
Comparing universal covers in polynomial time

Jǐŕı Fiala1 and Daniël Paulusma2

1 Charles University, Faculty of Mathematics and Physics,
DIMATIA and Institute for Theoretical Computer Science (ITI) ? ? ?,

Malostranské nám. 2/25, 118 00, Prague, Czech Republic.
fiala@kam.mff.cuni.cz

2 Department of Computer Science, Durham University †,
Science Laboratories, South Road,

Durham DH1 3EY, England.
daniel.paulusma@durham.ac.uk

Abstract. The universal cover TG of a connected graph G is the unique
(possible infinite) tree covering G, i.e., that allows a locally bijective ho-
momorphism from TG to G. Universal covers have major applications
in the area of distributed computing. It is well-known that if a graph G
covers a graph H then their universal covers are isomorphic, and that the
latter can be tested in polynomial time by checking if G and H share the
same degree refinement matrix. We extend this result to locally injective
and locally surjective homomorphisms by following a very different ap-
proach. Using linear programming techniques we design two polynomial
time algorithms that check if there exists a locally injective or a locally
surjective homomorphism, respectively, from a universal cover TG to a
universal cover TH . This way we obtain two heuristics for testing the
corresponding locally constrained graph homomorphisms. As a conse-
quence, we have obtained a new polynomial time algorithm for testing
(subgraph) isomorphism between universal covers, and for checking if
there exists a role assignment (locally surjective homomorphism) from a
given tree to an arbitrary fixed graph H.

1 Introduction

In this paper, we consider simple, undirected, possibly infinite but connected
graphs. See [5] for undefined graph terminology. A (graph) homomorphism f :
G → H from a graph G = (VG, EG) to a graph H = (VH , EH) is a mapping VG →
VH such that (f(u), f(v)) ∈ EH whenever (u, v) ∈ EG. Graph homomorphisms
have a great deal of applications in graph theory, computer science and other
fields, see the monograph [16].

A graph homomorphism f from a graph G to a graph H can be required to
satisfy some local constraint [9]. If, for every u ∈ VG the restriction of f , i.e. the

? ? ? Supported by the Ministry of Education of the Czech Republic as project
1M0021620808.

† Supported by EPSRC as project EP/D053633/1.



mapping fu : N(u) → N(f(u)), is bijective, we say that f is locally bijective [1,
19], and we write G B−→ H. If, for every u ∈ VG, fu is injective, we say that
f is locally injective [10, 11], and we write G I−→ H. If, for every u ∈ VG, fu is
surjective, we say that f is locally surjective [13, 20], and we write G S−→ H.

Locally bijective homomorphisms, also called graph coverings, originally arose
in topological graph theory [22], and have applications in distributed comput-
ing [4], in recognizing graphs by networks of processors [2], and in construct-
ing highly transitive regular graphs [3]. Locally injective homomorphisms, also
called partial graph coverings, have been studied due to their applications in
models of telecommunication [11], in distance constrained labelings of graphs
with applications to frequency assignment [12], and as indicators of the exis-
tence of homomorphisms of derivate graphs (line graphs) [24]. Locally surjective
homomorphisms, also called role assignments, have applications in distributed
computing [6] and social science [8, 26].

The main computational question is whether for every graph H the problem
of deciding if an input graph G has a homomorphism of given type ∗ = B, I
or S to the fixed graph H can be classified as either NP-complete or polyno-
mially solvable. For the locally surjective homomorphisms this classification is
known [13], with the problem for every connected H on at least three vertices
being NP-complete. For the locally bijective and injective cases there are many
partial results, see e.g. [11, 19], but even conjecturing a classification for these
two cases is problematic. In this paper, we continue the study started in [14] in
order to get more insight in the structure of these computational issues.

1.1 Problem formulation

The existence of a locally constrained homomorphism imposes a partial order on
the class of connected graphs C for each of the three local constraints B, I, and
S [14]. We can relax these three orders in two different ways. This leads to two
different heuristics for testing if G

∗−→ H for two given graphs G and H under
each type ∗ = B, I, S.

Firstly, we can transform the partial orders from the domain of finite graphs
to the domain of matrices. An equitable partition of a connected graph G is a
partition of its vertex set in blocks B1, . . . , Bk such that each vertex in each
Bi has the same number mi,j of neighbors in Bj , and we call the k × k matrix
M = (mi,j)1≤i,j≤k a degree matrix of G. We say that a vertex u is of the i-th
sort if u ∈ Bi. Equitable partitions are well-known in algebraic graph theory,
see e.g. [15]. Note that the degree refinement matrix of G is the degree matrix
corresponding to the equitable partition of G with the smallest number of blocks
(which are ordered in a unique way), and an adjacency matrix of G can be seen
as a degree matrix with the maximum number of rows.

Let M be the set of all degree matrices. We define three relations (M, ∃B−−→),
(M, ∃I−→) and (M, ∃S−→) imposed on the set of degree matrices by the existence of
graph homomorphisms of the corresponding local constraint, i.e., M ∃∗−→ N if and
only if there exist two graphs G, H ∈ C with degree matrix M,N , respectively,
such that G

∗−→ H. All three relations are partial orders [14], and a successful

2



matrix comparison of each type is a necessary condition for the corresponding
graph comparison.

Secondly, we can transform the partial orders from the domain of finite graphs
to the domain of possibly infinite trees. The universal cover TG of a connected
graph G is the only tree that allows a locally bijective homomorphism TG

B−→ G.
A generic construction of the universal cover takes as vertices of TG all finite
walks in G that start from an arbitrary fixed vertex in G and that does not
traverse the same edge in two consecutive steps. Two such vertices are adjacent
in TG if the associated walks differ only in the presence of the last edge. The
required homomorphism TG

B−→ G can be taken as the mapping that assigns
every walk its last vertex. One can easily see that the universal cover is unique
up to an isomorphism (in particular, if we take walks that start in another fixed
vertex). As a matter of fact, if two subtrees of a universal cover rooted at two
different vertices are isomorphic to depth n− 1, then they are isomorphic to all
depths [25]. Universal covers are also called infinite unfoldings or views of graphs
and have applications in finite automata theory[23], distributed computing [18,
27] and existential pebble games [7].

Also universal covers can be equipped with a structure that impose a neces-
sary condition for the existence of a locally constrained homomorphism. There
are two options: either the existence of a locally constrained homomorphism
or a simple inclusion (as a subtree). In the latter case, TG = TH , TG ⊆ TH ,
and TG ⊇ TH are necessary conditions for G B−→ H, G I−→ H and G S−→ H,
respectively, see [14] for more details.

Moreover, a result in [14] states that the universal cover TG is equal to the
universal cover TM of any degree matrix M of G which is constructed in the
following way. We take as root a vertex corresponding to row 1 of M , thus of
the 1st sort, and inductively adding a new level of vertices while maintaining the
property that each vertex of the i-th sort has exactly mi,j neighbors of the j-th
sort. Hence, a successful universal cover comparison is a necessary condition for
the corresponding graph comparison as well. More precisely, we have shown the
forward implications in the following theorem.

Theorem 1. Let G and H be connected graphs with degree matrices M and N ,
resp. Then the following holds:

G B−→ H =⇒ M ∃B−−→ N ⇐⇒ TG
B−→ TH ⇐⇒ TG = TH

G I−→ H =⇒ M ∃I−→ N =⇒ TG
I−→ TH ⇐⇒ TG ⊆ TH

G S−→ H =⇒ M ∃S−→ N =⇒ TG
S−→ TH =⇒ TG ⊇ TH

The backward implications in Theorem 1 for locally bijective homomorphism are
consequences of the theorem of Leighton [21]. The equivalence TG

I−→ TH ⇐⇒
TG ⊆ TH follows form the fact that a locally injective homomorphisms between
two trees is indeed globally injective [14].

Observe that C4 6
∗−→ C3 while both graphs allow the 1 × 1 degree matrix

M = (2). This example excludes the implication G
∗−→ H ⇐= M ∃∗−→ N for

∗ = B, I, S. If G itself is a tree then TG = G. We then find that TG
S−→ TH 6⇐=

3



TG ⊇ TH for the choice G = P4, H = P3, since P4 ⊇ P3 but P4 6 S−→ P3. This
example shows that the relations TG

S−→ TH and TG ⊇ TH are different. By
using linear programming techniques, the backward implication M ∃I−→ N ⇐=
TM

I−→ TN can be excluded [14]. So, the inclusion of universal covers does not
imply the relation on matrices for the locally injective constraint. What about
the remaining backward implication?

Question 1. Does there exist a counter example for the backward implication
M ∃S−→ N ⇐= TG

S−→ TH in Theorem 1?

The problem of deciding G
∗−→ H is NP-complete for all three local constraints,

and remains NP-hard for many particular fixed targets H, as we mentioned ear-
lier on. We have shown that M ∃B−−→ N can be verified in polynomial time, but
so far only membership to the class NP could be shown for the matrix compar-
ison problem M ∃∗−→ N for ∗ = I, S [14]. It is not expected that a polynomial
algorithm would solve these two problems. Testing if TG = TH can be done in
polynomial time by checking if G and H share the same the degree refinement
matrix [2]. Especially given the above, it would be useful to have a polynomial
heuristic for checking the other universal problem comparisons as well.

Question 2. How hard is it to decide if TG
I−→ TH (or equivalently TG ⊆ TH)

holds and to decide if TG
S−→ TH holds for two given connected graphs G and H?

In this paper we answer Question 1 in Section 2 as well as Question 2 in Section 3.

2 Excluding the remaining implication

We show that the relation TM
S−→ TN lies strictly between M ∃S−→ N and TM ⊇

TN .

Proposition 1. For degree matrices

M =


2 1 0 0
3 0 1 0
0 1 0 2
0 0 1 0

 and N =
(

0 1
2 1

)

it holds that TM
S−→ TN but M 6 ∃S−→ N .

Proof. Observe first that N is a matrix of a finite tree TN and no other con-
nected simple graph allows this degree matrix. The infinite tree TM consist of
pairwise disjoint paths that are of infinite length and induced by vertices of the
first sort (white vertices). These paths are linked by vertices of the second sort
(each is adjacent to three paths) and every vertex of the second sort is joined
to the middle vertex of a unique P3. The trees TM and TN together with a
homomorphism witnessing TM

S−→ TN are depicted in Fig. 1.
This homomorphism is obtained inductively. We first map one infinite white

path into TN such that the sorts of the images alternate. Every vertex u of the

4



TM

d

e

c f

d

e

b e

e c d f

TN

a1 c1

b2

e2

f1d1

b3b2 e2d4

f4

a4

c4

e3

b b b ba a a a

Fig. 1. Showing TM
S−→ TN . White vertices in TM are of the 1st sort.

Sorts of the remaining vertices are indicated by subscripts.

second sort in TM must be mapped on a vertex of the second sort in TN so that
the homomorphism can be extended to the pending claw.

Then, depending of whether the image of the already processed neighbor
of u was of the first or of the second sort, we extend the mapping to the two
infinite white paths that contains the remaining two neighbors of u. Both cases
are depicted in Fig. 1.

Now, in order to obtain a contradiction, assume that a finite graph G with
degree matrix M and a mapping f : G S−→ TN exists (recall that the target graph
TN is unique for this choice of N). Consider the vertices of the first sort of G,
call them red. These red vertices induce a disjoint union of cycles in G.

Denote by a the number of red vertices u such that f(u) is of the first sort
in TN and call them light-red. Analogously, let b be the number of red vertices v
such that f(v) is of the second sort, and call them dark-red. Since N prescribes
that both red neighbors of every light-red u must be dark we have a ≤ b.

On the other hand, due to the pending claws (which also exist in G), every
vertex of the third sort in G is mapped to a vertex of the second sort in TN ,
and every vertex of the fourth sort in G is mapped to a vertex of the first sort
in TN . Then every vertex u′ of the second sort in G is mapped to a vertex of
the second sort in TN . Since already its neighbor of the third sort is mapped to
a vertex of the second sort in TN , u′ must have at least two light-red neighbors
and, consequently, at most one dark-red neighbor. Hence, a ≥ 2b which is in
contradiction with a ≤ b. We conclude that M 6 ∃S−→ N . ut

3 Testing locally injective and surjective homomorphisms
between universal covers

In this section we focus on the decision problems whether TM
∗−→ TN holds

for local constraints ∗ = I, S. As the algorithms are almost the same for both
constraints, we treat both cases simultaneously, pointing only at the differences

5



where the particular local constraint plays different role. We first need some new
terminology. For an integer k ≥ 1 we define [k] := {1, 2, . . . , k} and abbreviate
[k]× [l] by [k × l].

Definition 1. Let M and N be two degree matrices of order k and l, resp.
We say that a vector pr,s consisting of kl nonnegative integers is a distribution
row for indices (r, s) ∈ [k × l] if the condition 1 holds. A distribution row pr,s

is called injective if in addition condition 2 holds. It is called surjective if in
addition conditions 3 and 4 hold.

l∑
j=1

pr,s
i,j = mr,i for all i ∈ [k], (1)

k∑
i=1

pr,s
i,j ≤ ns,j for all j ∈ [l], (2)

ns,j ≥ 1 =⇒
k∑

i=1

pr,s
i,j ≥ ns,j for all j ∈ [l], (3)

ns,j = 0 =⇒
k∑

i=1

pr,s
i,j = 0 for all j ∈ [l]. (4)

As an example, consider the matrices M and N from Proposition 1. The locally
surjective homomorphism from TM and TN in Figure 1 defines exactly the follow-
ing surjective distribution rows pr,s = (pr,s

1,1, p
r,s
1,2, p

r,s
2,1, p

r,s
2,2, p

r,s
3,1, p

r,s
3,2, p

r,s
4,1, p

r,s
4,2):

p1,1 = (0, 2, 0, 1, 0, 0, 0, 0)
p1,2 = (2, 0, 0, 1, 0, 0, 0, 0)
p2,2 = (2, 1, 0, 0, 0, 1, 0, 0)
p3,2 = (0, 0, 0, 1, 0, 0, 2, 0)
p4,1 = (0, 0, 0, 0, 0, 1, 0, 0)

Distribution rows play a central role in the NP algorithms for the degree matrix
comparison problems M ∃I−→ N and M S−→ N [14]. Suppose G

∗−→ H via f is
indeed a witness for M ∃∗−→ N for ∗ ∈ {I, S}. Let f map u ∈ VG of the r-th sort
to v ∈ VH of the s-th sort, and denote the number of neighbors of the i-th sort
in NG(u) that are mapped to neighbors of the j-th sort in NH(v) by pr,s

i,j . Then
the vector pr,s defined by entries pr,s

i,j is a (surjective or injective) distribution
row that we call suitable. Our NP algorithms try to identify suitable distribution
rows. The difficulty is that there may be exponentially many distribution rows.
Therefore, these algorithms could only use the nondeterministic choice of suitable
distribution rows to verify whether M ∃∗−→ N holds for ∗ = I, S, respectively,
see [14] for more details. However, for the decision problem on the existence
of a locally constrained homomorphism between universal covers we prove that
we may reduce the number of suitable distribution rows to only a polynomial
number. For showing this we need some more terminology. For a degree matrix
M we say that matrix rows r and i are adjacent if mr,i > 0.

6



Definition 2. We say that a distribution row pr,s is a witness of type (s, j) for
(adjacent) matrix rows r and i if pr,s

i,j ≥ 1.

Definition 3. We say that a distribution row pr,s respects the allowed set X ⊆
[k × l] if pr,s

i′,j′ ≥ 1 implies (i′, j′) ∈ X for all (i′, j′) ∈ [k × l].

Note that if pr,s is a witness of type (s, j) for matrix rows r and i that respects an
allowed set X then (i, j) ∈ X. We need the following lemma for our algorithms.

Lemma 1. For given r and i the existence of an injective or surjective witness
pr,s of type (s, j) respecting an allowed set X can be tested in a polynomial time.

Proof. We can do this by translating the problem to the integer flow problem.
It is well-known [17] that this problem can be solved in polynomial time on flow
networks with integer edge capacities (if such a network has a flow, then this
flow may be assumed to be integer). We first define our auxiliary flow network F
and then explain it afterwards. We let VF = {p, ui′ , vj′ , q | (i′, j′) ∈ [k × l]} and
EF = {(p, ui′), (ui′ , vj′), (vj′ , q) | (i′, j′) ∈ [k× l]}. The sought flow g goes from p
to q and must satisfy the following edge constraints:

g(p, ui′) = mr,i′

g(ui′ , vj′)


≥ 1 if (i′, j′) = (i, j)
= 0 if (i′, j′) /∈ X

≥ 0 otherwise

for ∗ = I : g(vj′ , q) ≤ ns,j′

for ∗ = S : g(vj′ , q)

{
≥ ns,j′ if ns,j′ ≥ 1
= 0 if ns,j′ = 0

We claim that F has an integer flow g if and only if there exists an injective, or
respectively, surjective witness pr,s of type (s, j) for r and i respecting X. First
suppose F allows an integer flow g. Choose pr,s

i′,j′ = g(ui′ , vj′) for all (i′, j′) ∈ [k×
l]. Because

∑l
j′=1 pr,s

i′,j′ =
∑l

j′=1 g(ui′ , vj′) = g(p, ui′) = mr,i′ for all i′ ∈ [k], pr,s

is a distribution row. For all j′ ∈ [l],
∑k

i′=1 pr,s
i′,j′ =

∑k
i′=1 g(ui′ , vj′) = g(v′j , q),

which is at most ns,j′ if ∗ = I, at least ns,j′ if ∗ = S and ns,j′ ≥ 1, and 0
otherwise, pr,s is injective or surjective, respectively. Since pr,s

i,j = g(ui, vj) ≥ 1,
pr,s is a witness. Finally, since pr,s

i′,j′ = g(ui′ , vj′) = 0 for all (i′, j′) /∈ X, pr,s

respects X.
Now suppose there exists an injective, or respectively, surjective witness pr,s

of type (s, j) for r and i respecting X. By Definition 2, pr,s
i,j ≥ 1. It is easy to

verify that pr,s satisfies the other edge constraints in F as well. Hence F allows
pr,s as integer flow. ut

Our two algorithms can now be presented as one generic iterative algorithm.

7



Algorithm 1: The test whether TM
∗−→ TN holds for ∗ = I or S

Input: Degree matrices M and N
Parameter: Local constraint ∗ ∈ {I, S}
initialize Xr,s = {(i, j) |mr,i > 0 and ns,j > 0} for all (r, s) ∈ [k × l];
repeat

foreach (r, s) ∈ [k × l] and (i, j) ∈ Xr,s do
if (r, i) has no witness of type (s, j) respecting Xr,s then

remove (i, j) from Xr,s and remove (r, s) from Xi,j ;
end

end
until no removal happens during the whole foreach loop ;
if there exists an r ∈ [k] with Xr,s empty for all s ∈ [l] then

return TM 6 ∗−→ TN

else
return TM

∗−→ TN

end

Theorem 2. Algorithm 1 is correct and runs in polynomial time.

Proof. For each Xr,s, one iteration of Algorithm 1 takes polynomial time due
to Lemma 1. Since the number of different allowed sets Xr,s is kl, a complete
iteration, i.e., an iteration over all Xr,s, then takes polynomial time as well. At
the start of the algorithm each Xr,s contains at most kl elements, and after each
complete iteration the size of each Xr,s has never increased. Since the algorithm
finishes as soon as all Xr,s have stable size, the number of iterations is at most
kl. We conclude that Algorithm 1 runs in polynomial time.

We now show that Algorithm 1 is correct. Suppose TM
∗−→ TN via f . Then f

induces witnesses of type (s, j) for all adjacent matrix rows r, i such that (r, i)
has a witness of type (s, j) if and only if (i, r) has a witness of type (j, s). Hence
f defines nonempty sets Xr,s for all matrix rows r.

It remains to show that if Algorithm 1 terminates in the affirmative state,
then a locally constrained homomorphism f : TM

∗−→ TN can be constructed.
Pick an arbitrary vertex u ∈ TM . Let u be of the r-th sort. By definition of the
algorithm, there exists a (final) allowed set Xr,s 6= ∅. Define f(u) = v for any
v ∈ TN that is of the s-th sort. Choose an arbitrary (i, j) ∈ Xr,s. By definition
of Xr,s, we can find a witness pr,s for (r, i) of type (s, j) respecting Xr,s.

We use pr,s to extend f . By definition of pr,s, for every pr,s
i′,j′ ≥ 1, we can let f

map pr,s
i′,j′ different neighbors of u that all are of the i′-th sort onto neighbors of v

that all are of the j′-the sort in such a way that, from N(u) to N(v), f is injective
when ∗ = I, and surjective when ∗ = S. Whenever the mapping f is defined
along an edge (u, u′), we iteratively extend f to the whole neighborhood N(u′)
of u′ by the same procedure as above in case N(u′) ) {u}. We only have to make
sure to choose a witness pi′,j′ for (i′, r) of type (j′, s), where u, u′, f(u) and f(u′)
are of the r, i′, s- and j′-th sort respectively. Then pi′,j′

r,s ≥ 1 by definition of a

8



witness, and indeed we can use pi′,j′ to extend our mapping f that already maps
u ∈ N(u′) of the r-th sort to v ∈ N(f(u′)) of the s-th sort. The reason why such
a witness pi′,j′ exists follows from the reciprocal removal of pairs (i′, j′) from
Xr,s and (r, s) from Xi′,j′ . When the condition of the repeat loop is satisfied,
it holds that

(r, i′) has a witness of type (s, j′) respecting Xr,s

if and only if
(i′, r) has a witness of type (j′, s) respecting Xi′,j′ .

ut

We are even able to construct in polynomial time a locally constrained homo-
morphism f : TM

∗−→ TN if Algorithm 1 approves that TM
∗−→ TN . This can

be seen as follows. We use the method described in the proof of Theorem 2 to
construct f . Finding witnesses respecting certain allowed sets can be done in
polynomial time using the flow network of the proof of Lemma 1. If f is defined
along edge (u, u′) then we always choose for the same extension of f on N(u′),
i.e., how we extend f only depends on the sort of u and the sort of u′. As it is
sufficient to keep only at most kl possibilities, the claim follows.

4 Conclusions

We have answered questions 1 and 2 of Section 1.1 in Proposition 1 and Theo-
rem 2, respectively. We conclude with some other applications.

The H-Role Assignment problem asks whether G S−→ H for a graph G and
a fixed target graph H. This problem is NP-complete for all connected graphs H
on at least three vertices [13]. It becomes polynomially solvable for every fixed
target H when restricted to the class of trees. This follows from Theorem 2, and
the fact that T 6 S−→ G if T is a tree and G contains a cycle, together with the
fact that TG = T for every tree G. Since TG

I−→ TH if and only if TG ⊆ TH ,
Algorithm 1 tests for infinite subtree isomorphism as well. Since TG = T for
every tree G, it can also be used for (sub-)tree isomorphism for finite trees,
especially if these trees can be encoded in terms of degree (refinement) matrices
independent of their original size (as otherwise much faster algorithms exist).
Finally, we note that there exist matrices that are not the degree matrix of
a finite graph. If such a matrix M has the property that mi,j > 0 whenever
mj,i > 0 then it still possible to construct a universal cover TM of M (or disjoint
submatrices of M) in the same way as before. Algorithm 1 can then be used for
universal cover comparison of those matrices as well.
Acknowledgments. We thank Jan Arne Telle for fruitful discussions on this topic.

References

1. Abello, J., Fellows, M. R., and Stillwell, J. C. On the complexity and
combinatorics of covering finite complexes. Australian Journal of Combinatorics 4
(1991), 103–112.

9



2. Angluin, D. Local and global properties in networks of processors. In Proceedings
of the 12th ACM Symposium on Theory of Computing (1980), 82–93.

3. Biggs, N. Constructing 5-arc transitive cubic graphs. Journal of London Mathe-
matical Society II. 26 (1982), 193–200.

4. Bodlaender, H. L. The classification of coverings of processor networks. Journal
of Parallel Distributed Computing 6 (1989), 166–182.

5. Bondy, J.A., and Murty, U.S.R. Graph Theory with Applications. Macmillan,
London and Elsevier, New York, 1976.

6. Chalopin, J., Métivier, Y., and Zielonka W., Local computations in graphs:
the case of cellular edge local computations. Fund. Inform. 74 (2006), 85–114.

7. Dantchev, S., Martin, B.D., and Stewart, I.A., On non-definability of un-
satisfiability, manuscript.

8. Everett, M. G., and Borgatti, S. Role coloring a graph. Mathematical Social
Sciences 21 (1991), 183–188.

9. Fiala, J., Heggernes, P., Kristiansen, P., and Telle, J. A. Generalized H-
coloring and H-covering of trees. Nordic Journal of Computing 10 (2003), 206–224

10. Fiala, J., and Kratochv́ıl, J. Complexity of partial covers of graphs. In Algo-
rithms and Computation, 12th ISAAC ’01, LNCS 2223, 537–549.

11. Fiala, J., and Kratochv́ıl, J. Partial covers of graphs. Discussiones Mathe-
maticae Graph Theory 22 (2002), 89–99.

12. Fiala, J., Kratochv́ıl, J., and Kloks, T. Fixed-parameter complexity of λ-
labelings. Discrete Applied Mathematics 113 (2001), 59–72.

13. Fiala, J., and Paulusma, D. A complete complexity classification of the role
assignment problem. Theoretical Computer Science 349 (2005), 67-81.

14. Fiala, J., Paulusma, D., and Telle, J.A. Locally constrained graph homomor-
phisms and equitable partitions, to appear in European Journal of Combinatorics.

15. Godsil, C. Algebraic Combinatorics. Chapman and Hall, 1993.
16. Hell, P., and Nešetřil, J. Graphs and Homomorphisms. Oxford University

Press, 2004.
17. Hoffman, A.J., and Kruskal, J.B. Integral boundary points of convex polyhe-

dra. Annals of Mathematics Studies 38 (1956), 223–246.
18. Kranakis, E., Krizanc, D., and Van den Berg, J. Computing boolean func-

tions on anonymous networks. Information and Computation 114 (1994), 214–236.
19. Kratochv́ıl, J., Proskurowski, A., and Telle, J. A. Covering regular graphs.

Journal of Combinatorial Theory B 71 (1997), 1–16.
20. Kristiansen, P., and Telle, J. A. Generalized H-coloring of graphs. In Algo-

rithms and Computation, 11th ISAAC ’01, LNCS 1969, 456–466.
21. Leighton, F. T. Finite common coverings of graphs. Journal of Combinatorial

Theory B 33 (1982), 231–238.
22. Massey, W. S. Algebraic Topology: An Introduction. Harcourt, 1967.
23. Moore, E.F. Gedanken-experiments on sequential machines. Annals of Mathe-

matics Studies 34 (1956), 129–153.
24. Nešetřil, J. Homomorphisms of derivative graphs. Discrete Math. 1 (1971),

257–268.
25. Norris, N. Universal covers of graphs: isomorphism to depth n − 1 implies iso-

morphism to all depths. Discrete Applied Mathematics 56 (1995), 61–74.
26. Roberts, F. S., and Sheng, L. How hard is it to determine if a graph has a

2-role assignment? Networks 37, (2001), 67–73.
27. Yamashita, M., and Kameda, T., Computing on anonymous networks: Part I -

Characterizing the solvable cases. IEEE Transactions on Parallel and Distributed
Systems 7 (1996), 69–89.

10


