1	Efficient transport of fossil organic carbon to the ocean by steep
2	mountain rivers: An orogenic carbon sequestration mechanism
3	Robert G. Hilton ^{1,2} *, Albert Galy ³ , Niels Hovius ³ , Ming-Jame Horng ⁴ , and Hongey Chen ⁵
4	¹ Laboratoire de Géochimie–Cosmochimie, Institut de Physique du Globe de Paris, 4 Place
5	Jussieu, 75252, Paris Cedex 05, France
6	² Department of Geography, Durham University, Science Laboratories, South Road, Durham,
7	DH1 3LE, United Kingdom
8	³ Department of Earth Sciences, University of Cambridge, Downing Street, Cambridge, CB2
9	3EQ, United Kingdom
10	⁴ Water Resources Agency, Ministry of Economic Affairs, Hsin-Yi Road, Taipei, 10651, Taiwan
11	⁵ Department of Geoscience, National Taiwan University, Roosevelt Road, Taipei, 10617, Taiwan
12	*E-mail: r.g.hilton@durham.ac.uk
13	ABSTRACT
14	Mountain building exposes fossil organic carbon (OC_{fossil}) in exhumed sedimentary
15	rocks. Oxidation of this material releases carbon dioxide from long-term geological storage to
16	the atmosphere. OC_{fossil} is mobilised on hillslopes by mass wasting and transferred to the
17	particulate load of rivers. In large fluvial systems it is thought to be oxidised in transit, but in
18	short, steep rivers that drain mountain islands, OC_{fossil} may escape oxidation and re-enter
19	geological storage due to rapid fluvial transfer to the ocean. In these settings, the rates of OC_{fossil}
20	transfer and their controls remain poorly constrained. Here we quantify the erosion of OC_{fossil}
21	from the Taiwan mountain belt, combining discharge statistics with measurements of particulate

22 organic carbon load and source in 11 rivers. Annual OC_{fossil} yields in Taiwan vary from $12 \pm 1 -$

23	$246 \pm 22 \text{ tC km}^{-2} \text{ yr}^{-1}$, controlled by the high physical erosion rates that accompany rapid crustal
24	shortening and frequent typhoon impact. Efficient transfer of this material ensures that $1.3 \pm$
25	0.1×10^6 tC yr ⁻¹ of OC _{fossil} exhumed in Taiwan is delivered to the ocean, with <15% loss due to
26	weathering in transit. Our findings suggest that erosion of coastal mountain ranges can force
27	efficient transfer and long-term re-accumulation of OC_{fossil} in marine sediments, further
28	enhancing the role of mountain building in the long-term storage of carbon in the lithosphere.
29	INTRODUCTION
30	About 15×10^{15} tC of carbon is stored in rocks as fossil organic matter. This is almost 400
31	times the amount of carbon present in the atmosphere and oceans (Sundquist and Visser, 2004).
32	The balance between the growth of this geological reservoir through burial of newly
33	photosynthesised organic matter, and its decrease through oxidation of OC_{fossil} plays a crucial
34	role in the long-term evolution of atmospheric CO ₂ and O ₂ , and thus global climate (Berner,
35	1982; Berner and Canfield, 1989; Derry and France-Lanord, 1996; Hayes et al., 1999). It is
36	commonly assumed that during mountain building, exhumed OC_{fossil} is completely converted to
37	CO_2 by chemical weathering (Lasaga and Ohmoto, 2002; Bolton et al., 2006). OC_{fossil} can escape
38	oxidation when physical erosion delivers it to the solid load of mountain rivers (Kao and Liu,
39	1996; Blair et al., 2003; Leithold et al., 2006; Hilton et al., 2008a). But when it enters large river
40	systems (>100,000 km ² area), up to 85% is oxidised in transport (Galy et al., 2008a; Bouchez et
41	al., 2010). In contrast, short mountain rivers that drain to the ocean could deliver OC_{fossil} more
42	efficiently to marine basins due to rapid transport in turbid waters (Dadson et al., 2005; Hilton et
43	al., 2008b). Despite its potential importance, the transfer of OC_{fossil} from mountain islands has
44	remained poorly constrained (Blair et al., 2003), due to both a lack of constraint of the source of
45	particulate organic carbon (POC) in river sediments in these settings (Stallard, 1998; Lyons et

al., 2002) and its transport behavior over the large range of water discharges in steep mountain
catchments (Blair et al., 2003; Hilton et al., 2008a). To address this issue, we have determined
the source of POC and the relation between OC_{fossil} transport and water discharge in rivers
draining the mountain belt of Taiwan.
STUDY AREA, SAMPLING AND METHODS

51 Located along the western edge of the Pacific Ocean, mountain building in Taiwan is 52 driven by collision between the Luzon Arc on the Philippine Sea plate and the Asian continental 53 margin since 7 Ma (Teng, 1990). Steep rivers draining Taiwan's Central Range pass over narrow 54 coastal plains to the ocean (Dadson et al., 2003). Inside the mountain belt, they have incised 55 Mesozoic and Cenozoic siliciclastic and carbonate rocks, which have been metamorphosed up to 56 greenschist and amphibolite facies (Ho, 1986). These rocks contain on average 0.2% OC_{fossil}, 57 mainly of marine origin (Hilton et al., 2010). The western flank of the Central Range comprises 58 Late Cenozoic turbiditic mudstones, sandstones and near-shore foreland sediments (Ho, 1986). 59 These lithologies contain on average 0.4% mainly terrestrial OC_{fossil} (Hilton et al., 2010). 60 Metamorphic grade decreases from East to West across the Central Range and surface rocks 61 contain OC_{fossil} of varying thermal maturity and structure, ranging from poorly organized 62 carbonaceous matter to polycrystalline graphite (Beyssac et al., 2007). Due to rapid crustal 63 shortening (Teng, 1990) and the prevailing subtropical cyclonic climate, rates of mass wasting and physical erosion in river catchments of the Central Range are exceptionally high, averaging 64 ~6 mm yr⁻¹ over the last four decades (Dadson et al., 2003), and Taiwan Rivers supply 384×10^6 t 65 yr⁻¹ of suspended sediments and $\sim 120 \times 10^6$ t yr⁻¹ of river bed load to the ocean. 66 67 To determine the concomitant OC_{fossil} transfer, we measured suspended sediment

68 concentration (SSC, mg L^{-1}), OC_{fossil} concentration in the particulate load (POC_{fossil}, mg L^{-1}) and

69	water discharge $(Q_w, m^3 s^{-1})$ in 11 main Taiwan Rivers over an 18 month period following
70	established methods (Dadson et al., 2003; Hilton et al., 2008b; Hilton et al., 2010). The
71	catchments ranged in size from 310 km ² to 2,906 km ² (covering a total area of 9.6×10^3 km ² ,
72	27% of the islands surface) and were sampled 1–3 times per month over two typhoon seasons
73	(March 2005-September 2006) to cover the dynamic range of Q_w . All catchments drain more
74	than one of the major geological formations, sourcing rocks with OC_{fossil} content ranging
75	between 0.2% and 0.4% (Hilton et al., 2010). Determination of the source of POC in each
76	sample has been described in detail elsewhere (Hilton et al., 2010). Briefly, an end-member
77	mixing model was used to quantify the fraction of OC_{fossil} (F _f) in the total POC using
78	measurements of the nitrogen to organic carbon ratio and the stable carbon isotopes of organic
79	matter. F _f was tested against independent constraints from radiocarbon, and F _f average precision
80	and accuracy are 0.09 and 0.05, respectively. POC_{fossil} for a suspended sediment sample is the
81	product of SSC, total organic carbon concentration and F _f .
82	To quantify river solid load yields we defined rating curves that link the Q_w measured at a
83	station to the river load constituent concentration (SSC and POC_{fossil} , mg L ⁻¹), and applied them
84	to the continuous daily record of Q_w at that station to estimate the mass transfer of suspended
85	load materials over the sampling period. Following common practice for small catchments, we
86	used power law rating curves (Fig. 1a) with a least squares best fit to available data (Hilton et al.,
87	2008b). Quoted errors on mass transfer estimates combine the rating curve exponent error (Fig.
88	1b) and the error in F_f (Hilton et al., 2010).
89	FLUVIAL TRANSPORT OF OC _{fossil} AND ITS CHEMICAL ALTERATION

In all rivers, OC_{fossil} was present in the suspended load throughout the sampling period.
General, positive relationships between measured Q_w, and SSC and POC_{fossil} in these rivers are

92	described well by power laws (Fig. 1a) with very similar least squares best fit exponents for SSC
93	and POC_{fossil} in a given catchment (Fig. 1b). The link between OC_{fossil} and suspended sediment
94	confirms their common rock source in mountain catchments (Leithold et al., 2006; Hilton et al.,
95	2008a).
96	Following the observed relationship between $\text{POC}_{\text{fossil}}$ and Q_w and the derived power law
97	rating curves, OC_{fossil} yields for all rivers ranged between 12 ± 1 and 246 ± 22 tC km ⁻² yr ⁻¹ over
98	the gauged period (Fig. 2). These yields are significant natural transfers of carbon and two rivers
99	had OC_{fossil} yields >225 tC km ⁻² yr ⁻¹ , greater than the highest total POC yield (fossil+non-fossil)
100	previously reported for mountain rivers (Stallard, 1998; Lyons et al., 2002; Hilton et al., 2008a).
101	The average OC _{fossil} yield for the 11 studied catchments was 82 tC km ⁻² yr ⁻¹ .

102 High OC_{fossil} yields in Taiwan are closely linked to the yield of suspended sediment (Fig. 103 2) and are therefore controlled by physical erosion rate. This concurs with previous findings 104 which suggest OC_{fossil} is delivered to river channels by mass wasting, e.g., bedrock landslides 105 (Hilton et al., 2008a), and gully erosion (Leithold et al., 2006), processes which can drive rapid 106 physical erosion rates in mountain belts. Here, erosion of OC_{fossil} must occur faster than its 107 chemical alteration (Petsch et al., 2000), leading to incomplete oxidation in the weathering zone. 108 The lack of substantial sediment storage in the bedrock channels of the Central Range implies 109 that the fluvial transit time is very short (Dadson et al., 2005), further restricting alteration of 110 OC_{fossil} during transport, in notable contrast to large river systems (Galy et al., 2008a; Bouchez et 111 al., 2010). OC_{fossil} weathering may still occur within catchments, since sediment may reside for 112 longer periods of time in regoliths and soils on hillslopes where the production of mineral 113 surface area through physical erosion may enhance OC_{fossil} weathering rates (Petsch et al., 2000; 114 Bolton et al., 2006; Lasaga and Ohmoto, 2002).

115	OC_{fossil} oxidation in catchments can be quantified by comparing the measured fluvial
116	export of OC_{fossil} to that predicted by eroding surface bedrock at known erosion rates. Measured
117	fluvial exports imply a OC _{fossil} content of $0.35 \pm 0.03\%$ ($\pm \sigma$) in suspended sediments from
118	Taiwan (Fig. 2). Surface rocks have an average organic carbon content of $0.24 \pm 0.19\%$ ($\pm \sigma$, $n =$
119	31) which varies between geological formations (Hilton et al., 2010). The highest average
120	OC_{fossil} content of the main geological formations is 0.41%, which is similar to the $+\sigma$ bound of
121	all samples. If we assume little variability of OC_{fossil} content with grain size, demonstrated by
122	previous work (Galy et al., 2008a; Bouchez et al., 2010; Hilton et al., 2010), this can be used to
123	estimate that a maximum of $15 \pm 7\%$ of the exhumed OC _{fossil} is weathered prior to export (Fig.
124	2). This moderate weathering loss would correspond to a transfer of geological carbon to the
125	modern hydrosphere and atmosphere of $12 \pm 6 \text{ tC km}^{-2} \text{ yr}^{-1}$ in the sampled catchments. However,
126	the measured average OC_{fossil} in rock precludes any weathering loss and is within one standard
127	deviation of the OC_{fossil} content of suspended sediments (Fig. 2) making it difficult to estimate
128	chemical alteration of OC_{fossil} by this method. We conclude that the bulk of exhumed OC_{fossil} is
129	exported to the ocean from Taiwan in river sediment and that the magnitude of OC_{fossil} oxidation
130	requires further investigation.

131

1 DELIVERY OF OC_{fossil} TO THE OCEAN

We estimate that the sampled mountain rivers delivered 0.9×10^6 tC yr⁻¹ of OC_{fossil} to the ocean during the study period (Fig. 3). To quantify the OC_{fossil} transfer from the island over a longer period, we note that mean sediment yields in sampled catchments were 23,600 ± 6,800 t km⁻² yr⁻¹ (± standard error on the mean) during our study, and 21,700 ± 3,900 t km⁻² yr⁻¹ in the period 1970-1999 (Dadson et al., 2003) suggesting the measured OC_{fossil} yields are a natural feature of this mountain belt. On decadal timescales the spatial pattern of physical erosion in

138	Taiwan is set by the incidence of earthquakes and typhoons, and by bedrock erodability (Dadson
139	et al., 2003), and this is likely also the case for the erosion of OC_{fossil} . We therefore combine the
140	published decadal suspended sediment transfer (Dadson et al., 2003) with the average OC_{fossil}
141	concentration in the suspended load ($0.35 \pm 0.03\%$ calculated by regression across 11
142	catchments; Fig. 2) to estimate a total fluvial export of $1.3 \pm 0.1 \times 10^6$ tC yr ⁻¹ of OC _{fossil} to the
143	ocean as suspended sediment. This equates to a normalized yield of $37 \pm 3 \text{ tC km}^{-2} \text{ yr}^{-1}$ over the
144	total area of Taiwan (35,980 km ²). Addition of bed load transport, assuming an average OC_{fossil}
145	content of $0.27 \pm 0.12\%$ ($\pm \sigma$) measured in 14 river catchments (Hilton et al., 2010), results in a
146	total export of $\sim 1.7 \times 10^6$ tC yr ⁻¹ . The suspended flux alone represents $\sim 1\%$ of the estimated 90-
147	240x10 ⁶ tC yr ⁻¹ total POC (fossil+non-fossil) input to the oceans (Stallard, 1998; Lyons et al.,
148	2002) from only ~0.02% of Earth's landmass.

149 OC_{fossil} transported through the modern erosion system can be re-buried in long-lived 150 marine sediments (Dickens et al., 2004; Galy et al., 2008a). Locally this can alter the 151 geochemical record of the organic matter because OC_{fossil} has a variable isotopic signature 152 (Hayes et al., 1999; Hilton et al., 2010). If OC_{fossil} re-burial is globally significant then it will 153 influence the residence time of carbon in the lithosphere and our understanding of the long-term 154 cycles of carbon and oxygen (Berner and Canfield, 1989; Galy et al., 2008a), while also 155 influencing our interpretation of the isotopic mass balance of carbon in the oceans (Derry and 156 France-Lanord, 1996; Hayes et al., 1999). In large river systems with long transport pathways 157 and significant sediment storage, only refractory graphitic OC_{fossil} is resilient to chemical 158 weathering and physical attrition during transport (Galy et al., 2008a). In the case of the Madeira 159 floodplain of the Amazon, >85% of the eroded OC_{fossil} may escape geological storage to the 160 atmosphere (Bouchez et al., 2010). In contrast, the steep mountain rivers of Taiwan export

161	OC_{fossil} eroded from rocks with a range in thermal maturity (Hilton et al., 2010), with little
162	OC_{fossil} -loss across the island irrespective of its graphitization state (Fig. 2).
163	The fate of OC_{fossil} exported from Taiwan is not well constrained, but several
164	observations suggest that a significant proportion is re-buried in marine sediments. First, by its
165	nature OC_{fossil} is associated with mineral surfaces, and this has been shown to enhance organic
166	carbon burial efficiency (Hedges and Keil, 1995). Second, offshore Taiwan rapid accumulation
167	of clastic sediment is likely to optimize organic carbon preservation (Canfield, 1994).
168	Hyperpycnal sediment discharge in very turbid river plumes, and deposition of turbidites may be
169	especially important in this process (Hilton et al., 2008b). Hyperpycnal discharge represented
170	30%–42% of the sediment export from Taiwan to the ocean in 1970–1999, and may be even
171	more important on longer time scales (Dadson et al., 2005). Accounting for bed load transport,
172	and assuming full preservation of hyperpyncal OC_{fossil} on long time scales, this results in a re-
173	burial flux of $0.5-0.7 \times 10^6$ tC yr ⁻¹ in basins around Taiwan. The closest constraint on the fate of
174	OC_{fossil} comes from the Images core MD012403 collected from the Okinawa Trough to the NE
175	of Taiwan (Fig. 3). There, the radiocarbon age of bulk organic carbon in sediments is offset by
176	\sim 7,000 years from the age of planktonic foraminifera, throughout the Holocene (Kao et al.,
177	2008). Assuming a binary mixture of radiocarbon-dead OC_{fossil} and contemporaneous organic
178	matter, the authors estimate that of the $\sim 0.7\%$ organic carbon in sediments at this site, $\sim 0.3\%$ is
179	OC_{fossil} . If this material is present even at a site ~150km from Taiwan's coastline and with
180	limited hyperpycnal input, then our re-burial estimate of $0.5-0.7 \times 10^6$ tC yr ⁻¹ is likely to be
181	conservative.

182 WIDER IMPLICATIONS AND CONCLUSIONS

183	To assess their wider significance, our findings can be compared to observations from a
184	much larger orogenic system. Erosion of the Himalaya is thought to have resulted in re-burial of
185	$0.3-0.5 \times 10^6$ tC yr ⁻¹ of OC _{fossil} in the deep marine Bengal fan (Galy et al., 2008a). Averaged over
186	the source area, the OC_{fossil} re-burial flux in the Bengal fan represents 0.2–0.3 tC km ⁻² yr ⁻¹ . The
187	equivalent re-burial flux estimated here for Taiwan is 14–19 tC km ⁻² yr ⁻¹ which is likely to
188	represent a lower bound as discussed previously. This large discrepancy is due in part to a lower
189	OC _{fossil} content in Himalayan surface rocks, typically <0.20% (Galy et al., 2008a), associated
190	with older, higher-grade Proterozoic to Early Paleozoic meta-sediments. The discrepancy is also
191	related to erosion rates which are 2-3 times higher in Taiwan (Galy and France-Lanord, 2001;
192	Dadson et al., 2003). However, these factors cannot explain the factor \sim 70 difference in the
193	normalized OC_{fossil} re-burial flux. Its main cause is the transit length and time of OC_{fossil} in the
194	terrestrial environment. While fluvial entrainment and delivery of sediment to the ocean typically
195	occur within a single flood event in steep rivers of Taiwan (Dadson et al., 2005; Hilton et al.,
196	2008b), Himalayan sediment is routed through the Gangetic plain, with a large capacity for
197	sediment storage and subsequent OC_{fossil} alteration (Galy et al., 2008b), as such only the most
198	refractory components of OC_{fossil} persist at the river mouth (Galy et al., 2008a).
199	Our data suggest that where sedimentary bedrock is prevalent and clastic sediment yields

exceed 3,000 t km⁻² yr⁻¹ (Fig. 2), OC_{fossil} should be present in river sediments. These conditions are met throughout the mountainous islands of Oceania, and on active margins throughout the world (Milliman and Syvitsky, 1992). If our findings from Taiwan apply more widely to those settings, then one effect of mountain building on the organic carbon cycle may be felt through the repeated exhumation, erosion and re-burial of previously sequestered CO₂ and the inhibition of its reflux to the atmosphere. This effect is likely to be governed disproportionately by re-burial

206	of OC_{fossil} in basins adjacent to steep, coastal mountain ranges. At present, the combined OC_{fossil}
207	re-burial flux in the Taiwanese and Himalayan source-to-sink systems is at least $0.8-1.2 \times 10^6$ tC
208	yr ⁻¹ , accounting for >1% of the present day total organic carbon burial in marine sediments
209	(Berner, 1982; Schlünz and Schneider, 2000). Globally, this flux is presently unaccounted for in
210	models of carbon cycling and atmospheric evolution (Berner and Canfield, 1989; Derry and
211	France-Lanord, 1996; Lasaga and Ohmoto, 2002; Bolton et al., 2006;), yet should be sustained
212	during orogenesis and contribute to geological storage of carbon derived from the atmosphere.
213	ACKNOWLEDGMENTS
214	This work was supported by The Cambridge Trusts, National Taiwan University.
215	Suspended sediments were collected by the 1 st , 3 rd , 4 th , 6 th , 7 th , 8 th , and 9 th regional offices of
216	the Water Resources Agency, Ministry of Economic Affairs, Taiwan. We thank Taroko
217	National Park and M.C. Chen for access to research sites and J. Gaillardet for discussions
218	during manuscript preparation. We are grateful to two anonymous referees for their
219	thoughtful reviews.
220	REFERENCES CITED
221	Berner, R.A., 1982, Burial of organic-carbon and pyrite sulfur in the modern ocean – its
222	geochemical and environmental significance: American Journal of Science, v. 282, p. 451-
223	473.

- Berner, R.A., and Canfield, D.E., 1989, A new model for atmospheric oxygen over Phanerzoic
 time: American Journal of Science, v. 289, p. 333–361.
- 226 Beyssac, O., Simoes, M., Avouac, J.P., Farley, K.A., Chen, Y.-G., Chan, Y.-C., and Goffe, B.,
- 227 2007, Late Cenozoic metamorphic evolution and exhumation of Taiwan: Tectonics, v. 26,
- 228 p. TC6001, doi:10.1029/2006TC002064.

- 229 Blair, N.E., Leithold, E.L., Ford, S.T., Peeler, K.A., Holmes, J.C., and Perkey, D.W., 2003, The 230 persistence of memory: The fate of ancient sedimentary organic carbon in a modern 231 sedimentary system: Geochimica et Cosmochimica Acta, v. 67, p. 63–73, 232 doi:10.1016/S0016-7037(02)01043-8. 233 Bolton, E.W., Berner, R.A., and Petsch, S.T., 2006, The weathering of sedimentary organic 234 matter as a control on atmospheric O₂: II. Theoretical modelling: American Journal of 235 Science, v. 306, p. 575–615, doi:10.2475/08.2006.01. 236 Bouchez, J., Beyssac, O., Galv, V., Gaillardet, J., France-Lanord, C., Maurice, L., and Moreira-237 Turcq, P., 2010, Oxidation of petrogenic organic carbon in the Amazon floodplain as a 238 source of atmospheric CO₂: Geology, v. 38, p. 255–258, doi:10.1130/G30608.1. 239 Canfield, D.E., 1994, Factors influencing organic-carbon preservation in marine sediments: 240 Chemical Geology, v. 114, p. 315–329, doi:10.1016/0009-2541(94)90061-2. 241 Dadson, S.J., Hovius, N., Pegg, S., Dade, W.B., Horng, M.-J., and Chen, H., 2005, Hyperpychal 242 river flows from an active mountain belt: Journal of Geophysical Research, v. 110, 243 p. F04016, doi:10.1029/2004JF000244. 244 Dadson, S.J., Hovius, N., Chen, H., Dade, W.B., Hsieh, M.-L., Willett, S.D., Hu, J.-C., Horng, 245 M.-J., Chen, M.-C., Stark, C.P., Lague, D., and Lin, J.-C., 2003, Links between erosion, 246 runoff variability and seismicity in the Taiwan orogen: Nature, v. 426, p. 648-651, 247 doi:10.1038/nature02150.
- 248 Derry, L.A., and France-Lanord, C., 1996, Neogene growth of the sedimentary organic carbon
- 249 reservoir: Paleoceanography, v. 11, p. 267–275, doi:10.1029/95PA03839.

- 250 Dickens, A.F., Gélinas, Y., Masiello, C.A., Wakeham, S., and Hedges, J.I., 2004, Reburial of
- fossil organic carbon in marine sediments: Nature, v. 427, p. 336–339,
- doi:10.1038/nature02299.
- 253 Galy, A., and France-Lanord, C., 2001, Higher erosion rates in the Himalaya: Geochemical
- constraints on riverine fluxes: Geology, v. 29, p. 23–26, doi:10.1130/0091-
- 255 7613(2001)029<0023:HERITH>2.0.CO;2.
- 256 Galy, V., Beyssac, O., France-Lanord, C., and Eglinton, T.I., 2008a, Recycling of graphite
- during Himalayan erosion: A geological stabilization of carbon in the crust: Science, v. 322,
- 258 p. 943–945, doi:10.1126/science.1161408.
- 259 Galy, V., France-Lanord, C., and Lartiges, B., 2008b, Loading and fate of particulate organic
- 260 carbon from the Himalaya to the Ganga-Brahmaputra delta: Geochimica et Cosmochimica
- 261 Acta, v. 72, p. 1767–1787, doi:10.1016/j.gca.2008.01.027.
- Hayes, J.M., Strauss, H., and Kaufman, A.J., 1999, The abundance of ¹³C in marine organic
- 263 matter and isotopic fractionation in the global biogeochemical cycle of carbon during the
- 264 past 800Ma: Chemical Geology, v. 161, p. 103–125, doi:10.1016/S0009-2541(99)00083-2.
- 265 Hedges, J.I., and Keil, R.G., 1995, Sedimentary organic matter preservation: an assessment and
- speculative synthesis: Marine Chemistry, v. 49, p. 81–115, doi:10.1016/0304-
- 267 4203(95)00008-F.
- Hilton, R.G., Galy, A., and Hovius, N., 2008a, Riverine particulate organic carbon from an
- active mountain belt: The importance of landslides: Global Biogeochemical Cycles, v. 22,
- p. GB1017, doi:10.1029/2006GB002905.

- 271 Hilton, R.G., Galy, A., Hovius, N., Chen, M.-C., Horng, M.-J., and Chen, H., 2008b, Tropical-
- 272 cyclone-driven erosion of the terrestrial biosphere from mountains: Nature Geoscience, v. 1,
- 273 p. 759–762, doi:10.1038/ngeo333.
- Hilton, R.G., Galy, A., Hovius, N., Horng, M.-J., and Chen, H., 2010, The isotopic composition
- 275 of particulate organic carbon in mountain rivers of Taiwan: Geochimica et Cosmochimica
- 276 Acta, v. 74, p. 3164–3181, doi:10.1016/j.gca.2010.03.004.
- Ho, C.S., 1986, An Introduction to the Geology of Taiwan: Explanatory Text of the Geological
- 278 Map of Taiwan: Central Geological Survey, Ministry of Economic Affairs Taipei, Taiwan.
- 279 Kao, S.-J., and Liu, K.-K., 1996, Particulate organic carbon export from a subtropical
- 280 mountainous river (Lanyang Hsi) in Taiwan: Limnology and Oceanography, v. 41, p. 1749–
- 281 1757, doi:10.4319/lo.1996.41.8.1749.
- 282 Kao, S.-J., Dai, M.H., Wei, K.-Y., Blair, N.E., and Lyons, W.B., 2008, Enhanced supply of fossil
- organic carbon to the Okinawa Trough since the last deglaciation: Paleoceanography, v. 23,
- 284 p. PA2207, doi:10.1029/2007PA001440.
- Lasaga, A.C., and Ohmoto, H., 2002, The oxygen geochemical cycle: Dynamics and stability:
- 286 Geochimica et Cosmochimica Acta, v. 66, p. 361–381, doi:10.1016/S0016-7037(01)00685-
- 287 8.
- Leithold, E.L., Bair, N.E., and Perkey, D.W., 2006, Geomorphic controls on the age of
- 289 particulate organic carbon from small mountainous and upland rivers: Global
- 290 Biogeochemical Cycles, v. 20, p. GB3022, doi:10.1029/2005GB002677.
- 291 Lyons, W.B., Nezat, C.A., Carey, A.E., and Hicks, D.M., 2002, Organic carbon fluxes to the
- 292 ocean from high-standing islands: Geology, v. 30, p. 443–446, doi: 10.1130/0091-
- 293 7613(2002) 030<0443:OCFTTO>2.0.CO;2.

- 294 Milliman, J.D., and Syvitsky, J.P.M., 1992, Geomorphic/tectonic control of sediment discharge
- to the ocean: The importance of small mountainous rivers: The Journal of Geology, v. 100,
- 296 p. 525–544, doi:10.1086/629606.
- 297 Petsch, S.T., Berner, R.A., and Eglinton, T.I., 2000, A field study of the chemical weathering of
- ancient sedimentary organic matter: Organic Geochemistry, v. 31, p. 475–487,
- 299 doi:10.1016/S0146-6380(00)00014-0.
- 300 Schlünz, B., and Schneider, R.R., 2000, Transport of terrestrial organic carbon to the oceans by
- 301 rivers: Re-estimating flux and burial rates: International Journal of Earth Sciences, v. 88,
- 302 p. 599–606, doi:10.1007/s005310050290.
- 303 Stallard, R.F., 1998, Terrestrial sedimentation and the carbon cycle: Coupling weathering and
- 304 erosion to carbon burial: Global Biogeochemical Cycles, v. 12, p. 231–257,
- 305 doi:10.1029/98GB00741.
- 306 Sundquist, E.T., and Visser, K., 2004, The geologic history of the carbon cycle, *in* Schlesinger,
- 307 W.H., ed., Treatise on Geochemistry, Volume 8, Biogeochemistry: Oxford, United
- 308 Kingdom, Elsevier-Pergamon, p. 425–472.
- 309 Teng, L.S., 1990, Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan:
- 310 Tectonophysics, v. 183, p. 57–76, doi:10.1016/0040-1951(90)90188-E.
- 311
- 312
- 313
- 314
- 315
- 210
- 316

317 FIGURES CAPTIONS

318 319 Figure 1. Relationships between water discharge $(Q_w, m^3 s^{-1})$ and fossil particulate organic carbon concentration (POC_{fossil}, mg L^{-1}) and suspended sediment concentration (SSC, mg L^{-1}) in 320 321 Taiwan Rivers. (a) Direct measurements of Q_w, SSC and POC_{fossil} for the Chenyoulan River in 322 Taiwan. Whiskers show error in concentration where large than the point. Power law rating 323 curves for SSC (black line) and POC_{fossil} (gray line) were determined by a least squares best fit with exponents Σ and Φ , respectively. (b) Power law rating curve exponent between Q_w and 324 325 solid load constituents (Σ and Φ) for 11 Taiwanese rivers determined by a least squares best fit. Whiskers are errors on the fit. Solid line show linear regression through the data ($y = (0.93 \pm$ 326 $(0.06)x + 0.01 \pm 0.06$; R² = 0.97, P<0.0001) and dashed lines 95% confidence intervals. 327 328

Figure 2. Relationship between suspended sediment yield (t km⁻² yr⁻¹) and fossil organic carbon 330 (OC_{fossil}) erosion yield (tC km⁻² yr⁻¹) in Taiwan Rivers. A linear regression of the data (y = 331 $(0.0035 \pm 0.0003)x - 1 \pm 10$; R² = 0.94 P<0.0001), dashed gray showing 95% confidence 332 333 intervals, implies an average OC_{fossil} concentration of $0.35 \pm 0.03\%$ in suspended sediments and 334 that clastic sediment transfer is the dominant control on OC_{fossil} yield. Shaded region (gray) 335 indicates the predicted range of OC_{fossil} yields for the measured suspended sediment yields using 336 the OC_{fossil} concentration measured in rock samples from the major geological formations in 337 Taiwan (Hilton et al., 2010).

338

329

Figure 3. Fossil organic carbon (OC_{fossil}) export (ktC yr⁻¹) to the ocean from Taiwan over the

- 341 sampling period. The sampling locations and gauging stations (black circles), their catchment
- 342 area (black line) and main rivers (blue line) are overlain on topography bathymetry. The relative
- 343 magnitude of the OC_{fossil} yield is indicated by the circles (gray).

344