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Abstract—Many phylogenetic algorithms search the space of possible trees using topological rearrangements and some optimality

criterion. FastME is such an approach that uses the balanced minimum evolution (BME) principle, which computer studies have

demonstrated to have high accuracy. FastME includes two variants: balanced subtree prune and regraft (BSPR) and balanced nearest

neighbor interchange (BNNI). These algorithms take as input a distance matrix and a putative phylogenetic tree. The tree is modified

using SPR or NNI operations, respectively, to reduce the BME length relative to the distance matrix until a tree with (locally) shortest

BME length is found. Following computer simulations, it has been conjectured that BSPR and BNNI are consistent, i.e., for an input

distance that is a tree metric, they converge to the corresponding tree. We prove that the BSPR algorithm is consistent. Moreover,

even if the input contains small errors relative to a tree metric, we show that the BSPR algorithm still returns the corresponding tree.

Whether BNNI is consistent remains open.

Index Terms—Phylogenetic tree, topological move, subtree prune and regraft (SPR), BSPR algorithm, Nearest Neighbor Interchange

(NNI), BNNI algorithm, balanced minimum evolution principle (BME), tree length, quartet distance, Robinson Foulds distance,

consistency, safety radius.

Ç

1 INTRODUCTION

MANY practical methods for phylogenetic tree inference

proceed by repeatedly updating a proposed tree

using topological rearrangements until a locally optimal

tree is found according to some optimality criterion. Such

methods include those implemented in the widely used

PAUP� [29] and PHYLIP packages [12], and optimality

criteria include likelihood and parsimony scores. The most
commonly used topological rearrangements are Subtree

Prune and Regraft (SPR), Nearest Neighbor Interchange

(NNI), and Tree Bisection and Reconnection (TBR); see [25]

for definitions and properties and Section 2 for a brief

description of SPR and NNI moves.
Recently, such a local topology search approach was

introduced for inferring phylogenetic trees from distance
matrices, based on the balanced minimum evolution (BME)
principle [6]. The optimality criterion used is to minimize
Pauplin’s [20] tree-length estimate relative to the given
distance matrix. This approach is implemented in a soft-
ware called FastME [6]. Two topological rearrangement

possibilities are available in the latest release of FastME: the
balanced subtree prune and regraft (BSPR) algorithm [17] and
the balanced nearest neighbor interchange (BNNI) algorithm [6].
FastME has been shown [6], [7] to be a fast and accurate
method for tree inference, compared to other popular
distance-based methods such as NJ [23], BIONJ [15], FITCH
[13], or WEIGHBOR [3]. Vinh and von Haeseler [30] even
concluded “We found that BNNI boosts the topological
accuracy of all [distance-based] methods.” Note that the
local search range under NNI operations is a subset of that
under SPR operations, so BSPR is expected to be at least as
accurate as BNNI.

A number of studies have been dedicated to the greedy
algorithms used to infer an initial tree for use in a
topological search, for example, Atteson’s study of NJ [2].
However, to the best of our knowledge, no one has explored
theoretical properties of topological moves in the context of
tree inference. Here, we will make the first step toward
filling this gap in relation to the BME framework and, in
this way, shed some light on why BSPR and BNNI work so
well in practice. In particular, we consider the following
question. Suppose the matrix of pairwise distances given as
input is in fact a tree metric ��, i.e., there is a unique
phylogenetic tree T � with positive edge lengths for T � so
that, for each x, y 2 X, the distance ��xy is the length of the
path between x and y in T �. If we apply the BSPR (BNNI)
algorithm starting with distance �� and any initial phylo-
genetic tree T , is the algorithm guaranteed to output T �?
That is to say, is the BSPR (BNNI) algorithm consistent?

Numerous computer simulations have suggested that
both the BSPR and BNNI algorithms are consistent [7].
Here, we prove that the BSPR algorithm is indeed
consistent. In fact, we show that even if the input � contains

110 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 6, NO. 1, JANUARY-MARCH 2009

. M. Bordewich is with the Department of Computer Science, University of
Durham, Science Laboratories, South Road, DH1 3LE, Durham, UK.
E-mail: m.j.r.bordewich@durham.ac.uk.

. O. Gascuel is with the team Méthodes et Algorithmes pour la
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some errors but remains sufficiently close to ��, then the
BSPR algorithm will still output T � (Theorem 5.2). Here,
sufficiently close means j�xy � ��xyj is less than 1/3 of the
smallest edge weight of T �, for all x, y 2 X, i.e., the BSPR
algorithm has a safety radius of at least 1/3. As a corollary,
we show that the BME principle itself has a safety radius of
at least 1/3, which solves an open question [8]. Safety
radius analysis was introduced by Atteson [2] and has
become a standard approach to characterize the perfor-
mance of distance-based tree-building algorithms (see,
e.g., [9] for a review). In particular, Atteson showed
that no distance method can have a safety radius larger
than 1/2 and that NJ and related greedy algorithms have
optimal 1/2 safety radius.

The rest of the paper is organized as follows: In the
following section, we review some basic definitions con-
cerning phylogenetic trees and BME and prove a key lemma
concerning the structure of pairs of trees. In Sections 3
and 4, we prove some results analogous to consistency of
the BSPR algorithm for the Robinson-Foulds [22] and the
quartet [11] tree comparison metrics. In particular, in
Section 3, we show that for two distinct phylogenetic trees
T and T �, there is a sequence of SPR operations that
transforms T into T � and decreases the Robinson-Foulds
distance to T � at every step. In Section 4, we prove a similar
result for the quartet distance. In Section 5, we show that the
BSPR algorithm is consistent and has safety radius at least
1/3. However, the question remains open for BNNI. This is
discussed along with other open questions in Section 6.

2 BASICS, DEFINITIONS, AND NOTATION

A phylogenetic tree is a binary tree T whose leaves are
bijectively labeled by the elements of some finite set X. The
set X usually denotes a set of species or taxa, and the tree T
represents the evolutionary relationships between them.
Unless stated otherwise, from now on, X will denote a finite
set and all trees considered will be phylogenetic trees on X.
Throughout, we consider phylogenetic trees as unweighted,
i.e., they do not have intrinsic edge lengths, with the
exception of the true tree T � that does have edge lengths (or
weights). Furthermore, capital letters will be used in all
figures to represent subtrees.

The NNI and SPR tree rearrangement operations can be
described as follows [25]: Suppose that T is the tree
depicted in Fig. 1 that A, B, C, C0; . . . ; Ck, and D are
subtrees of T as indicated in that figure and that T 0 is a tree
resulting from one NNI or SPR operation applied to T .
Regarding NNI, T 0 is obtained from T by deleting some
edge e ¼ fu; rBg of T , where rB is the root of B, suppressing
vertex u, and adding an edge e0 between rB and a vertex

that subdivides the edge between v and D or between v to
C, where v is the neighbor of u in T � e (cf., Fig. 1a).
Regarding SPR, T 0 is obtained from T by deleting some
edge e ¼ fu; rBg in T , where again, rB is the root of B,
suppressing u, and adding an edge e0 between rB and a
vertex that subdivides an edge in the component of T � e
that does not contain B (cf., Fig. 1b). Note that in both
operations, the root of B is unchanged, i.e., the edges e and
e0 share the same vertex of B.

The BSPR (BNNI, respectively) algorithm works as
follows: For an input distance matrix �, with entries �xy, x,
y 2 X, and some phylogenetic tree T on X, the total tree
length l̂ðT Þ of T (relative to �) is defined according to the
following formula by Pauplin [20]:

l̂ðT Þ ¼
X
x;y2X

21�pxy�xy; ð1Þ

where pxy denotes the number of edges in the path from x
to y. Semple and Steel [26] provided an elegant interpreta-
tion of (1), which we present in Fig. 2 for the convenience
of the reader. Then, for all trees T 0 that can be obtained
from T by performing a single SPR (NNI, respectively)
operation on T (see Fig. 1), it is checked whether
l̂ðT Þ � l̂ðT 0Þ > 0. If this holds, i.e., the total tree length of
T 0 is less than that of T , the tree T 0 is taken in preference
to T , and the process is iterated. This process is repeated
until a tree T 00 is found with the property that no SPR
operation (NNI, respectively) on T 00 yields a tree having
shorter total tree length. Note that 1) if � is a tree metric
and T an edge weighted phylogenetic tree that realizes �,
then l̂ðT Þ is the sum of the branch lengths of T [26], 2) the
local search range under NNI operations is a subset of that
under SPR, and 3) the check l̂ðT Þ � l̂ðT 0Þ > 0 can be
performed efficiently. Indeed, in both BSPR and BNNI, it
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Fig. 1. A schematic description of (a) an NNI and (b) an SPR operation; see text for details.

Fig. 2. The figure depicts two drawings of the same tree T on the set
X ¼ fa; b; c; dg. By crossing each edge twice as indicated, the tree
length l̂ðT Þ of the tree T depicted in (a) equates to 1

2 ð�ad þ �dc þ �cb þ
�baÞ and to 1

2 ð�ac þ �cd þ �db þ �baÞ in (b), where �xy denotes the distance
between any two elements in X. Pauplin’s formula for l̂ðT Þ is the
average of these two alternative ways to compute l̂ðT Þ, i.e.,
l̂ðT Þ ¼ 1

2 ð12 ð�ad þ �dc þ �cb þ �baÞ þ 1
2 ð�ac þ �cd þ �db þ �baÞÞ. This interpre-

tation can be extended to larger trees using circular orderings of X,
see [26].
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takes time OðjXj2Þ to evaluate all moves and update all
data structures corresponding to the new current tree, see
[6] and [17] for details.

A split S ¼ fA;Bg on a taxa set X is a bipartition of X
into two nonempty disjoint subsets A, B � X whose
union is X. For ease of notation, we will write AjB or,
equivalently, BjA for the split fA;Bg. In general, a
collection of splits of X is called a split system of X.

Suppose that T is a tree on X. Then, a split system SðT Þ
can be associated to T in the following way. Consider some
edge e 2 EðT Þ. Then, deleting e induces a split Se ¼ AjB of
the leaf set LðT Þ ¼ X, where A is the leaf-label set of one of
the resulting connected components, and B is the leaf-label
set of the other. The collection of splits of X obtained by
deleting, in turn, every edge in T is the split system SðT Þ.

A subtree T 0 of T is any tree that can be obtained from
T by removing an edge of T and picking of the connected
components in the resulting graph.1 Note that T 0 can
always be thought of as a tree rooted at the unique vertex
in e \ V ðT 0Þ or as unrooted by suppressing this degree
2 vertex. For convenience, we will always denote the root
of a subtree T 0 of T by rT 0 . Note also that every leaf of T
is a subtree of T .

Given two subtreesA andB ofT , we callA andB disjoint if
V ðAÞ \ V ðBÞ ¼ ;. IfA andB are disjoint and there exist some
vertexx 2 V ðT Þ such that erA ¼ fx; rAg; erB ¼ fx; rBg 2 EðT Þ,
then we denote the subtree of T with vertex set V ðAÞ [
V ðBÞ [ fxg and edge set EðAÞ [ EðBÞ [ ferA ; erBg by A [B.

We conclude this section with a lemma concerning trees
that will be helpful throughout the paper. Given a tree T ,
we call a pair of leaves a, b in T , which are incident with the
same vertex a cherry of T and denote the set of cherries of T
by CðT Þ.
Lemma 2.1. Suppose T and T � are two trees with distinct

topologies. Then, there exist disjoint subtrees B, D in T such
that B, D, and B [D are subtrees of T �, but B [D is not a
subtree of T .

Proof. Suppose T and T � are two trees with distinct
topologies. To prove the lemma, we distinguish between
the cases that 1) there exist elements x, y 2 X such that x
and y form a cherry in T � but not in T , and 2)
CðT �Þ � CðT Þ.

Suppose that case 1 holds, i.e., there exist x, y 2 X
such that x and y form a cherry in T � but not in T . Then,
taking B to be the subtree x and D to be the subtree y, the
statement holds.

Now, suppose case 2 holds, i.e., CðT �Þ � CðT Þ.
Associate to T and T � new trees T and T �, respectively,
by contracting every cherry, with labels a and b, say, of
CðT �Þ in both T and T �, into a leaf which we label fa; bg.
Clearly, since T and T � have distinct topologies, T and
T � have distinct topologies.

Now, define X to be the leaf-label set of T . If there

exist x, y 2 X such that x and y form a cherry in T � but

not in T , then we define the trees B and D as described in
case 1 (with X, T , and T � replaced by X, T , and T �,

respectively). The required subtrees B and D of T and T �

can then be obtained from B and D by expanding every
leaf labeled by a subset A of X of size 2, to a cherry with

label set A. If, on the other hand, CðT �Þ � CðT Þ, then we

iterate the contraction process until we have found two

binary leaf labeled trees T and T � for which there is a

cherry in CðT �Þ, which is not in CðT Þ. From this cherry,

we obtain B and D, and the required subtrees B and D of

T and T � can then be obtained by repeatedly applying

the above described expansion process. tu

3 ROBINSON-FOULDS DISTANCE

The Robinson-Foulds distance [22] is tree comparison metric
that is commonly used to measure dissimilarity between
phylogenetic trees on the same leaf set. For two trees T1 and
T2 on X, it is defined by

dRF ðT1; T2Þ ¼ SðT1Þ � SðT2Þj j þ SðT2Þ � SðT1Þj j:

Note that T1 and T2 have the same topology if and only if
dRF ðT1; T2Þ ¼ 0.

In this section, we prove the following result.

Theorem 3.1. If T � is a fixed tree and T is any other tree, then
there is a sequence of trees T0 ¼ T; T1; . . . ; Tk ¼ T �, such that

1. tree Tiþ1 is obtained from Ti by a single SPR-
operation, and

2. dRF ðTi; T �Þ � dRF ðTiþ1; T
�Þ > 0,

for all 0 � i � k� 1.

This result is a direct consequence of the following
lemma. For two trees, T1 and T2, the SPR-distance

dSPRðT1; T2Þ between T1 and T2 is the minimal number of
SPR-operations needed to transform the topology of T1 into
that one of T2.

Lemma 3.2. Suppose T and T � are two trees with distinct

topologies. Then, there exists a tree T 0 such that dSPRðT; T 0Þ ¼
1 and dRF ðT �; T 0Þ < dRF ðT �; T Þ.

Proof. Suppose T and T � are two trees with distinct
topology. Then, by Lemma 2.1, there exist disjoint
subtrees B, D in T such that B and D are subtrees of
T �, and the subtree B [D is also a subtree of T � but not
of T . Consider the tree T 0 obtained from T by pruning
the subtree B and regrafting it adjacent to D (see Fig. 3),
giving rise to a new vertex p. Clearly, dSPRðT; T 0Þ ¼ 1.

To see that the inequality stated in the lemma holds,
we distinguish between two types of splits displayed by
T . For R denoting either T or T 0, let SbðRÞ denote the set
of splits in SðRÞ, which correspond to the edges in the
path from a to b in case R ¼ T and the edges in the path
from s to p in case R ¼ T 0. For the convenience of the
reader, we indicate these edges in bold (see Fig. 3). Put
SnbðRÞ ¼ SðRÞ � SbðRÞ. Note that the latter set also
contains those splits that correspond to an edge in the
subtrees B, D, or in one of the subtrees of R indicated by
C0; . . . ; Ck, k � 0, in Fig. 3.

Now, suppose that S is a split on X. Then, by
construction, S 2 SnbðT Þ if and only if S 2 SnbðT 0Þ. Let
S1 ¼ LðBÞjX � LðBÞ and S2 ¼ LðDÞjX �LðDÞ. Note that
S1; S2 2 SnbðT Þ \ SnbðT 0Þ \ SðT �Þ. Let Se denote the split
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1. Note that this definition of a subtree is more restrictive than the one
that is commonly used, as described in, e.g., [25].
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in SðT 0Þ that corresponds to the edge e 2 EðT 0Þ as
specified in Fig. 3. Observe that

1. SnbðT Þ ¼ SnbðT 0Þ,
2. SbðT Þ \ SðT �Þ ¼ ;, since the only splits of T �

which separate B and D are S1 and S2, and
3. SbðT 0Þ \ SðT �Þ 6¼ ; since Se is a split of T 0 and T �.

Hence, it follows that

SðT �Þ � SðT Þj j ¼ SðT �Þ � SnbðT Þ � SbðT Þj j
¼ SðT �Þ � SnbðT 0Þ � SbðT Þj j
> SðT �Þ � SnbðT 0Þ � SbðT 0Þj j
¼ SðT �Þ � SðT 0Þj j:

Since the trees are binary, they all have the same number
of internal edges and hence splits. Thus,

SðT Þ � SðT �Þj j ¼ SðT �Þ � SðT Þj j > SðT �Þ � SðT 0Þj j
¼ SðT 0Þ � SðT �Þj j:

The inequality stated in the lemma follows. tu

4 QUARTET DISTANCE

In this section, we prove the following analogous result to
Theorem 3.1 in which we replace the Robinson-Foulds
distance dRF by the quartet distance dQ, another popular
tree-comparison metric [5], [11], [19], [27].

We start with recalling the definition of the quartet
distance. Let QðXÞ denote the set of all quartets of X, that is,
splits AjB of subsets of X of size 4 with jAj ¼ 2 ¼ jBj. For
brevity, we write abjcd rather than fa; bgjfc; dg with
fa; b; c; dg � X. For a tree T and a quartet abjcd, we say that
T displays abjcd if there exists some splitAjB 2 SðT Þ such that
a, b 2 A, and c, d 2 B. Let QðT Þ denote the set of all quartets
displayed by a treeT . Then, for two treesT1 andT2, the quartet
distance dQðT1; T2Þ between T1 and T2 is defined as

dQðT1; T2Þ ¼ QðT1Þ �QðT2Þj j þ QðT2Þ �QðT1Þj j:

In contrast to the Robinson-Foulds distance, the quartet
distance between any tree T and the optimal tree T � can be
directly estimated from the data. For example, the popular
Quartet Puzzling algorithm [28] first estimates all quartets
using maximum likelihood based on the sequences corre-
sponding to each of the taxa and then builds a tree in a greedy
way, trying to maximize the number of quartets being
displayed by the inferred tree. Theorem 4.1 is thus related
to the consistency of SPR-moves when the input is given in
terms of quartets. In particular, assuming that these quartets
exactly correspond to a phylogenetic tree T �, it shows that we

are able to recover T � starting from any tree T by simply
applying SPR moves and using the quartet distance.

Theorem 4.1. If T � is a fixed tree and T is any other tree, then
there is a sequence of trees T0 ¼ T; T1; . . . ; Tk ¼ T �, such that

1. tree Tiþ1 is obtained from Ti by a single SPR-
operation, and

2. dQðTi; T �Þ � dQðTiþ1; T
�Þ > 0,

for all 0 � i � k� 1.

Theorem 4.1 is a direct consequence of the following
lemma, which is an analog of Lemma 3.2.

Lemma 4.2. Let T and T � be two trees with distinct topologies.
Then, there exists a tree T 0 such that dSPRðT; T 0Þ ¼ 1 and
dQðT �; T 0Þ < dQðT �; T Þ.

Proof. Let B and D denote two disjoint subtrees of T and T �

such that B [D is a subtree of T � but not of T (which
must exist by Lemma 2.1). We consider the following
two trees: T 0 formed by pruning B and regrafting it
adjacent to D, and T 00 formed by pruning D and
regrafting it adjacent to B.

For R 2 fT; T 0; T 00g, we consider a partition of the
set QðRÞ of displayed quartets into four classes
QR

0 ; Q
R
1 ; Q

R
2 ; Q

R
3 defined as follows:

QR
0 ¼

�
wx
��yz 2 QðRÞ : either fw; x; y; zg \Bj j > 1

or fw; x; y; zg \Dj j > 1

or fw; x; y; zg \Bj j ¼ 0 ¼ fw; x; y; zg \D
���;

QR
1 ¼

�
wxjyz 2 QðRÞ : fw; x; y; zg \Bj j ¼ 1

and fw; x; y; zg \Dj j ¼ 0
�
;

QR
2 ¼

�
wxjyz 2 QðRÞ : fw; x; y; zg \Bj j ¼ 0

and fw; x; y; zg \Dj j ¼ 1
�
; and

QR
3 ¼

�
wxjyz 2 QðRÞ : fw; x; y; zg \Bj j ¼ 1

¼ fw; x; y; zg \Dj j
�
:

Note that

QT
0 ¼ QT 0

0 ¼ QT 00

0 ; ð2Þ

and

QT
3 \QðT �Þ

�� �� < QT 0

3 \QðT �Þ
�� �� ¼ QT 00

3 \QðT �Þ
�� ��: ð3Þ

For R 2 fT; T 0; T 00g, a fixed leaf x, and j 2 f0; 1; 2; 3g,
let QR

j ðxÞ be the subset of QR
j consisting of quartets

containing x. Now, fix some b 2 B. Observe that since B
is a subtree of T �,

QT
1 \QðT �Þ

�� �� ¼ jBj QT
1 ðbÞ \QðT �Þ

�� ��:
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Fig. 3. The trees T and T 0 considered in the proof of Lemma 3.2.
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Similarly, for a fixed leaf d 2 D, we have

QT
2 \QðT �Þ

�� �� ¼ jDj QT
2 ðdÞ \QðT �Þ

�� ��:
Moreover, since B and D are adjacent in T �, we can

conclude that

QT 00

1 \QðT �Þ
�� �� ¼ jBj QT

1 ðbÞ \QðT �Þ
�� �� and

QT 00

2 \QðT �Þ
�� �� ¼ jDj QT

1 ðbÞ \QðT �Þ
�� ��:

Similarly, we can conclude that

QT 0

1 \QðT �Þ
�� �� ¼ jBj QT

2 ðdÞ \QðT �Þ
�� �� and

QT 0

2 \QðT �Þ
�� �� ¼ jDj QT

2 ðdÞ \QðT �Þ
�� ��:

Hence,

QT 00

1 [QT 00

2

� �
\QðT �Þ

��� ���� QT
1 [QT

2

� �
\QðT �Þ

�� ��
¼ jDj QT

1 ðbÞ \QðT �Þ
�� ��� QT

2 ðdÞ \QðT �Þ
�� ��� �

;

and

QT 0

1 [QT 0

2

� �
\QðT �Þ

��� ���� QT
1 [QT

2

� �
\QðT �Þ

�� ��
¼ jBj QT

2 ðdÞ \QðT �Þ
�� ��� QT

1 ðbÞ \QðT �Þ
�� ��� �

:

Since these cannot both be negative, and by (2) and (3),

either

QðT Þ \QðT �Þj j < QðT 0Þ \QðT �Þj j

or

QðT Þ \QðT �Þj j < QðT 00Þ \QðT �Þj j

holds. The result now follows. tu

5 SPR MOVES AND THE BME TREE LENGTH

In this section, we prove the main result of the paper
(Theorem 5.2), from which it immediately follows that the
BSPR algorithm is consistent with safety radius 1

3 . Note that

for the rest of this section, we assume that we are given a
matrix � of estimated distances on X, which corresponds in
practice to estimated evolutionary distances between ele-
ments of X.

The key tool used in our proof is [6, eq. (10)], which we
now recall. First, for any tree R and for any two disjoint
subtrees U and V of R, we define the balanced average
distance �RUV between the leaf sets of U and V recursively as
follows: If U and V only contain a single taxa u and v,
respectively, then �RUV is equal to the estimated distance �uv
between u and v. Moreover, if one of U and V , say, V , is of
the form V ¼ V1 [ V2 for disjoint subtrees V1 and V2, then

�RUV ¼ �RUðV1[V2Þ ¼
1

2
�RUV1
þ �RUV2

� �
: ð4Þ

This definition is motivated by the observation that in
biological studies a single isolated taxon often gives as
much information as a cluster containing several remote
taxa [24]. Also, by placing less weight on pairs of taxa that
are separated by numerous edges, it addresses the problem
that long evolutionary distances are poorly estimated (see,
[8, Sec. 1.2.7)] and [6] for more details).

Now, let T be the tree on the left in Fig. 1a and T 0 be the
tree obtained from T by interchanging the subtrees B and C
of T (i.e., T 0 is the tree depicted in the right of Fig. 1a). Then,
with the total tree length as defined by (1) in Section 1,
[6, eq. (10)] states that

l̂ðT Þ � l̂ðT 0Þ ¼ 1

4
�TAB þ �TCD
� �

� �TAC þ �TBD
� �	 


: ð5Þ

As mentioned in the introduction, this formula allows a
significant improvement of the efficiency of the BNNI
algorithm [6].

Moreover, the balanced framework allows for simple
edge length estimators [20] (see also [7]). Let e be the branch
shown in Fig. 4 and assume that B is composed of two
disjoint subtrees B0; B00, i.e., B ¼ B0 [B00. The estimated
length of e is then equal to

l̂ðeÞ ¼ 1

2
��TB0B00 þ �TBA þ �TBC � �TAC
� �

; ð6Þ

where the same formula holds if B is a leaf by defining
�TB0B00 ¼ 0.

As a first step toward proving Theorem 5.2, we look at
how a single SPR-operation applied to a tree T affects the
total tree length of T .

Lemma 5.1. Let T and T 0 be the trees given in Fig. 5 so that T 0 can
be obtained from T by a single SPR operation in which subtreeB
is pruned and regrafted. Then,
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Fig. 4. Edge length estimation from average distance between subtrees
using (6).

Fig. 5. The trees T and T 0 have an SPR-distance 1: C0; . . . ; Ck, B, and D denote subtrees of T (or equivalently of T 0).
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l̂ðT Þ � l̂ðT 0Þ ¼ 1

2
� 1

2kþ1

� �
�TC0B

� �TBD
� �

þ

Xk
i¼1

1

2k�iþ2
�TCiD � �

T
CiB

� �
� 1

2iþ1
�TC0Ci

� �TCiB
� �
 �

:

Proof. We first provide a reformulation of (5), which gives

the difference in tree length when performing one NNI

operation. Let T and T 0 be the two trees in Fig. 1a, in

which T 0 is obtained from T by using a single NNI

operation, and let e and e0 be the edges connecting B in T

and T 0, respectively. Using (4), (5), and (6), it follows that

l̂ðeÞ � l̂ðe0Þ ¼ 1

2
��TB0B00 þ �TBA þ �TBðC[DÞ � �TAðC[DÞ
� �
� 1

2
��TB0B00 þ �TBD þ �TBðA[CÞ � �TDðA[CÞ
� �

¼ 1

4
�TAB þ �TCD � �TAC � �TBD
� �

¼ l̂ðT Þ � l̂ðT 0Þ:

In other words, the difference in tree length is simply the

difference between the lengths of edges e and e0.
We now show that this property also holds for SPR

moves. Let T and T 0 be the two trees shown in Fig. 5, and
let e and e0 denote the edges connecting B in T and T 0,
respectively. Moreover, consider the series of trees
T ¼ T0; T1; T2; . . . ; Tk ¼ T 0, where T1 is obtained from T
by one NNI move exchanging B, and C1, T2 is obtained
from T1 by one NNI move exchanging B, and C2; . . . ; T 0

is obtained from Tk�1 by one NNI move exchanging B
and Ck. Let e ¼ ei be the edge connecting B in Ti. Just as
with the NNI move, we have

l̂ðT Þ � l̂ðT 0Þ ¼
Xk�1

i¼0

l̂ðTiÞ � l̂ðTiþ1Þ

¼
Xk�1

i¼0

l̂ðeiÞ � l̂ðeiþ1Þ ¼ l̂ðeÞ � l̂ðe0Þ:

Using the equation above and (4) and (6), it follows that

l̂ðT Þ � l̂ðT 0Þ

¼
�TBC0

2
þ
Xk
i¼1

�TBCi
2iþ1
þ �TBD

2kþ1
�
Xk
i¼1

�TC0Ci

2iþ1
�
�TDC0

2kþ1

� �T
0

BD

2
þ
Xk
i¼1

�T
0

BCi

2k�iþ2
þ
�T
0

BC0

2kþ1
�
Xk
i¼1

�T
0

DCi

2k�iþ2
�
�T
0

DC0

2kþ1

 !
:

Since the topological structure within each labeled

subtree in Fig. 5 is the same in T and T 0, we have �TUV ¼
�T
0

UV for all U , V 2 fB;C0; . . . ; Ck;Dg. The lemma now

follows by simplifying this formula. tu
We now prove our main result. Suppose T � is a fixed

edge-weighted phylogenetic tree on X and, for any edge e

of T �, denote the length of e in T � by lðeÞ. In addition, let ��

denote the distance on X defined by taking shortest paths

between the leaves of T � so that, in particular, �� is a binary

tree metric. Recall that we also have a matrix � containing

estimates of the distances given by ��.

Theorem 5.2. Let T be a tree having a different topology to T �.

Let B and D be disjoint subtrees in T such that B, D, and

B [D are subtrees of T �, but B [D is not a subtree of T . Let

T 0 be obtained from T by pruning the subtree B and regrafting

it adjacent to D. Then, provided that j�ab � ��abj < � :¼
1
3 mine2EðT �Þ lðeÞ for all a, b 2 X, we have l̂ðT Þ � l̂ðT 0Þ > 0.

Proof. Note that B and D are well defined by Lemma 2.1.
Let C0; . . . ; Ck denote the subtrees depicted in Fig. 5, as
in Lemma 5.1. For notational simplicity, for any two
disjoint subtrees U , V of T , we will write �UV for �TUV
and for any subtree U of T and leaf v 62 U , we will
write �Uv for �TUfvg. Let x be the parent vertex of
subtrees B and D in T �. Let ex be the edge adjacent to
x but not B or D (see Fig. 6). Then, for any subtree A

in T � disjoint with B, we have �AB ¼
P

b2B 21�pxb�Ab,
where pxb is the number of edges in the path from x

to b in T �. Likewise, �AD ¼
P

d2D 21�pxd�Ad. SinceP
b2B 21�pxb ¼ 1 ¼

P
d2D 21�pxd , Lemma 5.1 yields

l̂ðT Þ � l̂ðT 0Þ

¼
X

b2B;d2D
22�pxb�pxd

"
1

2
� 1

2kþ1

� �
�C0b � �bdð Þ

þ
Xk
i¼1

1

2k�iþ2
�Cid � �Cibð Þ � 1

2iþ1
�C0Ci � �Cibð Þ


 �#
:

ð7Þ

We now consider a specific pair b 2 B and d 2 D and
examine its contribution to the summation over b and d

in (7). To this end, we denote the sum of the lengths of
the edges in the path Pxb between x and b in T � by ��xb and
similarly define ��xd.

Since the path in T � from any taxon in Ci to any taxon
in B or D must pass through x and the error in any
estimated distance is at most �, we have

Xk
i¼1

1

2k�iþ2
ð�Cid � �CibÞ �

Xk
i¼1

1

2k�iþ2
��Cid � �

�
Cib
� 2�

� �

¼ 1

2
� 1

2kþ1

� �
��xd � ��xb � 2�
� �

;

and also

1

2
� 1

2kþ1

� �
��bdð Þ � 1

2
� 1

2kþ1

� �
���xd � ��xb � �
� �

:

In addition

1

2
� 1

2kþ1

� �
�C0b ¼

Xk
i¼1

1

2iþ1
�C0b


 �
:
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Fig. 6. Sketch illustrating the proof of Theorem 5.2.
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Hence, (7) implies

l̂ðT Þ � l̂ðT 0Þ �
X

b2B;d2D
22�pxb�pxd

"
1

2
� 1

2kþ1

� �
�2��xb � 3�
� �

þ
Xk
i¼1

1

2iþ1
ð�C0b � �C0Ci þ �CibÞ


 �#
:

ð8Þ

Now, consider the term ð�C0b � �C0Ci þ �CibÞ. For
c0 2 C0, ci 2 Ci let zc0ci be the vertex in T � on the path
between c0 and ci at which the path to the subtree B [D
is attached, (see Fig. 6). Then,

ð�c0b � �c0ci þ �cibÞ � ��c0b
� ��c0ci

þ ��cib � 3�
� �
¼
�
��c0zc0ci

þ ��zc0ci b � �
�
c0zc0ci

� ��zc0ci ci þ �
�
cizc0ci

þ ��zc0ci b � 3�
�

¼ 2��zc0ci b
� 3�

� 2lðexÞ þ 2��xb � 3�:

It follows that ð�C0b � �C0Ci þ �CibÞ � 2lðexÞ þ 2��xb � 3�,
and therefore, (8) implies

l̂ðT Þ � l̂ðT 0Þ �
X

b2B;d2D
22�pxb�pxd

"
1

2
� 1

2kþ1

� �
�2��xb � 3�
� �

þ
Xk
i¼1

1

2iþ1
2lðexÞ þ 2��xb � 3�
� �
 �#

¼
X

b2B;d2D
22�pxb�pxd 1

2
� 1

2kþ1

� �
2 lðexÞ � 3�ð Þ


 �

¼ð1� 2�kÞ lðexÞ � 3�ð Þ
> 0:

This completes the proof. tu
We next show that our results imply that the safety

radius of the BME principle itself is at least 1/3. Recall that
BSPR and BNNI are only heuristics for finding a tree of
minimal tree length. The following corollary states that the
tree that achieves the minimal tree length is the correct tree
provided that the errors in the distance matrix are at most
1/3 the minimum edge length. In particular, this radius is
independent of the method used to find the shortest tree.

Corollary 5.3. Suppose that j�ab � ��abj < � :¼ 1
3 mine2EðT �Þ lðeÞ

for all a, b 2 X, then the unique phylogenetic tree that
minimizes tree length relative to � is T �.

Proof. Suppose for contradiction that there is a tree T distinct
from T � that minimizes tree length relative to �, i.e., l̂ðT Þ �
l̂ðT 0Þ for all trees T 0. Thus, l̂ðT Þ is minimal relative to �. By
Lemma 2.1, there exist disjoint subtreesB,D inT such that
B, D, and B [D are subtrees of T �, but B [D is not a
subtree of T . By Theorem 5.2, there exists a tree T 0 distinct
from T such that l̂ðT Þ � l̂ðT 0Þ > 0, i.e., l̂ðT Þ > l̂ðT 0Þ, contra-
dicting the minimality of l̂ðT Þ. tu

6 DISCUSSION

In this paper, we have shown that the BSPR algorithm is
consistent. As noted in the introduction, SPR moves are

more general than NNI moves in that any SPR move can be

achieved through a sequence of NNI moves (Fig. 1). It

would be interesting to know whether BNNI is also

consistent.
In addition to consistency, we have shown that BSPR has

safety radius of at least 1/3. Can this result be improved or

extended to other variants of minimum evolution (ME) and

to different search algorithms? We make the following

observations.

1. As previously mentioned, no distance based method
can have a safety radius greater than 1/2 [2].

2. We have observed that our results imply that
the safety radius of the BME principle itself is at
least 1/3. In particular, this radius is independent of
the method used to find the shortest tree. We believe
that the BME safety radius should be 1/2 but a proof
remains to be found.

3. Several variants of ME are discussed in the literature
and are implemented within various computer
programs. The most common, first proposed by Kid
and Sgaramella-Zonta [18] and studied in depth by
Rzhetsky and Nei [21], estimates tree edge lengths
using ordinary least squares (OLS) and defines the
tree length estimate to be the sum of the edge length
estimates (including the negative ones). In [31], it is
shown that this OLS version of ME has safety radius
at most 1/4 as the number of taxa grows large.
Moreover, Gascuel and Guillemot [16] have recently
shown that OLS-ME actually has safety radius
converging to 0 as the number of taxa tends to
infinity. These results could explain the poor accu-
racy of OLS-ME compared to BME, which has been
observed in simulations (e.g., [6]). Moreover, it
suggests that our approach to proving the consis-
tency of the BSPR algorithm will not apply to the
OLS-ME variant without significant modification.

In summary, there are a number of open problems in the

context of using topological moves for inferring phyloge-

netic trees. We believe that this is an important direction for

further research and that such research should yield

fundamental insights into the performance of some com-

monly used tree inference methods.
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Sécurité du Principe d’�Evolution Minimum,” internal report in
French (available on request), 2005

[17] W. Hordijk and O. Gascuel, “Improving the Efficiency of SPR
Moves in Phylogenetic Tree Search Methods Based on Maximum
Likelihood,” Bioinformatics, vol. 21, no. 24, pp. 4338-4347, 2005.

[18] K.K. Kidd and L.A. Sgaramella-Zonta, “Phylogenetic Analysis:
Concepts and Methods,” Am. J. Human Genetics, vol. 23,
pp. 235-252, 1971.

[19] T. Mailund and C.N.S. Pedersen, “QDist—Quartet Distance
between Evolutionary Trees,” Bioinformatics, vol. 20, no. 10,
pp. 1363-1637, 2004.

[20] Y. Pauplin, “Direct Calculation of Tree Length Using a Distance
Matrix,” J. Molecular Evolution, vol. 51, pp. 66-85, 2000.

[21] A. Rzhetsky and M. Nei, “Theoretical Foundation of the
Minimum-Evolution Method of Phylogenetic Inference,” Molecu-
lar Biology and Evolution, vol. 10, pp. 1073-1095, 1993.

[22] D. Robinson and L. Foulds, “Comparison of Phylogenetic Trees,”
Math. Biosciences, vol. 53, pp. 131-147, 1981.

[23] N. Saitou and M. Nei, “The Neighbor-Joining Method: A New
Method for Reconstructing Phylogenetic Trees,” Molecular Biology
and Evolution, vol. 4, pp. 406-424, 1987.

[24] P.H.A Sneath and R.R. Sokal, Numerical Taxonomy, pp. 230-234.
W.K. Freeman, 1973.

[25] C. Semple and M. Steel, Phylogenetics. Oxford Univ. Press, 2003.
[26] C. Semple and M. Steel, “Cyclic Permutations and Evolutionary

Trees,” Advances in Applied Math., vol. 32, pp. 669-680, 2004.
[27] M. Steel and D. Penny, “Distributions of Tree Comparison

Metrics—Some New Results,” Systematic Biology, vol. 42, no. 2,
pp. 126-141, 1993.

[28] K. Strimmer and A. von Haeseler, “Quartet Puzzling: A Quartet
Maximum Likelihood Method for Reconstructing Tree Topolo-
gies,” Molecular Biology and Evolution, vol. 13, pp. 964-969, 1996.

[29] D.L. Swofford, PAUP�, Phylogenetic Analysis Using Parsimony
(� and Other Methods). Sinauer Assoc., Inc., 2003.

[30] L.S. Vinh and A. von Haeseler, “Shortest Triplet Clustering:
Reconstructing Large Phylogenies Using Representative Sets,”
BMC Bioinformatics, vol. 6, no. 92, pp. 1-14, 2005.

[31] S.J. Willson, “Minimum Evolution Using Ordinary Least Squares
Is Less Robust Than Neighbor-Joining,” Bull. Math. Biology,
vol. 67, pp. 261-279, 2005.

Magnus Bordewich received the MMath de-
gree from Oxford University and the DPhil
degree in mathematics in 2003 from Oxford
University. Following postdoctoral positions at
the University of Canterbury, New Zealand, and
Leeds University, and he has been a permanent
staff member at Durham University since 2006.
He is a lecturer in the Department of Computer
Science, Durham University and an EPSRC
postdoctoral fellow. His research interests are

algorithms and complexity, combinatorics, phylogenetics, and computa-
tional biology.

Olivier Gascuel first studied mathematics
although his PhD was in computer science,
and he started working in bioinformatics in the
1980s, at the very beginning of the genomic era.
His first interests were in sequence analysis and
protein structure prediction, using machine
learning approaches. Since the mid-90s, he
has concentrated on evolution and phyloge-
netics, with particular focus on the mathematical
and computational tools and concepts. He now

leads a research group at the Centre National de la Recherche
Scientifique, Montpellier, France. He has published 110 papers and
book chapters and is the author of several widely used computer
programs in phylogenetics and bioinformatics.

Katharina T. Huber received the PhD degree in
mathematics from the University of Bielefeld,
Bielefeld, Germany, in 1997. After holding a
Marsden postdoctoral position at Massey Uni-
versity, she moved to Sundsvall, Sweden, where
she joined the Department of Mathematics and
Physics as a lecturer on discrete mathematics.
After two years, she moved to Uppsala, and
joined the Swedish University of Agricultural
Sciences and the Linnaeus Centre for Bioinfor-

matics. In April 2003, she was awarded the title of a “docent” by Uppsala
University, and in the summer of 2004, she joined the School of
Computing Sciences, University of East Anglia to take up a lectureship
in computational biology. Her research focuses on problems arising in
phylogenetics and finite metric spaces.

Vincent Moulton received the PhD degree in
mathematics from Duke University in 1994
and did postdoctoral research at University of
Bielefeld, University of Canterbury, and Massey
University. He was a senior lecturer in discrete
mathematics at Mid Sweden University from
1999 to 2002 and a professor in bioinformatics at
Uppsala University from 2002 to 2004. In 2004,
he moved to the School of Computing Sciences,
University of East Anglia, where he is a professor

in computational biology. His research interests are in phylogenetics,
computational biology of RNA, metabolic modeling, algorithms in
bioinformatics, and the study of discrete structures such as graphs and
finite metric spaces.

. For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/publications/dlib.

BORDEWICH ET AL.: CONSISTENCY OF TOPOLOGICAL MOVES BASED ON THE BALANCED MINIMUM EVOLUTION PRINCIPLE OF... 117

Authorized licensed use limited to: University of Durham. Downloaded on January 6, 2010 at 07:10 from IEEE Xplore.  Restrictions apply. 


