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ABSTRACT 

Relative sea level (RSL) data provide important long-term (century to millennial-scale) 

constraints on ice load history in Greenland.  In this paper we present the results of a litho-, bio- 

and chronostratigraphic study designed to reconstruct RSL during the last millennium from salt 

marsh deposits recovered from a field site near to the town of Sisimiut. The stratigraphy at three 

marshes typically records an upwards transition from freshwater to salt marsh deposits. We use a 

quantitative (transfer function) and subjective model to reconstruct palaeomarsh elevation and 

changes in mean tide level (MTL) from 16 sediment profiles from these marshes. These 

palaeomarsh elevations are placed in a chronological framework established by 18 radiocarbon 

dated index points.  Both models yield similar results and show MTL rose from -0.60 ± 0.20 m at c. 

600 cal a BP to reach -0.10 ± 0.20 m at c. 400 cal a BP.  After this time, MTL remained close to 

present (± 0.20 m) until the present day although low sedimentation rates limit the resolution of our 

reconstructions during this interval.  The initial rise in RSL can be explained by the dominance of 

non-Greenland processes, notably the collapse of the Laurentide forebulge, over local (Greenland) 

solid Earth uplift caused by postglacial ice unloading.  This is despite some reloading of the crust 

that occurred during the neoglacial expansion of the Greenland Ice Sheet in this part of west 

Greenland.  The slow-down in RSL at 400 cal a BP does not record either a change in the rate of 

Laurentide forebulge collapse or a change in eustatic sea level.  We argue instead that this slow-

down records the effects of a sustained reduction in local (Greenland) ice mass that persists over 

most of the past 400 years. The latter interval is widely acknowledged as a period of generally 

cooler than present conditions associated with the later stages of the Little Ice Age.  During this 

period, field evidence suggests that in many areas the ice sheet had reached its maximum late 

Holocene extent.  It is not obvious at this stage how to reconcile an expanding ice sheet with a 

reduction in ice load during this interval although we hypothesise it could reflect one or more of; i) a 

change in ice sheet dynamics; ii) reduced mass accumulation caused by cold and dry conditions, 

and; iii) a lagged response to earlier periods of climate warming.   

 



Keywords:  Greenland Ice Sheet; relative sea level change; salt marsh; diatom; ice sheet models, 

glacio-isostatic rebound; transfer function 

 

*Corresponding author 

Antony J. Long (A.J.Long@Durham.ac.uk) 

Tel: +44 191 334 1913 

Fax: +44 191 334 1801 

 



1. Introduction and aims 

 

The Greenland Ice Sheet, like many other ice masses, expanded during the relatively cool 

‘neoglacial’ that followed the early and mid Holocene thermal optimum, and reached a maximum 

recent extent during the Little Ice Age (Kelly, 1980; Porter, 2000; Wanner et al., 2008).  Previous 

work in Greenland suggests that changes in neoglacial ice load had a direct impact on vertical land 

motions and associated relative sea level (RSL) change (Weidick, 1993).  However, to date there 

exist only a handful of well-constrained geological estimates of RSL from Greenland during the last 

millennia and so models of neoglacial ice sheet history are poorly constrained.       

 

Salt marshes provide a valuable source of late Holocene RSL data on temperate latitude 

coasts (Gehrels et al., 2006).  Although salt marshes are common in west Greenland (Lepping and 

Daniëls, 2007) until recently their use for RSL study has not been attempted (Long and Roberts, 

2002).  Woodroffe and Long (2009a) present the results of an investigation into the contemporary 

salt marsh environments at Sisimiut (Figure 1) and develop a diatom-based transfer function that 

they then apply to a salt marsh sediment profile.  Their work shows that the transfer function 

method can be applied to Greenland salt marshes to reconstruct recent RSL change and therefore 

potentially help constrain the history of the ice sheet during the last millennium. 

 

In this paper we present the results of a litho-, bio- and chronostratigraphic investigation of 

RSL change during the last millennium from the same salt marshes near Sisimiut studied by 

Woodroffe and Long (2009).  We use 18 radiocarbon dates from 16 sediment profiles to 

reconstruct a c. 0.60 m RSL rise between c. 600 and 400 cal a BP, after which RSL remained 

within a few decimeters of present.  We argue that this slow-down is due to a reduction in local 

(Greenland) ice mass and the associated changes in land height and gravity through the glacial 

isostatic adjustment process. This conclusion is surprising since it implies that west Greenland lost 

mass during the Little Ice Age.  Our work shows that this part of the Greenland Ice Sheet has 

undergone important changes in mass balance during the recent past and responds to climate 

change in a complex manner that we do not yet fully understand.   

 

2. Models of relative sea level change in west Greenland during the last millennium 

 

Therkel Mathiassen (in Gabel-Jørgensen and Egedal, 1940) is one of a number of 

archaeologists who describe evidence from west Greenland of Eskimo houses that have either 

been partly washed away by the sea or lie below the high water mark (Mikkelsen et al., 2008). The 

sea level significance of many of these archaeological records were synthesised by Weidick (1993) 

into a ‘Th. M’ and a ‘Norse’ model which show RSL rise of between 2 m and 6 m since c. AD 1200 

(Figure 2).  Weidick (1993) attributed this large rise in RSL in the last millennium to a progressive 



build-up of ice during the Little Ice Age from AD 1300 onwards, as depicted by a glaciation curve 

for Disko Bugt.   

 

More recent geological research confirms that RSL has risen in the late Holocene in west 

Greenland.  In Disko Bugt (Figure 1), drowned isolation basins show that RSL in the eastern part of 

the bay rose by 1 m to 2 m during the last 2 k cal a BP (Long et al., 2003).  Beach ridges and 

coastal lagoon sediment sequences on Disko Island record at least three transgressions in the last 

millennium, with sea level reaching close to present about 400 to 500 years ago (Rasch and 

Jensen, 1997; Rasch, 2000).  In the Nanortalik area of south Greenland, Sparrenbom et al. (2006) 

and Mikkelsen et al. (2008) suggest that RSL also rose throughout the late Holocene at a rate of 1 

m to 2 m per thousand years.  Recent GPS observations confirm that areas close to the ice sheet 

margin throughout central west Greenland are subsiding by up to 4 mm yr, with rates of 

subsidence declining with distance from the ice sheet margin (Dietrich et al., 2005).     

 

3. Study area  

 

The study area is located 30 km south of the coastal town of Sisimiut (Figure 1b).  The 

landscape is a low coastal plain dissected by many narrow tidal inlets. The tidal range is c. 4.5 m 

and mean high water of spring tides (MHWST) and highest astronomical tides (HAT) occur at 

+1.62 m and +2.33 m above mean tide level (MTL) (Royal Danish Administration of Navigation and 

Hydrography, pers. comm.). The annual mean temperature at Sisimiut (1949-1999) was -3.9 ± 2.8 

°C and the study area is underlain by permafrost (van Tatenhove and Olesen, 1994). First year 

sea ice forms in the sheltered waters of the study area during the winter.    

 

Woodroffe and Long (2009a) detail contemporary diatom distributions, macrophyte 

vegetation zones, particle size and organic content measured by % loss on ignition (%LOI) across 

three small salt marshes in the study area (Figure 1d).  The contemporary diatom data are briefly 

reviewed in the following section because they inform our interpretation of the fossil sequences 

that are the focus of this paper. Locally the transition from upland vegetation comprising Empetrum 

nigrum heath or freshwater marsh to high marsh vegetation comprising Cares glareosa occurs at 

2.50 ± 0.13 m MTL (Figure 3).  The high marsh extends downwards to 1.74 ± 0.30 m, close to the 

level of MHWST where it grades into low marsh dominated by Puccinellia phyryganodes.  The low 

marsh has a minimum measured elevation of 0.27 m MTL where tidal flat begins.  Organic content 

expressed by percentage loss on ignition (%LOI) is generally high (>40%) above 1.90 m and falls 

below this elevation.  The surface sediment of the marshes comprises sand-rich silts with some 

clay.  Below the level of MHWST the marsh sediments are typically 60-80% sand, 20-40% silt and 

0-10% clay, regardless of elevation.  Above MHWST the pattern is more varied and probably 

records input of material from upland sources to the upper marsh (Woodroffe and Long, 2009a).  



 

4. Methods of reconstruction 

 

We excavated shallow trenches through the salt marshes by spade to expose sediment 

sequences.  All samples were surveyed to MTL by levelling to a temporary benchmark which we 

related to local tidal levels measured by a sea bed pressure transducer during our fieldwork.  We 

compared these data to tidal predictions for the same period at Sisimiut (Royal Danish 

Administration of Navigation and Hydrography, pers. comm.).  During a 10-day period there was a 

0.02 m average difference in the high and low tides between observed levels at our field site and 

predicted levels at Sisimiut.   There was a 0.01 m error in our levelling between the temporary 

benchmark, the sample sites and local tide level, and a 0.03 m difference between our measured 

tide levels and those recorded by the local pressure transducer (based on three measurements 

made during a tidal cycle).  Based on these observations we adopt a conservative error of ± 0.05 

m for our tidal data.  Where possible we sampled thin (c. 10 cm) sediment sequences that overlie 

bedrock to minimise any potential effects of frost heave and sediment compaction. We cut sample 

blocks from cleaned sections with a knife, wrapped them in plastic and returned them to Durham 

University for laboratory analysis. 

 

We prepared samples for fossil diatom analysis from our sample sequences using standard 

techniques (Palmer and Abbott, 1986) with 250 diatom valves counted in most samples.  Samples 

for particle size analysis (PSA) were analysed using a Coulter lazer particle size granulometer, 

after pretreatment with hydrogen peroxide to dissolve organic material. %LOI was calculated by 

weighing and burning 5 g of dry sediment in a furnace at 550C for four hours (Heiri et al., 2001). 

 

We reconstruct palaeomarsh elevation with a transfer function, a mathematical model that 

uses contemporary diatom distributions to predict the palaeomarsh surface elevation at which a 

fossil diatom assemblage formed. A training set of contemporary diatom data from the local salt 

marshes studied is described by Woodroffe and Long (2009a).  The main diatoms at the top of the 

high marsh are Pinnularia intermedia and Pinnularia borealis (Figure 4) and are replaced close to 

HAT by Navicula pusilla, Nitzschia palea and Eunotia praerupta. Between HAT and MHWST 

frequencies of Pinnularia microstauron, Caloneis borealis, Nitzschia sigma and Navicula salinarum 

dominate.  The tidal flat, close to MTL, supports a mixture of poly- and mesohalobian species 

including Achnanthes delicatula, Opephora marina and Navicula forcipata.  The transfer function 

used in this paper is the ‘pruned’ model of Woodroffe and Long (2009a) in which four samples and 

eight taxa are removed as outliers from the contemporary training set (Figure 5).  The resulting 

model has a good fit between observed and predicted elevation (r2 = 0.94). Using weighted 

averaging partial least squares (WA-PLS) regression the training set produces a model with a root 

mean squared error of prediction (RMSEP) of 0.19 m at the second WA-PLS component.   



 

An attraction of the transfer function (TF) method is its ability to predict palaeomarsh 

surface elevation for every diatom level counted from our salt marsh sequences.  However, TFs 

treat each sample in isolation and cannot take advantage of environmental information contained 

in the samples immediately below or above the target level. Such information can provide useful 

constraints when reconstructing palaeomarsh surface elevations.  Also, our TF only uses diatom 

data and as such is blind to any trends in stratigraphy, as measured by %LOI or with grain size 

data.  Therefore, alongside the TF we use a visual assessment (VA) method that interprets key 

changes in diatom taxa and these additional stratigraphic data to reconstruct palaeomarsh surface 

elevation (Table 1).   

 

The VA method places emphasis on changes in multiple taxa that occur across relatively 

narrow height ranges, taking into account the overall ecological succession indicated by the fossil 

and the contemporary diatom data (Table 3). For example, for a fossil sample containing >5% of 

Pinnularia microstauron and Pinnularia intermedia, the palaeomarsh surface elevation can be 

constrained by the modern distributions of these two taxa (Figure 4) which both have small vertical 

ranges in the upper part of local modern marshes.  Their combined vertical ranges are limited to 

between 2.06 – 2.29 m MTL, giving a median palaeomarsh surface reconstruction of 2.17 ± 0.12 m 

MTL. With the VA approach we extend this approach to other major taxa with small tolerances, 

taking into account presence and absence of these taxa and vertical trends within these taxa (e.g., 

species abundances falling or rising) through each section.   

 

The VA approach works best in the upper marsh where the major taxa occupy a small 

vertical zone.  However, the height uncertainties in this method increase in low marsh settings 

where oligohalobian-halophile and mesohalobian taxa (e.g., Navicula cincta, Navicula peregrina, 

Navicula salinarum and Nitzschia sigma) with wider salinity tolerances dominate (Figure 4), 

although where possible we avoided dating these levels and instead focussed on samples from 

higher in the tidal frame.  A potential strength of the VA method is the common sense, subjective 

interpretation of several lines of evidence to interpret each sequence.  It is easy to be critical of 

such an approach, given the apparently greater rigour provided by the TF method.  But the TF 

method is also based on several subjective decisions, including which taxa or samples to leave out 

of contemporary training sets, the length of the environmental gradient itself, as well as the 

particular statistical model used in the TF (e.g. WA-PLS).   

 

A chronology for our sediments is developed with 21 AMS radiocarbon dates.  We collected 

material for dating by sieving 1-cm thick sediment samples and extracting under microscope plant 

macrofossils, mainly Empetrum nigrum seeds and leaves and Cyperaceae seeds (Table 2).  These 

were cleaned to remove adhering organic material and dried before being dated at the NERC 



Radiocarbon Laboratory and SUERC AMS Laboratory in East Kilbride, Scotland.  Dates are 

calibrated using the Oxcal calibration program (v. 4, Bronk Ramsey, 1995; 2001) and ages are 

cited in calibrated years Before Present (cal a BP).  Radiocarbon dates are cited with a one sigma 

age error and, unless stated otherwise, all calibrated dates are quoted with a two sigma calibrated 

age range.  

 

5. Results 

 

5.1 Fossil sequences 

 

We collected stratigraphic data from three salt marshes (A-C) (Figure 1d). Typically the 

stratigraphic sequences record freshwater peat overlain by salt marsh sediment. Each sequence 

generated at least one dated sea level index point and each has diatom counts at 1 cm intervals 

across the transition from freshwater peat and extending to the present marsh surface.  We now 

describe two representative profiles from each marsh and provide full details of the remaining 11 

diatom sequences as on-line supplementary information. 

 

5.1.1 Marsh A2 

 

Marsh A2 comprises a tidal flat and low marsh separated from an area of high marsh that 

grades into freshwater upland across a small bedrock ramp (Figure 6a).  The sediments overlying 

the ramp and beneath the high marsh rest on bedrock, but the low marsh overlies unconsolidated 

silts and sands of uncertain depth.  We trenched the low marsh to expose a wet, grey sandy silt 

that is overlain by a 10 cm-thick, red/brown peat with woody roots and abundant plant macrofossils 

(leaves, seeds and stems of Empetrum). This freshwater peat passes upwards into grey blue 

sands and silts with roots and occasional angular rock fragments that extend to the present marsh 

surface.  We collected two monolith samples from the low marsh (Mono 7 and Mono 6, Figure 6a). 

The sediments on the ramp (Mono 4a, A2-3 and A2-4) comprise a thin, dark brown or black well-

humified peat above bedrock which passes upwards into faintly laminated grey/brown organic silts 

and sands that extend to surface.   

 

Mono 6 (Figure 6b) 

Diatoms across the upper peat-sediment contact show the replacement of oligohalobous-

indifferent taxa, notably Pinnularia viridis and Pinnularia microstauron by oligohalobous and 

mesohalobian taxa, dominated by Navicula peregrina and then Navicula cincta.  %LOI falls from a 

maximum of 40% at 10 cm to <20% above 9 cm.  Grain size data show that the salt marsh 

sediment is a sand with some silt.  A sample of seeds and leaves of Empetrum nigrum and 



Cyperaceae from 10-9 cm depth was dated to 640±48 14C yr BP (SUERC-13886, 662-559 cal a 

BP).   

 

A2-4 (Figure 6c) 

The stratigraphy comprises a dark brown humified peat that above 7 cm is overlain by a 

light brown sediment-rich peat with roots.  Diatoms record the upwards replacement of 

oligohalobian-indifferent taxa in the peat (Pinnularia intermedia, Pinnularia microstauron and 

Stauroneis anceps) by oligohalobous (Navicula cincta) and mesohalobian taxa (Navicula salinarum 

and Navicula peregrina) in the overlying sediment.  %LOI falls from 40-60% below 5 cm depth to 

<20% above this level.  This fall corresponds with an increase in the sand content of the sediment.  

A sample of Empetrum nigrum seeds and leaves and Cyperaceae seeds from 8-7 cm depth was 

dated to 446±35 14C yr BP (SUERC-16540, 540-335 cal a BP).   

 

5.1.2  Marsh A3 

 

On the southern edge of Marsh A3 is a narrow sloping bedrock ledge that is overlain by salt 

marsh which has a surface elevation of between 1.95 and 1.55 m MTL (Figure 7).  The stratigraphy 

of the marsh comprises a black humified peat that is overlain by a silt that contains sandy 

laminations and occasional angular rock fragments.  We analysed four sediment profiles from the 

section; A3-4 is described in Woodroffe and Long (2009a) and below we detail profiles A3-6 and 

A3-3.   

 

A3-6 (Figure 7b) 

The sequence is a thin dark brown peat overlain at 4 cm by a grey brown silt sand with 

some laminations.  The lowest diatom sample, taken directly above the bedrock, contains a 

polyhalobous assemblage with high frequencies of Paralia sulcata and Plagiogramma 

staurophorum.  We believe these diatoms are derived from remnants of an older (probably mid 

Holocene) marine deposit that was deposited as RSL fell below present MTL (Long et al., 2009). 

Above 4 cm, the organic silt contains a similar diatom record to that observed on Marsh A2, with 

oligohalobian-indifferent taxa replaced by oligo- and mesohalobian taxa, notably Navicula cincta 

and Navicula peregrina.  %LOI is low throughout the sequence and grain size data show the 

sequence to be a sand-rich silt with a trace of clay. A sample of Empetrum nigrum and Cyperaceae 

seeds and Vaccinium leaves from 4-3 cm depth was dated to 685±35 14C yr BP (SUERC-16539, 

686-559 cal a BP).   

 

A3-3 (Figure 7c) 

The stratigraphy is similar to that from A3-6 but here the basal peat is 2 cm thicker. The 

diatom profile shows that oligoalobhous-indifferent taxa persist throughout the sequence but they 



are at their maximum below c. 5 cm where frequencies of Pinnularia microstauron and Pinnularia 

intermedia dominate. %LOI data show a decline from >40% between 9-8 cm to <20% above 6 cm. 

Grain size data show the sediment is a sand with some silt and a trace of clay.  Two AMS dates 

from 7-6 cm and 5-4 cm depth yielded ages of 330±35 14C yr BP (SUERC-17092, 481-306 cal a 

BP) and 227±37 14C yr BP (SUERC-16539, 320-140 cal a BP (78.3% probability)).   

 

5.1.3  Marsh A4 

 

At Marsh A4, high marsh overlies bedrock and passes laterally into freshwater upland 

environments (Figure 8a). A section through the salt marsh shows a thin, locally preserved grey 

sand silt above bedrock that passes up into a dark brown humified peat and then into a lighter 

coloured organic-rich silt sand.  The contact between the lower grey silt and the overlying peat 

undulates with small (cm-scale) ball and flame structures.  The sediments above the peat contain 

occasional sandy laminations and rare angular rock fragments.  We analysed five sediment 

sequences from Marsh A4, two of which are described below (A4-7 and A4-2).   

 

A4-7 (Figure 8b) 

The sequence is 7 cm thick and contains a dark brown herbaceous peat overlain by a 

organic silt sand that extends to the marsh surface. There are high frequencies of Eunotia 

praerupta in the peat, which give way in the overlying sediment to a mixed oligohalobous and 

mesohalobous assemblage.  %LOI is high in the peat (c. 70%) but falls gradually above 5 cm.  

Grain size data show the post-peat sediment is a sand silt that becomes slightly coarser above 3 

cm.  A sample of Empetrum nigrum seeds and leaves and Cyperaceae seeds from 5-4 cm depth 

was AMS dated to 208±36 14C yr BP (SUERC-17081, 310-137 cal a BP (78.2% probability)).   

 

A4-2 (Figure 8c) 

The stratigraphy comprises a humified peat overlain at 2 cm by a silt peat that extends to 

surface.  Diatoms are absent through the humified peat but in the silt peat they are dominated by 

frequencies of Eunotia praerupta that decline up profile and are replaced by Pinnularia 

microstauron and then Nitzschia palea.  %LOI rises through the peat to a maximum of c. 80% at 3-

2 cm before falling towards the surface.  The sediment above the peat layer is a sand silt.  A 

sample of Empetrum nigrum seeds and leaves and Cyperaceae seeds from 1-2 cm depth was 

AMS dated to 221±36 14C yr BP (SUERC-17075, 317-140 cal a BP (79.3% probability)).   

 

6. Reconstructing relative sea level  

 

6.1 Transfer function and visual assessment of palaeomarsh surface elevation  

 



The fossil diatom data described above follow a broadly consistent trend, with a lower 

freshwater peat containing oligohalobous-indifferent taxa that is overlain by salt marsh that has 

mainly oligo- and mesohalobous taxa. The vertical changes in diatom assemblages are normally 

gradual and there is no evidence for marsh wide breaks in sedimentation. None of the diatom 

profiles revert from salt marsh to freshwater upland deposition and none record the establishment 

of tidal flat environments.   

 

Our transfer function (TF) predicts palaeomarsh elevations for each diatom level counted.  

The result is 18 records of palaeomarsh elevation that together span the last 600 cal yrs.  The 

overall pattern is for the older freshwater upland environments to be converted into high marsh and 

in some cases low marsh environments.  Sediment accretion is significantly outpaced by the rate 

of palaeomarsh surface lowering during this initial period of inundation.  This is followed by a phase 

of relatively stable marsh levels that persist through the younger, uppermost levels of most of the 

studied profiles to the present day.  We also use visual assessment (VA) to provide a second 

estimate of palaeomarsh surface change.  We now compare these two approaches for our 

radiocarbon dated levels (Figure 9) before reconstructing time/altitude trends in RSL.  All except 

one of our reconstructions agree when their vertical ranges are taken into consideration. This gives 

us confidence that each method of reconstruction is reasonable although there are differences 

between the results that require consideration.  

 

First, the TF reconstructions generally plot above the equivalent VA estimates for our 

highest samples (above c. 2.15 m), whereas the reverse is true for samples below this level 

(Figure 9).  This means that overall the TF reconstructions have a wider vertical range (0.89 m) 

compared to the VA estimates (0.64 m).  The cause of these differences lies in the details of each 

method used.  The higher reconstructions of the TF are because the model predicts a relatively 

high optima for certain key high marsh taxa when compared to the contemporary data, notably 

Pinnularia microstauron (2.30 m MTL) and Pinnularia borealis (2.64 m MTL).  The latter is above 

the height at which diatoms are preserved in the contemporary environment (Figure 4).  This 

means that the palaeomarsh elevations of samples containing these species are predicted to be 

relatively high compared to the equivalent VA reconstructions. Similarly, the lowermost TF 

reconstructions are sensitive to the presence of Navicula peregrina and Navicula cincta, each of 

which have relatively low optima (1.60 m and 1.31 m, respectively) and wide tolerances.  For our 

VA reconstructions we place greater weight on changes in the diatom assemblages that occur 

around the level of HAT, for example the presence/absence of Pinnularia microstauron, Pinnularia 

intermedia, Nitzschia palea and Navicula pusilla, since these taxa have more tightly defined 

vertical ranges (Table 2).  VA reconstructions are therefore less influenced by the presence of low 

marsh diatom taxa than the TF method.  This is especially evident for the A3-4 (upper) dated level 

where a mixed assemblage containing high frequencies of Pinnularia microstauron and Navicula 



peregrina generates markedly different predictions of palaeomarsh surface depending on the 

method used. 

 

Second, the VA reconstructions have a slightly smaller average vertical range compared to 

those of the TF (± 0.11 m and ± 0.20 m, respectively) (Figure 9).  This is because the TF approach 

considers all the diatom data available in each sample whereas the VA method places greater 

weight on a smaller number of key taxa that have well defined rises / falls / ranges in the 

contemporary training set.  For example, about the level of HAT (c. 2.33 m), several prominent 

assemblage changes take place across a vertical range of c. ± 0.10 to 0.15 m (e.g. Pinnularia 

microstauron, Pinnularia borealis, Nitzschia palea, Navicula pusilla (Figure 4)).   

 

Notwithstanding the differences between the two methods the overall trend is similar.  

Picking which model to use is not easy; the TF method seeks to use all of the diatom data in its 

reconstructions and is able to easily generate predictions for every sample in a sediment profile, 

whereas the VA method is more selective in the weight it places on certain taxa and considers 

trends in adjacent samples.  In the following RSL reconstructions we use both methods although 

our preference is to use the VA method since we believe this better reflects the vertical 

uncertainties in the contemporary and fossil data used for the reconstructions. 

 

We reject three dates from our analyses because they are modern (SUERC-13888, 

SUERC-13889, SUERC-17074) and one from A2 Mono 4a (SUERC-13885) which it is clearly 

inconsistent with the majority of the other bio- and chronostratigraphic data from Marsh A2.  We 

are not able to provide an explanation for the results of these samples which are considerably 

younger than expected given their elevation and diatom assemblages. Three of the rejected 

samples contained small quantities of carbon (Table 1) and therefore even small amounts of 

material not representing the depth under investigation or added during laboratory handling of the 

sample would have an impact on the radiocarbon result.  Radiocarbon analysis of small samples is 

challenging, but those ≤300µgC indicated in Table 1 were particularly so, requiring AMS analysis 

at low current (SUERC-13885 and SUERC-13889 contained 240 and 300µgC respectively).  It is 

normal practice to present calibrated radiocarbon ages in age/altitude plots of RSL with a two 

sigma age range.  However, a plateau in the radiocarbon calibration curve means that dates 

younger than c. AD 1700 have a two sigma probability distribution that extends to present.  This 

renders dates from this time interval of limited value, but alternative dating methods such as 210Pb 

are also problematic at this time interval.  In these cases we cite these dates with a <2 sigma age 

range (see above). It is important that the resulting RSL plots are considered with this in mind.   

 

6.2  Reconstructing relative sea level change  

 



We combine our chronological and vertical data into two graphs of RSL change (Figure 10).  

The sample specific vertical errors are determined using a Root Squared Error of the microfossil 

reconstructions and errors in our levelling and use of tidal datums as defined above.  The graphs 

show the same general pattern with MTL rising from -0.60 ± 0.20 m at c. 600 cal a BP to -0.10 ± 

0.20 m at c. 400 cal a BP.   After 400 cal a BP, the TF reconstruction suggests RSL may have 

reached (or was slightly above) 0 m MTL whereas the VA method predicts a stable RSL or slight 

upwards trend that continued in the last few centuries.  By assuming a linear sedimentation rate 

from the dated levels in the high marsh settings of A4-7 and A3-3, we can utilise TF and VA 

reconstructions from each centimetre up to the surface (Table 4).  This confirms that RSL has been 

relatively stable for the past 400 years.  In Figure 10 we combine our two youngest isolation basin 

dates from Long et al. (2009) with our salt marsh reconstructions (including eight index points from 

the recent stable part of the record with inferred ages).  This shows that RSL rose from c. – 4 m at 

c. 1.4 ka cal a BP and reached the present value (within data uncertainty) by 400 cal a BP.   

 

The precision of the new RSL records is considerably better than that associated with the 

isolation basin method (the latter typically ± 0.40 to 1.0 m (Long et al., 1999)), or the use of 

radiocarbon dated marine molluscs or archaeological data (typically ± several meters) (Rasch and 

Jensen, 1997). Our largest source of uncertainty is the radiocarbon chronology. Although we 

extracted delicate plant macrofossils for dating from 1 cm thick sediment slices, the mean 

calibrated ages and their associated uncertainties vary by several centuries for samples from a 

similar elevation.  For example, at VA -0.45 m MTL, the two sigma age range of the A2-3 and A3-6 

dates span a 400 year interval between c. 700 and 300 cal a BP.  The most likely reason for this 

age scatter is the fact that sediment accretion on these marshes was initially significantly slower 

than the prevailing rate of RSL rise.  The date from A2-4 (540-335 cal a BP, Table 1) formed when 

VA MTL was c. -0.39 m, however since its formation only 7 cm of salt marsh sediment has 

accumulated.  This means that on these marshes a 1 cm thick slice of sediment probably contains 

plant macrofossils, especially seeds of Empetrum nigrum and Cyperaceae that were deposited 

over several decades or even centuries.   

 

7. Discussion 

 

7.1 Relative sea level changes in west Greenland during the last millenniium 

 

Our new RSL history bears little similarity to either the ‘Th. M.’ or ‘Norse’ models (Figure 2).  

For example, during the last 400 years both of these models suggest RSL rose by 3 m or so to 

present, whereas our data show that RSL was within 0.2 m of its present level throughout this 

interval.  At c. AD 1200 both models suggest RSL was c. – 6 m, whereas we identify a late 

Holocene lowstand of -4 m MTL.  Lastly, the ‘Th. M.’ model has a c. 4 m amplitude RSL oscillation 



between AD 1200 and AD 1600 but our salt marsh and isolation basin data record a continuous 

rise throughout; indeed an oscillation of this magnitude would have temporarily converted our 

highest drowned lake to freshwater, but we see no stratigraphic evidence for this (Long et al., 

2009).  Our reconstruction shows that RSL reached close to present at c. 400 cal a BP.  This is in 

agreement with Rasch and Nielsen (1995) who argue that sea level in Disko Bugt reached close to 

present around AD 1500, although we see no evidence for the three ‘transgression phases’ that 

they record.  

 

The slow-down in RSL that we observe at c. 400 cal a BP is an important aspect of our 

results and before we discuss this further we now consider whether this is real or an artefact of our 

data processing.  One possibility is that our vertical reconstructions are incorrect, perhaps because 

they over- or under-estimate the actual tide level; we think this unlikely since they are made using 

extensive contemporary and fossil data and two different reconstruction methods.  Uncertainties in 

tidal datums and survey methods do not explain the trends observed, since we use the same 

datums for our modern and fossil analyses.  Our study sites are small marshes in a fjord setting, 

close to the open coast, and there is no reason why abrupt decimeter changes in palaeotidal range 

should have occurred at 400 cal a BP.  Lastly, we have considered whether the radiocarbon ages 

are unreliable, but we think this unlikely since we use the same sampling approach and materials 

throughout our analyses (terrestrial macrofossils).  In summary, we have confidence in our 

reconstructions and believe that the slow-down in RSL at c. 400 cal a BP is real.  We suggest that 

the large differences between our reconstructions and those of Weidick (1993) (Figure 2) most 

likely reflect the problems in relating archaeological data to former tidal datums, as well as the 

uncertainties that arise when compiling data from a large area that has likely recorded different 

rates of RSL change. 

 

7.2 Driving mechanisms of relative sea level 

 

Relative sea level at Sisimiut, as elsewhere in Greenland, is controlled by a combination of 

non-Greenland and Greenland processes.  The former include changes in eustasy and the 

elevation of the solid earth due to the collapse of the forebulge associated with non-local ice sheet 

deglaciation (Fleming and Lambeck, 2004).  The latter arises from rebound due to the unloading of 

Greenland ice since the LGM as well as a potential reloading of the solid earth during the 

neoglacial (e.g. Kelly, 1980).  We now explore these contributions as we consider the driving 

mechanisms behind RSL change at the study site. 

 

7.2.1 Non-Greenland processes 

 



The collapse of the Laurentide forebulge is an important control on late Holocene RSL in 

west Greenland.  Fleming and Lambeck (2004) estimate that since 2 k a 14C BP (c. 1.8 k cal a BP) 

this has caused ~13 m of RSL rise at Sisimiut, at an average rate of c. 7 mm yr.  By comparison, 

the ICE-5G model (Peltier, 2004) predicts a non-Greenland contribution to RSL rise at Sisimiut of 

c. 4.5 m since 1 k cal a BP, at an average rate of 4.5 mm yr (Simpson et al., 2009).  These two 

models, which have different earth and ice model parameters, provide a range of estimates (7 to 

4.5 mm yr) for the non-Greenland solid earth contribution during the last few millennia.  The 

collapse of the Laurentide forebulge is a slow, gradual process driven by the viscoelastic response 

of the Earth’s crust to ice unloading following the end of the Late Wisconsnian.  Although rates of 

forebulge collapse gradually reduce over the Holocene, there is no reason why they should slow or 

stop, which would be required to cause the slow-down in RSL we observe at 400 cal a BP.    

 

It is unlikely that the Sisimiut RSL record contains a significant contribution from ‘eustatic’ 

sea level change.  This is because the overall rise of c. 4 m since 1.4 k cal a BP far exceeds most 

estimates of the eustatic contribution during this period. Most studies indicate that there was zero 

eustatic contribution to global sea level change to within observational uncertainty (e.g. Lambeck, 

2002; Peltier, 2004; Milne et al., 2005).  With regard to the RSL slow-down observed at 400 cal a 

BP, a eustatic fall of similar magnitude to the rise driven by peripheral bulge subsidence would be 

required (i.e. several mm/yr). Such a signal, which would amount to a metre or more fall in global 

sea level over the past 400 years, has not been observed. We conclude that, while there most 

likely have been fluctuations in eustatic sea level over the past millennium (e.g. Grinsted et al., 

2009), they have been limited to a few decimetres in amplitude and so are not a primary control of 

the changes observed at Sisimiut.  

 

In summary, although non-Greenland processes, particularly the collapse of the Laurentide 

forebulge, are significant in controlling RSL in the study area, they cannot explain the slow-down 

and then near-stable RSL observed from c. 400 cal a BP onwards.  For this reason, we now turn 

attention to consider local, Greenland processes. 

 

7.2.2 Local (Greenland) processes 

 

The significant removal of ice load from west Greenland since the last glacial maximum 

caused glacio-isostatic rebound that in west Greenland exceeded other non-Greenland processes 

for most of the Holocene.  The physical manifestation of this interplay is the elevation of the marine 

limit (the highest level reached by the sea following ice margin retreat) which in the study area is at 

c. 120 m asl (Funder, 1989).  The solid Earth response to Greenland ice unloading decreased 

during the Holocene and caused the rate of Greenland rebound and RSL fall to gradually slow.  Ice 

sheet models suggest that the neoglacial expansion of the ice sheet added new load and further 



reduced the rate of Greenland rebound, such that non-Greenland (largely Laurentide forebulge 

collapse) subsidence started to dominate and RSL rose (e.g. Simpson et al., 2009).  

 

This interplay of non-Greenland and Greenland processes can reasonably explain most of 

the features of the Holocene RSL history of the study area.  However, the RSL slow-down at c. 400 

cal a BP is more difficult to explain since, if our arguments above regarding non-Greenland 

processes are valid, we require a local Greenland process to contribute a sustained decrease in 

RSL between 400 cal a BP and the present that is equal in magnitude to other, non-Greenland 

processes. This would require a local or regional mass loss during a period that encompasses the 

latter part of the Little Ice Age when, as we note above, many glaciers and ice caps in Greenland 

and elsewhere are thought to have been at their maximum late neoglacial size (although we note 

that there is uncertainty in the date at which the ice sheet first reached its maximum extent in many 

areas (Weidick, 1968)).  

 

It is not immediately obvious how this region of west Greenland could lose mass during the 

Little Ice Age.  We know from a variety of sources that the Little Ice Age was a period of 

pronounced climate variability in Greenland and the North Atlantic region more widely which was 

more complex than a simple shift to colder conditions (Barlow, 2001).  Recent studies of the mass 

balance of the Greenland ice sheet show its sensitivity to various climate forcings including the 

North Atlantic Oscillation (NAO) (Hanna et al., 2008) and it is interesting to note that Trouet et al. 

(2009) suggest a persistent shift from a strongly positive to a negative NAO state before and after 

AD 1400-1600.  It is reasonable to hypothesise that changes of this type would have had a 

significant impact on the Greenland Ice Sheet and hence RSL change through changes in both its 

surface mass balance and glacier dynamics. 

 

Recent observations of the Greenland Ice Sheet demonstrate its sensitivity to changes in 

the behaviour of its major ice streams (e.g. Luthcke et al., 2006).  The Jakobshavn ice stream 

drains a large part of the west Greenland ice sheet and we note that Lloyd (2006) observes an 

increase in sedimentation rate, ice rafted debris and a change in foraminifera assemblages from c. 

500 cal a BP in a sea bed sediment core from Disko Bugt.  These changes could reflect an 

increase in discharge from Jakobshavn that might have contributed to a regional reduction in ice 

load. Another potential mechanism involves a shift to regional negative mass balance due to the 

cold and dry conditions, with low precipitation, that prevailed in this part of west Greenland around 

this time.  For example, a recent study of lake levels in the Søndre Strømfjord area shows that they 

fell to their lowest Holocene level during the Little Ice Age (Aebly and Fritz, 2009). A further 

possibility is that the RSL slow-down records a delayed response to earlier events in the ice 

sheet’s history (Huybrechts, 1994), including the warmth of the proceeding medieval warm period 



when the ice sheet may have lost mass (Dahl-Jensen et al., 1998).  Clearly, these hypotheses 

require testing with suitable ice and sea-level models to ascertain their validity.  

  

The above discussion shows that we do not yet understand the cause of the recent slow-

down in RSL observed at our field site.  This may be remedied by a better understanding of the 

physics of ice streams and development of more sophisticated ice models that accurately describe 

changes in ice discharge. We believe that our reconstruction is robust, since it is based on multiple 

sediment profiles examined from several marshes and using two methods of reconstruction.  We 

note that the evidence for relatively stable RSL at present is similar to the trend recorded in recent 

repeat GPS measurements at Sisimiut (Dietrich et al., 2005).  Moreover, work elsewhere in Disko 

Bugt also suggests that RSL reached close to present in the fifteenth century (Rasch and Nielsen, 

1995).  Preliminary results from a comparable salt marsh based study in outer Disko Bugt also 

indicate that a RSL slow-down c. 400 cal a BP occurred in this region (Woodroffe and Long, 

2009b).  This change in recent RSL appears to be a regional-scale event and not simply the 

product of local site processes.   

 

8. Conclusions 

 

We present the results of a detailed investigation into the pattern of relative sea level (RSL) 

changes at a field site located close to Sisimiut, west Greenland.  Our approach uses a 

combination of litho-, bio- and chronostratigraphic methods to reconstruct RSL change in the last 

millennium using salt marsh sediments.  This is the first systematic analysis of this type in 

Greenland and demonstrates the potential of the methods used in these and potentially other high 

latitude salt marshes.  The conclusions from this study are as follows: 

 

1.  The stratigraphy of the salt marshes in the study area record an upwards transition from 

freshwater to salt marsh conditions during the last 800 years or so.  This change in palaeomarsh 

elevation is recorded in thin sediment sections, typically 5 to 10 cm thick, that in most instances 

overlie bedrock. 

 

2.  We use a diatom-based transfer function (TF) to reconstruct palaeomarsh elevation and 

changes in mean tide level (MTL) using a dataset previously published by Woodroffe and Long 

(2009a).  We also use visual assessment (VA) that takes into account vertical trends in the diatom 

data as well as the sedimentological information to provide a second set of reconstructions.   

 

3.  Both TF and VA approaches yield similar results, giving us confidence in each.  In general, MTL 

rose from c. -0.60 ± 0.20 m at c. 600 cal a BP to reach -0.10 ± 0.20 m at c. 400 cal a BP.  After this 

time, MTL remained close to present (± 0.20 m) until the present day.  The range of the TF 



reconstructions is larger than the VA reconstructions, reflecting the fact that the TF is sensitive to 

the optima and tolerances of taxa that occur at the upper and lower end of the contemporary 

training set.  The VA model has generally smaller height uncertainties because of its reliance on 

certain key changes in diatom taxa that occur at well defined levels in the intertidal zone. 

 

4.  Our new record demonstrates that existing models of RSL change that invoke meter scale 

oscillations in RSL since AD 1600 are not valid in this sector of west Greenland.  Although RSL 

was rising during the final centuries of the Norse period, after c. AD 1600 RSL had been close to 

present. 

 

5.  The initial rise in late Holocene RSL can be explained by the dominance of non-Greenland 

processes, notably the collapse of the Laurentide forebulge, over local (Greenland) solid Earth 

uplift associated with postglacial ice unloading.  The slow-down in RSL at 400 cal a BP is unlikely 

to record either a change in the rate of Laurentide forebulge collapse or a change in eustatic sea 

level.  We therefore argue that this change reflects a sustained reduction in local (Greenland) ice 

mass, the impact of which persists over most of the past 400 years. 

 

6.  The last 400 years is widely acknowledged as a period of generally cooler than present 

conditions associated with the latter stages of the Little Ice Age.  During this period, existing 

models suggest that the ice expanded to its maximum extent.  It is not obvious at this stage how to 

reconcile an expanding ice sheet with a reduction in ice load.   
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Supplementary data 

 

In this supplementary information we provide details of the lithology, diatoms and 

radiocarbon dates from the salt marsh samples not detailed in the main paper.  These are from: 

Marsh 2 (A2-3, A2-Mono 4A and A2 Mono 7, Figures SI1a-c), Marsh 3 (A3-1 and A3-4, Figures SI2 



a, b) and Marsh 4 (A4-1, A4-5, A4-6 and A4-9, Figures SI3 a-d).  In each diagram counts are 

expressed as a percentage of total diatom valves (%TDV) and only data >5% TDV are shown.  

Radiocarbon dates are listed in full in Table 1 of the main paper. 
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List of Figures 
 

Figure 1 Location map showing sites referred to in the text. 

 

Figure 2 The ‘Norse’ and ‘Th.M.’ models of RSL change in west Greenland with a 

hypothetical reconstruction of ice margin advance and retreat in Disko Bugt 

(redrawn from Weidick (1993)).  

 

Figure 3 Overview of Marsh A1 showing the transition between tidal flat, low marsh, high 

marsh and upland. 

 

Figure 4 Contemporary diatom data and generalised vegetation zones for the Sisimiut salt 

marshes (modified from Woodroffe and Long (2009a)). Data are expressed as a % 

Total Diatom Valves (%TDV).  Only data >5% TDV are shown. 

 

Figure 5 Observed versus predicted elevation: a) and associated residuals; b) determined by 

the ‘pruned data’ model weighted averaging-partial least squares component two.   

 

Figure 6 Stratigraphic data from Marsh A2: a) overview of marsh lithostratigraphy showing 

the location of sample sequences; b) diatom profile from Mono 6.  Counts are 

expressed as a percentage of total diatom valves (%TDV) and only data >5% TDV 

are shown; c) diatom profile from A2-4.  

 

Figure 7 Stratigraphic data from Marsh A3: a) overview of marsh lithostratigraphy showing 

the location of sample sequences; b) diatom profile from A3-6.  Counts are 

expressed as a percentage of total diatom valves (%TDV) and only data >5% TDV 

are shown; c) diatom profile from A3-3. 

 

Figure 8 Stratigraphic data from Marsh A4: a) overview of marsh lithostratigraphy showing 

the location of sample sequences; b) diatom profile from A4-7.  Counts are 

expressed as a percentage of total diatom valves (%TDV) and only data >5% TDV 

are shown; c) diatom profile from A4-2. 

 

Figure 9 Palaeomarsh surface elevation reconstructions for 19 sea level index points from 

the study area determined by the transfer function and visual assessment methods 

(see text for details). 

 

Figure 10 Reconstructed trend in MTL in the study area during the last millennia using the 

transfer function (a) and visual assessment (b) methods, together with isolation 



basin data from Long et al. (2009).  Open squares (A4-7) and diamonds (A3-3) 

denote reconstructions with inferred ages assuming constant sedimentation rates 

between the surface and the 14C date in that sequence.  Solid squares are the 

youngest isolation basin data from Long et al. (2009).  Height and age errors are 

defined in Tables 2 and 4.  Age errors for the diatom levels from A4-7 and A3-3 are 

estimated based on the assumption that they decrease linearly to present.  

 

 



Supplementary information 

 

In this supplementary information we provide details of the lithology, diatoms and radiocarbon 

dates from the salt marsh samples not detailed in the main paper.  These are from: Marsh 2 (A2-3, 

A2-Mono 4A and A2 Mono 7, Figures SI1a-c), Marsh 3 (A3-1 and A3-4, Figures SI2 a, b) and 

Marsh 4 (A4-1, A4-5, A4-6 and A4-9, Figures SI3 a-d).  In each diagram counts are expressed as a 

percentage of total diatom valves (%TDV) and only data >5% TDV are shown.  Radiocarbon dates 

are listed in  full in the main paper. 



Table 1 Radiocarbon dates from the study area.  δ13C values were measured using a dual-inlet mass spectrometer with a multiple ion beam 

collection facility (VG OPTIMA) for correcting 14C data to –25 ‰ 13CVPDB. Starred δ13C values indicate samples containing ≤300µg C, 

which required AMS analysis at low current.  The starred δ13C values were calculated from δ13C/12C ratios measured during AMS 14C 

determination and by comparison to Craig (1957) δ13C/12C values for PDB.  These values are not necessarily representative of the δ13C 

in the original sample material. δ13C values with pluses were estimated, as there was insufficient material for direct measurements. 

 

Sample code 
and depth 
below surface 
(cm) 

Laboratory 
code 

Material dated 
Sample 
elevation 
(m MTL) 

Sample 
weight 
(mg) 

δ 13CVPDB 
‰  ± 0.1 

Conventional 
radiocarbon 
age (years 

BP ± 1 ) 

Age range 
(cal. yrs BP, 

± 2 ) 

Age range (cal. 

yrs AD, ± 2 ) 

Marsh A2         

A2-3 
(6-7 cm) 

SUERC-
13884 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

1.56 3.78 -24.4* 397 ± 47 540-316 1410-1634 

A2-4 
(7-8 cm) 

SUERC-
46540 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

1.46 1.00 -28.1* 445 ± 35 540-335 1410-1615 

A2 Mono 4a 
(11-12 cm) 

SUERC-
13885 

Cyperaceae seeds 1.36 3.70 -26.3* 161 ± 47 289-0 1661-1950 

A2 Mono 6 
(9-10 cm) 

SUERC-
13886 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

1.28 3.49 -26.5* 640 ± 48 662-559 1288-1391 

A2 Mono 7 
(12-14 cm) 

SUERC-
13887 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

0.97 1.03 -24.8* 587 ± 48 658-528 1292-1422 

A2 Mono 7 
(12-13 cm) 

SUERC-
13888 

Vaccinium uliginosum 
leaf 

0.97 1.44 -23.8* Modern n/a n/a 

A2 Mono 7 
(13-14 cm) 

SUERC-
13889 

Piece of lichen (?) 0.97 3.32 -22.2* Modern n/a n/a 

Marsh A3         

A3-1  Lower 
(9-10 cm) 

SUERC-
17091 

Cyperaceae seeds, 
Empetrum nigrum 
seeds and leaves and  

1.99 2.96 -27.1 346 ± 36 490-311 1460-1639 



Sample code 
and depth 
below surface 
(cm) 

Laboratory 
code 

Material dated 
Sample 
elevation 
(m MTL) 

Sample 
weight 
(mg) 

δ 13CVPDB 
‰  ± 0.1 

Conventional 
radiocarbon 
age (years 

BP ± 1 ) 

Age range 
(cal. yrs BP, 

± 2 ) 

Age range (cal. 

yrs AD, ± 2 ) 

Vaccinium uliginosum 
leaves 

A3-1 Upper 
(6-7 cm) 

SUERC-
20016 

Cyperaceae and 
Empetrum nigrum 
seeds and Vaccinium 
uliginosum leaves 

2.02 1.26 -27.9* 395 ± 35 540-316 1410-1634 

A3-3 Lower 
(6-7 cm) 

SUERC-
17092 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

1.87 7.30 -26.0 330 ± 35 481-306 1469-1644 

A3-3 Upper 
(4-5 cm) 

SUERC-
19489 

Empetrum nigrum 
seeds and Vaccinium 
uliginosum leaves 

1.89 4.44 -24.3+ 227 ± 37 426-0 1630-1950 

A3-4 Lower 
(8-9 cm) 

SUERC-
17096 

Empetrum nigrum 
seeds and leaves 

1.84 4.30 -24.6 669 ± 36 680-556 1270-1394 

A3-4 Upper 
(6-7 cm) 

SUERC-
17097 

Empetrum nigrum 
seeds and leaves 

1.86 1.44 -28.6* 355 ± 35 497-315 1453-1635 

A3-6 
(3-4 cm) 

SUERC-
16539 

Cyperaceae and 
Empetrum nigrum 
seeds and Vaccinium 
uliginosum leaves 

1.73 2.70 -38.6* 685 ± 35 686-559 1264-1391 

Marsh A4         

A4-1 
(2-3 cm) 

SUERC-
17074 

Cyperaceae and 
Empetrum nigrum 
seeds and 
Harrimanella 
hypnoides leaves 

2.48 1.50 -27.9 Modern n/a n/a 

A4-2 
(1-2 cm) 

SUERC-
17075 

Cyperaceae and 
Empetrum nigrum 
seeds and Vaccinium 
uliginosum leaves 

2.42 7.50 -26.7 221 ± 36 422-0 1633-1950 

A4-5 
(1-2 cm) 

SUERC-
16538 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

2.28 12.90 -49.5* 385 ± 35 510-371 1440-1633 



Sample code 
and depth 
below surface 
(cm) 

Laboratory 
code 

Material dated 
Sample 
elevation 
(m MTL) 

Sample 
weight 
(mg) 

δ 13CVPDB 
‰  ± 0.1 

Conventional 
radiocarbon 
age (years 

BP ± 1 ) 

Age range 
(cal. yrs BP, 

± 2 ) 

Age range (cal. 

yrs AD, ± 2 ) 

A4-6 
(3-4 cm) 

SUERC-
17080 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

2.23 1.50 -26.0 265 ± 36 459-0 1491-1950 

A4-7 
(4-5 cm) 

SUERC-
17081 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

2.18 1.00 -26.5 208 ± 36 310-0 1640-1950 

A4-9 
(4-5 cm) 

SUERC-
17085 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

2.08 1.00 -27.5 281 ± 36 460-0 1490-1950 

A4-10 
(3-4 cm) 

SUERC-
17086 

Empetrum nigrum 
seeds and leaves and  
Cyperaceae seeds 

2.03 1.00 -27.4 354 ± 36 497-315 1453-1635 

 

 
 

Table 2 Reconstructed palaeomarsh surface elevation and relative sea level data from the study area using the transfer function (TF) and visual 

assessment (VA) methods.  TF and VA palaeomarsh surface elevation errors are equal to the RMSEP and the ranges of the species detailed in Table 

3 and 4 respectively.  The RSL errors include all uncertainties in the reconstructions and are those used in Figure 10.  The minimum dissimilarity 

coefficient (Min DC) value is a measure within the modern analogue technique that provides an indication of how reliable the TF reconstructions are.   

 

Sample code 
and depth below 
surface (cm) 

Calibrated 
age range 

(BP +/- 2  
unless 
specified) 

Sample 
elevation 
(m MTL) 

Palaeomarsh 
surface 
elevation 
(m MTL) 
Transfer 
Function  

Palaeomarsh 
surface 
elevation 
(m MTL) 
Visual 
Assessment 

RSL 
reconstruction 
(m MTL) 
Transfer 
Function  

RSL 
reconstruction 
(m MTL) 
Visual 
Assessment 
 

MinDC 
(87.77 = 
largest 
in 
modern 
training 
set) 

Accept or 
reject 
reconstruction 



Marsh A2         

A2-3 
(6-7 cm) 

540-316 1.56 2.09 ± 0.19 2.17 ± 0.12 -0.53 ± 0.20 -0.61 ± 0.13 57.91 Accept 

A2-4 
(7-8 cm) 

540-335 1.46 1.50 ± 0.19 1.85 ± 0.17 -0.04 ± 0.19 -0.39 ± 0.18 27.86 Accept 

A2 Mono 4a 
(11-12 cm) 

289-0 1.36 1.62 ± 0.15 1.81 ± 0.14 -0.25 ± 0.16 -0.45 ± 0.15 102.09 Reject  

A2 Mono 6 
(9-10 cm) 

662-559 1.28 2.15 ± 0.20 2.13 ± 0.16 -0.88 ± 0.20 -0.85 ± 0.16 93.05 Accept 

A2 Mono 7 
(12-14 cm) 

658-528 0.97 1.49 ± 0.20 1.84 ± 0.14 -0.52 ± 0.21 -0.85 ± 0.15 58.53 Accept 

Marsh A3         

A3-1  Lower 
(9-10 cm) 

490-311 1.99 2.38 ± 0.20 2.22 ± 0.07 -0.39 ± 0.21 -0.24 ± 0.08 50.27 Accept 

A3-1 Upper 
(6-7 cm) 

540-316 2.01 1.87 ± 0.22 2.01 ± 0.04 0.15 ± 0.22 0.00 ± 0.07 27.71 Accept 

A3-3 Lower 
(6-7 cm) 

481-306 1.87 2.30 ± 0.20 2.13 ± 0.16 -0.43 ± 0.21 -0.26 ± 0.16 48.07 Accept 

A3-3 Upper 
(4-5 cm) 

320-140 
(78.3 %) 

1.89 1.83 ± 0.20 1.99 ± 0.06 0.06 ± 0.21 -0.10 ± 0.08 104.30 Accept 

A3-4 Lower 
(8-9 cm) 

680-556 1.84 2.27 ± 0.19 2.13 ± 0.16 -0.43 ± 0.19 -0.29 ± 0.16 31.50 Accept 

A3-4 Upper 
(6-7 cm) 

497-315 1.86 1.79 ± 0.19 2.01 ± 0.06 0.07 ± 0.19 -0.14 ± 0.08 48.07 Accept 

A3-6 
(3-4 cm) 

686-559 1.73 1.89 ± 0.22 2.07 ± 0.12 -0.16 ± 0.23 -0.34 ± 0.13 14.69 Accept 

Marsh A4         

A4-1 
(2-3 cm) 

Modern 2.48 2.30 ± 0.20 2.49 ± 0.12 0.15 ± 0.21 -0.01 ± 0.13 70.85 Reject 

A4-2 
(1-2 cm) 

317-140 
(79.3 %) 

2.42 2.32 ± .0.19 2.45 ± 0.12 0.10 ± 0.20 -0.03 ± 0.13 62.67 Accept 

A4-5 
(1-2 cm) 

510-371 2.28 2.31 ± 0.19 2.30 ± 0.11 -0.03 ± 0.19 -0.02 ± 0.12 24.53 Accept 

A4-6 
(3-4 cm) 

459-275 
(83.1 %) 

2.23 2.27 ± 0.18 2.23 ± 0.06 -0.04 ± 0.19 0.00 ± 0.08 25.37 Accept 



 
Table 3 Visual Assessment reconstruction criteria for reconstructing palaeomarsh surface elevation and relative sea level.  The elevation estimates derived from the diatom data are based on data presented in Figure 4.  Palaeomarsh surface elevation errors are derived from the ranges of the species described; those for the 

RSL 

reconstructions include these errors and all other sampling errors described in the text.  

A4-7 
(4-5 cm) 

310-137 
(78.2 %) 

2.18 2.26 ± 0.20 2.27 ± 0.15 -0.08 ± 0.21 -0.09 ± 0.16 39.12 Accept 

A4-9 
(4-5 cm) 

460-283 
(92 %) 

2.08 2.32 ± 0.19 2.17 ± 0.12 -0.24 ± 0.20 -0.09 ± 0.13 53.00 Accept 

A4-10 
(3-4 cm) 

497-315 2.03 2.26 ± 0.19 2.09 ± 0.10 -0.23 ± 0.20 -0.06 ± 0.11 54.42 Accept 

Sample 
number 
and depth 
below 
surface 
(cm) 

Sample 
elevation 
(m MTL) 

Visual Assessment reconstruction criteria 
(range refers to presence of diatom species above 5 % 
TDV) 

Palaeomarsh 
surface 
elevation 
(m MTL) 
Visual 
Assessment 
method 

RSL 
reconstruction 
(m MTL) 
Visual 
Assessment 
method 

Marsh A2     

A2-3 
(6-7 cm) 

1.56 
Pinnularia microstauron rising (2.29-1.95 m MTL range) 
Pinnularia intermedia falling (2.61-2.06 m MTL range) 

2.17 ± 0.12 -0.61 ± 0.13 

A2-4 1.46 Navicula cincta rising (rises to peak of 55 % TDV at 1.68 m  1.85 ± 0.17 -0.39 ± 0.18 



(7-8 cm) MTL, with first occurrence >5 % TDV at 2.02 m MTL) 
Caloneis borealis present (2.19-1.44 m MTL range) 

A2 Mono 
4a 
(11-12 cm) 

1.36 

Pinnularia microstauron absent (2.29-1.95 m MTL range) 
Pinnularia intermedia absent (2.61-2.06 m MTL range) 
Navicula cincta rising (rises to peak of 55 % TDV at 1.68 m  
MTL, with first occurrence >5 % TDV at 2.02 m MTL) 

1.81 ± 0.14 -0.45 ± 0.15 

A2 Mono 6 
(9-10 cm) 

1.28 
Pinnularia microstauron falling (2.29-1.95 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.13 ± 0.16 -0.85 ± 0.16 

A2 Mono 7 
(12-14 cm) 

0.97 

Pinnularia microstauron absent (2.29-1.95 m MTL range) 
Pinnularia intermedia absent (2.61-2.06 m MTL range) 
Navicula cincta rising (rises to peak of 55 % TDV at 1.68 m  
MTL, with first occurrence >5 % TDV at 2.02 m MTL) 

1.84 ± 0.14 -0.85 ± 0.15 

Marsh A3     

A3-1  
Lower 
(9-10 cm) 

1.99 
Pinnularia microstauron rising (2.29-1.95 m MTL range) 
Pinnularia intermedia falling (2.61-2.06 m MTL range) 
Luticola mutica present (2.41-2.16 m MTL range) 

2.22 ± 0.07 -0.24 ± 0.08 

A3-1 Upper 
(6-7 cm) 

2.01 
Pinnularia microstauron falling (2.29-1.95 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 
Pinnularia intermedia fallen below 5 % (2.61-2.06 m MTL range) 

2.01 ± 0.04 0.00 ± 0.07 

A3-3 Lower 
(6-7 cm) 

1.87 
Pinnularia intermedia falling (2.61-2.06 m MTL range) 
Pinnularia microstauron rising (2.29-1.95 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.13 ± 0.16 -0.26 ± 0.16 

A3-3 Upper 
(4-5 cm) 

1.89 
Pinnularia microstauron falling (2.29-1.95 m MTL range) 
Pinnularia intermedia absent (2.61-2.06 m MTL range) 

1.99 ± 0.06 -0.10 ± 0.08 

A3-4 Lower 
(8-9 cm) 

1.84 

Pinnularia intermedia present (2.61-2.06 m MTL range) 
Pinnularia microstauron rising (2.29-1.95 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 
Luticola mutica present (2.41-2.16 m MTL range) 

2.13 ± 0.16 -0.29 ± 0.16 

A3-4 Upper 
(6-7 cm) 

1.86 

Pinnularia intermedia absent (2.61-2.06 m MTL range) 
Pinnularia microstauron falling (2.29-1.95 m MTL range) 
Navicula pusilla absent (2.42-1.98 m MTL range) 
Nitzschia palea absent (2.41-1.84 m MTL range) 

2.01 ± 0.06 -0.14 ± 0.08 

A3-6 
(3-4 cm) 

1.73 
Pinnularia microstauron falling (2.29-1.95 m MTL range) 
Pinnularia intermedia absent (2.61-2.06 m MTL range) 
Caloneis borealis present (2.19-1.44 m MTL range) 

2.07 ± 0.12 -0.34 ± 0.13 

Marsh A4     

A4-1 
(2-3 cm) 

2.48 
Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia microstauron present (2.29-1.95 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 

2.49 ± 0.12 -0.01 ± 0.13 



 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4 Visual Assessment reconstruction criteria for reconstructing palaeomarsh surface elevation and relative sea level from A4-7 and A4-3.  

The elevation estimates derived from the diatom data are based on data presented in Figure 4.  Height errors are as for Table 3. 

Navicula pusilla present (2.42-1.98 m MTL range) 

A4-2 
(1-2 cm) 

2.42 Eunotia praerupta falling (2.57-2.34 m MTL range) 2.45 ± 0.12 -0.03 ± 0.13 

A4-5 
(1-2 cm) 

2.28 
Eunotia praerupta rising (2.57-2.34 m MTL range) 
Pinnularia intermedia falling (2.61-2.06 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 

2.30 ± 0.11 -0.02 ± 0.12 

A4-6 
(3-4 cm) 

2.23 

Pinnularia intermedia rising (2.61-2.06 m MTL range) 
Pinnularia microstauron present (2.29-1.95 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 
Eunotia praerupta present (2.57-2.34 m MTL range) 

2.23 ± 0.06 0.00 ± 0.08 

A4-7 
(4-5 cm) 

2.18 

Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.27 ± 0.15 -0.09 ± 0.16 

A4-9 
(4-5 cm) 

2.08 

Pinnularia microstauron present (2.29-1.95 m MTL range) 
Pinnularia intermedia falling (2.61-2.06 m MTL range) 
Eunotia praerupta present (2.57-2.34 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.17 ± 0.12 -0.09 ± 0.13 

A4-10 
(3-4 cm) 

2.03 
Navicula pusilla rising (2.42-1.98 m MTL range) 
Caloneis borealis rising (2.19-1.44 m MTL range) 
Eunotia praerupta falling (2.57-2.34 m MTL range) 

2.09 ± 0.10 -0.06 ± 0.11 

Sample code 
and depth 
below 
surface (cm) 

Sample 
elevation 
(m MTL) 

Visual Assessment reconstruction criteria 
(range refers to presence of diatom species above 5 
% TDV) 

Palaeomarsh 
surface 
elevation 
(m MTL) 
Visual 
Assessment  

RSL  
(m MTL) 
Visual 
Assessment 
 

Palaeomarsh 
surface 
elevation  
(m MTL) 
Transfer 
Function 

RSL  
(m MTL) 
Transfer 
Function 



Marsh A3       

*A3-3 Lower 
(6-7 cm) 

1.87 
Pinnularia intermedia falling (2.61-2.06 m MTL range) 
Pinnularia microstauron rising (2.29-1.95 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.13 ± 0.16 -0.34 ± 0.16 
 

2.30 ± 0.20 
 

-0.43 ± 0.21 

*A3-3 Upper 
(4-5 cm) 

1.89 
Pinnularia microstauron falling (2.29-1.95 m MTL range) 
Pinnularia intermedia absent (2.61-2.06 m MTL range) 

1.99 ± 0.06 -0.18 ± 0.08 1.83 ± 0.20 0.06 ± 0.21 

A3-3 
(3-4 cm) 

1.90 

Pinnularia microstauron absent (2.29-1.95 m MTL 
range) 
Pinnularia intermedia absent (2.61-2.06 m MTL range) 
Navicula cincta rising (rises to peak of 55 % TDV at 1.68 
m  MTL, with first occurrence >5 % TDV at 2.02 m MTL) 

1.82 ± 0.14 0.00 ± 0.08 1.60 ± 0.20 0.33 ± 0.21 

A3-3 
(2-3 cm) 

1.91 
Nitzschia palea present (2.41-1.84 m MTL range) 
Pinnularia microstauron absent (2.29-1.95 m MTL 
range) 

1.90 ± 0.06 -0.07 ± 0.08 1.74 ± 0.19 0.20 ± 0.20 

A3-3 
(1-2 cm) 

1.92 
Nitzschia palea present (2.41-1.84 m MTL range) 
Pinnularia microstauron absent (2.29-1.95 m MTL 
range) 

1.90 ± 0.06 -0.06 ± 0.08 1.75 ± 0.19 0.20 ± 0.20 

A3-3 
(0-1 cm) 

1.93 
Nitzschia palea present (2.41-1.84 m MTL range) 
Pinnularia microstauron absent (2.29-1.95 m MTL 
range) 

1.90 ± 0.06 -0.05 ± 0.08 1.69 ± 0.19 0.27 ± 0..20 

Marsh A4       

*A4-7 
(4-5 cm) 

2.08 

Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.27 ± 0.15 -0.19 ± 0.16 2.26 ± 0.20 -0.08 ± 0.21 

A4-7 
(3-4 cm) 

2.09 

Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.27 ± 0.15 -0.18 ± 0.16 2.25 ± 0.20 -0.13 ± 0.21 

A4-7 
(2-3 cm) 

2.10 

Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.27 ± 0.15 -0.17 ± 0.16 2.17 ± 0.20 -0.04 ± 0.21 

A4-7 
(1-2 cm) 

2.11 

Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 
Nitzschia palea present (2.41-1.84 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 

2.27 ± 0.15 -0.16 ± 0.16 2.22 ± 0.20 -0.08 ± 0.20 

A4-7 
(0-1 cm) 

2.12 
Eunotia praerupta falling (2.57-2.34 m MTL range) 
Pinnularia intermedia rising (2.61-2.06 m MTL range) 

2.27 ± 0.15 -0.16 ± 0.16 2.13 ± 0.20 0.02 ± 0.21 



 
 

Nitzschia palea present (2.41-1.84 m MTL range) 
Navicula pusilla present (2.42-1.98 m MTL range) 





T h . M . mo de l

N o r s e mo de l

-7

-6

-5

-4

-3

-2

-1

0

1

2

3
H

ei
gh

t r
el

at
iv

e 
to

 p
re

se
nt

 s
ea

 le
ve

l

Cal yr BP

-1

0

1

Retreat (km)

Advance (km)

0200400600800

G
lacial advance and retreat in D

isko B
ugt

Glacial advance and retreat



Low marshLow marshLow marsh

High marshHigh marshHigh marsh

UplandUplandUpland

Tidal flat (submerged)Tidal flat (submerged)

Marsh A1Marsh A1Marsh A1

Exposed
bedrock

High marshHigh marshHigh marsh



 -0.4 

 -0.2 

 0 

 0.2 

 0.4 

 0.6 

 0.8 

 1 

 1.2 

 1.4 

 1.6 

 1.8 

 2 

 2.2 

 2.4 

 2.6 

0 20

Coc
co

ne
is 

sc
ute

llu
m

0 20

Nav
icu

la 
for

cip
ata

0 20

Ope
ph

ora
 m

ari
na

0

Ope
ph

ora
 pa

cif
ica

0 20 40

Ach
na

nth
es

 de
lic

atu
la

0

Calo
ne

is 
wes

tii

0 20

Nav
icu

la 
dig

ito
rad

iat
a

0 20

Nav
icu

la 
pe

reg
rin

a

0 20 40 60 80

Nav
icu

la 
sa

lin
aru

m

0 20 40 60

Nitz
sc

hia
 si

gm
a

0

Lu
tic

ola
 m

uti
ca

0 20 40 60 80

Nav
icu

la 
cin

cta

0 20 40

Ach
na

nth
es

 la
nc

eo
lat

a

0

Brac
hy

sir
a b

reb
iss

on
i

0 20 40

Calo
ne

is 
bo

rea
lis

0

Cym
be

lla
 ce

sa
tii

0

Diat
om

ell
a b

alf
ou

ria
na

0

Eun
oti

a p
ec

tin
ali

s

0

Eun
oti

a t
en

ell
a

0 20

Frag
ila

rifo
rm

a v
ira

sc
en

s

0 20

Han
tzs

ch
ia 

am
ph

iox
ys

0 20 40 60

Mart
ya

na
 m

art
yi

0 20

Nav
icu

la 
bro

ck
man

ii

0 20 40

Nav
icu

la 
ca

ri

0 20 40

Nav
icu

la 
pu

sill
a

0 20 40 60

Nitz
sc

hia
 pa

lea

0 20

Pinn
ula

ria
 bi

cla
va

ta

0 20 40 60

Pinn
ula

ria
 bo

rea
lis

0 20 40 60 80 100

Pinn
ula

ria
 in

ter
med

ia

0 20 40

Pinn
ula

ria
 m

icr
os

tau
ron

0

Pinn
ula

ria
 vi

rid
is

0 20

Stau
ron

eis
 an

ce
ps

0 20

Stau
ros

ire
lla

 pi
nn

ata

0 20 40

Eun
oti

a p
rae

rup
ta

0 20

Tab
ell

ari
a f

loc
cu

los
a

0

U2

0 20

U3

Polyhalobian Mesohalobian Oligohalobian-halophile Oligohalobian-indifferent Halophobian Unidentified

Percentage diatom abundance

MHWST

HAT

Elev
ati

on
 (m

 M
TL)

MHWNT

C
arex glareosa

zone
P

uccinellia phyryganodes
zone

U
nvegetated
tidal flat

Generalised
vegetation 

zones

U
pland 
zone



0.0 1.0 2.0 3.0
0.0

1.0

2.0

3.0

0.0 1.0 2.0 3.0
-0.60

-0.45

-0.30

-0.15

0.00

0.15

0.30

0.45

0.60

Observed elevation (m MTL)

P
re

di
ct

ed
 e

le
va

tio
n 

(m
 M

TL
)

Observed elevation (m MTL)

P
re

di
ct

ed
 e

le
va

tio
n 

re
si

du
al

s 
(m

)

a) b)

R2 = 0.93



1.2

1.3

1.4

1.5

0.9

1.1A
lti

tu
de

 (m
 M

TL
)

1.0

A2-3

A2-4 

A2 Mono 6

A2 Mono 7

0.8

2 4 6 8 10 120
Distance along transect (m)

658-528 cal a BP

662-559 cal a BP

540-335 
cal a BP

540-316 
cal a BP

Salt marsh sediment

Freshwater peat

Sand-rich silt

Bedrock

A2 Mono 7A2 Mono 7A2 Mono 7

A2 Mono 6A2 Mono 6A2 Mono 6

A2-4A2-4A2-4
A2-3A2-3A2-3

MHWNT

a)

High marshHigh marshHigh marsh

UplandUplandUpland
Boundary c. 2.4 m MTLBoundary c. 2.4 m MTLBoundary c. 2.4 m MTL

Low marshLow marshLow marsh

Bedrock rampBedrock rampBedrock ramp

MHWST
1.62 m
MTL

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

 11 
0

Coc
co

ne
is 

sc
ute

llu
m

0

Nav
icu

la 
for

cip
ata

0

Calo
ne

is 
wes

tii

0

Dipl
on

eis
 in

ter
rup

ta

0

Nav
icu

la 
dig

ito
rad

iat
a

0 20 40 60

Nav
icu

la 
pe

reg
rin

a

0 20

Nav
icu

la 
sa

lin
aru

m

0 20 40 60 80

Nav
icu

la 
cin

cta

0

Frag
ila

rifo
rm

a v
ira

sc
en

s

0

Mart
ya

na
 m

art
yi

0

Nav
icu

la 
pu

sill
a

0

Nitz
sc

hia
 pa

lea

0

Pinn
ula

ria
 bo

rea
lis

0

Pinn
ula

ria
 in

ter
med

ia

0 20 40

Pinn
ula

ria
 m

icr
os

tau
ron

0 20 40

Pinn
ula

ria
 vi

rid
is

0

Eun
oti

a p
rae

rup
ta

1.0 1.5 2.0 2.5

Pala
eo

mars
h s

urf
ac

e e
lev

ati
on

0 20 40

% LO
I

0 20 40 60 80

% San
d

0 20 40

% S
ilt

0

% C
lay

Polyhalobian Mesohalobian Oligohalobian-
halophile

Oligohalobian-indifferent Halophobian

metres (MTL)

Dep
th 

(cm
)

640 ± 18 BP
(SUERC 13886)
662-559 cal a BP

Percentage diatom abundance

Mono 6

Visual 
assessment

 0 

 1 

 2 

 3 

 4 

 5 

 6 

 7 

 8 

 9 

 10 

0

Coc
co

ne
is 

sc
ute

llu
m

0 20 40 60

Nav
icu

la 
pe

reg
rin

a

0

Nitz
sc

hia
 si

gm
a

0 20

Nav
icu

la 
sa

lin
aru

m

0 20 40

Nav
icu

la 
cin

cta

0 20

Calo
ne

is 
bo

rea
lis

0

Han
tzs

ch
ia 

am
ph

iox
ys

0

Mart
ya

na
 m

art
yi

0

Nav
icu

la 
bro

ck
man

ii

0 20

Pinn
ula

ria
 in

ter
med

ia

0 20

Pinn
ula

ria
 m

icr
os

tau
ron

0 20

Stau
ron

eis
 an

ce
ps

1.0 1.5 2.0 2.5

Pala
eo

mars
h s

urf
ac

e e
lev

ati
on

0 20 40 60

% LO
I

0 20 40 60 80

% S
an

d

0 20 40 60

% S
ilt

0

% C
lay

Polyhalobian Mesohalobian Oligohalobian-indifferentOligohalobian-
halophile

Dep
th 

(cm
)

A2-4

445 ± 35 BP
(SUERC 16540)
540-335 cal a BP

Percentage diatom abundance metres (MTL)

Visual
assessment

b)

c)

A2 Mono 4a

289-0
cal a BP

A2 Mono 4aA2 Mono 4aA2 Mono 4a

1.6









A3-1 lower

A4-2 

A4-9 

A4-5 

A3-3 lower 

A4-6 

A3-4 lower 

A4-10 

A4-7 

A2 Mono 6 

A2-3 

A3-6 

A3-1 upper 

A3-3 upper 

A3-4 upper 

A2-4 

A2 Mono 7 

Palaeomarsh surface elevation (m MTL)

Tr
an

sf
er

 fu
nc

tio
n 

m
et

ho
d

Vi
su

al
 a

ss
es

sm
en

t m
et

ho
d

A4-1

A2 Mono 4a

1.
2

1.
4

1.
6

1.
8

2.
0

2.
2

2.
4

2.
6

2.
8



Vi
su

al
 A

ss
es

sm
en

t r
ec

on
st

ru
ct

ed
 M

TL
 (m

)
Cal a BP

Tr
am

sf
er

 fu
m

ct
io

n 
re

co
ns

tru
ct

ed
 M

TL
 (m

)

Cal a BP

a)

b)

-5

-4

-3

-2

-1

0

1
0 200 400 600 800 1000 1200 1400 1600

-5

-4

-3

-2

-1

0

1
0 200 400 600 800 1000 1200 1400 1600


	Long et al. QSR 2010 Open Access.pdf
	Fig 1 - site map
	Fig 2 - Weidick diagram
	Fig 3 - marsh photo colour
	Fig 4 - modern diatoms resubsmission
	Fig 5 - obs v pred
	Fig 6 - Marsh 2 colour resubmission
	Fig 7 colour
	Fig 8a colour
	Fig 8b colour
	Fig 9 - TF v VA resubmission
	Fig 10 - RSL recons resubmission

