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NOTES ON COMPLEX HYPERBOLIC TRIANGLE GROUPS

SHIGEYASU KAMIYA, JOHN R. PARKER, AND JAMES M. THOMPSON

Abstract. We first demonstrate a family of isomorphisms between complex
hyperbolic triangle groups and outline a systematic approach classifying the
groups. Then we describe conditions that determine the discreteness of certain
groups, in particular we prove a slightly weaker version of a conjecture given by
Schwartz. Finally we collect together a list of known discrete triangle groups
and propose some good candidates for discrete groups.

1. Introduction

1.1. Deformed R-Fuchsian groups. The setting of this paper is 2 dimensional,
complex hyperbolic space, that is the complex projectivisation of the negative vec-
tors in C

2,1 with respect to the Hermitian inner product of signature (2, 1). For
further background see [5].

In the real hyperbolic case, one of the simplest types of discrete groups acting on
H2

R
are the Fuchsian triangle groups. To define a Fuchsian triangle group, we chose

a geodesic triangle in the hyperbolic plane and then look at the group generated by
the anti-holomorphic involutions in the edges of the triangle. If we chose the triangle
to have angles π/p, π/q and π/r (with p, q, r ∈ N∪ {∞} and 1/p+ 1/q + 1/r < 1),
then the group will be discrete and have presentation

(p, q, r) = 〈I1, I2, I3|I2i , (I2I3)p, (I3I1)q, (I1I2)r〉.
In the real hyperbolic case, angle two triangles with the same angles are isometric,
so the representation of (p, r, q) is independent of the triangle we chose, since there
is always conjugate one representation to the other.

We can carry out a similar construction in H2
C
, i.e. pick a triangle with angles

π/p, π/q and π/r (again with 1/p + 1/q + 1/r < 1) and then look at the group
generated by the order two complex reflections in the complex geodesics between
pairs of vertices of the triangle. This will give a representation of (p, q, r) in SU(2, 1).
For a triple (p, q, r), in H2

C
, the space of non-isometric triangles with angles π/p,

π/q and π/r, is of one real dimension. This leads to a one real dimensional family
of non-conjugate triangle representations for the (p, q, r) triangle group in SU(2, 1).
This is the deformation space of the (p, q, r) triangle group. The short words Ii and
IiIk will still satisfy the group relations of the Fuchsian (p, q, r) triangle groups, but
extra relations for longer words may occur as the group is deformed. In particular,
we can choose a generating triangle so that the word I1I3I2I3 is regular elliptic of
order n (for sufficiently large n). Fixing the order of I1I3I2I3 specifies a single point
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in the deformation space and uniquely determines our triangle group, we call this
the (p, q, r;n) group.

1.2. Notation. Triangle groups are generated by three complex involutions (order
2 complex reflections) I1, I2, I3. These involutions fix two real dimensional, totally
geodesics subspaces called C-lines. Compositions of reflections, for example I1I2I1,
will be written as I121 or simply 121; we call this word notation and such a string
of numbers is called a word.

When a word is palindromic, the corresponding isometry is a complex reflection,
since it can be thought of as conjugate to one of the generating reflections. For
example, the complex reflection I121 = I1I2I

−1
1 . The composition of two word

isometries is simply the composition of the words, e.g.

I121I131 = I121131.

Recall that the reflections are of order two so IjIj = Id; in word notation, this
condition implies that any double letters in a word are deleted, so the above example
would become,

I121I131 = I1231.

The other group relations, (ij)p = Id and (ijkj)n = Id, may also be used to simplify
words (we use Id to denote the identity element in order to avoid confusion with
the word 1).

1.3. (p, q, r;n) groups. Let p, q, r, n ∈ N ∪ {∞}, then we define the triangle group
(p, q, r;n) to be the unique triangle group with the following partial presentation,

〈I1, I2, I3 : I2i , (I2I3)
p, (I3I1)

q, (I1I2)
r, (I1I3I2I3)

n〉,
when p, q, r or n = ∞, the corresponding group element is parabolic. There may
be more relations, but these seven are sufficient to uniquely determine the group.
This differs slightly from Schwartz’ convention given in [11], since we do not require
that p ≤ q ≤ r. There are six possible orderings of p, q, r (or equivalently six
orderings on the indices 1,2,3). Each ordering on the generating set will lead to
the same underlying group, but it will change the presentation to another triangle
group. In particular, permuting p, q, r will have the effect of changing n. This
section describes a method for determining if two triangle groups with different
presentations are isomorphic. We have chosen to define n in terms of the order of
I1323 so that when p ≤ q ≤ r, our notation agrees with Schwartz’.

Lemma 1.1. If I23 and I31 have order three and I1323 has order n (i.e. a (3, 3, ∗;n)
group), then for any distinct i, j, k ∈ {1, 2, 3}, Iijkj has order n.

Proof. By hypothesis, I1323 has order n. The word I3132 is equal to I3I1323I
−1
3 ,

so ord(I2313) = ord(I1323) = n. Also, since I323 = Id, we have I323 = I232, so
I1323 = I1232 and I1232 has order n. The order of the other Iijkj words follow by
similar arguments. �

1.4. Isomorphisms between (p, q, r;n) groups. The group Γ = (p, q, r;n) is
generated by three order two complex reflections I1, I2 and I3. We define ι1 by the
involution of group that acts on the generating set (I1, I2, I3) as follows,

ι1(I1) = I1, ι1(I2) = I121, ι1(I3) = I3,
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i.e. we conjugate the second generator by the first. The map ι1 extends to the rest
of the group in the obvious way. Since I1 has order two it is clear ι21 acts trivially.
The other analogous two group involutions ι2 and ι3 are as follows:

ι2(I1, I2, I3) = (I1, I2, I232) and ι3(I1, I2, I3) = (I313, I2, I3).

Let A1 = ιi(I1), A2 = ιi(I2) and A3 = ιi(I3) for some ιi. Then ιi produces another
triangle group presentation for Γ in terms of Aj , namely

〈A1, A2, A3 | A2
i , A

p′

23, A
q′

31, A
r′

12, A
n′

1323〉.
This is the same group, (p, q, r;n), that we started with; all we have done is changed
the generating set and found the required relations in terms of these new generators.
This produces an isometry (p, q, r;n) ∼= (p′, q′, r′;n′). In general there is no reason
to expect A23, A31, A12 or A1323 to be finite order elliptic or parabolic. When
one or more of the Aij is loxodromic, we have a generalised triangle group
presentation, that is, a group generated by reflections in three geodesics that do
not intersect to form a triangle. We don’t consider these groups here.

Lemma 1.2. The involution ι3 sends (p, q, r;n) to (p, q, n; r).

Proof. Let (I1, I2, I3) be a triple of reflections that generate (p, q, r;n) with the
necessary relations, In23, I

p
31, I

n
12 and In1323. Then the involution ι3 sends this set

to (A1 = I313, A2 = I2, A3 = I3). Then the group generated by the Ai has the
following partial presentation,

〈A1, A2, A3 | A2
i , A

p
23, A

q
31, A

n
12, A

r
1323〉.

By partial presentation, we mean there might be more relations, but these seven
relations are sufficient to uniquely determine a complex hyperbolic triangle group.

�
The involution ι3 has this special property due to the appearance of I1323 in the

relations that we chose to classify triangle groups. For ι1 and ι2, the situation is
more complicated (see Tables 1 and 2 for details).

Corollary 1.3. The triangle groups (p, q, r;n) and (p, q, n; r) are isomorphic for
all p, q, r, n.

We can think of these maps as order 2 isomorphisms between triangle groups.
Applying ιi repeatedly will produce new generating sets and new presentations for
the group. There is no reason to expect two different sequences of involutions to
produce the same generating set so, in general, the graph of all possible generating
sets is the valency three tree, part of which is shown in Figure 1.

Each vertex of the tree corresponds to a triple of the words in the generating set
which give a presentation of the triangle group, so this could instead be thought
of as a tree of isomorphisms between triangle groups. Closer analysis shows that
the relations of the original group will cause many vertices to collapse to the same
point so this tree becomes a graph.

Example 1 (4, 4, 4; 5). For the sake of clarity we work though a concrete example,
(4, 4, 4; 5) = 〈I1, I2, I3|I2i , I4ij , I51323〉. Under ι1 this group is sent to

〈ι1(I1), ι1(I2), ι1(I3)|(ι1(Ii))2, (ι1(I23))5, (ι1(I31))4, (ι1(I12))4, (ι1(I1323))5〉.
This is a partial representation of (5, 4, 4; 5); however, since (5, 4, 4; 5) is a complex
hyperbolic triangle group, knowing the order of ι1(I1323) = I131213 is sufficient to
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Figure 1. Graph of generating sets

uniquely determine the group. So we conclude that ι1 : (4, 4, 4; 5) ↔ (5, 4, 4; 5)
is an isomorphism between two triangle groups. Since ι1 is an involution, ι21 acts
trivially and will preserve the original presentation. The other involutions give the
following isometries

ι2 : (4, 4, 4; 5) ↔ (4, 5, 4; 5), ι3 : (4, 4, 4; 5) ↔ (4, 4, 5; 4).

Although these groups have different (p, q, r;n) presentations, when we permute
the generating reflections to put them into the standard form (i.e. p ≤ q ≤ r) we
see that they are in fact the same group, namely (4, 4, 5; 4).

The group relations for (4, 4, 4; 5) cause the corresponding tree to reduce to a fi-
nite graph. To see this, notice that ι3ι1(I1, I2, I3)=(I313, I121, I3) and ι1ι3(I1, I2, I3)
=(I1, I323, I131), conjugating the second triple by I13 produces (I13131, I121,I1313131).
In (4, 4, 4; 5), I31313 = I131, so the vertices corresponding to ι13 and ι31 collapse to
a single vertex. There are similar relations related to I412 and I423. This has only
used the fact that we’re in a (4, 4, 4;n) group, so the same collapsing will occur for
all n. Now we list the groups produced by ι12, ι23 and ι31,

ι12 : (4, 4, 4; 5) ↔ (5, 5, 4; 6),

ι23 : (4, 4, 4; 5) ↔ (4, 5, 5; 4),

ι31 : (4, 4, 4; 5) ↔ (5, 4, 5; 4).



206 SHIGEYASU KAMIYA, JOHN R. PARKER, AND JAMES M. THOMPSON

(4,4,4;5)

(5,4,4;5)

(4,5,4;5)(4,4,5;4)

(5,5,4;6)(5,4,5;4)

(4,5,5;4)

(5,5,6;4)

(6,5,5;5)

1

23

2

3

1

2

23

1

32

1

3

2

1
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(5,6,5;5)

1

Figure 2. Graph of isometries of (4, 4, 4; 5)

The next level of the graph will only consist of 3 points corresponding to ι312 = ι321,
ι123 = ι132 and ι231 = ι213. These involutions send (I1, I2,3 ) to the following
generating sets,

ι312(I1, I2, I3) = (I212, I31213, I3),

ι123(I1, I2, I3) = (I1, I323, I12321),

ι231(I1, I2, I3) = (I23132, I2, I131),

and from this we can work out the new group presentations from these generators,
namely

ι312 : (4, 4, 4; 5) ↔ (5, 5, 6; 4),

ι123 : (4, 4, 4; 5) ↔ (6, 5, 5; 5),

ι231 : (4, 4, 4; 5) ↔ (5, 6, 5; 5).

After permuting indices to put the group in the standard form, we see that all these
groups are isomorphic to (5, 5, 6; 4).

At this point, the graph terminates, in the sense that any longer word in ιi take
us to a generating set which can be reduced (using the group relations) to another
generating set arising from a shorter ι word. In particular, this uses the I5ijik = Id

relation from the original group, for general (4, 4, 4;n) groups the graph will be
larger. The graph of presentations for (4, 4, 4; 5) after collapsing is shown in Figure
2. After putting the groups in the standard form, they are all isomorphic to one of
the following presentations:

(4, 4, 4; 5), (4, 4, 5; 4), (4, 5, 5; 4), (5, 5, 6; 4).

This is a rather special case, in that no sequence of ι maps send the group to a
generalised triangle group. The only triangle groups with this property appear to
be lattices (and finite groups).

Corollary 1.4. These are the only triangle groups isomorphic, under some ιw, to
(4, 4, 4; 5).
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Example 2 (3, 3, 4;n) (with n > 7). We now work through a non-lattice example
to show how generalised triangle groups occur. Following the process as before, we
produce the graph of isometries shown in Figure 3. The generalised triangle groups
are the groups contained in boxes, we terminate the graph at these groups since
there is no obvious way of extending the notation. If the group were a lattice, at
these points the edges of the graphs would form loops, i.e. two of the ι isomor-
phisms would send the group to itself (as in the (4, 4, 4; 5) graph, Figure 2). This
suggests another approach to find lattices amongst complex hyperbolic triangle
groups, namely find groups where ord(23) = ord(2131) and ord(31) = ord(3212).

(3,3,4;n)

(3,n,4;3)

(3,3,n;4)

(n,n,4;Lox)

(n,n,Lox;*)

(3,n,3;4)

(3,4,n;3)

(3,4,3;n)

(n,3,4;3)

(n,4,n;3)

(n,4,3;n)

(n,3,3;4)

(4,3,3;n)

(4,3,n;3)(4,n,3;n)

(4,n,n;3)

(Lox,n,n;*) (n,Lox,n;*)

31 2

3

1 2

1

12

2

3 2 1 3

2 3 1 2 3 1

3 1 2 3

2 1

Figure 3. Graph of isometries of (3, 3, 4;n)

1.5. The parameter space of (p, q, r;n). We explicitly define a presentation for
(p, q, r;n) triangle groups as follows. We can choose a basis such that the polar
vectors, ni to the fixed complex lines of Ii are

n1 =

⎡
⎣
1
0
0

⎤
⎦ , n2 =

⎡
⎣
0
1
0

⎤
⎦ , n3 =

⎡
⎣
0
0
1

⎤
⎦

satisfying

〈n1,n1〉 = 〈n2,n2〉 = 〈n3,n3〉 = 2, 〈n2,n1〉 = ρ, 〈n3,n2〉 = σ, 〈n1,n3〉 = τ.
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Then the Hermitian form is given by

H =

⎡
⎣
2 ρ τ
ρ 2 σ
τ σ 2

⎤
⎦ .

In order to have signature (2, 1) we must have det(H) < 0. That is

ρστ + ρ σ τ − 2|ρ|2 − 2|σ|2 − 2|τ |2 + 8 < 0.(1.1)

Let Ij be the complex reflection of order 2 in the complex line orthogonal to nj .
Then using the formula

Ij(z) = −z+ 2
〈z,nj〉
〈nj ,nj〉

nj

we have

I1 =

⎡
⎣
1 ρ τ
0 −1 0
0 0 −1

⎤
⎦ , I2 =

⎡
⎣
−1 0 0
ρ 1 σ
0 0 −1

⎤
⎦ , I3 =

⎡
⎣
−1 0 0
0 −1 0
τ σ 1

⎤
⎦ .

Note that

tr(I1I2I3) = ρστ − |ρ|2 − |σ|2 − |τ |2 + 3.

Combining this with (1.1) we see that

Re
(
tr(I1I2I3)

)
< −1.

Note that a 1-eigenvector for I1I2 is v12 where

v12 =

⎡
⎣
ρσ − 2τ
ρ τ − 2σ
4− |ρ|2

⎤
⎦ .

Then

tr(I1I2) = |ρ|2 − 1, tr(I2I3) = |σ|2 − 1, tr(I3I1) = |τ |2 − 1.

We suppose that

|σ| = 2 cos(π/p), |τ | = 2 cos(π/q), |ρ| = 2 cos(π/r),

this ensures that I1I2, I2I3 and I3I1 have the required order.
Having made this restriction then, up to conjugation, there is a one parameter
family of these groups. The parameter being the argument of ρστ . We have

tr(I1I2I1I3) = |ρτ−σ|2−1, tr(I2I3I2I1) = |ρσ−τ |2−1, tr(I3I1I3I2) = |στ−ρ|2−1.

Suppose that

|ρτ − σ| = 2 cos(π/s), |ρσ − τ | = 2 cos(π/t), |στ − ρ| = 2 cos(π/u).

Then

ρστ + ρ σ τ = 16 cos2(π/p) cos2(π/r) + 4 cos2(π/q)− 4 cos2(π/t)

= 16 cos2(π/p) cos2(π/q) + 4 cos2(π/r)− 4 cos2(π/u)(1.2)

= 16 cos2(π/q) cos2(π/r) + 4 cos2(π/p)− 4 cos2(π/s).

Lemma 1.5. Let (p, q, r;n) be a complex hyperbolic triangle group and define ρ, σ,
τ as above. Then,

Re (ρστ ) =
−2 cos(2π/n)− 2 + |ρ|2+|στ |2

2
.
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Definition 1.6.

K := Re (ρστ )− |σ|2 − |τ |2 − |ρ|2,
L := |στρ|2 − (Re (ρστ ))2.

Remark 1.7. The determinant of the Hermitian form H is K+4, so H has signature
(2, 1), and (p, r, q;n) corresponds to a complex hyperbolic triangle group, if and only
if K < −4.

Lemma 1.8. The quantities K and L are fixed under the isomorphisms ιi.

Proof. We only show this for ι1, the other cases are essentially the same. As-
sume we have a (p, q, r;n) group with associated ρ, σ, τ . Let (p′, q′, r′;n′) be
the image of (p, q, r;n) under ι1 with the associated parameters ρ′, σ′, τ ′. Under
the image of ι1 there is the following identification of words (I23, I31, I12, I1213) ↔
(I1213, I31, I21, I23). Using the trace formulae we see that |σ′|= |ρτ − σ|, |τ ′|= |τ ′|,
|ρ′|= |ρ′| and |ρ′τ ′ − σ′|= |σ|. Then
2K− 2K′ = 2Re (ρστ )− 2|σ|2− 2|τ |2− 2|ρ|2− 2Re (ρ′σ′τ ′)+ 2|σ′|2+ 2|τ ′|2+ 2|ρ′|2

= |ρτ |2+|σ|2−|σ′|2−2|σ|2 − 2|τ |2 − 2|ρ|2 − |ρ′τ ′|2

− |σ′|2+|σ|2+2|σ′|2 + 2|τ ′|2 + 2|ρ′|2

= |ρτ |2−2|τ |2 − 2|ρ|2 − |ρ′τ ′|2+2|τ ′|2 + 2|ρ′|2

= 0.

Hence K = K′. Using this equality we get Re (ρ′σ′τ ′) = −Re (ρστ ) + |ρτ |2. Then
L− L′ = |στρ|2 − (Re (ρστ ))2 − |σ′τ ′ρ′|2 − (Re (ρ′σ′τ ′))2

= |τρ|2(|σ|2 − |σ′|2)− (Re (ρστ ))2 + (Re (ρστ ))2 − 2|τρ|2Re (ρστ ) + |τρ|4

= |τρ|2(|σ|2 − |σ′|2 − 2Re (ρστ ) + |τρ|2)
= |τρ|2(|σ|2 − |σ′|2 − |σ|2 − |τρ|2 + |σ′|2 + |τρ|2)
= 0.

Hence L = L′. �

Remark 1.9. The termsK and L individually, are not enough to distinguish triangle
groups. For example (4, 4, 4; 6) and (4, 4,∞; 3) both have K = −4.5, but since they
have different values for L they are not isomorphic.

Conjecture 1.10. Two triangle groups are isomorphic if and only if they have the
same K and L.

For the rest of the article, we assume p ≤ q ≤ r.

2. Discreteness results

In this section we describe some technical results which allow us to quickly
determine the discreteness of some groups, then we use these results to prove our
main result, Theorem 2.6, which says that for p > 31, there are no discrete (p, q, r;n)
groups.

Theorem 2.1. Let Γ = (p, q, r;n) with p, q, r, n ∈ {2, 3, 4, 6,∞}. Then Γ is dis-
crete.
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Proof. Using Pratoussevitch’s formula [10] the trace of each element of the group
is an integer polynomial in the following variables

(2.1) |σ|2, |τ |2, |ρ|2, ρστ, ρστ.

Using the presentation described above and Lemma 1.5, it is clear, for {p, q, r, n} ⊂
{2, 3, 4, 6,∞}, that |ρ|2, |σ|2, |τ |2 and 2Re (ρστ ) are integers. There are two possi-
bilities, either Re (ρστ ) = m ∈ Z or Re (ρστ ) = m/2 for some odd m ∈ Z.

If Re (ρστ ) = m ∈ Z, then L = Im 2(ρστ ) = |ρστ |2−Re 2(ρστ ) is also an integer.

Then ρστ = m+ i
√
L and clearly ρστ = m − i

√
L. So by Pratoussevitch’s result,

the trace of any word in the group can be written as an integer polynomial in
m+ i

√
L, so the trace of every word in (p, q, r;n) lies in the ring Z[i

√
L]. This is a

discrete ring, so the group (p, q, r;n) is discrete.
If Re (ρστ ) = m/2 for m odd, then L = Im 2(ρστ ) = l/4. We can express l

in terms of |ρ|2, |σ|2, |τ |2 and m as follows, l = 4|ρστ |2 − m2; in particular, l is

congruent to 3 modulo 4. Then ρστ = m
2 + i

√
l

2 and the trace of any word can

therefore be written as some element of Z[(1+ i
√
l)/2], so the group is discrete. �

This result is essentially the same as Corollary 18 of Pratoussevitch’s paper [10]
rewritten in our terminology.

Example 3 (4, 4, 6; 6).

K = −5, ord(23) = 4, ord(31) = 4, ord(12) = 6.

We have
|ρ|2 = 3, |σ|2 = 2, |τ |2 = 2, Re (ρστ ) = 2.

From this we deduce that

Im 2(ρστ ) = |ρ|2|σ|2|τ |2 − Re 2(ρστ ) = 8.

Therefore ρστ = 2± 2i
√
2. A solution is

ρ = 1 + i
√
2, σ = i

√
2, τ = −i

√
2.

We can choose the following generators whose entries lie in Z[i
√
2],

I1 =

⎡
⎣
1 1 + i

√
2 i

√
2

0 −1 0
0 0 −1

⎤
⎦ , I2 =

⎡
⎣

−1 0 0

1− i
√
2 1 i

√
2

0 0 −1

⎤
⎦ , I3 =

⎡
⎣

−1 0 0
0 −1 0

−i
√
2 −i

√
2 1

⎤
⎦ .

Example 4 (4, 6, 6; 6).

K = −5, ord(23) = 4, ord(31) = 6, ord(12) = 6.

We have
|ρ|2 = 3, |σ|2 = 2, |τ |2 = 3, Re (ρστ ) = 3.

From this we deduce that

Im 2(ρστ ) = |ρ|2|σ|2|τ |2 − Re 2(ρστ ) = 9.

Therefore ρστ = 3± 3i. A solution is

ρ = i
√
3, σ = 1 + i, τ = −i

√
3.

Putting these into the standard generators gives

I1 =

⎡
⎣
1 i

√
3 i

√
3

0 −1 0
0 0 −1

⎤
⎦ , I2 =

⎡
⎣

−1 0 0

−i
√
3 1 1 + i

0 0 −1

⎤
⎦ , I3 =

⎡
⎣

−1 0 0
0 −1 0

−i
√
3 1− i 1

⎤
⎦ .
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Conjugating by C = diag(−i
√
3, 1, 1) gives the following matrices whose entries lie

in Z[i]:

CI1C
−1 =

⎡
⎣
1 3 3
0 −1 0
0 0 −1

⎤
⎦ , CI2C

−1 =

⎡
⎣
−1 0 0
1 1 1 + i
0 0 −1

⎤
⎦ ,

CI3C
−1 =

⎡
⎣
−1 0 0
0 −1 0
1 1− i 1

⎤
⎦ .

These preserve the Hermitian form⎡
⎣
2 1 1
1 2 1 + i
1 1− i 2

⎤
⎦ .

Example 5 (3, 3, 4; 7).

K = 3/2− 2 cos2(π/7), ord(23) = 3, ord(31) = 3, ord(12) = 4.

We have

|ρ|2 = 2, |σ|2 = 1, |τ |2 = 1, Re (ρστ ) = 3/2− 2 cos2(π/7) = 1/2− cos(2π/7).

This leads to

ρ = e2πi/7 + e4πi/7 + e8πi/7 =
−1 + i

√
7

2
, σ = e−4πi/7, τ = e−4πi/7.

Therefore the matrix entries are all in Z[e2πi/7]. This is an imaginary quadratic
extension of Z[2 cos(2π/7)].

The determinant of H is K + 4 = 1/2 − cos(2π/7). For the two non-trivial
Galois conjugations in Z[2 cos(2π/7)], namely 2 cos(2π/7) 
−→ 2 cos(4π/7) and
2 cos(2π/7) 
−→ 2 cos(6π/7) the Hermitian form is positive definite. Therefore this
group is a subgroup of an arithmetic lattice.

Example 6 (3, 3, 5; 5).

K = −7/2− 2 cos(2π/5), ord(23) = 3, ord(31) = 3, ord(12) = 5.

We have

|ρ|2 = (3 +
√
5)/2, |σ|2 = 1, |τ |2 = 1, Re (ρστ ) = 1/2.

This leads to
ρ = −1− e8πi/5, σ = e4πi/5, τ = e4πi/5.

Therefore the matrix entries are all in Z[e2πi/5]. This is an imaginary quadratic
extension of Z[2 cos(2π/5)].

The determinant of H is K+ 4 = 1/2 − 2 cos(2π/5). For the non-trivial Galois
conjugations in Z[2 cos(2π/5)], 2 cos(2π/5) 
−→ 2 cos(4π/5) the Hermitian form is
positive definite. Therefore this group is a subgroup of an arithmetic lattice.

Lemma 2.2 (Jørgensen’s inequality). Let A ∈ SU(2, 1) be a regular elliptic map
of order n ≥ 7 that preserves a Lagrangian plane (i.e. tr(A) is real). Suppose that
A fixes a point z ∈ H2

C
. Let B be any element of PU(2, 1) with B(z) �= z. If

(2.2) cosh

(
ρ(B(p), p)

2

)
sin

(π
n

)
<

1

2
,
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then 〈A,B〉 is not discrete and consequently any group containing A and B is not
discrete.

Corollary 2.3. Let Γ = (p, q, r;n) with p ≤ q ≤ r. Let ρ, σ, τ be defined as in
section 1.5. If ord(I12) = r ≥ 7 and

(2.3)
(
ρστ + ρστ − 2|σ|2−2|τ |2−|ρ|2+4

)2
< 4− |ρ|2,

then Γ is not discrete.
If ord(I23) = p ≥ 7 and

(2.4)
(
ρστ + ρστ − |σ|2−2|τ |2−2|ρ|2+4

)2
< 4− |σ|2,

then Γ is not discrete.
If ord(I31) = q ≥ 7 and

(2.5)
(
ρστ + ρστ − 2|σ|2−|τ |2−2|ρ|2+4

)2
< 4− |τ |2,

then Γ is not discrete.

Proof. Let I12 = A, I3 = B and z = v12 (fixed point of I12) in Lemma 2.2. Then
(2.2) becomes ∣∣∣∣

〈I3(v12),v12〉
〈v12,v12〉

∣∣∣∣ sin
(π
r

)
<

1

2
.

Squaring both sides we obtain
∣∣∣∣
〈I3(v12),v12〉
〈v12,v12〉

∣∣∣∣
2

(3− tr(I12)) < 1

which is equivalent to
(
ρστ + ρστ − 2|σ|2−2|τ |2−|ρ|2+4

)2
< 4− |ρ|2

as required. The other inequalities arise from identical arguments. �

Corollary 2.4. We can rewrite these inequalities respectively as

(2Re (tr (I123)) + tr (I12)− 1)2 < 3− tr (I12),

(2Re (tr (I123)) + tr (I23)− 1)2 < 3− tr (I23),

(2Re (tr (I123)) + tr (I31)− 1)2 < 3− tr (I31).

Remark 2.5. These inequalities are the best possible, in the sense that there are
discrete groups where we get equality, in particular (18, 18, 18; 18) and (7, 7, 14; 4).

Theorem 2.6. Assume p ≤ q ≤ r < ∞, if p > 31, then the group (p, q, r;n) is not
discrete.

The outline for proof is as follows, we first prove a technical inequality in Lemma
2.8, which we then use to prove Lemma 2.10. This lemma tells us that if (p, q, r;N)
fails one of the Jørgensen discreteness tests ((4), (5) or (6)), then so will (p, q, r;n)
for any n ≤ N . Finally, we show that if p > 31, the group (p, q, r;∞) fails the
discreteness test for any q and r. Then by Lemma 2.10 (p, q, r;n) is non-discrete
for all q, r and n. For the rest of this proof we assume 7 ≤ p.

Lemma 2.7. If 7 ≤ p ≤ q ≤ r < ∞, then 2 cos(π/7) ≤ |σ|≤ |τ |≤ |ρ|< 2.
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Lemma 2.8. Let ρ, σ, τ be defined in terms of a 4-tuple (p, q, r;n) as in section
2. Then

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ 0.

Proof. In section 1.5 it was shown that for a group where I1323 is regular elliptic of
order n, we have the following equality:

Re (ρστ ) = −2 cos(2π/n) + 2− |ρ|2−|στ |2
2

.

Then we can rewrite −1 ≤ Re (ρστ )

|ρστ | ≤ 1 as

−1 ≤ 2 cos(2π/n) + 2− |ρ|2−|στ |2
2|ρστ | ≤ 1.

Rearranging this gives us

(2.6) (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ 2|ρστ |−|ρ|2−2|τ |2−2|σ|2+4.

We can rearrange the right hand side to get
(2.7)
(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ −2(|τ |−|σ|)2 − 2|σ||τ |(2− |ρ|)− |ρ|2+4.

Since (|τ |−|σ|)2 is always non-negative, we have

(2.8) (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2) ≤ −2|σ||τ |(2− |ρ|)− |ρ|2+4.

The right hand side of this inequality is a quadratic in |ρ|,
−|ρ|2+2|στ ||ρ|+4(1− |στ |).

This quadratic has roots 2 and 2|στ |−2. Since p ≥ 7, then |στ |≥ 4 cos2(π/7) and
(2|στ |−2) ≥ 2. So on the interval 0 ≤ |ρ|≤ 2 the quadratic is always negative.
Since these are the only values that |ρ| can take, the right hand side of (2.8) is
always negative, which proves the lemma. �

Corollary 2.9. Let ρ, σ, τ be defined in terms of a 4-tuple (p, q, r;n) as in section
2. Then we have the following inequalities:

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−|σ|2−|ρ|2) ≤ 0,

(−2 cos(2π/n) + 2 + |στ |2−|τ |2−2|σ|2−|ρ|2) ≤ 0.

Proof. For the first inequality notice that

(−2 cos(2π/n) + 2 + |στ |2−2|τ |2−|σ|2−|ρ|2)− (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)
= |σ|2−|ρ|2.

By Lemma 2.7 |σ|2−|ρ|2≤ 0, so using Lemma 2.8,

0 ≥ (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)
≥ (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−|σ|2−|ρ|2)

as required. The second inequality follows by essentially the same argument, but
using |τ |2−|ρ|2≤ 0. �

Lemma 2.10. If the group (p, q, r;N) satisfies any of the Jørgensen nondiscrete-
ness conditions above (inequalities (2.3), (2.4) and (2.5)) for some N ∈ N ∪ {∞},
then (p, q, r;n) will also satisfy them for n < N .
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Proof. First recall that ρστ + ρστ = −2 cos(2π/n) − 2 + |ρ|2+|στ |2. Substituting
this into (2.3) gives

(2.9) (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)2 < 4− |ρ|2.

For n < N , 2 cos(2π/n) < 2 cos(2π/N), so we have following inequality:

0 ≥ (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)(2.10)

> (−2 cos(2π/N) + 2 + |στ |2−2|τ |2−2|σ|2).

The less than zero inequality comes from Lemma 2.8. Squaring both sides and
combining with (2.9) gives

4− |ρ|2 > (−2 cos(2π/N) + 2 + |στ |2−2|τ |2−2|σ|2)2(2.11)

> (−2 cos(2π/n) + 2 + |στ |2−2|τ |2−2|σ|2)2.

Therefore if (p, q, r;N) satisfies (2.3), then so does (p, q, r;n) for all n < N .
For (2.4) and (2.5) we can use the inequalities from Corollary 2.9. �

Proof of Theorem 2.6. Using Lemma 2.10, we only need to find conditions on
(p, q, r;∞) groups. We know that if a (p, q, r;∞) group satisfies inequalities (2.3),
(2.4) and (2.5), then the group is non-discrete and then the lemma tells us that
(p, q, r;n) also satisfy the inequalities and are also non-discrete. So let n = ∞.
Then ρστ + ρστ = −4 + |ρ|2+|στ |2. Substituting this into inequality (2.4) gives

(2.12) (|στ |2−|ρ|2−|σ|2−2|τ |2)2 < 4− |σ|2.

By Lemma 2.8, the term inside the brackets on the left hand side is always negative
and bounded from below by |σ|4−3|σ|2−4; to see this we use Lemma 2.7 to obtain
the following inequality (in particular, we use the facts (|σ|2−2) > 0 and |ρ|2≤ 4),

|στ |2−|ρ|2−|σ|2−2|τ |2=(|σ|2−2)|τ |2−|σ|2−|ρ|2

≥(|σ|2−2)|σ|2−|σ|2−4

=|σ|4−3|σ|2−4.

By Lemma 2.8, |στ |2−|ρ|2−|σ|2−2|τ |2 is negative so squaring both sides will give,

(2.13) (|σ|4−3|σ|2−4)2 ≥ (|στ |2−|ρ|2−|σ|2−2|τ |2)2.

Combining (2.12) with (2.13), it is clear that if |σ| satisfies

(2.14) (|σ|4−3|σ|2−4)2 < 4− |σ|2,

then |σ|, |τ | and |ρ| will satisfy (2.12) for any permitted |τ | and |ρ|, so the corre-
sponding group (p, q, r;∞) is non-discrete. Then using Lemma 2.10, all (p, q, r;n)
will also be non-discrete. Expanding out the brackets and collecting terms in (2.14)
gives

(2.15) (|σ|2−4)(|σ|6−2|σ|4−7|σ|2−3) > 0.
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By hypothesis, ord(I23) ≥ 7, so 4 cos2(π/7) ≤ |σ|2≤ 4. As a polynomial in |σ|2,
the left hand side of (2.15) has two roots in the interval

[
4 cos2(2π/7), 4

]
, namely

3.9593 . . . and 4. When |σ|2 lies between these roots, the polynomial is negative, so
(2.15) is not satisfied and the group is not discrete. So any (p, q, r;∞) group with
3.9593 . . . ≤ |σ|2≤ 4, fails a Jørgensen discreteness test. Since |σ|= 2 cos(π/p), and
4 cos2(π/31) < 3.9593 . . . < 4 cos2(π/32), then for all p > 31, the group (p, q, r;∞)
satisfies the inequality (2.4) and is not discrete. Then applying Lemma 2.10, it
follows for p > 31, (p, q, r;n) will satisfy (2.4) for all q, r, and n. Therefore (p, q, r;n)
is not discrete if p > 31. �

Conjecture 2.11. Computer calculations strongly suggest that for p > 22 the group
(p, q, r;n) will always fail at least one of the Jørgensen discreteness tests described
in Corollary 2.3. Consequently, we conjecture that there are no discrete groups with
p > 22.

Remark 2.12. This result should be compared with Conjectures 5.1, 5.2 and 5.3 of
[11] which taken together, conjecture that there are no discrete groups (p, q, r;n)
with p > 13. In [8] Parker discovered two counterexamples to this conjecture,
namely (18, 18, 18; 18) and a (14, 14, 14) group. In a forthcoming paper [6] it is
shown, using Shimizu’s lemma, that for p > 28, the group (p, p,∞;n) is non-
discrete.

It is unlikely that there are similar bounds for q or r. Conjecturally, (4, 4, 4;n)
is discrete for all n > 4 and this group is isomorphic to (4, 4, n; 4) and (4, n, n; 4).
If the conjecture is correct, we can always find a discrete group (p, q, r;n) with
arbitrarily large values for q or r.

Proposition 2.13. For all n ≥ 4, the triangle group (3, 3, 4;n) contains a deformed
(and not necessarily discrete) (n, n, n) group.

Proof. Consider the subgroup generated by the reflections A1 = I1, A2 = I32123,
A3 = I23132, by checking the necessary words we see that Ai has order 2 and Aij

has order n for all i, j. So the group 〈A1, A2, A3〉 is an (n, n, n) triangle group. The
forth number in the 4-tuple defining a triangle group is the order of the word I1323,
in this case we look at the order of

A1323 = I1I23132I32123I23132 = I123123132132.

A priori there is no reason to expect this word to have finite order or to even be
elliptic. �

The (3, 3, 4;n) groups appear to be good candidates for discreteness. For n > 7,
the word A1323 described above is loxodromic, so the (n, n, n) triangle subgroup is
from inside the critical interval; in addition, they have a large number of ‘extra’
symmetries. In particular, (3, 3, 4;n) is isomorphic to (3, 3, n; 4), (3, 4, n; 3) and
(4, n, n; 3). For n < 7 the groups are finite. The group (3, 3, 4; 7) is a lattice and it
is described in [13].

3. Overview of results

In Tables 1 and 2 we collect some known results about triangle groups, from this
paper and elsewhere. In Table 1, the first column records the value of K described
above; the next seven columns record the order of their respective elements. These
are arranged so that the first four columns are exactly the numbers (p, q, r;n), and
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the next three are not immediately obvious from the presentation and were obtained
from trace calculations. A finite number indicates the element is regular elliptic of
finite order, ∞ indicates a parabolic, and lox indicates loxodromic. For Table 2 we
omit the K, the eighth column records whether the group is discrete or a lattice.
The ninth column records which ring of integers the traces of group element lie in,
calculated using Theorem 2.1 above and the tenth give references for articles where
these groups are studied in greater detail.

Horizontal lines separate isomorphism classes of groups. Within isomorphism
classes we list all the groups in the ‘tree’ of generators which correspond to triangle
groups, i.e. p,q,r,n ∈ N ∪ {∞}. Generally there will be other generalised triangle
group presentations, but we don’t included these groups.

For example, Table 2 tells us (3, 3, 5; 5) and (3, 5, 5; 3) and (5, 5, 10; 3) are iso-
morphic groups with I123 an order 15 regular elliptic element, the group is a lattice,
and the traces of all group elements lie in the ring Z[ζ5]. If (2.1) appears in the cite
column, that indicates we have used Theorem 2.1 of this paper to show discreteness.

Table 1. Possible discrete (p, q, r;n) groups

K 23 31 12 1323 3212 2131 123

−4.309016995 3 4 4 5 5 10 lox

−4.309016995 3 4 5 4 4 10 lox

−4.309016995 4 4 10 3 5 5 lox

−4.309016995 4 5 10 3 4 10 lox

−4.309016995 5 10 10 4 4 lox lox

−4.623489802 6 7 7 7 7 14 lox

−4.623489802 7 7 14 6 lox lox lox

−4.809016997 5 5 6 6 10 10 lox

−4.809016997 5 6 10 5 10 lox lox

−4.809016997 5 10 10 6 6 lox lox

−4.809016995 4 4 5 6 10 10 lox

−4.809016995 4 4 6 5 10 10 lox

−4.809016995 4 5 10 4 6 lox lox

−4.809016995 4 6 10 4 5 lox lox

−4.809016995 4 5 5 6 6 ∞ lox

−4.809016995 5 5 ∞ 4 lox lox lox

−4.809016995 4 6 6 5 5 lox lox

−4.809016995 4 5 6 5 6 lox lox

−7/2− cos(2π/n) 3 3 4 n n n lox

−7/2− cos(2π/n) 3 3 n 4 4 4 lox

−7/2− cos(2π/n) 3 4 n 3 3 n lox

−7/2− cos(2π/n) 4 n n 3 3 lox lox

−4− cos(2π/n) 4 4 4 n n n lox

−4− cos(2π/n) 4 4 n 4 n n lox

−4− cos(2π/n) 4 n n 4 4 lox lox
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Table 2. Some known discrete (p, q, r;n) groups

23 31 12 1323 3212 2131 123 Discrete Z[∗] Cite

18 18 18 18 18 18 9 Dis Z[ζ9] [7], [8]

3 3 5 5 5 5 15 Lat Z[ζ5]

3 5 5 3 3 10 15 Lat Z[ζ5] [13]

5 5 10 3 5 5 15 Lat Z[ζ5]

3 3 4 7 7 7 42 Lat Z[ζ7]

3 4 7 3 3 7 42 Lat Z[ζ7]

3 3 7 4 4 4 42 Lat Z[ζ7] [13]

4 7 7 3 3 14 42 Lat Z[ζ7]

7 7 14 4 7 7 42 Lat Z[ζ7]

4 4 4 5 5 5 10 Lat Z(
√
5, ω)

4 4 5 4 5 5 10 Lat Z(
√
5, ω) [8]

4 5 5 4 4 6 10 Lat Z(
√
5, ω) & [1]

5 5 6 4 5 5 10 Lat Z(
√
5, ω)

5 5 5 5 5 5 10 Lat Z[ζ5] [7], [8]

4 4 4 6 6 6 lox Dis Z[i
√
23]

4 4 6 4 6 6 lox Dis Z[i
√
23]

4 6 6 4 4 ∞ lox Dis Z[i
√
23] (2.1)

6 6 ∞ 4 ∞ ∞ lox Dis Z[i
√
23]

6 ∞ ∞ 6 6 lox lox Dis Z[i
√
23]

4 4 ∞ 3 6 6 lox Dis Z[(1 + i
√
15)/2]

4 6 ∞ 3 4 lox lox Dis Z[(1 + i
√
15)/2]

3 4 6 4 4 ∞ lox Dis Z[(1 + i
√
15)/2] [14]

3 4 4 6 6 ∞ lox Dis Z[(1 + i
√
15)/2]

4 5 5 5 5 10 lox Dis Z((1 + i), (1 +
√
5)/2)

5 5 10 4 10 10 lox Dis Z((1 + i), (1 +
√
5)/2) (2.1)

5 10 10 5 5 lox lox Dis Z((1 + i), (1 +
√
5)/2)

4 6 6 6 6 lox lox Dis Z[i] [4]

4 4 6 6 ∞ ∞ lox Dis Z[i
√
2]

4 6 ∞ 4 6 lox lox Dis Z[i
√
2] (2.1)

3 3 ∞ 6 6 6 lox Dis Z[i
√
3]

3 6 ∞ 3 3 3 lox Dis Z[i
√
3] (2.1)

3 3 6 ∞ ∞ ∞ lox Dis Z[i
√
3]

4 4 4 ∞ ∞ ∞ lox Dis Z[i
√
7]

4 4 ∞ 4 ∞ ∞ lox Dis Z[i
√
7] [14]

6 6 6 ∞ ∞ ∞ lox Dis Z[(1 + i
√
11)/2]

6 6 ∞ 6 lox lox lox Dis Z[(1 + i
√
11)/2] (2.1)

4 4 ∞ ∞ lox lox lox Dis Z[i
√
3] [14]
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