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Abstract 

The research findings presented in this paper illustrate how the “value added” of schooling can 

be assessed empirically using cross-sectional data. Application of the regression-discontinuity 

approach within a multilevel framework produces both an estimate of the absolute effect of one 

year schooling and an estimate of the variation across schools of this effect. In the study 

reported here the approach was applied to both a cross-sectional and a longitudinal dataset. The 

research findings indicate to what extent different results are produced when cross-sectional as 

opposed to longitudinal data are analysed. 
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Assessing school effects without controlling for prior achievement? 

 

Introduction 

Most researchers in the field of school effectiveness would agree that for a valid assessment of 

the “value added” by schools it is highly desirable to take each pupil‟s prior achievement into 

account. The multilevel analyses that are usually conducted focus on differences in achievement 

between schools. Adjusting for the bias that results from intake differences seems essential. By 

far the most frequently applied method includes prior achievement (usually together with other 

background characteristics) as a covariate in the data analysis. In this paper we point to an 

alternative method that does not need controls for prior achievement, namely the regression-

discontinuity approach. Our data analysis will indicate to what extent this method produces 

different outcomes when a cross-sectional as opposed to a longitudinal dataset is analyzed.  

 

The regression-discontinuity approach is a useful method for assessing the absolute effect of 

schooling with cross-sectional data. Studies based on this approach indicate that more than 50% 

of the progress pupils make over a one-year period is accounted for by schooling. (Cahan & 

Davis, 1987; Luyten, 2006). This perspective differs considerably from the results presented in 

the bulk of the school effectiveness studies, which typically report that schools account for 

approximately ten percent of the variance in test scores after controlling for prior attainment 

(Scheerens & Bosker, 1997). The figure of 50% refers to the impact of receiving education in 

the upper grade as opposed to the lower grade and is calculated as a percentage change in test 

score, whereas the figure of 10% refers to the variation in the impact of schools
1
. The 50% 

figure is more in line with educational effectiveness studies that address the variation between 

both schools and classes/teachers (e.g. Hill & Rowe, 1996; Opdenakker & Van Damme, 2000). 

 

Regression-discontinuity capitalizes on the fact that students are assigned to a higher or lower 

grade on the basis of their date of birth. In most countries pupils born before a certain cut-off 

point (in England, 1
st
 September) generally end up in a higher grade than pupils that are just a 

few days younger. The effect of one year extra schooling can thus be assessed by comparing the 

achievement scores of the pupils born shortly before the cut-off point to the scores of the ones 

                                                 
1
 Note that these percentages are not really comparable with one another. Both figures express different aspects of 

the same phenomenon. It seems possible to convert both percentages to effect sizes that have been defined in 

relation to interventions in which there is a control and an experimental group (see Tymms, 2004). We will briefly 

return to this matter in the final section, but a detailed coverage of this topic is beyond the scope of this article. 
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born shortly after the cut-off point. The latter ones are in the lower grade, whereas the former 

are in the upper grade and have received an extra year of schooling. Within each grade the 

relationship between age and achievement is estimated. If the data analysis reveals a 

discontinuity between the oldest pupils in the lower grade and the youngest ones in the upper 

grade, this is interpreted as the effect of one year extra schooling (i.e., being in the upper grade). 

As the analysis takes into account the impact of the criterion used for assigning students to 

either grade, alternative interpretations are largely ruled out. It is conceivable that the cut-off 

point coincides with other relevant factors, but – generally speaking – this is unlikely. The main 

strength of the regression-discontinuity approach is that it predicts an effect at a very specific 

point on the age continuum. When this approach is applied within a multilevel framework, the 

effect of schooling can be modelled as a random effect at the school level. Thus differences in 

effectiveness between schools can also be estimated.  

 

Note, however, that correct modelling of the relation between age and achievement is crucial. If 

a linear function is estimated, while in reality the function is quadratic or cubic the model will 

be misspecified, and the regression-discontinuity may be biased. Another essential requirement 

is adherence to the cut-off point. In many countries, assignment to a particular grade does not 

adhere fully to a nation-wide cut-off point. In some cases, this may be (partly) due to regional 

variations (for example, Australia and the United States), but grade retention is usually the main 

cause. If the degree of “misclassification” is not excessive, it is still possible to obtain reliable 

effect estimates. If the percentage of misclassified participants is limited (preferably below five 

percent), it is best to exclude them (Judd & Kennedy, 1981; Trochim, 1984; Shadish et al., 

2002). In the dataset analyzed for the present study less than 1.5% of the pupils were in the 

“wrong” grade given their date of birth.  

 

One specific advantage of the regression-discontinuity approach is that – in principle – it does 

not require controlling for prior achievement (or any other background characteristics) in order 

to assess the effect of schooling. As in randomised experiments, cross-sectional data is 

sufficient for strong causal inferences. The basic assumption is that the selection criterion 

constitutes the only relevant difference between control and treatment group. With regard to 

pupils from two (or more) consecutive grades this means that the distinct groups are assumed to 

be equivalent in all relevant respects (e.g. gender distribution, socioeconomic background, 

cognitive aptitudes) besides age. This implies that estimating the grade effect by means of 

longitudinal data should yield results that hardly differ from an analysis of cross-sectional data. 
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This assertion will be put to the test in the present study. The effect of schooling will be 

estimated using both longitudinal and cross-sectional data. The data relate to four and five year 

old pupils in English reception classes. The reception class appears to be unique to England. In 

other countries it is more likely to be identified as a kindergarten group but in England it is 

clearly part of the school and typically follows pre-school provision (nursery or play group).  

 

Modelling the absolute effect of schooling 

Equation (1) presents the basic regression-discontinuity model. The coefficients β1 and β2 

express the effect of age and the effect of one extra year schooling. It applies to a dataset with 

students from two consecutive grades. The effect of age is assumed linear and identical in both 

grades (i.e., no interaction between age and grade).  

 

Yi = β0 + β1(xi – x0) + β2zi + Ri  (1) 

 

Where: 

  

Yi  = outcome measure (e.g., mathematics achievement score for student i) 

xi  = age, pupil i (see table 2 for details on the coding of the age variable)  

x0  = cut-off value (in this study: 5 years) 

zi  = grade, student i (0 if lower grade; 1 if upper grade) 

β0 = parameter for comparison group intercept at cut-off  

β1 = age effect   

β2 = effect of being in the upper grade (i.e., having received an extra year of schooling)         

Ri = random residual    

 

When combining the regression-discontinuity approach with multilevel analysis, the intercept 

(β0) and the effect of one extra year of schooling (β2) are allowed to vary across schools:  

 

Yij = β0j + β1(xij – x0) + β2jzij + Rij  (2) 

 

j  = index for schools 

i  = index for students within schools 
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The intercept and the effect of schooling are now school-dependent. These school-dependent 

coefficients can be separated into an average coefficient and the school-dependent deviation: 

 

β0j = γ00 + U0j 

β2j = γ20 + U2j 

 

Substitution leads to the following model: 

 

Yij = γ00 + β1(xij – x0) + γ20zij + U0j + U2jzij + Rij  (3) 

 

In this equation, γ20 expresses the general effect of one year extra schooling, while U2j 

represents the school-dependent deviation. Its variance is of particular interest, as it expresses 

the extent to which the effect of schooling differs between schools. When fitting this model, the 

variances of Rij and U0j are estimated, as is the covariance between U0j and U2j. This basic 

model can be extended in several ways. It can be applied to a wider range of adjacent grades 

(see the contribution by Kyriakides & Luyten to this special issue for an example) and the effect 

of age may be allowed to vary between grades. Such an interaction between the selection 

variable (age) and the independent variable of interest (grade), however, may simply reflect a 

curvilinear relation (Shadish et al., 2002; Trochim, 1984). In the findings section we will report 

the estimated effects of grade when the age-achievement relation is modelled as a quadratic 

function
2
. It is also possible to test whether the effect of schooling is dependent on other 

variables (e.g., SES). This could be modelled through interaction effects between the additional 

variable(s) and the grade effect. A significant interaction effect would imply that the effect of 

schooling varies for pupils with different socioeconomic backgrounds. This question will not be 

addressed in the present contribution. The contribution by Verachtert et al. to this issue pays 

explicit attention to differences in learning rates between pupils from different backgrounds. 

Another possible extension would be to model a random effect of age at the school level. Fitting 

complex models with multiple random effects, however, requires a (very) large dataset. The 

dataset analyzed for this study includes data from only 18 schools. As a result only relatively 

simple models could be fitted. 

 

                                                 
2
 The estimated effects of grade in the models with quadratic effects of age included (see table 3) indeed hardly 

differ from the effects of grade in models that include an interaction effect of age with grade. Details on these 

analyses can be obtained from the first author.  
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Straightforward application of the regression-discontinuity approach relates to cross-sectional 

data. The achievement scores of pupils in the upper grade are then compared to the scores of 

other pupils, which are in the lower grade. In the present study, however, the approach is also 

applied to longitudinal data. In that case the achievement scores of the pupils in the upper grade 

are compared to the scores attained one year earlier by the same pupils. In both cases we take 

the effect of age on achievement into account. The net effect of being in the upper grade is the 

difference in achievement between the lower and the upper grade adjusted for the effect of age. 

In the case of longitudinal data the regression discontinuity analysis uses matched pupils 

whereas the cross-sectional approach uses different pupils. Analysis of the longitudinal data 

yields additional information that cannot be obtained with cross-sectional data, namely the 

variance of the grade effect at the individual level. It seems plausible that the effect of having 

received an extra year of schooling varies not only across schools, but also between pupils 

within schools. Estimation of this variance, however, requires longitudinal data. 

 

Research questions 

The primary aim of this study is to compare research outcomes based on cross-sectional data 

with outcomes that are based on longitudinal data. More specifically this is applied to the 

following research questions: 

 

1. What is the effect of one extra year of schooling on the level achievement? 

2. What proportion of the difference in achievement between two grades is accounted for by 

schooling? 

3. To what extent does the effect of one extra year of schooling vary between schools? 

 

The data analyses relate to three subject areas, namely mathematics, reading and phonics. Some 

more details regarding the outcome measures are provided in the variables section. 

 

Data 

The data come from the Performance Indicators in Primary School (PIPS) project (Tymms, 

1999a; Tymms & Albone, 2002) which is run from the Curriculum Evaluation and Management 

(CEM) Centre (Tymms & Coe, 2003) in Durham University, England. The project is designed 

to monitor the progress of pupils in school for schools. The data are not intended for outsiders 

and the schools, or their authorities, pay to join the project or part of it. The PIPS project starts 

with an on-entry baseline assessment within six weeks of the pupils‟ start at school. It is 
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repeated at the end of the academic year in an extended form. The assessment can be 

administered using a paper based or a computerised form and is always administered in a one-

to-one situation taking about twenty minutes per pupil.  

 

Our analyses relate to a (very) small part of the entire PIPS dataset, namely to the schools where 

the pupils were first assessed using the on-entry baseline and re-assessed in September of the 

following year. In most schools the pupils are assessed at the start and the end of the school year 

(September and June respectively). Only 18 schools are thus included in the analyses. The 

analyses focus exclusively on pupils with standard school careers. Those with delayed or 

accelerated careers (1.5%) were excluded from the analyses.  

 

The analyses focus on two datasets, namely a cross-sectional and a longitudinal one. The pupils 

in the upper grade (called “Year 1” in England) are the same in both datasets, but the lower 

grade (reception) pupils are not. The analyses of the cross-sectional data relate to a comparison 

of two distinct groups of pupils that were assessed at the same time, namely in September 2004. 

The upper grade pupils were born in the period September 1998 – August 1999 and the lower 

grade ones one year later, in the period September 1999 – August 2000. The longitudinal 

analyses relate to a comparison of the scores obtained by the same pupils at two different points 

in time, namely in September 2004 (when they were in the upper grade) and September 2003 

(when they were in the lower grade and thus one year younger). See also table 2.  

 

Variables 

The dependent variables in the analysis are pupil achievement for mathematics, reading and 

phonics. The test was constructed to provide measures of the best predictors of later 

achievement in school. As such it includes the precursors to reading and mathematics and this 

extends to reading per se and into mathematics (arithmetic) (see Tymms, 1999b). There are 17 

sections in the assessment with some additional voluntary sections, which are not used in this 

paper. The sections can be grouped into reading, mathematics and phonics. Areas assessed 

include name writing, picture vocabulary, concepts about print, letter identification, reading 

simple words and reading more complex sentences, which combine into the reading score; word 

repeating and identifying pairs of rhyming words, which combine into the phonics score; ideas 

about maths, counting, informal simple sums, number recognition, shapes and formal maths 

which combine into the mathematics score. An example will give a feel for the test.  
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For letter identification the child is shown letters of the alphabet in order of their empirically 

established difficulty. It starts with the first letter of the child‟s name and proceeds through 

many letters with a mixture of upper and lower case letters. The test algorithm is that when 

three in a row are answered incorrectly or four altogether the section is halted and the child 

moves to the next section. Some more sample questions are presented at the home page of the 

CEM centre (http://www.cemcentre.org/). 

 

Schools use the same assessment both on entry to school and for the follow-up assessment. In 

order to reduce the time spent by schools on the re-test, pupils are not re-assessed on sections 

they completed adequately at the start of the year and instead are credited with full marks in 

those sections. However, whilst this saves a lot of time for schools, there is the risk that some 

children will be credited for items that they would have got wrong. We are able to empirically 

measure the size of this difference using data from schools where something unfortunate has 

happened to their computers. If the computers are stolen, broken or even upgraded, if the school 

did not keep a backup copy of the data, the children will have to complete the final assessment 

from the very beginning. This means they are assessed on those sections for which they should 

have been credited full marks. As such we can compare their score on the full test with the 

calculated score if they had been credited the marks. On average this makes a difference of 2.77 

items and this correction was applied before the models were set up. 

 

The assessment has a test-retest reliability of 0.98 (CEM website). As stated previously, the 

assessment was designed to predict later attainment. The correlations between the assessment 

scores at the start of the year, the end of the year, and later PIPS assessments up to the end of 

primary school, six years later, are all around 0.7 (Tymms 1999, Tymms et al, 2000, and 

Tymms et al, 2007). 

 

Table 1 shows the mean and standard deviation for each subject by grade. Figures 1a, 1b and 1c 

provide a graphical display of the frequency distributions of the scores for maths, reading and 

phonics. Figure 1a shows that in both lower and upper grade the distributions of the maths 

scores present fairly close approximations of the standard normal distribution. The pupils in the 

upper grade get higher scores, but the amount of variation hardly differs between both grades. 

Moreover, the distributions for the cross-sectional and longitudinal data in the lower grade are 

highly similar. Most important is the apparent absence of any floor or ceiling effects in the 

distributions, as these might bias the effect estimates. Figure 1b shows the frequency 

http://www.cemcentre.org/
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distributions for reading. Also in this case the distributions show a fair degree of resemblance 

with the standard normal distribution in both grades, but the graph displays much more 

variation for reading in the upper grade. This is also expressed in the size of the standard 

deviations (see table 1). There is little evidence for any floor or ceiling effects. In the lower 

grade, the longitudinal and cross-sectional data produce similarly shaped distributions. Figure 

1c, however, shows an unmistakable ceiling effect in the distribution of the phonics scores in 

the upper grade. In fact 46% of the pupils in the upper grade attained the maximum score on the 

phonics test. This implies that many pupils would most probably have got a higher score, if the 

discriminatory power of the test had been higher. However, the ceiling effect is not so 

surprising when one considers the limited scope of the test (word repeating and identifying pairs 

of rhyming words). With regard to our basic research question, the most important point is that 

the bias relates to both the cross-sectional and longitudinal dataset. Only if a floor or ceiling 

effect occurs exclusively in either dataset is it possible that this leads to different findings for 

the cross-sectional versus the longitudinal data. The distributions in the lower grade are again 

quite similar for both the cross-sectional and longitudinal data. 

 

Table 1: Basic statistics given years for when the data were collected 

 

 
LOWER GRADE UPPER GRADE 

 

 
cross-sectional data  longitudinal data cross-sectional and longitudinal 

Mathematics       

Average score 24.50  24.67  40.42  

Standard deviation 9.14  8.58  8.43  

Reading       

Average score 30.45  29.42  88.51  

Standard deviation 19.23  15.54  36.00  

Phonics       

Average score 9.07  9.11  14.57  

Standard deviation 4.46  4.60  3.40  

Number of pupils 593  599  599  

 

Grade and age are the independent variables in the analyses. Grade was recoded to assign scores 

of zero to students in the lower grade and scores of one to students in the upper grade. The 

variable that denotes a pupil‟s age at the date of assessment is based on year and month of birth. 

Each age was transformed into a decimal number. For example, a pupil born in March 1999 and 

assessed in September 2004 received a score of 5.50, and a pupil born in April received a score 

of 5.42. The cut-off value (5.00) was then subtracted from these scores, giving each of the 
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oldest pupils in the lower grade (the comparison group) a score of zero. Table 2 illustrates the 

transformation of the original birth dates to the scores used in the analyses.  

 
Figure 1a     Figure 1b 

 
 

Figure 1c 
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Table 2: Assessment dates, dates of birth and ages at date of assessment (cutoff = 5.00) 

 

 
CROSS-SECTIONAL DATA LONGITUDINAL DATA 

 
 

date of  

birth 

age in 

decimals 

 minus 

cut-off 
 

date of  

birth 

age in 

decimals 

minus 

cut-off 

U
p

p
er

 g
ra

d
e 

A
ss

es
sm

en
t 

 d
a

te
  

S
ep

te
m

b
er

  
2
0
0

4
 

Sept. 1998  6.00 1.00  

A
ss

es
sm

en
t 

 d
a

te
  

S
ep

te
m

b
er

  
2
0
0

4
 

Sept. 1998  6.00 1.00  

Oct. 1998  5.92 .92  Oct. 1998  5.92 .92  

Nov. 1998  5.83 .83  Nov. 1998  5.83 .83  

Dec. 1998  5.75 .75  Dec. 1998  5.75 .75  

Jan. 1999  5.67 .67  Jan. 1999  5.67 .67  

Feb. 1999  5.58 .58  Feb. 1999  5.58 .58  

March 1999  5.50 .50  March 1999  5.50 .50  

April 1999  5.42 .42  April 1999  5.42 .42  

May 1999  5.33 .33  May 1999  5.33 .33  

June 1999  5.25 .25  June 1999  5.25 .25  

July 1999  5.17 .17  July 1999  5.17 .17  

Aug. 1999  5.08 .08  Aug. 1999  5.08 .08  

L
o
w

er
 g

ra
d

e 

A
ss

es
sm

en
t 

 d
a

te
 

S
ep

te
m

b
er

  
2
0
0

4
 

Sept. 1999  5.00 .00  

A
ss

es
sm

en
t 

 d
a

te
  

S
ep

te
m

b
er

  
2
0
0

3
 

Sept. 1998  5.00 .00  

Oct. 1999  4.92 -.08  Oct. 1998  4.92 -.08  

Nov. 1999  4.83 -.17  Nov. 1998  4.83 -.17  

Dec. 1999  4.75 -.25  Dec. 1998  4.75 -.25  

Jan. 2000  4.67 -.33  Jan. 1999  4.67 -.33  

Feb. 2000  4.58 -.42  Feb. 1999  4.58 -.42  

March 2000  4.50 -.50  March 1999  4.50 -.50  

April 2000  4.42 -.58  April 1999  4.42 -.58  

May 2000  4.33 -.67  May 1999  4.33 -.67  

June 2000  4.25 -.75  June 1999  4.25 -.75  

July 2000  4.17 -.83  July 1999  4.17 -.83  

Aug. 2000  4.08 -.92  Aug. 1999  4.08 -.92  

 

Models fitted 

The first model fitted serves as the reference basis and relates only to the difference in 

achievement between lower and upper grades and to the variation of this difference between 

schools for each of the three subject areas in both the cross-sectional and the longitudinal 

dataset. The second model includes the effect of the pupil‟s age, thereby representing the basic 

regression-discontinuity approach within a multilevel framework, as described in equation (3). 

In this equation the relation between age and achievement is modelled as a linear function. 

Additional models were fitted to explore the empirical validity of curvilinear relationships 

between age and achievement. We only report the findings that include a quadratic term as the 

analyses that included cubic terms failed to produce significant improvements of the model fit. 

The analyses of the longitudinal data entail one important addition. For these data the variance 

of the effect of one year schooling is estimated both at the school and pupil level. For the cross-

sectional data the variance of this effect can only be estimated at the school level, as the 
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difference between the scores in the lower and upper grade cannot be measured at the individual 

level. The MLwiN software (Rasbash et al., 2000) was used to analyse the data.  

 

Findings 

Table 3 shows the basic findings of the analyses. The first model estimates the gross effect of 

being in the upper grade. The second model includes the linear effect of age. In the third model 

a quadratic term is included. The random effects in table 3 relate to this model (the random 

effects for models 1 & 2 are reported in appendix 1). For all three subjects, in all three models 

and for both the cross-sectional and longitudinal data the effect of being in the upper grade and 

its variance is found to be statistically significant (α < .05; two-tailed) given the size of the 

relevant standard errors. 

 

The gross effect of one year schooling, which is estimated in model 1, is very similar in the 

cross-sectional and longitudinal dataset for all three “subjects”. Models 2 and 3 show larger 

differences between both datasets with regard to the fixed effects of grade, but when these 

differences are compared to the standard errors of the effects, none of them can be considered 

statistically significant. Note that for mathematics and phonics the sign of the quadratic effect is 

negative in both the longitudinal and cross-sectional datasets, whereas for reading the sign is 

positive in both datasets. A negative sign of the quadratic term indicates that the positive effect 

of age on achievement decreases, as pupils grow older. A positive sign suggests the opposite. 

The figures 2a, 2b and 2c present graphical displays of the age achievement relationships and 

the discontinuities between the oldest pupils in the lower grade and youngest in the upper grade. 

The figures relate to the effects estimated in model 3, which includes a quadratic term for the 

effect of age. For mathematics and reading there is hardly any difference between the lines that 

represent the age achievement relation for the cross-sectional and the longitudinal data. Only for 

phonics, which is the most limited in scope of the three measures, is the difference easier to 

discern.  

 



 13 

Table 3: Comparison of findings with longitudinal and cross-sectional data 

 

 
MATHEMATICS READING PHONICS 

 Cross-sectional 

data 

Longitudinal 

data 

Cross-sectional 

data 

Longitudinal 

data 

Cross-sectional 

data 

Longitudinal 

data 

FIXED EFFECTS 
 

 
           

Model 1             

Intercept 24.63 (.84) 24.85 (.93) 31.25 (1.79) 31.35 (2.52) 9.43 (.52) 9.46 (.58) 

Grade 15.81 (1.22) 15.58 (.91) 57.85 (3.50) 57.91 (2.72) 5.35 (.49) 5.33 (.42) 

Model 2             

Intercept 28.59 (.94) 28.34 (.99) 40.02 (2.14) 38.13 (2.63) 10.50 (.55) 10.61 (.62) 

Grade 7.21 (1.48) 7.75 (1.35) 38.77 (4.01) 42.80 (3.30) 3.03 (.61) 2.75 (.62) 

Age 8.43 (.78) 7.83 (1.00) 18.71 (2.25) 15.07 (1.86) 2.26 (.36) 2.56 (.45) 

Model 3             

Intercept 29.06 (1.00) 28.78 (1.00) 39.07 (2.11) 40.70 (2.68) 10.56 (.58) 11.11 (.65) 

Grade 7.08 (1.48) 7.55 (1.35) 32.48 (4.16) 30.19 (4.00) 3.01 (.61) 2.31 (.64) 

Age 8.65 (.80) 8.15 (1.01) 23.84 (2.53) 26.63 (2.91) 2.30 (.37) 3.10 (.48) 

Age
2 

-1.20 (.76) -1.07 (.43) 11.06 (2.56) 9.15 (1.78) -.14 (.36) -.91 (.25) 

RANDOM EFFECTS (Model 3) 
 

 
          

School level             

Variance intercept 11.08 (4.54) 11.01 (4.53) 47.08 (19.71) 103.05 (37.40) 4.36 (1.66) 5.55 (2.11) 

Variance grade effect 22.71 (9.28) 12.91 (4.87) 122.79 (58.62) 89.16 (38.67) 3.17 (1.39) 2.85 (1.13) 

Covariance -7.88 (5.21) -3.43 (3.48) 7.11 (24.16) -6.22 (26.99) -3.33 (1.42) -3.73 (1.47) 

Correlation -.50 (not sign.)  -.29 (not sign.) .09 (not sign.) -.06 (not sign.) -.90 -.94 

Pupil level             

Variance intercept 66.82 (3.94) 59.52 (3.49) 316.16 (18.64) 179.96 (10.56) 15.43 (.91) 16.52 (.97) 

Variance grade effect --- --- 34.70 (2.04) --- --- 634.32 (37.19) --- --- 12.28 (.72) 

Covariance -7.35 (2.49) -21.02 (2.08) 359.78 (31.76) 111.27 (14.75) -2.52 (.55) -9.21 (.70) 

Correlation cannot be computed -.46 cannot be computed .33 cannot be computed -.65 

 

The figures in between brackets denote the standard errors.  

The random effects for models 1and 2 are reported in appendix 1.
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Table 3 also shows that the variance of the grade effect between schools is larger in the cross-

sectional dataset for all three subjects. The difference between both datasets for reading equals 

33.63 (122.79 – 89.16), which is smaller than the standard error in either dataset (namely 58.62 

and 38.67). The same goes for phonics: the difference amounts to .32 (3.17 – 2.85), while the 

standard errors equal 1.39 and 1.13. With regard to mathematics the findings are less clear-cut. 

The difference between both datasets equals 9.80 (22.71 – 12.91), which is hardly larger than 

the standard error in the cross-sectional dataset (9.28) but over twice as large as the standard 

error in the longitudinal dataset (4.87). With regard to the basic research question of this study 

the most important finding is that the cross-sectional data do not produce an outcome that 

contradicts the estimate based on the longitudinal data. If one would use the cross-sectional data 

to construct a 95% confidence interval for the school level variance of the grade effect, it would 

still include the value obtained with the longitudinal data. It should be noted, though, that the 

low number of schools in this study (18) is bound to produce large standard errors and wide 

confidence intervals. It is also worth mentioning that when the variation of the grade effect 

across schools is expressed in terms of standard deviations rather than variances, the disparities 

between the cross-sectional and the longitudinal results look much more modest. In that case the 

result for mathematics is 4.77 (√22.71) in the cross-sectional dataset versus 3.59 (√12.91) in the 

longitudinal dataset. For reading the contrast is 11.08(√122.79) vs. 9.44(√89.16) and for 

phonics it is 1.78(√3.17) vs. 1.69(√2.85).  

 
The findings for reading show some differences between the longitudinal and cross-sectional 

data with regard to the intercept variance at both the school and pupil level. The school level 

variance is considerably larger in the longitudinal dataset, while the pupil level variance is much 

lower. This means that with regard to the school and pupil level variance for reading the pupils 

in the cross-sectional dataset are not equivalent to the ones in the longitudinal dataset. Note that 

both datasets display much more similarity with regard to the variances of the grade effect for 

reading between schools. Even though the cross-sectional and longitudinal data show some 

differences with regard to the variation in reading scores (see also table 2), this does not 

preclude fairly similar outcomes concerning the variance of the grade effect.  
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Figure 2a 
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Figure 2c 

 
 

With regard to mathematics and reading none of the covariances at the school level between the 

intercept and the grade effect are significantly different from zero in either dataset. In the case 

of mathematics this is largely due to the low number of schools. The actual sizes of the 

covariances are substantial. The corresponding correlations equal -.50 and -.29 for the cross-

sectional and longitudinal data respectively. For phonics, the covariance does deviate 

significantly from zero in both datasets. The negative covariance indicate that the effect of one 

year schooling is relatively low in schools with high intercepts, i.e. in schools where the scores 

for phonics are high in the lower grade. The covariances correspond to correlations equal to -.90 

and -.94 in the cross-sectional and longitudinal dataset respectively. The main cause for these 

extremely strong correlations is presumably the ceiling effect in the frequency distribution of 

the phonics scores in the upper grade (see figure 1c). This precludes substantial progress in 

schools with high levels of achievement in the lower grade.   

 

For the longitudinal datasets it also possible to calculate the correlation between the intercept 

and the grade effect at the pupil level. For the cross-sectional data the variance of the effect of 

one year schooling can only be estimated at the school level. The covariances at the pupil level 
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variance. All pupil level covariances are statistically significant. The covariance for phonics 

points to a strong and negative correlation (-.65) between intercept and grade effect at the pupil 

level. The effect of one year extra schooling is relatively small for pupils with high scores for 

phonics in the lower grade. It seems plausible that this (partly) reflects the ceiling effect in the 

distribution of the phonics scores (see figure 1c). A negative correlation (-.46) was also found 

for mathematics. The correlation for reading is positive (.33), which implies that the grade 

effect for reading is stronger if a pupil scored already high on reading in the lower grade. 

 

The effect of one year schooling for mathematics in model 3 is 7.08 and 7.55 in the cross-

sectional and longitudinal dataset respectively. For reading the effects are 32.48 and 30.19 and 

for phonics they are 3.01 and 2.31. These figures reflect the difference in achievement between 

the upper and lower grade after adjusting for the effect of age. When comparing the adjusted 

differences to the unadjusted differences (see table 3, model 1) one can compute the proportion 

of the difference in achievement between two grades that is accounted for by schooling. For 

example, the unadjusted difference between the lower and upper grade is 15.81 for mathematics 

in the cross-sectional dataset and the adjusted difference is 7.08. About 45% of the original 

difference remains after adjusting for age. Therefore 55% of the difference between grades must 

be attributed to the effect of age and 45% to the effect of schooling. Figure 3 displays the 

percentages for all three subjects in both the cross-sectional and longitudinal dataset. 

 

The proportions in the longitudinal and cross-sectional dataset are slightly different for 

mathematics and reading, but in general the patterns are quite similar. For phonics the 

proportions in the cross-sectional and longitudinal data show the largest difference, namely 44% 

versus 57%. This difference reflects the previously reported lower effect of being in the upper 

grade in the longitudinal dataset (see table 3). It should be noted, though, that the difference 

(3.01 – 2.31 = .70) between the effects in both datasets cannot be considered statistically 

significant as it hardly exceeds the standard errors in either dataset (.61 and .64).  
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Figure 3 

 
 

Another matter of concern is whether the analyses of both datasets yield consistent estimates of 
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Figure 4a 

 
 

 
Figure 4b 
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Figure 4c 

 
 

Summary and discussion 

The key question of this study is whether it is possible to make a valid assessment of the effects 

of schooling using cross-sectional data when making use of the regression-discontinuity 
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possible that the variance of the grade effect is somewhat overestimated when the analysis is 

based on cross-sectional data. In the case of longitudinal data the variation of the grade effect at 

both the school and pupil level can be assessed, which may lead to a more accurate and possibly 

lower estimate of the school level variance. Our findings suggest that not only the estimated 

variances of the grade effects tend to be larger for cross-sectional data, but also the 

corresponding standard errors. In the present study the consequence is that confidence intervals 

for the estimates based on cross-sectional data would still include the values estimated with the 

longitudinal dataset. The predicted grade effects per school reveal a considerable degree of 

consistency across both datasets. The correlations are moderate for phonics (.52) and strong for 

reading and mathematics (.78 and .71 respectively).  

 

In most respects the findings of this study suggest an affirmative answer to the question whether 

it is possible to assess the effect of schooling without controlling for prior achievement. The 

risk of obtaining biased estimates of the grade effect when the analysis is based on cross-

sectional data seems limited. This points to an important practical advantage of the regression-

discontinuity approach. Collecting longitudinal data requires more time, effort and money than 

cross-sectional data. Moreover longitudinal data often suffer from bias due to selective attrition.  

 

In addition to the practical advantages great importance can be attached to the conceptual 

benefits of the regression-discontinuity approach. First of all, it gives a different perspective on 

the impact of schooling. Whereas the multilevel analyses that focus on relative differences 

between schools find that ten to fifteen percent of the variance in test scores is situated at the 

school level, the regression-discontinuity approach indicates that schooling accounts for a much 

larger proportion of the cognitive development of pupils. The percentages reported in this study 

– on average 50% – are relatively low in comparison to those reported by Cahan & Davis 

(1987) and Luyten (2006). As mentioned in the introduction section these percentages relate to 

an aspect of the effect of schooling that is different from what is expressed by the usually 

reported percentages of school level variance. When these percentages are converted to effect 

sizes that have been defined in relation to interventions in which there is a control and an 

experimental group, it is found that 10% to15% school level variance corresponds to an effect 

size of .67 to.70 (see Tymms, 2004). Preliminary calculations on the findings reported in table 3 

suggest that converting the effects of one year extra schooling yield similar effect sizes.  
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Probably the most important advantage of the regression-discontinuity approach is that it allows 

for an assessment of the absolute effect of schooling. Clearly the usual school effectiveness 

research “school effects” merely relate to a school‟s relative position in comparison to other 

schools. Thus one will always find that 50% of the schools score above average and 50% 

below, regardless the overall quality of education in a country. With the regression-

discontinuity approach it is possible to express the effect of schooling on a scale that has a 

meaningful zero-level. A zero effect implies that the difference in test scores between two 

consecutive grades can be attributed completely to the fact that the pupils in the upper grade are 

one year older. In a multilevel framework this effect can be estimated per school, so that it is 

possible to detect schools with a zero or even negative impact on the development of the pupils. 

 

In the present study one school out of eighteen was found to have a negative effect for 

mathematics in both datasets. Another school showed a negative effect with regard to phonics in 

the longitudinal dataset, whereas a small positive effect was found in the cross-sectional dataset 

for this school. The study by Luyten (2006), which also applies the regression-discontinuity 

approach, reports a negative effect in 23% and 27% of the English primary schools for 

mathematics and science achievement respectively. These findings came from a secondary 

analysis of the TIMSS-95 data and relate to pupils in grade three and four in a large number of 

countries (Mullis et al., 1997; Martin et al., 1997). The relative effects of schooling found in the 

present study (50% on average) are considerably larger than the percentages reported for the 

English pupils in the analyses of the TIMSS-95 data, which are 38% for maths and 34% for 

science. Possible explanations for these differences may be the age of the pupils and the 

curriculum alignment of the tests used to measure pupil achievement. The TIMSS-95 data relate 

to nine and ten year olds, while the present analyses focused on four and five year olds. We 

know that the effect of age diminishes as children grow older (Jones and Jellis, 2005) but that 

relates to the age/achievement relationship within a year group. We hypothesise that there is an 

additional increment by grade effect which is greatest for the youngest children. Consider 

learning to read. This is a major accomplishment often achieved during the first year at school 

and it is difficult to conceive of a jump of comparable magnitude in later years. Similar 

examples can be given for mathematics. The youngest children make the greatest leaps. Finding 

a school where young children have not moved forward is a great surprise. With regard to 

curriculum alignment we cannot be sure. The test-curriculum overlap in the present study is not 

clear and it may also not be tight in the case of TIMSS-95.  
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The findings from this study suggest that there is no need to control for background 

characteristics in a study that uses the regression-discontinuity approach in order to assess the 

effect of education. Nevertheless, studies dealing with the effects of background characteristics 

such as gender, family background and ethnicity on the outcomes of schooling are still valuable. 

In the context of a regression-discontinuity analysis the research should focus on the question to 

what extent the effect of one year extra schooling is stronger or weaker for certain groups of 

pupils. This would require including interaction effects of student characteristics with grade in 

the data analysis. Effects of school and classroom variables can be modelled in the same 

manner. See also the contribution by Verachtert et al., which reports different learning rates by 

socioeconomic background. 

 

In the present study we did not address the impact of student and school characteristics, but it is 

quite plausible that these variables account to some extent for the variance of the grade effect 

across schools. What the results of our analyses show, is the average effect of one year 

schooling across different kinds of pupils and schools. Still it seems likely that, for example, the 

grade effect is stronger for pupils with highly educated parents. In that case, the educational 

level of the parents can account for part of the variance of the grade effect between schools. 

 

As has already been noted the present study relates to a fairly small dataset and to a specific 

group of pupils, namely four and five year olds, but we expect that future research will provide 

further support for the assumption that in many respects cross-sectional data suffice for a valid 

assessment of the impact of schooling. This requires replications of the present study on larger 

datasets and other age ranges. Another important topic for subsequent studies is the comparison 

of the interaction effects of pupil and school characteristics with the grade effect between 

longitudinal and cross-sectional data.  

 

In conclusion we want to emphasize the basic requirements for application of the regression-

discontinuity approach in future research on educational effectiveness. First of all the approach 

can only be applied if the data relate to two (or more) adjacent grades. In their contribution 

Kyriakides & Luyten illustrate how the approach can be applied to a dataset that covers more 

than two grades in a row. However, regression-discontinuity can not be applied to assess the 

effect of schooling if the dataset relates to non-neighboring grades (e.g. grades 2 and 4).  
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Another crucial requirement involves the comparability of the outcomes measures across 

grades. In the present study the same test is used in both grades. This may not always be 

feasible, especially if the analysis covers a wide range of grades. Using exactly the same tests in 

all grades is not necessary. The key point is that the tests used in the various grades relate to a 

common scale. This can be achieved by equating techniques based on classical test theory or 

item response theory.  

 

Correct modeling of the age-achievement relation is another point of crucial importance. If a 

linear function is fitted, while the real relation is curvilinear, the estimated effect of schooling 

may be biased. It is also worth mentioning that the approach does not require a strong or 

statistically significant relationship between age and achievement. As students grow older one 

may expect a diminishing link to age, but this does not affect the validity of the approach. If the 

relation between the selection criterion and the outcome measure were close to zero, one would 

actually approximate random assignment to grades (Trochim, 1984). However, it is of the 

utmost importance to emphasize that regression-discontinuity assumes a strict adherence to the 

cut-off point. In the present study the percentage of students with non-standard school careers is 

negligibly small (1.5%), but the „misclassification‟ of pupils presents a serious problem 

regarding the usefulness of the regression-discontinuity approach in many countries where other 

factors besides date of birth influence assignment to grades. Grade retention is undoubtedly one 

of the main reasons why assignment to grade level does not always agree with a cut-off point 

based on date of birth. Only in a restricted number of the countries is the proportion of 

„misclassifications‟ small enough to obtain reliable estimates of the grade effect without 

considering other factors. The greatest challenge will be to develop valid methods for taking 

into account the effects of these other factors when assessing the effect of schooling. 

Addressing the „misclassification‟ issue as a selection bias problem seems a promising 

approach. When trying to assess the grade effect we are faced with the problem that assignment 

to grades (in the guise of grade-repeating or grade-skipping) is partly determined by factors that 

affect the outcomes of learning (Luyten & Veldkamp, 2008).  
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Appendix 1: Random effects in models 1 and 2 (compare table 3)  

 

 
MATHEMATICS READING PHONICS 

 Cross-sectional 

data 

Longitudinal 

data 

Cross-sectional 

data 

Longitudinal 

data 

Cross-sectional 

data 

Longitudinal 

data 

MODEL 1             

School level             

Variance intercept 9.74 (4.19) 12.48 (5.13) 44.70 (19.08) 103.86 (38.08) 4.21 (1.62) 5.18 (2.00) 

Variance grade effect 21.14 (8.89) 13.17 (4.96) 156.50 (71.81) 102.74 (43.70) 3.23 (1.42) 2.59 (1.04) 

Covariance -6.14 (4.81) -4.08 (3.76) 8.91 (26.27) 3.85 (29.00) -3.25 (1.41) -3.39 (1.37) 

Correlation -.43(not sign.) -.32(not sign.) .11(not sign.) .04(not sign.) -.88 -.92      

Pupil level             

Variance intercept 75.59 (4.46) 65.96 (3.87) 332.46 (19.60) 206.56 (12.12) 15.95 (.94) 17.75 (1.04) 

Variance grade effect --- --- 34.99 (2.05) --- --- 656.15 (38.47) --- --- 12.57 (.74) 

Covariance -9.88 (2.77) -22.51 (2.20) 400.08 (34.62) 135.44 (16.27) -2.63 (.57) -9.81 (.74) 

Correlation
 

cannot be computed -.47 cannot be computed .37 cannot be computed -.66 

MODEL 2             

School level             

Variance intercept 10.82 (4.45) 11.27 (4.63) 49.93 (20.70) 102.41 (37.22) 4.35 (1.66) 5.43 (2.09) 

Variance grade effect 22.51 (9.21) 13.15 (4.95) 136.50 (63.73) 103.01 (43.78) 3.14 (1.38) 2.64 (1.07) 

Covariance -7.61 5.13 -3.64 (3.55) 8.47 (25.80) -3.14 (28.62) -3.31 (1.42) -3.56 (1.43) 

Correlation -.49(not sign.) -.50(not sign.) .10(not sign.) -.03(not sign.) -.90 -.94 

Pupil level             

Variance intercept 66.70 3.94 59.64 (3.50) 318.29 (18.76) 181.54 (10.65) 15.42 (.91) 16.66 (.98) 

Variance grade effect --- --- 34.99 (2.05) --- --- 656.15 (38.47) --- --- 12.56 (.74) 

Covariance -7.34 2.50 -21.21 (2.09) 368.97 (32.36) 115.06 (15.09) -2.51 (.55) -9.41 (.72) 

Correlation cannot be computed -.46 cannot be computed .33 cannot be computed -.65 

 

The figures in between brackets denote the standard errors. 

Model 1 includes only the effect of grade (fixed and random).  

Model 2 includes the effect of grade (fixed and random) and a linear age effect (fixed). 

See table 3 for the fixed effects of grade and age in models 1 and 2. 
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Appendix 2: Predicted grade effects per school 

School 

Number  

of pupils 

Effect for 

mathematics 

Effect for  

Reading 

Effect for  

phonics 

Lower 

grade 

Upper 

grade 

Cross-

sectional 

Longi-

tudinal 

Cross-

sectional 

Longi-

tudinal 

Cross-

sectional 

Longi-

tudinal 

1  63  46  14.63  10.42  37.16  32.89  3.96  2.43  

2  12  18  4.49  8.87  32.56  32.30  3.66  4.79  

3  53  45  7.34  7.21  41.01  43.11  4.20  2.94  

4  17  13  7.40  7.12  34.13  35.02  3.02  1.14  

5  5  7  5.97  7.77  39.15  34.86  1.44  3.72  

6  24  27  -3.49  -2.20  41.75  42.16  2.56  4.57  

7  23  8  3.99  9.64  35.03  37.28  0.77  0.59  

8  30  41  7.14  8.33  34.38  33.12  5.40  2.72  

9  42  38  6.02  7.91  26.57  24.66  2.33  1.34  

10  56  59  2.10  5.28  14.19  15.68  2.24  1.64  

11  15  25  9.14  12.38  33.11  33.64  2.39  2.29  

12  18  4  11.30  6.66  31.91  28.07  4.59  1.25  

13  60  55  12.99  10.95  41.08  34.46  6.67  4.52  

14  30  30  4.47  5.97  17.21  14.95  4.18  3.87  

15  25  9  9.11  3.65  45.57  22.81  1.28  -0.81  

16  37  37  12.46  12.31  39.48  34.42  1.84  1.18  

17  21  53  7.15  6.52  21.18  22.62  1.78  0.92  

18  62  84  5.23  7.10  19.18  21.37  1.87  2.47  

 
 


