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A model describing the propagation of terahertz frequency radiation through inhomogeneous
materials is proposed. In such materials �e.g., powders or clothing�, the size of the scattering centers,
their separation, and the wavelength of the radiation are all commensurate. A phase distribution
function is used to model the optical properties of a randomly structured transmitting layer. The
predictions of the model are compared with exact �Mie� theory for isolated spherical scatterers and
with previously published experimental data. Measurements of the transmission of terahertz
radiation through a variety of samples in order to validate the present model are also reported. These
include arrays of cylinders, textiles, powders, and glass balls. Overall, satisfactory agreement
between the experimental data and theoretical predictions is obtained. © 2007 American Institute of
Physics. �DOI: 10.1063/1.2403860�

I. INTRODUCTION

Terahertz frequency sensing and imaging systems have
many potential applications in a wide range of areas such as
medicine, security and surveillance, process control. Al-
though significant efforts have been expended on the devel-
opment of imaging systems,1 somewhat less attention has
been paid to the issue of propagation through, or scattering
from, realistic target materials which might be investigated
with such systems. In practice, understanding the interaction
of terahertz radiation with a wide range of irregularly struc-
tured materials is an essential part of the design of systems
for terahertz sensing and imaging. On the one hand, scatter-
ing has adverse effects: it may produce false signatures in
spectra when interference takes place within a scattering
structure �e.g., fibers in clothing or granules of powder� or
diminish and alter the return signal from a suspect item se-
creted below garments. On the other hand, it might be used
to advantage to determine the characteristic size, texture, and
location of an object concealed within a matrix of other ma-
terial. Scattering effects are particularly relevant in this spec-
tral regime, where the wavelength, and the size and separa-
tion of scattering centers are often commensurable.

Mittleman2,3 has extensively studied the propagation of
few-cycle pulses of terahertz radiation through a variety of
inhomogeneous media, chiefly assemblies of Teflon spheres
of various sizes. Diffuse scattering phenomena have also
been investigated, and terahertz spectroscopy in the time do-
main has been used to identify specific scattering centers
within a medium. It is noted from this work that there are
considerable disagreements between experiment and the pre-
dictions of theory �e.g., Mie theory and the quasicrystalline
approximation2� for the mean free path �MFP� as a function
of wavelength for propagation through a random array of
spherical scatterers. Mujumdar et al.4 have also remarked
that a classical effective medium approximation is of limited

value in experimental and numerical studies of propagation
through an assembly of subwavelength alumina spheres.

The purpose of this article is to provide a useful theoret-
ical framework, validated by experiment, to predict the at-
tenuation of terahertz radiation as it passes through inhomo-
geneous media such as textiles and powders. In due course,
the present theory will be extended to predict the angular
scattering properties of such media. A description of the or-
ganization of this article now follows. In Sec. II an approxi-
mation, the phase distribution model �PDM�, is outlined
which describes the overall transmission properties of a ran-
dom system in terms of phase changes imposed on a wave
front by the scattering centers. The experimental arrange-
ments together with samples �textiles, absorbing, and nonab-
sorbing powders, and cylindrical arrays or phantoms� used
for validation measurements are then outlined. A comparison
of the predictions of the theory with exact �Mie� theory is
then given for spheres and cylinders. There then follow sec-
tions in which the theory predictions for phantoms, textiles,
and spherical grained powders are compared with experi-
ment. A conclusion is then given. Further discussion of the
phase distribution function is confined to the Appendix.

II. PHASE DISTRIBUTION MODEL

The theory of wave propagation through random media
has a long history of development. Exact calculations based
on Maxwell’s equations are prohibitively difficult, and more
convenient approximations are needed. For media in which
the refractive index variations are not too large, a useful
approach has been to regard the medium as equivalent to a
succession of phase-changing layers perpendicular to the
propagation direction and to neglect reflections. The use of
this method to describe the effects of the ionosphere on radio
waves was reviewed by Ratcliffe5 and a theoretical analysis
given by Fejer.6 Further developments are described by
Ishimaru.7

In the present work we extend this approach by introduc-
ing the concept of a phase distribution function to summarizea�Electronic mail: g.p.swift@durham.ac.uk
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the relevant optical properties of a randomly structured trans-
mitting layer and show how the bulk transmission is related
to this distribution. The use of a distribution function leads
naturally to the application of statistical methods. The trans-
mitted wave emerging from the second face of a layer is
completely determined by the amplitude and phase �and po-
larization� of the field across the surface. In general, this is a
very detailed function of the transverse coordinates, but the
relevant information for the calculation of forward transmis-
sion can be summarized in the distribution, P���, defined
below.

The thickness, d, of the layers into which the medium is
divided in the theoretical model needs to satisfy two condi-
tions:

Condition 1. The thickness should be large enough that
correlations of scatterer positions between adjacent layers
can be neglected. Waves that are multiply scattered in suc-
cessive layers will not then contribute coherently to the for-
ward propagation. The thickness should not be less than the
correlation length for the scatterer density.

Condition 2. The layer should be sufficiently thin that
simple approximation methods can be used to calculate the
phase distribution. The range of validity of the projection
approximation below is discussed in Ishimaru.7

For clothing fabrics, the medium can be modeled as a
single layer for the calculation of the phase distribution. In
the case of powders of randomly shaped grains, there is no
long range correlation, and the layer thickness can be taken
as a few times the grain size.

The phase change, �, in a scalar wave propagating
through a single layer is calculated by the projection
approximation,7

���� = 2��n − 1�t���/� , �1�

where �n−1� is the refractive index difference between the
scatterers and their surroundings, and t��� is the thickness of
the scatterers within the layer, projected along the propaga-
tion direction at position �. The phase distribution function,
P���, illustrated in Fig. 1, gives the fraction of the wave
front area having phase change �, weighted by the amplitude
of the wave, so that the fractional transmitted amplitude of
the unscattered forward wave is given by

F =� P���ei�d� . �2�

The corresponding transmitted intensity, �F�2, is the analog of
the Strehl intensity8 used in optical system design.

A. Absorbing scatterers

Absorbing scatterers with dielectric loss have a complex
refractive index �n+ i��, and projection of phase change
along the propagation direction must allow for attenuation
within the scatterer. The amplitude is reduced to

A��� = exp�− �����
n − 1

� , �3�

with ���� from Eq. �1�. For a circular scatterer with radius a,
the phase distribution is then

PSC��� =
− d�r2/a2�

d�
exp	−

��

n − 1

 . �4�

The distribution is not normalized when there is energy loss
by absorption. The transmitted amplitude can then be put
into the form

F =� PS���exp��	i −
�

n − 1

�d� , �5�

where PS is the distribution for the same shape of scatterers
without dielectric loss.

B. Attenuation

For any layer containing scatterers, the distribution, P, is
restricted to the range from �=0, originating in open gaps, to
the maximum phase change, �M, produced by any region of
the layer completely filled

�M = 2�d�n − 1�/� . �6�

If the mean free path of the directly propagated beam is
L, the transmitted intensity through a layer is given by

�F�2 = exp�− d/L� , �7�

and hence L can be found from the phase distribution func-
tion P using Eqs. �2� and �5�.

For woven fabrics such as shirts and jackets, the warp
and weft yarns are orthogonal and the phase changes they
produce are dependent upon orthogonal coordinates. The
phase distribution can then be calculated for each set of yarns
separately, and the resulting transmission will be the product
of transmissions through warp and weft separately. This re-
duces the problem from a three-dimensional model to two
separate two-dimensional calculations, with consequent re-
duction in computational complexity.

The individual fibers constituting the yarn are generally
too fine to be resolved at terahertz frequencies, and the yarn
can be modeled as a uniform cylinder with an effective re-
fractive index. There is very little information available on
the terahertz properties of fibers used for clothing fabrics.9 In
the present work, the effective yarn index is treated as an

FIG. 1. Projection approximation for phase distribution P.
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empirical parameter with values in the range of 1.1–1.5.
There is no evidence of dielectric loss at these frequencies.

It is found that the predicted transmission through a
layer of warp or weft is strongly influenced by the ratio of
the yarn diameter to the gap width between yarns. The phase
difference between waves transmitted through the yarn and
those through the gaps is proportional to frequency and, if
the gaps are not small, this can result in destructive interfer-
ence. Figure 2 shows the effects on transmission of increas-
ing the gap width between a single layer of parallel yarns, as
a function of the phase change, �M, induced in a wave pass-
ing through the yarn with effective refractive index, n, and
diameter, d.

The maximum attenuation of the transmitted beam oc-
curs at �M �4 and increases rapidly with the yarn gaps. For
typical shirt fabric with yarn 0.2 mm diameter, this attenua-
tion peak is around 3 THz. For thicker fabrics with an open
weave, the wavelength at which this attenuation peak occurs
will be proportional to the yarn diameter. The energy lost
from the directly transmitted beam is scattered and diffused
in the forward direction. More densely woven fabrics with-
out gaps produce an attenuation steadily rising with fre-
quency over this range.

C. Powders

For powders comprising randomly shaped grains no
simple phase distribution function can be written down, but
several general conclusions can be drawn from the model.
With the slice thickness, d, taken to be equal to the diameter
of the largest grains, the maximum phase change is �M above
�Eq. �6��. The moments, Mr, of the distribution P are propor-
tional to but cannot exceed �M

r . It follows from Eq. �7� that a
frequency expansion of the layer transmission is related to
the moments of P. In lowest order the mean free path is
d / �M2−M1

2�with

Mr = �
0

�M

P����rd� . �8�

For wavelengths, �, larger than the particle size, �M �1,
only the low order moments contribute to F. The first mo-

ment, M1, is given by c�M, where c is the volume fraction
occupied by the scatterers. The range of possible values of
P��� between zero and �M limits the possible values of M2.
This leads to the formula

MFP � �2/dc�1 − c����n − 1��2. �9�

The numerical factor, of order unity, depends on the range of
particle sizes.

D. Spheres

The measurements of Pearce and Mittleman10 on tera-
hertz transmission through PTFE spheres provide a critical
test of any theory of propagation of terahertz waves through
random media. The diameter, refractive index, and mean
density of the randomly arranged spheres are known. A vali-
dation method for the PDM is to calculate the total scattering
cross section of an isolated dielectric sphere and compare
with the well established results of Mie theory. This shows
that, for refractive indices not more than about 1.5, the PDM
gives a good qualitative and quantitative match to the exact
results. Figure 3 shows that the positions and magnitudes of
the scattering peaks and the short wavelength limit are well
reproduced. At long wavelengths, where the weak Rayleigh
scattering mechanism predominates, the scattering cross sec-
tion is at least an order of magnitude less than the geometri-
cal cross section and is proportional to the fourth power of
frequency. In this region the PDM predicts a cross section
proportional to frequency squared, but the absolute error is
small. An adjustment factor, described below, allows for this
effect.

In calculating the phase change produced by a layer of
spheres, a truncated Poisson distribution is used to give the
expectation of the number of spheres intersecting a given
line of projection through the layer. In order to avoid part
spheres, complete spheres with centers inside the layer are
included. If the spheres were independent, the number inter-
sected by the line would follow a Poisson distribution, with a
mean given by the number density and the layer thickness.
The nonoverlapping condition limits the maximum number
that can be on one line, and this is approximately allowed for

FIG. 2. Effects of yarn gap on attenuation.
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by truncating the Poisson distribution at T proportional to the
ratio of layer thickness, d, to sphere diameter, and renormal-
izing the distribution. If the phase distribution for one sphere
is PS��� as given in Eq. �3�, the amplitude transmission
through the layer is given by

F = �
r=0

T

prF1
r , �10�

where pr is the probability of r spheres being intersected by
a given line of projection, and F1 is given by Eq. �2�. The
convolution theorem has been used to combine distributions,
PS, assumed to be independent. The mean value M of the
probabilities, pr, is given by the product of the cross section
area of the scatterers and the number of scatterers per unit
area of the layer. Nonintegral values of the truncation num-
ber, T, are allowed for by truncating at integer, s, and includ-
ing a fraction of the last term in the series for F. This avoids
discontinuous changes as the layer thickness is varied. Nor-
malizing the truncated series

F = f�T,MF1�/f�T,M� , �11a�

with

f�T,X� = �
r=0

s
Xr

r!
+

�T − s�XT

��T + 1�
, �11b�

and s�T�s+1.
The mean free path follows from Beer’s law,

�F�2 = exp�− d/MFP� . �12�

For wavelengths, �, several times larger than the sphere
diameters �2a�, the amplitude given by Eqs. �2� and �4� re-
quires modification. Comparison of the total scattering cross
section for an isolated sphere, index n, calculated by Mie
theory, with that from the phase distribution model, suggests
that using an effective refractive index for the sphere can
allow for Rayleigh scattering,

neff = 1 + �n − 1�/�1 + 0.025��/a�2� . �13�

Use of this effective index in the phase model matches the
exact results for the cross section of an isolated sphere over

the whole range of wavelengths �Fig. 3� and we therefore
adopt this form in modeling the attenuation for a collection
of spheres.

Figure 4 shows the comparison of the calculated MFP
with the measurements of Pearce and Mittleman. The overall
trend is well modeled, but the subsidiary oscillations of un-
known origin are not described. A tentative calculation of the
effects of multiple reflections in the sample cell gives similar
oscillations, but further experimental details would be
needed to confirm this explanation.

III. EXPERIMENTAL ARRANGEMENTS

A. Terahertz frequency measurement system

Terahertz transmission was investigated through random
structures with both known and unknown properties to vali-
date theory. The experiments reported here were carried out
using a standard terahertz time domain spectrometer �TDS�.
The terahertz emitter consisted of two chrome-gold elec-
trodes fabricated on low temperature grown gallium arsenide
�LT-GaAs�, separated by 400 �m and of length 8 mm. An
ultrafast Ti-sapphire laser �Coherent Inc.� was used to gener-

FIG. 3. Total scattering of dielectric sphere showing
Mie theory compared with the PDM without the long
wavelength correction.

FIG. 4. Mean free path for PTFE spheres, diameter of 0.794 mm.
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ate terahertz pulses. The laser had the following characteris-
tics: bandwidth of 45 nm, pulse lengths of approximately
25–30 fs, 76 MHz repetition rate, and center wavelength of
790 nm. The laser beam was focused onto the edge of one of
the electrodes, which were biased at 250 V dc to generate
terahertz radiation. After collection and focusing of the tera-
hertz radiation using parabolic mirrors, coherent detection
was performed using electro-optic sampling techniques. All
parabolic mirrors used were of diameter 5 cm. The collection
mirror had focal length 5 cm, the two intermediate mirrors
had 10 cm focal lengths, and a mirror of focal length 7.5 cm
focused the radiation on to the detector. The probe laser
beam, formed by splitting 10% from the pump beam, was
incident concurrently with the terahertz pulses onto a 1 mm
thick Zn–Te crystal �Ingcrys Ltd�. Lock-in detection, using a
1 kHz mechanical chopper placed in the pump arm, was
used to measure the electric field of the terahertz pulse.
Pulses of bandwidth 3 THz, with peak power at 0.9 THz and
signal-to-noise ratio of 7000:1, were routinely obtained with
this arrangement. The whole system was enclosed in a dry
nitrogen atmosphere. Figure 5 shows a schematic of the ex-
perimental setup. It should be noted that the transmission
measurements were carried out using both focused �sample
position 2� and unfocused beams �sample position 1�.

B. Arrays of cylinders

These arrays were used to mimic textile fibers. Although
they possessed a random structure, the cylinder radius and
the concentration of scatterer material were known. Each
phantom consisted of a number of parallel, randomly ar-
ranged, cylinders of height 10.0 mm. Within each sample the
cylinder diameter was constant, but varied from phantom to
phantom in the range of 0.4–1.0 mm. The phantoms also had
different concentrations of scattering material with volume
fractions ranging from 10%–50% placed on a base of size
20	x mm2, where x=1, 3, or 5. Construction of the arrays
proceeded using stereolithographic techniques and an UV
curable resin, SI-50, which had a nondispersive refractive
index of 1.65 in the terahertz region. Figure 6 shows a plan
view of one such sample with cylinder diameter of 0.4 mm
and volume fraction of 10%. Focused and unfocused tera-
hertz beams were used to study these arrays. When using the
unfocused beam, the phantoms were placed in a metallic
holder with surface area greater than the area of the terahertz
beam in order to block radiation that would otherwise bypass
the sample.

C. Fabrics

Terahertz transmission was investigated through three
fabrics of increasingly random internal structure: cotton
shirt, tweed, and fleece. The shirt had a very regular warp
and weft structure: both yarns were of diameter 180 �m,
while the spacings were 250 and 330 �m, respectively. The
tweed had a warp-weft structure with yarn diameter approxi-
mately 1.10 mm and a spacing of 1.20 mm for both warp
and weft. The fleece had no long range fiber structure on the
terahertz scale. The main optical density in this fabric arose
from the tufts of the fleece, which were assumed to have
height of 3.5 mm �see Sec. VI�. The effective refractive in-
dices for these materials, calculated from the observed delay
of terahertz pulses as they pass through the materials, were
1.25, 1.15, and 1.05 for the shirt, tweed, and fleece, respec-
tively. Again, focused and unfocused terahertz beams were
used to investigate the sample transmission.

D. Random powders

It is suspected that the spectra of substances admixed
with powders may be affected by scattering and absorption
effects of the powder grains. Terahertz transmission through
both highly-absorbing and nonabsorbing powders was inves-
tigated in an initial attempt to model the propagation of tera-
hertz radiation in such situations. Both absorbing and nonab-
sorbing powders were investigated. The highly absorbing
balls were glass spheres of mean diameters 227 and 462 �m,
while the nonabsorbing powder was PTFE powder with
grains of mean diameters 100, 55, 12, and 1 �m. A quantity
of powder was placed in a piece of milled out PTFE, of
internal width 2 or 3 mm and wall thickness approximately
0.5 mm.

IV. COMPARISON OF PHASE DISTRIBUTION MODEL
WITH MIE THEORY

If an object of geometrical cross section, S, and total
scattering cross section, Q, intercepts a plane wave with area,
W, the fraction of the incident power remaining in the un-
scattered beam, I, is defined by �1−Q /W�, and the fraction
lost by scattering and absorption is Q /W. The corresponding
phase distribution is

P��� = ��W − S�
��� + SPS����/W , �14�

where PS is the phase distribution projected within the geo-
metrical area of the scatterer. The fractional transmitted in-
tensity, I, is �F�2 and using Eq. �2�,

FIG. 5. Terahertz transmission experimental set up �BS=beam splitter,
DL=delay line, WP=Wollaston prism, � /4=quarter wave plate, BD
=balanced detector�.

FIG. 6. Plan view of phantom of cylinders, diameters=0.4 mm, volume
fraction=10%.
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I = 1 −
2S

W
�1 −� PS���cos �d�� + O	 S2

W2
 . �15�

At short wavelengths, the distribution, P, will range over
many periods, and the cosine integral will approach zero.
The cross section then limits to twice the geometrical area.
For a meaningful measurement of scattering, the area of the
wave front must be much larger than the size of the scatterer,
and �S /W��1. Terms in �S2 /W2� can then be neglected, and
the total scattering cross section is

Q = 2S�1 −� PS���cos �d�� . �16�

This formula for Q has been compared with exact results
for spheres and cylinders. The approximation becomes exact
as the refractive index approaches unity and gives excellent
agreement for indices less than about 1.5, as shown in Fig. 7.
The phase distribution model does not reproduce the surface
wave resonances that appear at higher index values.

V. COMPARISON OF PHASE DISTRIBUTION MODEL
AND EXPERIMENT: ARRAYS OF CYLINDERS

As discussed earlier, an array of cylinders may be re-
garded as a useful model to predict the propagation proper-
ties of terahertz radiation through garments. It is predicted
that, at certain frequencies, high and low terahertz transmis-
sions will occur for a beam propagating through a random
array of cylinders. The regions of low transmission arise be-
cause of destructive interference between waves propagating
through gaps and through cylinders. The only input param-
eters required for the model are the diameter and volume
fraction occupied by the scatterers. These factors determine
the number of regions of high and low transmissions and the
frequencies at which they occur. Figure 8 shows transmission
through a phantom containing 10% scatterers of diameter
0.4 mm, while Fig. 9 shows transmission for a phantom con-
taining 40% scattering material of diameter 1.0 mm. The fre-

quencies of high and low transmissions, as predicted by the
model, provide a reasonable description of the experimental
data.

VI. COMPARISON OF PHASE DISTRIBUTION MODEL
AND EXPERIMENT: TEXTILES

A. Oblique transmission

For a wave incident obliquely onto a layer of fabric, the
effects of warp and weft yarn can be considered separately.
For a single layer of parallel vertical yarns, the incident beam
may be tilted away from normal incidence in either the alti-
tude or azimuthal directions. For beam tilts in altitude, the
widths of yarn and gaps projected into the propagation direc-
tion are unchanged, but the wave passes obliquely through
the yarns, and the optical path and resulting phase change are
increased. Figure 2 shows that for frequencies below the at-

FIG. 7. Total scattering by a dielectric cylinder.

FIG. 8. Transmission through 10% concentrated array with cylinder
diameters=0.4 mm �focused beam �squares�, unfocused beam, E, perpen-
dicular to cylinders �dots�, unfocused beam, E, parallel to cylinders,
�crosses�, theory �solid��.
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tenuation peak, increasing the phase change is equivalent to
increasing the frequency and results in increased attenuation.

For beam tilts in azimuth, the path length through the
yarns is not increased, but the projected gaps are reduced,
and the range of distribution P is narrowed. Figure 2 shows
that this reduces the attenuation. For a fabric containing or-
thogonal warp and weft, an obliquely incident beam will
experience a combination of these opposite effects. Numeri-
cal calculations for a fabric with identical warp and weft
show almost complete cancellation, so that the transmission
is independent of angle of tilt up to about 50°. For larger
angles, surface reflection becomes increasingly important.

B. Fleece transmission

A fleece consists of randomly arranged tufts supported
by a woven fabric. The main contribution to the optical
thickness is due to the closely spaced tufts, which have pro-
files described in the examples in the Appendix. The phase
distributions can be summarized by

P =
1

�S
�1 + f	2�

�S
− 1
� , �17�

where the shape factor, f , lies between −1 and +1 and cor-
responds to shapes of the tufts from semiellipsoids to cones.
The tufts contain a large fraction of trapped air, and have a
low terahertz refractive index of order 1.05–1.1, with heights
of a few millimeters.

C. Shirts and thin fabrics

For the case of thin fabrics, such as shirts, where the
maximum phase changes produced by the yarn are small, it
is possible to derive a simple analytical expression for the
transmission. The low order moments defined below can be
evaluated analytically for cylindrical yarns, giving the inten-
sity transmitted through a set of parallel yarns with diameter,
d, and repeat distance, w.

I = 1 − �M
2 �2

3
y − 	�y

4

2� + O��M

4 � , �18�

with y=d /w and �M �1 �using Eqs. �8� and �10��. The trans-
mission through the fabric is then a product of separate fac-
tors for warp and weft.

D. Tweed

The wool fibers of a typical tweed jacket are of a larger
diameter ��0.06 mm� than the fibers of a shirt or fleece. It is
no longer valid to treat the yarns as uniform cylinders, as in
the shirt example. The simplest model treats the tweed as a
random collection of wool fibers, occupying an assumed vol-
ume fraction of 0.5, and uses an empirically adjusted wool
fiber refractive index ��1.55� to match the experimental
data. This results in a steadily rising attenuation to at least
2 THz.

Typical experimental results, with modeling, for a shirt,
tweed, and fleece, are shown in Fig. 10. No real difference is
seen experimentally when using either the focused or the
unfocused beams. These experimental results have been
Gaussian smoothed to reduce noise, since fabrics have no
sharp spectral features in the terahertz region. The effective
indices �see Sec. III� have been empirically adjusted to give
the best fit to the data in the absence of definite information
at these frequencies.

VII. COMPARISON OF PHASE DISTRIBUTION MODEL
AND EXPERIMENT: POWDERS

Figure 11 shows terahertz transmission through PTFE
spheres of 100 and 55 �m diameters. The experimental data
are compared with the predictions of the PDM. Effective
refractive indices and volume fractions were calculated from
the pulse delay formula. The 55 �m grain diameter powder
had a volume fraction of approximately one-half that of the
100 �m powder. It should be noted that the two smaller di-
ameter powders investigated �not shown in the figure� are
more attenuating than the 55 �m powder. This, together with
the low volume fraction of the 55 �m powder, indicates that
the smaller diameter powders are not evenly dispersed.

Figure 12 shows transmission through both 2 and 3 mm
of 227 �m glass balls. These are heavily absorbing; no real
transmission is seen at frequencies above approximately
0.6 THz. Similar results are seen for larger diameter balls.
Since the transmission is approximately the same through
both thicknesses, absorption and dielectric loss effects domi-
nate the scattering process. Any remaining nonabsorbed high
frequency photons are completely diffused by scattering
within the sample.

VIII. CONCLUSION

The PDM provides a satisfactory overall description of
the propagation of terahertz radiation through inhomoge-
neous materials, which are of considerable interests as “tar-
gets” for security and surveillance systems. In such random,
unstructured arrays the separation of the scattering centers,

FIG. 9. Transmission through 40% concentrated array with cylinder
diameters=1.0 mm �focused beam �squares�, unfocused beam, E, perpen-
dicular to cylinders �dots�, unfocused beam, E, parallel to cylinders
�crosses�, theory �solid��.
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their size, and the wavelength are of similar magnitudes. The
PDM is a practical simulation tool for delivering, within a
useful time scale, the transmission and other optical proper-
ties of such materials. The model considers the amplitude
and phase changes imposed on a wave as it emerges from a
layer within the scattering material. The properties of real
samples are then simulated by taking a sequence of such
layers. The predictions of the PDM are compared with those
of exact �Mie� theory for isolated scattering centers and with
experimental results reported by other workers.2,3 The PDM
is seen to provide a useful description for such cases over the
full range of wavelengths. Experimental measurements using
a broadband terahertz spectrometer, of the transmission prop-
erties of arrays of cylinders �designed to mimic textiles�,
powders of absorbing and nonabsorbing materials, and of a

number of common textiles are presented. For cylinder ar-
rays, regions of low and high transmissions arise due to in-
terference effects. These are reproduced by the simulations,
and transmission at high and low frequencies is satisfactorily
predicted. For actual textiles, the PDM provides a very good
description up to 3 THz. The PDM also describes transmis-
sion through nonabsorbing powders very well. In the case of
absorbing samples �glass balls� a strong decay in transmis-
sion up to approximately 800 GHz is observed experimen-
tally.

It should be emphasized that, in comparison with com-
plete solutions of Maxwell’s equations, the present analytical
approach can be implemented easily in MATLAB and can de-
liver predictions essentially instantaneously. This could be of
great value for real surveillance systems operating at tera-

FIG. 10. Attenuation by various fab-
rics. Experimental data for Harris
tweed �dots�, fleece �crosses�, shirt
�squares�, theory �solid�.

FIG. 11. Comparison of transmission through 100 �m �squares� and 55 �m
�dots� PTFE powders with theory �solid�.

FIG. 12. Transmission through 2 mm �solid� and 3 mm �dashed� of 270 �m
diameter glass balls.
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hertz frequencies. The PDM and validation measurements
are now being extended to include back- and forward-
scattering �angular dependent� cases.
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APPENDIX

The distribution, P, can be calculated analytically by di-
rect integration for simple shapes such as spheres, cones, or
cylinders. For more general shapes, the projected optical
thickness of the layer of scattering medium can be evaluated
numerically for uniformly distributed positions over a repre-
sentative area of the layer and the values collected to build
the distribution function.

For example, if the scatterer has circular symmetry, � is
dependent on radius, r, within the geometrical cross section
area, �a2, and the phase distribution for the scatterer is

PS��� = −
d�r2/a2�

d�
, 0 � � � �S, �A1�

where �S is the maximum phase change produced.

Example (1): Sphere or ellipsoid,

�sp�r� = �S

1 − �r/a�2, �A2�

Psp = 2�/�S
2. �A3�

Example (2): Paraboloid,

�par�r� = �S�1 − �r/a�2� , �A4�

Ppar = 1/�S. �A5�

Example (3): Cone,

�cone�r� = �S	1 −
r

a

 , �A6�

Pcone =
2

�S
	1 −

�

�S

 . �A7�
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