A by augmenting it with the guessed (and
verified) linear order. Consequently, A = pg if, and only if, there exists a
o'-structure A’ that is an extension of A with a linear order (L, C, D) of |A|
such that A’ = pj. Thus, the result follows. 0

Let us end this section by showing how we apply Corollary 17. It is well-
known that, for example, NEXPTIME # 2-NEXPTIME. Corollary 17
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implies that NEXPTIME N EXT # 2-NEXPTIME N EAXT and that
the class of problems accepted by program schemes of NPSQ(1) restricted
to run in time 221’@), for some polynomial p(z), properly contains the class of
problems accepted by program schemes of NPSQ(1) restricted to run in time
2(*) | for some polynomial p(z). Also, it is open as to whether, for example,
NEXPTIME = EXPSPACE. By Corollary 17, this question is equivalent
to whether NEXPTIMENEXT = EXPSPACENEXT and to whether the
class of problems accepted by program schemes of NPSQ(1) restricted to run
in time 2°(*), for some polynomial p(z), is the same as the class of problems
accepted by program schemes of NPSQ(1) restricted to run using space 2°(®),
for some polynomial p(z).

We feel that it is interesting that open complexity-theoretic questions are
equivalent to analogous logical questions involving classes of problems with
zero-one laws, and even closed under extensions. Of course, these latter
classes of problems do not contain some trivial complexity-theoretic prob-
lems like PARITY; yet still they have a definitive role to play in the question
of whether two complexity classes, such as NEXPTIME and EXPSPACE
which have significant complexity-theoretic capacities, are identical. More-
over, a hypothesis such as NEXPTIMENEXT = EXPSPACENEXT, and
its logical (program-schematic) realization, rather than the more expansive
hypothesis NEXPTIME = EXPSPACE, might prove more amenable to
attack.

7 Conclusions

There are numerous directions in which to continue the research of this paper.
Perhaps the most obvious is a consideration of whether the hierarchy within
NPSQ is proper. It was proven in [5] that the analogous hierarchies in NPS and
NPSS are indeed proper although no such results are currently available for
NPSB and NPSA. For the latter classes, all that is known is that NPSB(1) C
NPSB(2) ¢ NPSB(3) [36] (with an analogous statement for NPSA). In fact,
the proof in [36] also yields that NPSQ(1) C NPSQ(2) € NPSQ(3). It may
just be coincidence but NPS and NPSS can be realized as fragments of £
whereas NPSB, NPSA and NPSQ can not.

Given the pivotal role of inductive fixed-point logic in descriptive complex-
ity theory, we would like to know whether there are problems definable by a
sentence of inductive fixed-point logic which are not in NPSQ. We conjecture
that there are such problems.

Whilst NPSQ is an extensive class of problems, there are recursively solv-
able problems which have a zero-one law but which are not in NPSQ. One such
is the problem HC consisting of those digraphs, i.e., finite structures over a
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signature consisting of one binary relation symbol, which have a Hamiltonian
cycle. It has long been known that HC has a zero-one law [7]. However, if
the problem HC is in NPSQ then the class of problems (+HC)*[FO] is con-
tained in NPSQ; which yields a contradiction by either [13], where it was
shown that the logic (+HC)*[FO] does not have a zero-one law, or by [10],
where it was essentially shown that any problem in NP can be defined in
(£HC)*[FO]. The problems HC and RIGIDITY, i.e., the problem consisting
of all those graphs with no non-trivial automorphisms, played a central role
in [13]. It was proven there that whilst (XHC)*[FO] does not have a zero-one
law, (XRIGIDITY)*[FO] does. It would be interesting to know whether the
problem RIGIDITY is in NPSQ.

The questions as to the class of problems captured by the program schemes
of NPSQ, and whether the hierarchy within NPSQ, is proper are interesting;
especially given that L?¢ = NPSQ, and that the hierarchy within NPSQ,
collapses to the third level.

Finally, we remark that the results that NPSQ (1) consists of the class of
problems RE and NPSQ(1) consists of the class of problems RE NEXT can
be regarded as a sort of preservation theorem, in the model-theoretic sense.
Preservation theorems in finite model theory have hitherto revolved around
first-order logic (see [4]) and we feel that the existence of such theorems should
be considered for relevant extensions of first-order logic.
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