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We study the effect of resumming large logarithms in the determination of the bottom quark mass
through a non-relativistic sum rule analysis. Our result is complete at next-to-leading-logarithmic
accuracy and includes some known contributions at next-to-next-to-leading logarithmic accuracy.
Compared to finite order computations, the reliability of the theoretical evaluation is greatly im-
proved, resulting in a substantially reduced scale dependence and a faster convergent perturbative
series. This allows us to significantly improve over previous determinations of the MS bottom quark
mass, mb, from non-relativistic sum rules. Our final figure reads mb(mb) = 4.19± 0.06 GeV.

Processes involving a bb̄ quark pair close to threshold
are very sensitive to the bottom quark mass, mb, and
offer a unique opportunity to accurately determine its
value. One of the cleanest observables where this depen-
dence on mb shows up is the non-relativistic sum rule [1]

Mn ≡ 12π2e2
b

n!

(

d

dq2

)n

Π(q2)
∣

∣

q2=0
=

∫

∞

0

ds

sn+1
Rbb̄(s),

(1)
where Rbb̄(s) ≡ σ(e+e− → bb̄)/σ(e+e− → µ+µ−), Π(q2)
is the vacuum polarization and eb = −1/3 the elec-
tric charge of the bottom quark. The typical scale is
p ∼ 2mb/

√
n and, provided n is not chosen to be too

large, the left-hand side of Eq. (1) can be reliably com-
puted using a weak coupling analysis (the right-hand side
can be determined from experiment). To describe such
processes theoretically, a standard fixed-order calculation
in the strong coupling αs is insufficient due to the pres-
ence of terms (αs/v)n ∼ 1 at each order in perturba-
tion theory, where v ∼ 1/

√
n ≪ 1 is the velocity of the

heavy quarks. Such terms appear because there are sev-
eral scales involved in the problem. There is the hard
scale µh ∼ mb, the soft scale µs ∼ mbv of the order
of the typical momentum and, finally, the ultrasoft scale
µus ∼ mbv

2 of the order of the typical kinetic energy of
the heavy quarks. Using effective field theories (for a re-
view see [2]), the perturbative expansion can be system-
atically reorganized into an expansion in the two small
parameters of the problem, αs and v, and the bb̄ cross
section can be written as

Rbb̄(s) = v
∑

n

(αs

v

)n

(2)

×
{

1(LO); αs, v(NLO); α2
s , vαs, v

2(NNLO) . . .
}

.

The coefficients of this series can be computed most effi-
ciently using the threshold expansion [3].

At present, non-relativistic sum rules have been com-
puted at next-to-next-to-leading order (NNLO) [4, 5].
This allowed for a precise determination of the bottom
quark mass using a well understood perturbative ap-
proach. Unfortunately, in the on-shell scheme, the NNLO

corrections turned out to be much larger than anticipated
and, moreover, very strongly scale dependent. The use of
threshold masses [6, 7, 8], which account for the cancel-
lation of the pole mass renormalon in the observable, do
not really solve these problems, specially for the strong
scale dependence. Overall, this produced a very slowly
convergent series, being the dominant source of error in
the determination of mb. Non-perturbative corrections
are known in the limit mb/n ≫ ΛQCD [9]. Even though
this limit does not hold for large enough n, we can take
it as an order of magnitude estimate. Numerically, these
corrections are very small and can be neglected in com-
parison with other sources of errors.

The situation is very similar in the case of tt̄ pair pro-
duction near threshold. In this case the use of threshold
masses results in a well behaved perturbative series for
the position of the peak of the tt̄ cross section and, there-
fore, may enable a precise determination of the top quark
mass, once experimental data is available. However, the
large theoretical uncertainty in the normalization of the
cross section remained (even if the series is more conver-
gent than in the bottom case). It has been claimed [10]
that the source of this uncertainty is due to potentially
large log v terms, which arise due to the presence of sev-
eral scales and take the form log µh/µs and log µs/µus.
Although it has been shown later [11, 12] that some ex-
pressions used in that paper were incorrect and that the
final error claimed was somewhat over optimistic [13], the
message that the resummation of logarithms improves
the scale dependence has gone through.

Given the importance of the log v terms for the tt̄ cross
section, it is natural to ask whether their inclusion also
improves the situation in the bb̄ case. In our case we have
to replace the expansion of Eq. (2) by

Rbb̄(s) = v
∑

n

(αs

v

)n ∑

m

(αs log v)
m

(3)

×
{

1(LL); αs, v(NLL); α2
s , vαs, v

2(NNLL) . . .
}

.

As we will see, these logarithms are extremely important
numerically and substantially improve the reliability of
the theoretical evaluation of the moments.
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The n-th moment, Mn, as defined in Eq. (1) is com-
puted in the usual way. First we match QCD to non-
relativistic QCD (NRQCD) at the hard scale which we
set to µh = m. This theory is then matched to poten-
tial NRQCD (pNRQCD) [14]. Solving the correspond-
ing non-relativistic Schrödinger equation perturbatively
we obtain ImG(0, 0, E), the imaginary part of the Green
function at the origin. Mn can then be written as

Mn = 48πe2
bNc

∫

∞

−∞

dE

(E + 2mb)2n+3
(4)

×
(

c2
1 − c1c2

E

3mb

)

Im G(0, 0, E),

where E =
√

s − 2mb, Nc = 3 and c1 and c2 are the
matching coefficients of the currents, normalized to 1 at
leading order. In a strict non-relativistic expansion one
also expands

1

(E + 2mb)2n+3
=

e
−n E

m
b

(2mb)2n+3

(

1 − 3E

2mb
+

nE2

4m2
b

. . .

)

(5)
treating nE ∼ mb. We also remark that the loga-
rithms involving µs always appear in the combination
log(−4mbE/µ2

s). This confirms that the natural scales
are given by E ∼ mb/n and µs ∼ p ∼ 2mb/

√
n. To en-

sure the applicability of perturbation theory, we cannot
choose n too large and will restrict ourselves to n ≤ 14.

The matching coefficients of pNRQCD depend on the
scales µh = mb, µs and µus. In solving the renormal-
ization group equations we have set µus = µ2

s/m. The
expressions we use are complete at NLL and NNLO.
At NNLL they are also complete (in particular we in-
clude the insertions of the renormalization group im-
proved potentials to G(0, 0, E) up to the desired order
in the MS scheme) except for c1. For c1 we are using the
known NLL [11] expression as well as some partial NNLL
contributions, which include the spin-dependent correc-
tions [15], the NNLL ultrasoft corrections to the Green
function, the corrections due to the two-loop beta run-
ning, and some contributions coming from the introduc-
tion of partial higher-order terms in the renormalization
group improved potentials that appear in the anomalous
dimension of c1. For details we refer to Refs. [5, 16]. In
particular we stress that not all the ultrasoft related log-
arithms are included in our analysis. With this caveat in
mind, we still refer to our full result as NNLL.

We also include QED corrections in our result. Count-
ing α ∼ α2

s , these corrections enter already at NLO, due
to a single exchange of a potential photon, but they have
only a minor numerical impact. They increase the ex-
tracted bottom quark mass by less than 10 MeV.

The threshold masses we consider in this analysis are
the potential subtracted (PS) mass mb,PS(µf ) [7] and the
renormalon subtracted (RS) mass mb,RS(µf ) [8]. The
subtraction scale µf that is needed for the definition of

the PS/RS mass is set to µf = 2 GeV, to ensure it does
not exceed the characteristic scale µs. Once the PS/RS
mass is determined, we convert it to mb, the MS mass
at the renormalization scale mb. We use the three-loop
conversion [17] of the pole mass to mb and for the PS
and RS mass a ‘large β0’ [18] and renormalon-based [8]
approximation respectively for the four-loop term.

The moments are evaluated by performing the energy
integration in the complex energy plane using a strictly
expanded form as indicated in Eq. (5). The difference
between this evaluation and using Eq. (4) is NNNLO
and, therefore, beyond the accuracy we are aiming at.
However, for small values of n, this difference is sizable.
In fact, for n = 6 the resulting values for mb,PS/RS may
differ by up to 45/60 MeV depending on how we expand
the prefactor Eq. (5), for n = 8 the difference is up to
15/25 MeV, whereas for n ≥ 10 the values for mb agree
within 10/15 MeV.

The experimental moments are determined as de-
scribed in Ref. [5]. The moment is split into the con-
tribution due to the six Υ resonances and the open bb̄
continuum. The main uncertainty comes from the rather
poor knowledge of the latter, which we parametrize as
Rcont

bb̄
= 0.4± 0.2 [19]. Since the continuum contribution

is suppressed for larger values of n, resulting in a smaller
experimental error, we refrain from using n < 6.

The main theoretical uncertainty in previous determi-
nations of the bottom quark mass was due to the huge
scale dependence of the NNLO result, which made it
rather difficult to find a reliable procedure for estimat-
ing the theoretical error. It is the main result of this
work to show that the situation improves considerably if
a renormalization group improved analysis is performed.
To illustrate this, in Figure 1 we show the dependence
of the theoretical value for M10 (evaluated at LO/LL,
NLO, NLL, NNLO and NNLL respectively) on µs. For
the purpose of illustration we also plot the experimen-
tal value of the moment including its error. We set the
strong coupling to αs(MZ) = 0.118 and use three-loop
evolution to determine it at lower scales. For the plot
shown in Figure 1 we set mb,PS(2 GeV) = 4.515 GeV
and mb,RS(2 GeV) = 4.370 GeV and vary the soft scale
around its characteristic value µs ∼ 2mb/

√
10 (indicated

by a dashed vertical line). Note that in this region the
size of the NNLL corrections (even if large) is consider-
ably smaller than the corresponding fixed-order NNLO
ones. Moreover, contrary to earlier analyses, the NNLL
result is now more stable with respect scale variations
than the NLL one (for the range of scales for which the
computation is trustworthy). This is of course what one
would expect and indicates that the inclusion of the log-
arithms substantially improves the reliability of the theo-
retical prediction. Only for scales µs < 2 GeV the situa-
tion gets out of control, but for these scales the ultrasoft
scale is below 1 GeV and we can not really rely on our
computation. Multiple insertions of corrections to the
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FIG. 1: The moment M10 as a function of µs at LO/LL,
NLO, NLL, NNLO and NNLL for mbPS(2 GeV) = 4.515 GeV
in the PS scheme (upper figure), and for mbRS(2 GeV) =
4.370 GeV in the RS scheme (lower figure). The experimental
moment with its error is also shown (grey band).

Coulomb potential also seem to be important in this re-
gion [20].

The situation is similar for other values of n. As a
general feature, for increasing n, the scale dependence
increases slightly. This is not surprising since larger n
induce smaller scales and at some point the applicabil-
ity of perturbation theory is questionable. On the other
hand, as mentioned above, smaller values of n have the
disadvantage that the non-relativistic approximation be-
comes less reliable.

These findings show that it is possible to improve the
accuracy of previous determinations of the bottom quark
mass from non-relativistic sum rules if the renormaliza-
tion group improvement is applied. In order to deter-
mine the MS mass we first determine the PS/RS mass
with its error, proceeding as follows: we consider Mn

for n ∈ {6, 8, 10, 12, 14} and obtain our central value by
equating the theoretical and experimental value of the
moment at the standard scale µs = 2mb/

√
n. For the

error in the determination of the threshold masses we
consider three sources: the experimental error, the error
due to the uncertainty in the strong coupling and finally

the theoretical error.

The experimental error, ∆exp, is simply determined
by extracting the value for mb for the two extreme val-
ues of the experimental moment. The error due to the
uncertainty in the strong coupling, ∆α, is obtained by
studying the effect on the extracted bottom quark mass
if we vary 0.115 < αs(MZ) < 0.121. Following common
practise one would estimate the theoretical error, ∆th,
by variation of the scale by a factor of two. As is obvi-
ous from Figure 1, for small scales the theoretical result
cannot be trusted. Therefore, in previous analyses, the
scale variation was limited to scale choices above a cer-
tain cutoff, typically set to a value around 2 GeV. In the
current analysis we refrain from using such an estimate.
There are several reasons. First, such an error estimate
depends crucially on the somewhat arbitrary lower cutoff
of the scale variation. Second, it does not take into ac-
count the fact that the higher-order corrections are siz-
able. Given that the scale dependence is very modest
(for reasonably large scales) compared to the size of the
NNLL corrections, we think that such an error analysis
would considerably underestimate the theoretical error in
the present case. Finally, the scale variation as depicted
in Figure 1 does not take into account the independent
variation of the ultrasoft scale, since in our analysis the
latter is determined by the soft scale. It would be prefer-
able to be able to vary all scales independently to ob-
tain a better estimate of the uncertainty, in particular
since some ultrasoft logarithms are missing in our result.
We have verified that a naive variation of µus results in
a rather large uncertainty which, however, is consistent
with the final error estimate we propose. Therefore, we
prefer to determine the theoretical error by taking half
the size of the highest-order correction that is included in
our result. More precisely, we determine two values for
mb by equating the experimental and theoretical value
(at the scale for which it reaches its maximum) of the
moment at NNLL and NLL respectively. The error is de-
termined as half the difference between these two values.
This procedure assumes a perturbative series where suc-
cessive terms become less and less important. For this
to hold we have to use a threshold mass, since for the
pole mass the NNLL corrections are much larger than
the NLL ones. In this respect moments with low val-
ues of n and/or threshold mass definitions with values
close to the MS mass are better behaved. On the other
hand, the actual size of the correction, and therefore the
assigned error, increases for such mass definitions.

We summarize our results in Table I, where we also
show the combined error, ∆tot, which is obtained by
adding the various errors in quadrature. As expected, the
experimental error decreases with increasing n. The re-
sults are all consistent with each other, in particular if we
take into account the additional uncertainty mentioned
above for Mn with n ≤ 8, due to the non-relativistic
expansion in the energy integration. Related to this,



4

n mb,PS(2 GeV) ∆th ∆exp ∆α ∆tot mb

6 4460 40 50 35 70 4135 ± 65

8 4505 45 25 30 60 4170 ± 55

10 4515 45 15 25 55 4185 ± 50

12 4520 45 10 20 50 4185 ± 45

14 4520 40 10 15 45 4185 ± 40

n mb,RS(2 GeV) ∆th ∆exp ∆α ∆tot mb

6 4315 55 50 25 80 4140 ± 70

8 4360 65 30 20 75 4180 ± 65

10 4370 65 20 10 70 4190 ± 60

12 4370 65 15 5 65 4190 ± 60

14 4370 65 10 5 65 4185 ± 55

TABLE I: Extraction of mb,PS/RS(2 GeV) with errors for var-
ious n. All values are given in MeV and rounded to 5 MeV.
The total error has been obtained by adding the partial errors
in quadrature. The corresponding value for the MS mass with
its error is given in the last column.

we note that in computing the moments we do not use
the exact fixed-order coefficient at O(α2

s ), since we drop
terms of O(α2

s /(
√

n)k) with k ≥ 1. Again, this neglect is
potentially more of a problem for smaller moments. Let
us also reiterate that for too large values of n the applica-
bility of weak coupling perturbation theory is question-
able. We thus combine the results of Table I by simply
taking the value obtained by the tenth moment

mb,PS(2GeV) = 4.52 ± 0.06 GeV, (6)

mb,RS(2GeV) = 4.37 ± 0.07 GeV. (7)

Note that the PS value is consistent with the result of
Ref. [5], but prefers smaller values for mb and has a re-
duced error.

Converting the PS and RS mass to the MS-mass we
obtain mb = 4.19 GeV with an error of 55 MeV and
60 MeV respectively. However, we also have to take into
account the error in the conversion itself. We consider
two sources, the dependence of mb on the threshold mass
used in the analysis and second, the error due to miss-
ing higher-order corrections in the conversion formula it-
self. To determine the first error, we start by noting
that the mb values obtained with the PS and RS scheme
are very similar. We also extract the central value of
mb,PS/RS(1 GeV) for the moments and convert these re-
sults to mb. These values of mb differ at most by around
20/15 MeV from the corresponding results obtained via
mb,PS/RS(2 GeV). To obtain an estimate for the error
due to missing higher-order corrections in the conversion
formula we drop the fourth order terms in the conversion
and take as error the difference in the value of mb thus
obtained. This error is about 10/5 MeV. We thus asso-
ciate a total error of 20/15 MeV to the conversion. If
added in quadrature to the 55/60 MeV error, we obtain
a total error for mb of around 60 MeV in both cases.

In conclusion, we have studied the effect of resumming
logarithms for non-relativistic sum rules. The logarithms
turn out to be numerically very important and improve
the reliability of the theoretical computation. This man-
ifests itself in a reduced scale dependence and an im-
provement of the convergence of the perturbative series.
It allows us to obtain an accurate value for the MS bot-
tom quark mass using a credible error estimate

mb(mb) = 4.19 ± 0.06 GeV. (8)

At this stage, the main problem appears to be the large
size of the perturbative corrections and to understand its
origin. Further improvements require the full NNLL com-
putation of the sum rule, especially the potentially large
ultrasoft effects. Obviously, the inclusion of all NNNLO
effects will also be important and might lead to a better
control of the strong scale dependence for small values of
µs and the large size of the perturbative corrections.
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