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[1] A generalized constitutive equation for bubbly liquids
is presented which successfully reproduces the expected
viscosity response for both steady flows with varying
capillary number Ca (a measure of the bubble deformation)
and unsteady flows with varying dynamic capillary number
Cd (a measure of the steadiness of the flow) previously
given in separate studies. The constitutive equation is given
in terms of observable material and flow parameters and is
valid at least up toCa�O(1000) andCd�O(10). Analytical
solutions are presented for steady, simple-shearing flow
(Ca variable) and oscillatory flow with small total-strains
(Cd variable). The special case of steady flow in a circular
pipe—analogous to magma flow in a volcanic conduit—is
investigated. Velocity profiles across the conduit are found to
be parabolic or plug-flow depending on a dimensionless
number, the conduit capillary number Cc. Plug flow is
predicted for Cc � 4 which is in the mid-range for volcanic-
eruption conditions. INDEX TERMS: 8160 Tectonophysics:

Evolution of the Earth: Rheology—general; 8429 Volcanology:

Lava rheology and morphology; 8434 Volcanology: Magma

migration. Citation: Llewellin, E. W., H. M. Mader, and S. D.

R. Wilson, The constitutive equation and flow dynamics of bubbly

magmas, Geophys. Res. Lett., 29(24), 2170, doi:10.1029/

2002GL015697, 2002.

1. Introduction

[2] Magmas typically contain appreciable amounts of
gas in the form of bubbles. Gas volume-fractions f can
vary over an enormous range from 0 to > 0.9. The
rheology of pure silicate melts is comparatively well-
known and is Newtonian to a close approximation for a
wide range of conditions. By contrast, the rheological
effect of adding bubbles to such a liquid has remained
controversial for many years with some authors observing
an increase in viscosity with increasing f [Sibree, 1934;
Stein and Spera, 1992] and others a decrease [Sura and
Panda, 1990; Bagdassarov and Dingwell, 1992, 1993;
Lejeune et al., 1999]. A resolution to this apparent
contradiction has recently been proposed by Rust and
Manga [2002], Stein and Spera [2002] and Llewellin et
al. [2002].
[3] Rust and Manga [2002] observed the viscosity as a

function of capillary number Ca in steady, simple-shearing
flows. Ca is a measure of the equilibrium deformation of the
bubbles and is given by Ca = h0a _g=� where h0 is the

viscosity of the liquid phase, a is the radius of the relaxed,
undeformed bubble, � is the surface tension, and _g is the
strain rate. Both Rust and Manga [2002] and Stein and
Spera [2002] identify two flow regimes: at low Ca, the
viscosity is seen to increase with f whereas, at high Ca, the
viscosity decreases as f increases. The two regimes can be
explained as follows: Bubbles distort the flow lines in the
surrounding liquid causing an increase in viscosity. Bubbles
also provide free-slip surfaces within the suspension,
decreasing its viscosity. At low Ca, the bubbles remain
approximately spherical so the distortion of the flow lines is
great and the free-slip surface-area is small, hence viscosity
is an increasing function of f. At high Ca, the bubbles are
significantly elongate so the free-slip surface-area is large
and the distortion of the flow lines is small, hence viscosity
is a decreasing function of f.
[4] The importance of distinguishing between steady and

unsteady flows is highlighted by Llewellin et al. [2002]. In a
steady flow, shear conditions have remained constant for a
time significantly longer than the relaxation time of the
bubbles, l ¼ k h0a=�, where k is a dimensionless number
that is a positive function of gas volume-fraction (k � 1 in
the dilute limit). There are many magmatic flows which will
never reach such a steady-state condition. This is especially
true for explosive flows (below the fragmentation level) in
which fluid particles experience enormous accelerations (in
which case the Lagrangian _g is not steady) and for high-
viscosity flows (e.g. for h0 = 109 Pa s, a = 1 mm, � = 0.3 N
m�1 and k = 1, l � 3000s). In Llewellin et al. [2002] we
investigated the effect of unsteadiness on the rheology of a
bubbly flow. This necessarily includes a consideration of
the viscoelastic properties of the two-phase mixture. We
described the steadiness of the flow using a dimensionless
number, the dynamic capillary number Cd = l �g= _g which
gives the ratio of the bubble relaxation time (l) to the
timescale over which the strain rate changes appreciably
( _g=�g). When Cd � 1 relaxation is rapid compared to the
timescale of appreciable change in strain rate, hence the
flow is approximately steady and the viscosity of the two-
phase mixture can either increase or decrease with f
depending on the bubble shape as in the case of steady-
flow conditions. By contrast, when Cd � 1, the bubbles
cannot relax fast enough to reach their equilibrium defor-
mation. They deform with the flow to a greater extent so
flow past the bubble and, therefore, flow-line distortion, is
reduced. The free-slip surfaces are more important, causing
a reduction in the suspension, therefore, viscosity as f
increases.
[5] If the results of Rust and Manga [2002] and Llewellin

et al. [2002] are combined then we conclude that the
viscosity will decrease as f increases except when both
Ca < O(1) and Cd < O(1).
[6] Below we present a generalized equation that is valid

for varying Ca and Cd so that no assumptions need be made
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a priori about the steadiness of the flow or the bubble
shape.

2. General Constitutive Equation

[7] A constitutive equation for a bubbly liquid valid up to
at least Cd = 10, Ca� 1 and f ~< 0.5 is given in Llewellin et
al. [2002]:

tij þ
6l
5

_tij ¼ h0ð1þ bfÞ _gij þ h0
6l
5

1� 5f
3

� �
�gij ð1Þ

where tij is the deviatoric-stress tensor (Tij = �Pdij + tij
where Tij is the total-stress tensor, P is the pressure and dij is
the Kronecker delta), h0 is the viscosity of the liquid phase, f
is the gas volume-fraction and b is an empirically-
determined parameter. This model is based on the physical
analysis of Frankel and Acrivos [1970] which was simplified
by assuming small total-strains (Ca � 1). Llewellin et al.
[2002] parameterize the resultant model according to data
collected from oscillatory rheometric measurements of
aerated golden syrup and find b = 9.
[8] In order to generalize this constitutive model to

include arbitrarily large strains, the simple time derivatives
in equation 1 have to be changed back to the co-rotational
or Jaumann derivatives of the unsimplified Frankel and
Acrivos [1970] model. The Jaumann derivative for an
arbitrary tensor Aij is given by:

Åij ¼
@Aij

@t
þ uk

@Aij

@xk
þvikAkj � Aikvkj ð2Þ

where ui is the velocity vector and vij is the vorticity tensor
[Barthés-Biesel and Acrivos, 1973]. Thus, a Jaumann
derivative includes advective (2nd term on r.h.s.) and
vorticity terms (3th and 4th terms on r.h.s.).
[9] The Jaumann derivative appears commonly in ana-

lytical studies that derive general constitutive (i.e. stress-
strain) relations for complex materials from first principles
[see, e.g. Rivlin and Erickson, 1955; Oldroyd, 1950;
Barthés-Biesel and Acrivos, 1973]. The only assumption
that enters into these studies is that the length scale of the
motion is much larger than the dimensions of the particles.
The suspension can then be treated as a continuum with bulk
properties that are ensemble averages of the corresponding
local quantities. The detailed flow-field around each particle
is obtained analytically and is used to derive, without any
further assumptions, an exact analytical rheological equation
of state, which contains no empirically adjustable parame-
ters and in which the functional relation between the stress
and all the relevant physical quantities is shown explicitly.
[10] If the Jaumann derivatives and the non-linear terms

are reinstated in our constitutive equation 1, then it becomes
[Rivlin and Erickson, 1955; Frankel and Acrivos, 1970;
Barthés-Biesel and Acrivos, 1973]:

tij þ l1t̊ij ¼ 2h0 aeij þ l2e̊ij þ l3‘d eikekj
� �� �

ð3Þ

where the Jaumann derivative is denoted by the ring
operator, eij is the rate-of-strain tensor ðeij ¼ _gij=2Þ and:

l1 ¼
6l
5

a ¼ 1þ bf ð4Þ

l2 ¼ 1� 5f
3

� �
l1 l3 ¼

4l1f
7

ð5Þ

and the operator ‘d denotes the symmetric, traceless part
(e.g., ‘d½Aij� ¼ 1

2
ðAij þ AjiÞ � 1

3
Alldij). Note that eij and vij

are the symmetric and anti-symmetric components of the
velocity gradient tensor @uj /@xi.
[11] Equation 3 is based on the analysis of Frankel and

Acrivos [1970] and so, strictly speaking, is only valid for
large material strains as long as the bubble deformation is
small (bubbles remain approximately spherical) and the
flow is only weakly time-dependent. However, Llewellin
et al. [2002] find that the model provides a good fit to their
data, even in the unsteady limit where Cd � O(10) and the
model is consistent with the data presented in Stein and
Spera [2002] up to at least Ca � 1000.

2.1. Simple Shearing Flow

[12] In certain simple cases, equation 3 can be solved
analytically. One such case is that of simple shearing flow
for which the velocity is given by u = (u1(x2),0,0).
[13] In this case, if S = du1/dx2 then the relationship

between deviatoric stress and strain is given by:

t11 t12 0

t12 t22 0

0 0 t33

0
@

1
Aþ l1S

�t12 1
2
ðt11 � t22Þ 0

1
2
ðt11 � t22Þ t12 0

0 0 0

0
@

1
A

¼ 2h0 a
0 S

2
0

S
2

0 0

0 0 0

0
@

1
Aþl2

�S2

2
0 0

0 S2

2
0

0 0 0

0
@

1
Aþ l3

S2

12
0 0

0 S2

12
0

0 0 �S2

6

0
B@

1
CA

2
64

3
75

ð6Þ

Comparing terms leads to the following set of equations:

t11 � l1St12 ¼ h0S
2 l3

6
� l2

� �
ð7Þ

t22 þ l1St12 ¼ h0S
2 l2 þ

l3

6

� �
ð8Þ

t33 ¼
�h0l3S

2

3
ð9Þ

t12 þ
l1S

2
ðt11 � t22Þ ¼ h0aS ð10Þ

From equations 7, 8, and 10 and using the result that the
viscosity is given by h = t12/S, the relative viscosity hr = h/
h0 is given by:

hr ¼
aþ l1l2S

2

1þ l2
1S

2
¼ 1� 5f

3
þ ð75bþ 125Þf

75þ 108Ca2
ð11Þ

where Ca = lS, b = 9. Hence the material is shear thinning:

hr ¼
1þ bf : Ca � 1

1� 5f=3 : Ca � 1:

�
ð12Þ

The solid line in Figure 1 shows how hr varies with Ca for a
bubbly liquid. The normal-stress differences N1 = t11 � t22
and N2 = t22 � t33 can be calculated readily from equations
7–10. They are generally non-zero and N1 > t12 for
intermediate Ca. Spera et al. [1988] present a value of
the first normal-stress coefficient (which is given by y1 =
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�N1/ _g
2) of y1 = �2.53 � 103 Pa s2 based on rod-climbing

experiments with bubbly rhyolites. For the appropriate
material properties and strain rate, our analysis predicts y1 =
�2.49 � 103 Pa s2, which is in excellent agreement.

2.2. Unsteady Flow

[14] Equation 3 is also soluble for the case of oscillatory
flow, e.g. in a concentric cylinder viscometer where the
imposed torque varies sinusoidally. Small strains are
assumed, equivalent to, for example, start-up flow in a
volcanic conduit where Cd is, necessarily, large (since _g =
0 initially) and strains are small.
[15] For a viscoelastic material undergoing oscillatory

flow with angular frequency w, the viscosity has a viscous
component, h0 and an elastic component h00 [see Llewellin et
al., 2002 - Appendix A]:

h0 ¼ h0
aþ l1l2w2

1þ l2
1w2

¼ h0 1� 5f
3

þ ð75bþ 125Þf
75þ 108Cd2

� �
ð13Þ

h00 ¼ h0
ðl1a� l2Þw
1þ l2

1w2
¼ h0

ð30bþ 50ÞfCd
25þ 36Cd2

ð14Þ

where Cd = lw, b = 9. The complex viscosity h* = h0 – ih00

hence the relative viscosity is given by:

hr ¼
jh*j
h0

¼ 1

3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9� 30fþ 25f2 þ ð450bþ 750Þfþ ð225b2 � 625Þf2

25þ 36Cd2

s

ð15Þ

Hence the viscosity decreases as the flow becomes
increasingly unsteady:

hr ¼
1þ bf : Ca � 1

1� 5f=3 : Ca � 1:

�
ð16Þ

This is the same as equation 12 for steady flow with Cd
substituted for Ca. The dashed line in Figure 1 shows how hr
varies with Cd for an unsteady flow. The relationship is
almost identical to that of hr = f (Ca) for steady-flow
conditions (solid line in Figure 1), with only a little deviation

when Ca = Cd � 1. If Ca and Cd are small, hr = 1 + bf. If
either Ca or Cd are large, hr = 1 � 5f/3.

3. Flow Along A Circular Pipe

[16] The special case of flow along a circular pipe is of
interest to volcanologists as a model for flow of magma in a
volcanic conduit. The analysis for Poiseuille flow in a
circular pipe is identical to that for simple shearing flow
described in section 2.1 with directions 1, 2 and 3 replaced by
cylindrical coordinate components z, r and q respectively (u =
(uz(r),0,0)) and the velocity profile and flow rate of a bubbly
fluid along a pipe can be calculated for given physical
parameters. The z-component of the equation of motion for
a fluid undergoing simple shearing flow along a pipe is:

0 ¼ �P0 � 1

r

d

dr
ðrtrzÞ ð17Þ

where P0 is the pressure gradient above hydrostatic (so, in a
volcanic conduit, P0 = d(Plithostatic – Pmagmastatic)/dz).
Integration of equation 17 and substitution for trz (from
equations 7, 8, and 10) gives)

h0S
aþ l1l2S

2

1þ l2
1S

2
¼ P0r

2
ð18Þ

This allows S(r) to be calculated as the root of a cubic
equation. Since S = duz/dr:

uzðrÞ ¼
Z 0

R

SðrÞdr ð19Þ

where R is the radius of the pipe and subject to the no-slip
boundary-condition uz(R) = 0. Numerical solution of
equation 19 allows the velocity profile uz(r) to be
determined for any given values of h0, P

0, R and l.
[17] Using Poiseuille’s equation a relative effective New-

tonian viscosity can be defined for a bubbly flow.

heff ¼
pP0R4

8Qh0
ð20Þ

This is the viscosity of the Newtonian fluid which has the
same volume flow-rate as the bubbly fluid for the given

Figure 1. Relative viscosity against capillary number (Ca:
steady, Cd: unsteady) for f = 0.15.

Figure 2. Velocity profile for a Newtonian material (solid
line) and a bubbly fluid (dashed line). Profiles for bubbly
fluid are shown at low, intermediate and high values of Cc.
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flow parameters normalized with respect to h0. Q is the
volume flow-rate and is given by:

Q ¼ 2p
Z 0

R

ruzðrÞdr ð21Þ

[18] Figure 2 shows the velocity profile across a conduit
for a fluid with f = 0.3. All velocities are normalized to the
axial velocity for the bubble-free flow (which has a New-
tonian rheology and a parabolic velocity-profile which is
shown for comparison). The velocity profile for the bubbly
flow is not constant, but varies as the physical parameters P0,
R, l and h0 are varied. We define a dimensionless combi-
nation of these parameters, the conduit capillary number Cc,
with which we can describe the flow.

Cc ¼ P0Rl
h0

ð22Þ

At low Cc the material has an almost parabolic velocity
profile indicating Newtonian rheology. The velocity of the
flow is considerably lower than the bubble-free flow
indicating that its effective viscosity is higher. For low
Cc, heff = 1 + bf. At high Cc the velocity profile is again
parabolic and heff = 1 � 5f/3.
[19] At intermediate values of Cc the fluid shows two

regimes of flow: an inner plug where strain rates are low
(heff = 1 + bf) and an outer sleeve where strain rates are
high (heff =1 � 5f/3). The volume flow-rate Q for Cc =
4.842 is the same as for the bubble-free flow and the
corresponding velocity profile is shown for comparison in
Figure 2.
[20] Figure 3 shows how the relative viscosity heff of the

material varies with Cc for bubbly flows with a range of gas
volume-fractions. The transition from heff =1 + bf to heff =
1 � 5f/3 occurs at Cc � 4 which is in the mid-range for
volcanic eruptions.
[21] The presence of a relatively-undeformed plug of

material surrounded by a rapidly-deforming sleeve has

many implications for physical volcanology. A study of
emulsions in pipe flow by Grizutti and Bifulco [1997]
suggests that low strain-rates, such as those found in the
plug-flow region, promote the coalescence of bubbles
which may promote magma fragmentation in the plug.
‘Tube’ pumices with highly-elongate vesicles frequently
appear together with pumices containing spherical vesicles
[Marti et al., 1999]. This would be expected if fragmenta-
tion occurred in an intermediate-Cc flow where a magma
plug bearing spherical bubbles coexists with a region of
highly-elongate bubbles.
[22] Calculating Cc for a volcanic eruption in which

steady-flow conditions have been reached provides a simple
way to calculate the effect of bubbles on the velocity profile
across the conduit and the effective viscosity of the magma.
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Figure 3. Relative effective viscosity (defined in section
pipe) for flows with varying gas volume-fraction and Cc.
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