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Abstract: We introduce a formula which generalizes Taylor’s Theorem from
powers of linear terms z —x to functional terms ¢(z) —¢(x), leading to a formula
which reduces in a special case to Cauchy’s Generalized Mean Value Theorem.
In other words, regarding Cauchy’s Mean Value Theorem as an extension of
the simple mean value theorem, we provide the analogous extension of Taylor’s
Theorem. The filling of this gap is easy and requires only mathematics on an
undergraduate level, so that the mentioned analogy might be a useful tool for
illustration at schools and universities.

AMS Subject Classification: 41A58
Key Words: Taylor’s Formula, Generalized Mean Value Theorem, Widder’s
Theorem, nonparametric smoothing

One of the most widely applied mathematical theorems is that of Taylor [5],
which allows to approximate a function m in a neighborhood of z by a linear
combination of polynomials:
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P ) (x |
m(z) = 3 " (),

Taylor did not specify the remainder term, the first representation of which
is due to Lagrange [4]. We provide the following simple extension of Taylor’s
Theorem in Lagrange respresentation:

Theorem 1. Let m, ¢ : [v,w] — R be p times continuously differentiable
and p + 1 times differentiable in (v,w), ¢ invertible in [v,w] and let x € [v,w].
Then for each z € [v,w| with z # x there exists a point { € (x,z), resp. (z,x)
such that

m(z) = 3 P2 (602) — ()Y + sy ) 0
j=0
with o 0
Vi) () = (;3‘;,) o)) =m(), 2)

holds, whereby the remainder term can be written as

Ypin(©) ,
spr1(2) = L (0() — o)t

Proof. Define

PO (502) — o) -

m((b(z) — o(y))H
where M € R is chosen so that g(z) = 0 is fulfilled. Using g(x) = g(z) = 0
Rolle’s Theorem yields that there exists a ¢ € (z, z) resp. (z,z) with ¢’'(¢) = 0.
Since

3)

Ui (Y) M
e ORI CORE L CL
it follows that 0 = —wgp)(g) + M¢'(¢) and thus M = 9, 41)(¢). Setting y =z
in (3) yields Theorem 1. O

Remark 1. Let ¢, m as above and g(-) = (mo ¢~1)(-). Applying Taylor’s
Theorem on g at point ¢(x) and comparing the result with (1) yields

Yy () = (mo g™ (6(-)). (4)
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As a consequence, the property of uniqueness of coefficients carries over
from Taylor’s Theorem to Theorem 1.

Remark 2. There exist a variety of formulations for the remainder term in
Taylor’s Theorem, one of them being the extact integral representation (Cauchy
[2]). Using observation (4), or directly via partial integration, the remainder
term in (1) in integral form can be written as

spr1(2) = ; / T (6(2) — SO ipen (06 (1) dt (5)

however requiring m and ¢ to be p 4+ 1 times continuously differentiable.

Remark 3. We observe that Theorem 1 reduces for p = 0 to the well-
known generalized mean value theorem (Cauchy [2]), however with the small
constraint that one of the two involved functions has to be invertible in the
considered interval. Using the remainder form (5), it reduces for p = 0 to the
fundamental theorem of integral calculus.

Regarding Table 1, we notice that Theorem 1 fits quite naturally in the
existing framework. Considering its simplicity and the age of the theorems sur-
rounding it, it seems to be surprising that it, to our knowledge, never has been
mentioned before. Research about generalizations of Taylor’s Theorem started
late, what gave Widder [6] reason to state that “in view of the great importance
of Taylor’s Series in analysis, it may be regarded as extremely surprising that
so few attempts at generalization have been made”. Meanwhile exist a large
variety of extensions, whereby only that of Widder [6], cited in the following
remark, is related to our one:

Remark 4. Recall that for basis functions ¢o(z),...,¢p(2) € CP (i.e.
having p continuous derivatives) Wronski’s Determinant is defined by

$o(z)  ¢1(z) - Pp(2)
$o(2)  P(z) - @(2)
Wp(z) = . . :

o) ¢V () - ¢P(2)

Widder’s generalization of Taylor’s Formula is as follows.

If the functions m(z), ¢o(2), ¢1(2), ..., ¢p(2) are of class CP in a neighbor-
hood of z = x, and if W,,(x) # 0, then there exists a unique function of approx-
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¢ =1id Taylor’s Theorem
Theorem 1 (Taylor 1715,
Lagrange 1797)
p=0 p=0
i ¢ =1id
G\c;zlei:l?fioli‘:jn Mean Value Theorem

(Cauchy 1821) (Lagrange 1797)

Table 1: Relation between Taylor’s and other theorems.

imation

p
ap(2) =) ¢ji(2) =
=0

0 ¢olz) ¢i(z) - ép2)
1 m@)  do(r) @) o Gyla)

_ —(wp@)) m() ofm ¢>1E<x> %fx) (6)
m®(z) ¢P (@) ¢P(@) ... ¢P ()

of order p for z = x.

Thereby ap,(z) = Z?:o cj¢j(z) is a function of approximation for function
m(z) of order p at point z = =z if the functions ¢;(z) are of class C? in a
neighborhood of z = z, and if a,(z) has contact of order p at least with m(z)
at z =z, i.e. if

al(,k)(a:) =¢® (), k=0,...p

In the further course of his paper, Widder also provides expressions for the
remainder terms. Obviously, Widder’s Generalization covers Theorem 1 widely.
However, the fact that it theoretically covers Theorem 1, does not necessarily
mean that the latter one might be directly derived from it. Indeed, when
setting ¢;(z) = ¢’(2),7 = 0,...,p, with ¢ € CP invertible, one sees easily the
equivalence of Widder’s expansion and Theorem 1 in the case p = 1. However,
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i(z z
Widder’s ¢4(2) o) Taylor’s
—— | Theorem 1 | ——
Theorem = ¢J(2) — 2 Theorem

Table 2: From Widder’s to Taylor’s Formula.

for higher degrees p, one notices rapidly that the complexity of the Wronskian
as well as the determinant in (6) makes Widder’s formula hard to apply. The
problem is thereby that with each iterative differentation (from one line of the
Wronskian to the deeper one) the number of terms rises exponentially, leading to
intractable expressions already after some few steps. We encourage the reader
to verify this. Meanwhile, Theorem 1 might serve as a kind of bridge between
Taylor’s and Widder’s Formula, as illustrated in Table 2.

Remark 5. We remark finally that there exists an application of Theorem
1 in nonparametric statistics. Assume that (X;,Y;),i = 1,...,n is a sample
of independent and identically distributed random variables, sampled from a
population (X,Y). X and Y are modelled by Y = m(X) + ¢, where m(-) is a
smooth function and e some random noise with E(e) = 0 which is independent
from X. Then, one might calculate a local approximation 7 (z) of m(z) by
minimizing

" P : i X, —=x
>4 Yoot o) & (FT)
i=1 j=0
in terms of v;(x),j =0,...,p, where K(-) is a kernel function, usually a sym-

metric probability density function, and ¢ serves as a basis function which
might be selected data-adaptively to reduce the bias of the fit. Calculation of
the asymptotic bias of this approximation requires the presented theorem. See
details, in the multivariate setting, in Einbeck [3].
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