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Abstract

The effect size (ES) has been mainly introduced and investigated for changes in location under an
assumption of Normality for the underlying population. However, there are many circumstances where
populations are non-Normal, or depend on scale and shape and not just a location parameter. Our mo-
tivating application from e-commerce requires an ES which is appropriate for long-tailed distributions.
We review some common ES measures. We then introduce two novel alternative ES for two-sample
comparisons, one scale-free and one on the original scale of measurement, and analyse some theoretical
properties. We examine these ES for two-sample comparison studies under an assumption of Normality
and investigate what happens when both location and scale parameters differ. We explore ES for phe-
nomena for non-Normal situations, using the Weibull family for illustration. Finally, for an application,
we assess differences in customer behaviour when browsing E-commerce websites.

Keywords: effect size; two-sample comparison; non-Normal distribution; Weibull; quantile function;
e-commerce; long-tail distribution.

1 Introduction

Classical hypothesis-testing is the standard way of using experimental data to test existence of a phenomenon
Gigerenzer [1993], Ledesma et al. [2009]. However, statistical significance does not provide information about
the magnitude, or effect size (ES), of the phenomenon, whereas this is usually the focus of research Krueger
[2001]. Provision of such measures is thus a necessary complement to hypothesis-testing Thompson [1998].
Indeed, each of the quantities: p-value, sample size, a measure of ES, and test power, is typically a function
of the other three Cohen [1992], Descôteaux [2007] and so in quantifying and interpreting experimental
research we should consider them together.

The p-value is not a direct measure of ES. One reason is that statistically significant findings are not
always practically significant, because taking a large enough sample size will result in a small p-value.
Conversely, a statistical test with weak power, perhaps because of small sample size, may not appear as
statistically significant, but the measured effect relative to background variation may be deemed to be of
practical significance Wilson Van Voorhis and Morgan [2007]. For this reason, appropriate specification of
both statistical significance and the magnitude of effect, is required to provide inference of practical utility
Thompson [1998].

Measures of ES have been available for decades, but mainly limited to meta-analysis for combining
estimates from different studies Keselman et al. [1998], perhaps because they have been largely developed
for simplistic situations, such as changes in location under assumptions of Normality. However, there are
many circumstances where populations are non-Normal, or depend on scale and shape and not just a
location parameter. There are non-parametric measures of ES which require weaker assumptions, but often
as dominance measures. One distribution F dominates a second distribution G when each quantile of F is
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larger than the corresponding quantile of G. However, there are many settings in which two distributions
do not necessarily dominate each other, but exhibit contrasting differences for different parts of the range.
For example, when comparing two lifetime distributions for a survival analysis, the survival function for
one group may be initially larger than that for the other group, but then cross over and become smaller.
Classical ES do not truly describe these differences.

In Section 2, we briefly review existing ES for two-sample comparison studies. In Section 3 we motivate
and introduce two robust ES measures based on quantile differences and use these to examine changes in
location under a Normality assumption, and thence to changes in location and scale. In Section 4 we show
how the proposed ES behaves for general comparisons of two distributions. In Section 5 we explore ES

under Weibull distributions to illustrate comparisons for highly non-Normal populations. For a practical
application, we compute ES in the context of identifying patterns in web browsing behaviour in Section 6.
In Section 7 we show how a bootstrap approach may be used to derive confidence intervals for our proposed
ES measures. Algorithms to construct the ES measures we propose are available in the appendix.

2 Effect sizes for the two-sample comparison

2.1 Cohen’s d and dr

The most familiar ES is Cohen’s d Cohen [1977], estimated by d = (x̄1− x̄2)/s, where x̄1, x̄2 are the sample
means, and s is an estimate of the common standard deviation. This expresses the intuitively appealing
concept that the magnitude of effect is the difference between the centres of two populations relative to a
measure of individual variation. There is often implicitly the assumption that the underlying populations
are Normal.

Cohen offered practical rules to interpret d: an ES of 0.2 to 0.3 standard deviations is deemed a small
effect; ES ≈ 0.5 is a medium effect; and ES ≈ 0.8 is a large effect. He warned that such criteria are relative
and interpretations must take into account the content, purpose, and method of research, except perhaps in
the context of research with entirely novel variables Lenth [2001]. The value of this rule to applied research
has been questioned, since the practical importance of ES also depends on other quantities, such as the
effectiveness of alternative treatments and cost-benefit analysis of the treatment Hodges and Olkin [1985].

Cohen Cohen [1977] also proposed a correlation form, dr, of his d index, where dr is the correlation
between numerical variable Y and binary variable X:

−1 < dr = d/
√
d2 + (1/pq) < 1, (1)

where p and q are the proportions of subjects belonging to the two groups indicated by X. Cohen’s dr is
large when d is large and also when p and q are similar. dr is bounded, which may facilitate interpretation.
For a critical review of the ingredients to d as an ES, and a proposed alternative d2, see Cahan and Gamliel
[2011].

2.2 Simple robust alternatives

There have been many attempts to extend Cohen’s d to more complicated situations, for example weakening
the assumption of common variance. One recommendation Glass et al. [1981], which scales (x̄1 − x̄2) by
the estimated standard deviation of the control group, simply ignores that we should prefer an ES which
explicitly incorporates heteroscedasticity. Commonly used ES are not robust. Small changes in the tails
can substantially inflate variance estimates and thus decrease Cohen’s d. A well-known example is based
on the contaminated Normal distribution Tukey [1960], Wilcox [2005], Wilcox and Tian [2011]. Suppose
that H(x) = 0.9Φ(x) + 0.1Φ(x/10), where Φ is the standard Normal cdf. Now consider two groups, both
Normally distributed and with common variance σ2 = 1, and suppose their means are µ1 = 0, µ2 = 0.8, so
that d = 0.8, a large ES. For the contaminated Normals with the same means, Cohen’s d falls to d = 0.59,
a medium ES.

Means and variances may be replaced by robust alternatives, for example using 20% trimmed means
and a Winsorized variance Algina et al. [2005]. There is a loss of tail information when trimming, so this
may be a serious drawback when comparison in tails is important, as for the example we show in section 6.
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See Hedges and Friedman [1993] for an analogue for Cohen’s d when the focus is on comparing the tails or
some other feature of a distribution rather than the centre.

2.3 Other alternatives

The literature contains many other proposals, with a range of advantages and disadvantages. The Common
Language ES can be calculated for different probability distributions and under different assumptions and
has the advantage of representing ES using a common probability scale Anderson and Berry [2009], Ledesma
et al. [2009]. It is often employed as a measure of numerical dominance in location to judge whether one
distribution is generally larger or smaller than another. The probability of superiority ES Grissom and Kim
[2005] is similar, but based on sample ranks. This measure assumes similarity of shape in the underlying
populations, but is not robust to heteroscedasticity Mann and Whitney [1947], Grissom [1994].

Non-overlap ES can be obtained by comparing the percentiles of populations. Three such measures
were proposed by Cohen Cohen [1977] under an assumption of Normality with equal variation.

Cliff Cliff [1993] introduced a simple non-parametric ES, δ, which is computed by counting the number
of occurrences of an observation from one group having a higher response value than an observation from
the second group, and vice-versa. δ = ±1 indicates full separation between the groups, whereas δ = 0
indicates full overlap. When the data do not follow the Normal distribution or where the variable under
study corresponds to an ordinal level of measurement, Cliff’s δ has been preferred to Cohen’s d or dr Hess
and Kromrey [2004]. As a non-parametric measure, its interpretation is unaffected when the assumptions
of Normality or homoscedasticity are violated Coe [2002]. However, δ is perhaps more suitable as a crude
dominance measure.

Wilcox & Tian Wilcox and Tian [2011] proposed an explanatory power ES based on special case measures
that reflect the proportion of variance in a response variable Y accounted for by an explanatory variable
X using regression. One advantage is that it can be generalized to multi-sample problems. See Doksum
and Samarov [1995] for a simple linear regression example, and Kulinskaya and Staudte [2006] for a robust
analogue which however depends on sample size.

2.4 Graphical representations

Quantile and percentile plots have long been exploratory graphical tools for comparison studies Wilk and
Gnanadesikan [1968], including suggestions Doksum and Sievers [1976], Doksum [1977] to use a graphical
representation of the shift function for comparing groups. This involves making comparisons at a number
of distribution features, rather than only location or scale. The magnitude of difference between two
populations may also be explored using the ordinal dominance curve Darlington [1973], where the area
under or above the curve may be used as a measure of dominance. For a better separation of points when
observations are close to the y = x line, the Tukey sum-difference graph has been recommended instead of
the quantile plot Cleveland [1994]. Such plots provide a complete representation of the differences between
two populations, but not a single summary ES.

3 Developing effect sizes for non-Normal data

There are many circumstances where populations are known or suspected to be non-Normal, and perhaps
depend on scale and shape as well as location. Basing an ES on medians alone does not help: the medians of
two distributions might be equal, but their tails might be very different Fleming et al. [1980]. Indeed, where
two populations may be Non-Normal, or heteroscedastic, or nonhomomerous in other ways, traditional
measures of ES can be misleading and do not provide sufficient information about the magnitude of the
effect Grissom and Kim [2005], Wilcox [2005].

Our need is to construct an ES over the full distribution. Extending from the notion of the graphical
comparison described above, one possibility for the two-sample comparison is to compare the quantile
functions and vertical quantile comparison functions of two distributions F and G. In principle, these
should provide general ES which are applicable to both non-Normal and Normal settings. We begin with
some definitions.
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For a probability distribution function F , the quantile function for F is given by

Q(p) = inf {x ∈ R : p ≤ F (x)} , 0 ≤ p ≤ 1. (2)

For discrete probability distribution functions, the quantile function returns the minimum value of x for
which the statement holds. For random variables for which the cumulative distribution function (cdf) is
continuous and strictly monotonic, F : R → (0, 1), Q(p) is the inverse of the cdf, and it is common to use
F−1 as notation.

Suppose that F and G are continuous probability distribution functions. The vertical quantile compar-
ison function for G with baseline F is

V G
F (p) = G(F−1(p)), 0 ≤ p ≤ 1. (3)

This may be used to represent the distance between two probability distributions Li et al. [1996]. If F = G
then V F

F (p) is the probability distribution function of the Uniform distribution. Thus, differences between
V G
F (p) and the Uniform cdf equate to differences between F and G. One may plot the vertical quantile

comparison function versus the probability to display the difference between two distributions Holmgren
[1995].

The vertical shifted function forG with baseline F is defined to be V G
F (p)−p. This summarizes differences

between F and G at each point p because the Uniform cdf is F (p) = p.

3.1 Quantile absolute deviation

In this section, we extend the idea of comparing two distributions by their quantiles for the entire range
of probabilities over [0, 1]. For two populations with cumulative distribution functions F and G, we define
the quantile absolute deviation (QAD) as:

QAD(F , G) =

∫
1

0

∣∣∣ F−1(p)−G−1(p)
∣∣∣ dp, (4)

where F−1 and G−1 are quantile functions for the two distributions. The QAD is a symmetric positive
measure and may be interpreted as the average distance between the quantiles of the distributions. When
two distributions are similar, their quantiles must also be similar and QAD(F , G) will be small. The QAD

satisfies the three divergence properties of a criterion:

1. Self similarity: QAD(F , F ) = 0.

2. Self identification: QAD(F , G) = 0 if and only if F = G.

3. Positivity: QAD(F , G) ≥ 0 for all F,G.

The space of quantile functions with the above mentioned distance is a metric space because the distance
fulfills all the following axioms of a metric. For probability distribution functions F , G, and H:

1. Self identification: QAD(F , G) = 0 if and only if F = G.

2. Symmetry: QAD(F , G) = QAD(G , F ).

3. Triangle inequality: QAD(F , G) +QAD(G , H) ≥ QAD(F , H).

The QAD is not a scale-free measure as it has the same unit of measurement as the variable under inves-
tigation. Thus, QAD(F , G) = 1 implies that on average the quantiles of the variable with distribution
F differ by one unit from the quantiles of distribution G. It may or may not be true that one of the
distributions dominates the other, but if this is the case, the QAD may be interpreted directionally.

One may exclude the observations which lie in the far tails of the distribution, in order to eliminate
the effect of outliers or extreme values on the ES. A 100α% trimmed QAD can be calculated using only
observations which are placed between the (α/2)th and (1− α/2)th percentiles of the data, computed as:

Kα(F , G) =
1

(1− α)

∫
1−α/2

α/2

∣∣∣F−1(p)−G−1(p)
∣∣∣ dp. (5)

This is more robust to outliers, but does not give a metric measure over the space of quantile functions and
loses tail information.
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3.2 Quantile comparison effect size

In this section, we introduce the notion of using a distance measure – statistical divergence – as an ES.
Statistical divergence is a weaker notion than that of distance as it does not need to be symmetric. That
is, the divergence from F to G is not necessarily equal to the divergence from G to F . The vertical shifted
function V G

F (p)− p provides a basis for such a divergence. For two cumulative distribution functions F and
G, define

Div(F ||G) = 2×

∫
1

0

∣∣∣G(F−1(p))−G(G−1(p))
∣∣∣dp = 2×

∫
1

0

∣∣∣ V G
F (p)− p

∣∣∣dp, (6)

which takes values over the interval [0, 1]. Although this measure satisfies divergence properties, it is not
necessarily symmetric. However, the corresponding average is, and this is what we propose to use as an
ES. Thus, we define the quantile comparison effect size (QCES) as

QCES(F , G) =
1

2
Div(F ||G) +

1

2
Div(G ||F )

=

∫
1

0

∣∣∣G(F−1(p))− p
∣∣∣+

∣∣∣ F (G−1(p))− p
∣∣∣ dp. (7)

This is a bounded measure, giving values between 0 and 1, which facilitates its interpretation as an ES,
unlike alternative unbounded divergence measures.

Standard divergence measures include Kullback-Leibler (KL), the relative entropy between two contin-
uous probability density functions f(x) and g(x) Kullback [1968]:

DKL(D ||G) =

∫
∞

−∞

f(x) log
f(x)

g(x)
dx. (8)

This is commonly used as a measure of similarity between two density distributions. In a Bayesian
context, this divergence and its variants may be used to measure the difference between prior and posterior
distributions, and symmetrized versions may be obtained.

ES based on quantile comparison can be computed directly where F and G are known. Otherwise
we may substitute the cdf by the empirical cdf. Thus, suppose we draw samples from distribution F and
distribution G and estimate F by F̃ and G by G̃, the corresponding empirical cdfs. From these we may
determine the empirical quantile functions F̃−1 and G̃−1 as appropriate.

3.3 Interpreting the Quantile Comparison effect size

Cohen’s practical rules to interpret ES can be mapped into the QCES by evaluating the QCES for Normal
distribution comparisons where we fix the scale at σX = σY = 1 and consider location changes of sizes
deemed by Cohen to be small (µX − µY = 0.2), medium (µX − µY = 0.5), and large (µX − µY = 0.8). A
graph showing the QCES for general choices for d = µX − µY is shown in Figure 1.

If we adopt similar thresholds, this suggests that QCES values of around 0.1 to 0.2 correspond to small
effects; values around 0.2 to 0.4 correspond to medium effects; and larger values suggest large effects. A
QCES of at least 0.7 represents the situation where two Normal distributions with the same scale mostly
do not overlap. For more complicated comparisons with non-Normal distributions and possible changes
in the values of several parameters, distributions may still contain substantial overlap with respect to
quantiles. Having assessed the QCES over several plausible comparisons, we thus suggest the following
guidelines. A value of QCES in (0.10,0.20) suggests a small effect; (0.20,0.30) suggests a medium effect;
and 0.30 and above corresponds to a large effect. As Cohen suggests, such ES need to be interpreted in
context; computation of a summary ES cannot replace detailed comparison of the two distributions. For
the robustness illustration of §2.2 using contaminated Normal distributions, the corresponding values of the
QCES are 0.26 and 0.21, indicating medium effect sizes on our scale in both cases.

3.4 Computation for some theoretical cases

The computation of QCES and QAD involves integration over a function of two quantile functions. As
such, they rarely provide tractable analytic forms, particularly for distributions for which there is no simple
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Figure 1: Values of the QCES corresponding to standard thresholds for Cohen’s d ES.
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expression for the quantile function; see Gilchrist [2000] for details of quantile functions for a large number
of known distributions. However, it is informative to investigate the behaviour of these ES in terms of the
parameters of distributions in some simple settings.
Uniform distribution with different locations: Suppose that X ∼ U(0 , α) and Y ∼ U(0 , β) where
β ≥ α. The quantile function for X ∼ U(a , b) is F−1

X (p) = (b− a) p+ a. So, using (2) the QAD is given by

QAD(X , Y ) = (β − α)/2, (9)

In this case, the QAD is simply the difference between the means of the two distributions. The QCES (7)
is computed using Div(X ||Y ) and Div(Y ||X), remembering the restriction to β ≥ α, giving

QCES(X , Y ) = 1− α/β. (10)

For β close to α the QCES tends to zero, and for β ≫ α the QCES approaches the upper limit, one.
In practice, we typically won’t know the values of parameters and so must estimate them. One way to

explore the behaviour of these ES is to treat these parameters as random variables, in which case these ES
are random variables. Suppose, for example, that the parameters are independently α ∼ N(µα, σ

2
α) and

β ∼ N(µβ , σ
2

β). In the above Uniform case, the QAD is Normal:

QAD(X , Y ) ∼ N
(µβ − µα

2
,
σ2

β + σ2
α

4

)
(11)

suggesting that we would expect the ES to be the underlying difference between the two Uniform means, but
with variation stemming from uncertainty about those means. The QCES is a simple linear transformation
of a ratio of two independent non-zero mean Normal distributions, see Hinkley [1969]. In some cases this
ratio distribution can be well approximated by another Normal distribution which can serve as the basis
for exploration of behaviour: see Jamalzadeh [2010] for details.
Exponential distribution with different rates: Suppose that X ∼ Exp(α) and Y ∼ Exp(β) where
β ≥ α. The quantile function for X ∼ Exp(θ) is F−1

X (p) = −1

θ ln(1 − p). Thus, the QAD (4) and QCES

(7) are:
QAD(X , Y ) = 1/α− 1/β, QCES(X , Y ) = (β − α)/(α+ β),

so that the the QAD and the QCES relate to the difference and scaled difference in means, as is so for the
Uniform case. As above, we could explore these ES as random variables, assuming Normal distributions
for the α and β parameters.

4 Two-sample Normal distribution comparisons: simulation study

We now explore the QAD and the QCES for a number of situations. First, we assume that the underlying
distributions are known and we examine ES for the Normal distribution comparison and, later, for the
Weibull distribution comparison, varying parameter choices in each case. In a further section we examine
ES calculations for a practical example for which the underlying distributions are estimated by empirical
cdfs. For discussion of cases where one of the distributions is known and the other unknown, see Jamalzadeh
[2010].

We compare five Normal N(µ, σ2) distributions to the standard Normal N(0, 1) distribution, as baseline.
Figure 2 displays them. The parameter choices are the baseline itself, and the N(0.2, 1), N(1, 1), N(0, 2),
N(3, 2), and N(5, 1.5) distributions. These give a range of parameter choices for varying mean and standard
deviation, and for a range of classical ES. The comparison between N(0, 1) and N(0.2, 1) corresponds to
Cohen’s d = 0.2, a small ES. We include a check on the baseline comparison with itself.

Table 1 shows the mean and standard deviation of Monte Carlo simulations of Cohen’s d, Cliff’s δ, the
QAD and QCES, and the KL divergence, for Normal distribution comparisons with a N(0, 1) baseline.
For each paired comparison we obtain a random sample of 100 observations from each distribution and then
compute ES for the comparison. We repeat this 10000 times and compute the mean and standard deviation
for each ES for each simulation. All the ES increase as the mean is shifted. For the N(0, 2) comparison,
i.e. with the same mean and larger scale than baseline, Cohen’s d and Cliff’s δ ES remain close to 0 (no

7



−5 0 5 10

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

x

D
en

si
ty

_____________________

Normal (0.0 , 1.0)
Normal (0.2 , 1.0)
Normal (1.0 , 1.0)
Normal (0.0 , 2.0)
Normal (3.0 , 2.0)
Normal (5.0 , 1.5)

_____________________

Figure 2: The pdfs for the compared Normal distributions.

8



Table 1: Mean and standard deviation of Monte Carlo simulations of Cohen’s d, Cliff’s δ, the QAD and
QCES, and the KL divergence, for Normal distribution comparisons with N(0, 1) baseline.

Effect Size

Cohen’s d Cliff’s δ KL QAD QCES

N( 0 , 1.0)
mean -0.002 -0.005 0.133 0.135 0.071
sd (0.141) (0.078) (0.074) (0.077) (0.045)

N(0.2, 1.0)
mean 0.200 0.110 0.199 0.220 0.122
sd (0.144) (0.076) (0.101) (0.119) (0.068)

N(1.0, 1.0)
mean 1.007 0.521 0.929 0.996 0.521
sd (0.149) (0.061) (0.198) (0.144) (0.066)

N(0.0, 2.0)
mean -0.002 -0.002 1.354 0.810 0.214
sd (0.142) (0.085) (0.363) (0.127) (0.028)

N(3.0, 2.0)
mean 1.913 0.819 6.022 2.992 0.821
sd (0.186) (0.041) (1.180) (0.222) (0.041)

N(5.0, 1.5)
mean 3.940 0.994 13.256 5.002 0.994
sd (0.252) (0.005) (2.226) (0.182) (0.003)

effect), but QCES=0.214 which would suggest a medium effect. This illustrates that Cohen’s d and dr are
not particularly sensitive to scale changes. The unbounded measures — Cohen’s d, KL, and the QAD —
have larger standard deviations as the value of the ES increases. The bounded measures — Cliff’s δ and
the QCES — tend to have smaller standard deviations for larger ES. When one distribution is dominant,
this is reflected in both Cliff’s δ and the QCES having approximately similar values. As some of these ES

are skewed, we also computed the medians and approximate 95% probability intervals on the median for
each ES. These gave a similar interpretation.

Figure 3 shows the quantile function (2) for these distributions, with the solid line representing the
quantile function of the baseline N(0, 1). Consider distribution functions F and G with means µF , µG and
standard deviations σF , σG. As the mean increases, the quantile function shifts upwards. In the case of
σF = σG, this shift is the increase in the mean. QAD(F , G) is the area between the quantile functions for F
and G. For Normal distributions with equal spread, QAD(F , G) = |µF − µG|. In the case where µF = µG

and σF < σG the quantile functions intersect, with the quantile function for G distorted to lower values at
lower probabilities and higher values at higher probabilities, indicating heavier tails. Where µF 6= µG and
σF 6= σG, there is typically both shift and distortion. In contrast to ES such as Cohen’s d, the QAD is
sensitive to differences across the full distributions and so produces a larger value for the QAD when the
standard deviation changes but the mean parameter stays fixed.

Figure 4 plots the vertical quantile comparison functions (3) between distributions F and G, using
F as baseline in the left-hand panel, and — reflected — G as baseline in the right-hand panel. F = G
corresponds to the solid line y = x in both panels. When two distributions are close, V G

F (p) and V F
G (p) are

functions close to y = x. Specific types of departure from the solid line suggest potential orderings of the
two distributions Barlow and Proschan [1975]. Intersections indicate that the distributions may have close
mean parameters and different standard deviations. A function lying strictly above or below the solid line
indicates that one of the distributions stochastically dominates the other. When one distribution is very far
from the other, the vertical quantile comparison function is far from the solid line. The QCES is computed
using the area(s) between the curve and the solid line. Thus, the more dissimilar the distributions, the
larger the QCES.

Figure 5 illustrates how the value of the QAD (4) changes as we vary the mean and standard deviation.
Large differences in mean correspond to larger ES. For fixed means, large differences in the scale parameter
lead to larger ES. Differences in both location and scale lead to even larger ES. An equivalent graph for
the QCES (7) is illustrated in Figure 6. This ES is always in (0,1), with higher values representing large
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effects. Note that because this measure highly depends on the degree of overlap of distribution functions,
the ES will not change substantially when one of the distributions has a large standard deviation relative
to the other.

5 Two-sample Weibull distribution comparisons: simulation study

In this section we investigate the behaviour of these ES for the Weibull distribution Weibull [1951], which
is used to describe the statistical behaviour of many phenomena due to its flexibility. The shifted Weibull
distribution Johnson et al. [1994] for a random variable X ∼W (α, λ, θ) has pdf:

f(x;α, λ, θ) =
α

λ

(
x− θ

λ

)α−1

exp

{
−

(
x− θ

λ

)α}
x ≥ θ, (12)

where α > 0 is a shape parameter, λ > 0 is a scale parameter, and θ is the threshold or location parameter.
When θ = 0, this function reduces to the two-parameter distribution, and we use the notation X ∼W (α, λ).

We compare Weibull distributions with different shape and scale parameters to a baseline W (1, 1)
distribution, equivalent to an exponential Exp(1) distribution. We choose counterpart Weibull distribution
parameters in such a way so as to cover the variety of shapes the distribution may take, as shown in Figure 7.

As for the Normal distribution comparison, we carried out a Monte Carlo exploration of ES for Weibull
distribution comparisons with a W (1, 1) baseline. Means and standard deviations for simulated ES are
given in Table 2. Small changes in the shape parameter produce small ES for all measures. Larger changes
in shape parameter have only a small impact on Cohen’s d and Cliff’s δ, suggesting that these do not
capture such changes well. The QCES for the W (1.7, 1) and W (0.5, 1) comparisons to baseline indicate
that these changes in shape and scale have a larger practical effect than Cohen’s d and Cliff’s δ suggest.

Figure 8 shows the corresponding quantile functions, with the solid line representing the quantile function
for the baseline W (1, 1) distribution. As the scale parameter λ increases, the quantile function shifts
upwards. Different shape parameters lead to distorted quantile functions which intersect the quantile
function for the baseline W (1, 1) distribution. The magnitude of the QAD effect size (4) is the area
between two such quantile functions. In general, larger scale parameters produce larger ES. Figure 10
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Figure 5: Contour plot of the QAD (4) for Normal distribution comparisons with N(0, 1) baseline: changes
in ES as we vary µ and σ. The point (0,1) locates the baseline. ES are positive unbounded.
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Table 2: Mean and standard deviation of Monte Carlo simulations of Cohen’s d, Cliff’s δ, the QAD and
QCES, and the KL divergence, for Weibull distribution comparisons with W (1, 1) baseline.

Effect Size

Cohen’s d Cliff’s δ KL QAD QCES

W (1.0, 1)
mean -0.000 0.009 0.120 0.130 0.071
sd (0.143) (0.082) (0.067) (0.079) (0.045)

W (1.2, 1)
mean -0.064 0.025 0.154 0.163 0.090
sd (0.141) (0.084) (0.065) (0.075) (0.043)

W (1.7, 1)
mean -0.126 0.075 0.349 0.296 0.174
sd (0.137) (0.079) (0.069) (0.070) (0.040)

W (0.5, 1)
mean 0.322 -0.087 1.185 1.231 0.217
sd (0.094) (0.081) (0.491) (0.398) (0.038)

W (2.0, 3)
mean 0.953 0.239 0.880 0.878 0.600
sd (0.213) (0.018) (0.108) (0.088) (0.061)

W (3.0, 3)
mean 1.718 0.289 1.555 1.690 0.788
sd (0.232) (0.002) (0.242) (0.130) (0.046)

shows how the QAD changes as we vary α, λ from the baseline at (1,1). For a fixed value of α, an increase
in λ results in a sharp increase in ES, and especially for α < 1.

Figure 9 displays the vertical shift quantile functions and the associatedQCES (7) for these comparisons.
Changing the scale parameter affects the ES considerably; changes in shape have less impact. The contour
plot shown in Figure 11 summarises changes in ES as we vary (α, λ) from the baseline point (1, 1).

6 Application: analysis of clickstream data

A clickstream is the record of the visiting behaviour and history of a customer to an internet website such as
an online retailer. Server log files provide tracking and purchase information for visitors to the website. The
data recorded includes the time and date of visit, the IP address, details as to the history of entry to the site,
whether the visit resulted in a purchase, and if so the amount of revenue. Analysis of such data enhances
understanding and prediction of website visitor behaviour Andersen et al. [2000], usually with the aim of
maximising customer sales and revenue. Session data forms a subset of the record and explains a customer’s
browsing behaviour during a single visit and is the most commonly analysed aspect of e-commerce data.
Key features are: which pages are most frequently viewed, the average view time per page, average length of
a path through a site, common entry and exit points, and other aggregate measures. Exploratory analysis
of such data, even though often superficial, is useful for improving system performance and providing
marketing decision-support Markov and Larose [2007]. A simple common question, for example, is whether
the revenues extracted from customers arriving from different entry points is about the same or different.
This is a simple two-sample comparison. The amount of data available is huge, potentially millions of
records per day. Therefore, standard methods for exploring such simple hypotheses fail as they inevitably
yield tiny p-values. Furthermore, the underlying populations are often highly non-Normal. We may instead
employ ES to explore such hypotheses, for which we need the ES methods developed in this paper. We
use clickstream data from a commercial website. For this illustration, we use data collected for one website
for one week in the summer of 2008. Some data cleaning is required in order to remove duplicates and so
forth. In all, 10091 visit details were recorded.

For this illustration, we examine session time duration, T , the time a customer spends on the website. We
exclude customers who visit only one page. Figure 12 shows histograms of T , right censoring at 100 minutes,
with visits classified as leading to sales, T1, or no sale, T0. The distributions are visually quite different.
Summary statistics suggest larger values of T for visits which lead to sales. In testing whether the means of
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the two populations T0 and T1 are equal, the standard t-test is not much help. The distributions seem clearly
non-Normal, and the sample size is so large that tiny p-values necessarily result. The Mann-Whitney test
has similar drawbacks. Cliff’s nonparametric ES is δ = 0.22, implying some degree of dominance. Cohen’s
d = 0.95 suggests a large effect under an assumption of Normality, but this is inappropriate here. We thus
compute the quantile-based QAD and QCES effect sizes. We may compute these either by using empirical
cdfs or by fitting suitable distributions to each set of observations.

6.1 Fitting a distribution and then computing effect sizes

We fit separate Weibull distributions to T0 and T1 via maximum likelihood. The fits are shown in Figure 13.
The shaded area is the overlap in the two distributions. The shape parameters are α1 = 1.39 > 1 and
α0 = 0.76 < 1 for the sales and non-sales groups respectively. The sales-group distribution also has a larger
scale parameter. Quantile plots suggested that these fits were good except in the furthest extremities. The
quantile functions for these distributions are shown in Figure 14. The shaded area is the QAD (4), which
evaluates to QAD(T1 , T0) = 9.35, suggesting that on average the quantiles of T for the sales group exceeds
quantiles in the non-sales group by 9.35 minutes. It should be noted that the QAD and QCES do tell us
which distribution is dominant, when a dominance exists.

Figure 15 depicts the vertical quantile comparison functions (3) for these distributions. The QCES is
the area between these functions and turns out in this case to be QCES= 0.61. Following the argument in
§3.3, we would judge this as indicating a very strong ES.

In order to assess sensitivity, we take the W (0.76, 4.95) distribution for T0 as baseline and calculate the
QCES when we vary the fitted parameters of the distribution for T1. Figure 16 shows the resultant contour
plot. The baseline is indicated by a black square. The actual QCES is indicated by a shaded circle. The
plot suggests that the sales group has fitted parameters which are very far from parameter values which
would produce a much smaller ES.

6.2 Using empirical quantile functions to generate effect sizes

We may instead use the empirical quantile functions, derived from the empirical cdfs, to compute ES.
This avoids the need to estimate parametric forms for the variables under study. Using the empirical
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cdfs, we computed QAD=9.08 which is slightly smaller than the corresponding parametric estimate. The
corresponding value of the QCES is 0.654, again suggesting a very large effect size.

7 Inference based on bootstrapping

The theoretical distributions of the QAD and the QCES are complicated to find. Thus, we derive a
bootstrap approximation of their distributions given the observed samples Davison and Hinkley [2006].
For the two-sample comparison, repeated resamples are drawn with replacement from the two sets of
observations and ES and so forth calculated from the resamples. We repeated this resampling process
10,000 times in order to find bootstrap distributions and confidence intervals for our ES Hesterberg et al.
[2003]. We did this for the parametric method described in §6.1, which involves fitting Weibull distributions
to each resample and then computing ES, and for the nonparametric method described in §6.2, which
generates a different empirical cdf for each resample. Table 3 shows the result of the bootstrap sampling
for QAD and QCES for both parametric and non-parametric approaches. F0 and F1 are the fitted cdfs for
T0 and T1 respectively, and F̃0 and F̃1 are the corresponding empirical cdfs. The column entitled Observed
gives the ES computed from the original sample. The remaining columns summarise the bootstrapped ES.
Histograms of the bootstrapped ES are all reasonably Normal in shape, and the summaries give no cause
for concern.

Table 3: Bootstrap summary statistics based on 10,000 resamples: estimation of the standard error, 95%
confidence interval, and bias for each ES, calculatd for parametric (P) and empirical (E) cases.

Effect Size Observed Mean SE 95% CI Bias

P QAD QAD(F0 , F1) 9.346 9.328 0.346 (8.65 , 9.99) +0.018

E QAD QAD(F̃0 , F̃1) 9.081 9.056 0.347 (8.39 , 9.74) +0.025
P QCES QCES(F0 , F1) 0.611 0.610 0.009 (0.59 , 0.63) +0.001

E QCES QCES(F̃0 , F̃1) 0.645 0.646 0.009 (0.63 , 0.66) −0.001

8 Conclusion

Commonly used ES for two-sample comparison studies are mostly based on Normality assumptions and
limited aspects of changes in parameter. In this paper we have introduced two ES measures, the QAD and
the QCES, which are based on quantile functions and which better summarise differences between distribu-
tions over the full range of probabilities. The QAD is an ES for which differences between distributions are
summarised in terms of the original units of measurement. The QCES has been developed as a bounded
standardized divergence measure for circumstances where the unit of measurement is not meaningful or
relevant. We have investigated these ES for two parametric families and in a practical application, and
suggested some heuristic thresholds for what constitutes small and large effects. See Jamalzadeh [2010] for
a Bayesian approach for our practical application to clickstream data, and investigation of computation of
the QAD and the QCES within the context of prior and posterior distributions.
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Appendix: Algorithms

Algorithm 1 The empirical quantile function, eqf(x[ ],p[ ])

Require: a vector of observations x[ ].
Require: a vector of probabilities p[ ].
1: nx ← length of the vector x[ ]
2: np ← length of the vector p[ ]
3: for i = 1 to nx do

4: Fx[i]← i/nx

5: end for

6: for i = 1 to np do

7: qx[i]← minimum value of x[ ]
8: end for

9: for j = 1 to np do

10: for i = 1 to nx − 1 do

11: if p[j] ≥ Fx[i] then
12: qx[j]← x[i+ 1]
13: end if

14: end for

15: end for

16: return qx[ ]

Algorithm 2 The empirical cdf, ecdf(x[ ] , q[ ])

Require: a vector of observations x[ ].
Require: a vector of quantiles q[ ].
1: x[ ]← sort the vector of x[ ] by ascending order
2: nx ← length of the vector x[ ]
3: q[ ]← sort the vector of q[ ] and keep unique values
4: nq ← length of the vector q[ ]
5: for i = 1 to nq do

6: sum← 0
7: for j = 1 to nq do

8: if x[j] ≤ q[i] then
9: sum← sum+ 1

10: end if

11: end for

12: F [i]← sum/nx

13: end for

14: return F [ ]
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Algorithm 3 The empirical QAD effect size, qad(x[ ], y[ ])

Require: a vector of observations x[ ].
Require: a vector of observations y[ ].
1: x[ ]← sort vector of x[ ] by ascending order
2: y[ ]← sort vector of y[ ] by ascending order
3: Nx ← length of the vector x[ ]
4: Ny ← length of the vector y[ ]
5: for i = 1 to nx do

6: Fx[i]← i/nx

7: end for

8: for i = 1 to ny do

9: Fy[i]← i/ny

10: end for

11: p[ ]← merge Fx and Fy and sort them by ascending order
12: np ← length of the vector p[ ]
13: Qx ← eqf(x[ ], p[ ])
14: Qy ← eqf(y[ ], p[ ])
15: for i = 1 to np-1 do

16: dp[i]← p[i+ 1]− p[i]
17: end for

18: for i = 2 to np do

19: dQ[i− 1]←
∣∣∣Qx[i]−Qy[i]

∣∣∣
20: end for

21: qad← 0
22: for i = 2 to np-1 do

23: qad← qad+ dQ[i]× dp[i])
24: end for

25: return qad

Algorithm 4 The area of a non-self-intersecting polygon with n vertices, area(v[ , ]).

Require: a (n+ 1)× 2 matrix of vertices v[ , ] of a non-self-intersecting polygon.
1: area← 0
2: nv ← the number of vertices
3: for i = 1 to nv do

4: area← area+ 1

2
×
(
v[i, 1]× v[i+ 1, 2]− v[i, 2]× v[i+ 1, 1]

)

5: end for

6: return area
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Algorithm 5 The empirical divergence measure, div(x[ ], y[ ])

Require: a vector of observations x[ ].
Require: a vector of observations y[ ].
1: x[ ]← sort the vector of x[ ] by ascending order
2: GGinv ← [0, ecdf(x[ ], x[ ]), 1]
3: FGinv ← [0, ecdf(y[ ], x[ ]), 1]
4: n← length of GGinv
5: for i = 1 to n do

6: v[i, 1]← GGinv[i]
7: end for

8: for i = 1 to n do

9: v[i, 2]← FGinv[i]
10: end for

11: for j = 1 to 2 do

12: v[n+ 1, j]← 0
13: end for

14: for i = 1 to n+ 1 do

15: if v[i, 1] > v[i, 2] then
16: tmp← v[i, 1]
17: v[i, 1]← v[i, 2]
18: v[i, 2]← tmp
19: end if

20: end for

21: div ← 2× area(v[ , ])
22: return div

Algorithm 6 The empirical quantile comparison effect size, qces(x[ ], y[ ])

Require: a vector of observations x[ ].
Require: a vector of observations y[ ].
1: divxy ← div(x[ ], y[ ])
2: divyx ← div(y[ ], x[ ])
3: qces← 1

2
× divxy +

1

2
× divyx

4: return qces

30


