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Abstract

Given an integer λ ≥ 2, a graph G = (V,E) and a spanning subgraph H of G
(the backbone of G), a λ-backbone coloring of (G,H) is a proper vertex coloring
V → {1, 2, . . .} of G, in which the colors assigned to adjacent vertices in H differ by
at least λ. We study the case where the backbone is either a collection of pairwise
disjoint stars or a matching. We show that for a star backbone S of G the minimum
number ` for which a λ-backbone coloring of (G,S) with colors in {1, . . . , `} exists
can roughly differ by a multiplicative factor of at most 2 − 1

λ from the chromatic
number χ(G). For the special case of matching backbones this factor is roughly
2− 2

λ+1 . We also show that the computational complexity of the problem “Given a
graph G with a star backbone S, and an integer `, is there a λ-backbone coloring of
(G,S) with colors in {1, . . . , `}?” jumps from polynomially solvable to NP-complete
between ` = λ + 1 and ` = λ + 2 (the case ` = λ + 2 is even NP-complete for
matchings). We finish the paper by discussing some open problems regarding planar
graphs.
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1 Introduction

In [7] backbone colorings are introduced, motivated and put into a general
framework of coloring problems related to frequency assignment.

Graphs are used to model the topology and interference between transmit-
ters (receivers, base stations, sensors): the vertices represent the transmitters;
two vertices are adjacent if the corresponding transmitters are so close (or
so strong) that they are likely to interfere if they broadcast on the same or
‘similar’ frequency channels. The problem is to assign the frequency channels
in an economical way to the transmitters in such a way that interference is
kept at an ‘acceptable level’. This has led to various different types of coloring
problems in graphs, depending on different ways to model the level of interfer-
ence, the notion of similar frequency channels, and the definition of acceptable
level of interference (See, e.g., [16],[20]). Although new technologies have led
to different ways of avoiding interference between powerful transmitters, such
as base stations for mobile telephones, the above coloring problems still apply
to less powerful transmitters, such as those appearing in sensor networks.

We refer to [6] and [7] for an overview of related research, but we repeat the
general framework and some of the related research here for convenience and
background.

Given two graphs G1 and G2 with the property that G1 is a spanning sub-
graph of G2, one considers the following type of coloring problems: Deter-
mine a coloring of (G1 and) G2 that satisfies certain restrictions of type 1
in G1, and restrictions of type 2 in G2.

Many known coloring problems fit into this general framework. We mention
some of them here explicitly, without giving details. First of all suppose that
G2 = G2

1, i.e. G2 is obtained from G1 by adding edges between all pairs of
vertices that are at distance 2 in G1. If one just asks for a proper vertex
coloring of G2 (and G1), this is known as the distance-2 coloring problem.
Much of the research has been concentrated on the case that G1 is a planar
graph. We refer to [1], [4], [5], [18], and [21] for more details. In some versions of
this problem one puts the additional restriction on G1 that the colors should
be sufficiently separated, in order to model practical frequency assignment
problems in which interference should be kept at an acceptable level. One
way to model this is to use positive integers for the colors (modeling certain
frequency channels) and to ask for a coloring of G1 and G2 such that the colors
on adjacent vertices in G2 are different, whereas they differ by at least 2 on
adjacent vertices in G1. A closely related variant is known as the radio coloring
problem and has been studied (under various names) in [2], [9], [10], [11], [12],
[13], and [19]. A third variant is known as the radio labeling problem and
models a practical setting in which all assigned frequency channels should be
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distinct, with the additional restriction that adjacent transmitters should use
sufficiently separated frequency channels. Within the above framework this
can be modeled by considering the graph G1 that models the adjacencies of
n transmitters, and taking G2 = Kn, the complete graph on n vertices. The
restrictions are clear: one asks for a proper vertex coloring of G2 such that
adjacent vertices in G1 receive colors that differ by at least 2. We refer to [15]
and [17] for more particulars.

In [7], a situation is modeled in which the transmitters form a network in
which a certain substructure of adjacent transmitters (called the backbone) is
more crucial for the communication than the rest of the network. This means
more restrictions are put on the assignment of frequency channels along the
backbone than on the assignment of frequency channels to other adjacent
transmitters.

Postponing the relevant definitions, we consider the problem of coloring the
graph G2 (that models the whole network) with a proper vertex coloring such
that the colors on adjacent vertices in G1 (that models the backbone) differ
by at least λ ≥ 2. This is a continuation of the study in [7]. Throughout the
paper we consider two types of backbones: matchings and disjoint unions of
stars.

Matching backbones reflect the necessity to assign considerably different fre-
quencies to pairwise very close (or most likely interfering) transmitters. This
occurs in real world applications such as military scenarios, where soldiers or
military vehicles carry two (or sometimes more) radios for reliable communi-
cation. Future applications include the use of sensors or sensor tags in clothes
or on bodies.

For star backbones one could think of applications to sensor networks. If sen-
sors have low battery capacities, the tasks of transmitting data are often as-
signed to specific sensors, called cluster heads, that represent pairwise disjoint
clusters of sensors. Within the clusters there should be a considerable differ-
ence between the frequencies assigned to the cluster head and to the other sen-
sors within the same cluster, whereas the differences between the frequencies
assigned to the other sensors within the cluster, or between different clusters,
is of a secondary importance. This situation is well reflected by a backbone
consisting of disjoint stars.

We refer to [7] and [6] for a more extensive overview of related research, but
we repeat the relevant definitions in the next section.
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2 Terminology

For undefined terminology we refer to [3].

Let G = (V,E) be a graph, where V = VG is a finite set of vertices and
E = EG is a set of unordered pairs of two different vertices, called edges. A
function f : V → {1, 2, 3, . . .} is a vertex coloring of V if |f(u) − f(v)| ≥ 1
holds for all edges uv ∈ E. A vertex coloring f : V → {1, . . . , k} is called a
k-coloring. We say that f(u) is the color of u. The chromatic number χ(G)
is the smallest integer k for which there exists a k-coloring. A set V ′ ⊆ V
is independent if G does not contain edges with both end vertices in V ′. By
definition, a k-coloring partitions V into k independent sets V1, . . . , Vk.

Let H be a spanning subgraph of G, i.e., H = (VG, EH) with EH ⊆ EG.
Given an integer λ ≥ 1, a vertex coloring f is a λ-backbone coloring of (G,H),
if |f(u) − f(v)| ≥ λ holds for all edges uv ∈ EH . A λ-backbone coloring
f : V → {1, . . . , `} is called a λ-backbone `-coloring. The λ-backbone coloring
number bbcλ(G,H) of (G,H) is the smallest integer ` for which there exists
a λ-backbone `-coloring. Since a 1-backbone coloring is equivalent to a vertex
coloring, we assume from now on that λ ≥ 2. Throughout the manuscript we
will reserve the symbol “`” for λ-backbone `-colorings and the symbol “k” for
k-colorings.

A path is a graph P whose vertices can be ordered into a sequence v1, v2, . . . , vn
such that EP = {v1v2, . . . , vn−1vn}. A graph G is called connected if for every
pair of distinct vertices u and v, there exists a path connecting u and v. The
length of a path is the number of its edges. If a graph G contains a spanning
subgraph H that is a path, then H is called a Hamiltonian path.

A cycle is a graph C whose vertices can be ordered into a sequence v1, v2, . . . , vn
such that EC = {v1v2, . . . , vn−1vn, vnv1}. A tree is a connected graph that does
not contain any cycles.

A complete graph is a graph with an edge between every pair of vertices. The
complete graph on n vertices is denoted by Kn. A graph is called bipartite if
its vertices can be partitioned into two sets A and B such that each edge has
one of its endpoints incident with the set A and the other with B. A graph
G is complete p-partite if its vertices can be partitioned into p nonempty
independent sets V1, . . . , Vp such that its edge set E is formed by all edges
that have one end vertex in Vi and the other one in Vj for some 1 ≤ i < j ≤ p.

For q ≥ 1, a star Sq is a complete 2-partite graph with independent sets
V1 = {r} and V2 with |V2| = q; the vertex r is called the root and the vertices
in V2 are called the leaves of Sq. For the star S1 we arbitrarily choose one of
its two vertices to be the root. In our context a matching M is a collection

4



of pairwise vertex-disjoint stars that are all copies of S1. A matching M of a
graph G is called perfect if it is a spanning subgraph of G.

We call a spanning subgraph H of a graph G

• a tree backbone of G if H is a tree;
• a path backbone of G if H is a Hamiltonian path;
• a star backbone of G if H is a collection of pairwise vertex-disjoint stars;
• a matching backbone of G if H is a perfect matching.

Fig. 1. Matching and star backbones

See Figure 1 for an example of a graph G with a matching backbone M (left)
and a star backbone S (right). The thick edges are matching or star edges,
respectively. The grey circles indicate root vertices of the stars in S.

Obviously, bbcλ(G,H) ≥ χ(G) holds for any backbone H of a graph G.
In order to analyze the maximum difference between these two numbers the
following values can be introduced.

Tλ(k) = max {bbcλ(G, T ) | T is a tree backbone of G, and χ(G) = k}
Pλ(k) = max {bbcλ(G,P ) | P is a path backbone of G, and χ(G) = k}
Sλ(k) = max {bbcλ(G,S) | S is a star backbone of G, and χ(G) = k}
Mλ(k) = max {bbcλ(G,M) |M is a matching backbone of G, and χ(G) = k}.

3 Results

3.1 Existing results

The behavior of Tλ(k) and Pλ(k) is determined in [7] as summarized in the
following two results.

Theorem 1 T2(k) = 2k − 1 for all k ≥ 1.

Theorem 2 The function P2(k) takes the following values:

(a) for 1 ≤ k ≤ 4: P2(k) = 2k − 1;
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(b) P2(5) = 8 and P2(6) = 10;
(c) for k ≥ 7 and k = 4t: P2(4t) = 6t;
(d) for k ≥ 7 and k = 4t+ 1: P2(4t+ 1) = 6t+ 1;
(e) for k ≥ 7 and k = 4t+ 2: P2(4t+ 2) = 6t+ 3;
(f) for k ≥ 7 and k = 4t+ 3: P2(4t+ 3) = 6t+ 5.

The above theorems show the relation between the 2-backbone coloring num-
ber and the classical chromatic number in case the backbone is a tree or a path.
We observe that in the worst case the 2-backbone coloring number roughly
grows like 2k and 3k/2, respectively, where χ = k.

Problem 3 What are the values for Tλ(k) and Pλ(k) for λ ≥ 3?

3.2 Results of this paper

In this paper, we study the functions Sλ(k) andMλ(k). By definition,Mλ(k) ≤
Sλ(k) holds. We completely determine the behavior of these two functions.
We first determine all values Sλ(k), and observe that they roughly grow like
(2− 1

λ
)k. Then we determine all valuesMλ(k) and observe that they roughly

grow like (2 − 2
λ+1

)k. Their precise behavior is summarized in our two main
theorems.

Theorem 4 For λ ≥ 2 the function Sλ(k) takes the following values:

(a) Sλ(2) = λ+ 1;
(b) for 3 ≤ k ≤ 2λ− 3: Sλ(k) = d3k

2
e+ λ− 2;

(c) for 2λ− 1 ≤ k ≤ 2λ with λ = 2: Sλ(k) = k + 2λ− 2;
(d) for 2λ− 2 ≤ k ≤ 2λ− 1 with λ ≥ 3: Sλ(k) = k + 2λ− 2;
(e) for k = 2λ with λ ≥ 3: Sλ(k) = 2k − 1;
(f) for k ≥ 2λ+ 1: Sλ(k) = 2k − b k

λ
c.

Theorem 5 For λ ≥ 2 the function Mλ(k) takes the following values:

(a) for 2 ≤ k ≤ λ: Mλ(k) = k + λ− 1;
(b) for λ+ 1 ≤ k ≤ 2λ: Mλ(k) = 2k − 2;
(c) for k = 2λ+ 1: Mλ(k) = 2k − 3;
(d) for k = t(λ+ 1) with t ≥ 2: Mλ(k) = 2tλ;
(e) for k = t(λ+ 1) + c with t ≥ 2, 1 ≤ c < λ+3

2
: Mλ(k) = 2tλ+ 2c− 1;

(f) for k = t(λ+ 1) + c with t ≥ 2, λ+3
2
≤ c ≤ λ: Mλ(k) = 2tλ+ 2c− 2.

We note that there are many graphs G that have a star backbone S such
that bbcλ(G,S) < Sλ(χ(G)), or that have a matching backbone M such
that bbcλ(G,M) <Mλ(χ(G)). As an example we mention the class of split
graphs, e.g., graphs whose vertex set can be partitioned into a clique (i.e.,
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a set of pairwise adjacent vertices) and an independent set, with possibly
edges in between. In [8] we present (tight) upper bounds on the λ-star and λ-
matching backbone coloring number for this graph class. These upper bounds
are considerably smaller than the general bounds given in Theorem 4 and
Theorem 5, respectively.

The rest of the paper is organized as follows. In the next section we consider
the computational complexity of computing the λ-backbone coloring number
for star and matching backbones. The fifth section gives the proof of Theo-
rem 4, and the sixth section gives the proof of Theorem 5. There are many
open problems about backbone colorings. We refer to [7] for details. In the
last section of this paper we only focus on some open problems for matching
backbone colorings for planar graphs.

4 Complexity Results

The following decision problem can be defined.

λ-Backbone Colorability(`) (λ-BBC(`))

Instance: A graph G with a spanning subgraph H.
Question: Is bbcλ(G,H) ≤ `?

Of course, λ-BBC(`) is NP-complete if ` exceeds a certain value. In [7] it has
been shown that the complexity of 2-BBC(`) restricted to instance graphs
G with a tree backbone H jumps from polynomially solvable to NP-complete
between ` = 4 and ` = 5 (difficult even for path backbones). Here we restrict
ourselves to instance graphs G with a star backbone S.

Star λ-Backbone Colorability(`) (λ-SBBC(`))

Instance: A graph G with a star backbone S.
Question: Is bbcλ(G,S) ≤ `?

Theorem 6 λ-SBBC(`) is polynomially solvable if ` ≤ λ + 1, and it is NP-
complete if ` ≥ λ+ 2 (even when restricted to matching backbones).

Proof: Let G = (V,E) be a graph with a star backbone S = (V,ES). For
` ≤ λ no λ-backbone coloring exists. Now let ` = λ + 1. In any λ-backbone
coloring with color set {1, 2, . . . , λ + 1}, colors 2, 3, . . . , λ can not be used at
all, since each vertex is incident with an edge of ES. Hence bbcλ(G,S) = λ+1
if and only if G is bipartite.
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Let ` ≥ λ + 2. Obviously the problem λ-SBBC(`) is a member of NP. We
prove NP-completeness by reduction from Graph k-Colorability (cf. [14]):
Given a graph G = (VG, EG), does there exist a k-coloring of G? This problem
is known to be NP-complete for any integer k ≥ 3. We distinguish the following
cases.

Case 1 λ+ 2 ≤ ` ≤ 2λ− 1.
Let ` = λ + t for some 2 ≤ t ≤ λ − 1, and let G = (VG, EG) be an instance
of Graph 2t-Colorability. Let v1, v2, . . . , vn denote the vertices in VG.
We create n new vertices u1, u2, . . . , un and introduce new edges viui (i =
1, 2, . . . , n). The graph that results from this is denoted by G′. The new edges
form a matching backbone M of G′. We claim that χ(G) ≤ 2t if and only if
bbcλ(G

′,M) ≤ `.

Assume that bbcλ(G
′,M) ≤ `, and consider a λ-backbone `-coloring b of G′.

Since all vertices inG′ are incident with a matching edge, colors t+1, t+2, . . . , λ
can not be used at all. Then define a 2t-coloring c of G by:

• if b(v) = j for j ∈ {1, 2, . . . , t}: c(v) := j;
• if b(v) = λ+ j for j ∈ {1, 2, . . . , t}: c(v) := t+ j.

Next, assume that χ(G) ≤ 2t, and consider a 2t-coloring f : VG → {1, . . . , 2t}.
We define a λ-backbone `-coloring g : VG′ → {1, . . . , `} of (G′,M) by:

• if v ∈ VG and f(v) = j for j ∈ {1, 2, . . . , t}: g(v) := j;
• if v ∈ VG and f(v) = t+ j for j ∈ {1, 2, . . . , t}: g(v) := λ+ j;
• if g(vi) ≤ t: g(ui) := `;
• If g(vi) ≥ λ+ 1: g(ui) := 1.

Case 2 ` ≥ 2λ.
Let G = (VG, EG) be an instance of Graph `-Colorability, and denote
the vertices in VG by v1, v2, . . . , vn. We create n new vertices u1, u2, . . . , un and
introduce new edges viui (i = 1, 2, . . . , n). The graph that results from this
is denoted by G′. The new edges form a matching backbone M of G′. We
complete the proof by showing that χ(G) ≤ ` if and only if bbcλ(G

′,M) ≤ `.

Indeed, assume that bbcλ(G
′,M) ≤ ` and consider such a λ-backbone `-

coloring. Then the restriction to the vertices in VG yields an `-coloring of G.
Next assume that χ(G) ≤ `, and consider an `-coloring f : VG → {1, , . . . , `}.
We extend f to a λ-backbone `-coloring of (G′,M): If f(vi) ≤ λ, then vertex
ui is colored with color `, and otherwise it is assigned color 1. This completes
the proof. �
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5 Proof of Theorem 4

We prove Theorem 4 in two parts. First we show that bbcλ(G,S) for any
graph G with arbitrary star backbone S is at most the value of Sλ(χ(G)) as
given in Theorem 4. Next we present a class of graphs G that have a star
backbone S such that bbcλ(G,S) is at least the value of Sλ(χ(G)) that is
given in Theorem 4. This way we obtain coinciding upper and lower bounds
on Sλ(k) that prove the theorem.

5.1 Proof of the Upper Bounds

Let G = (V,E) be a graph with χ(G) = k and let V1, . . . , Vk denote the
corresponding independent sets in a k-coloring. Let S = (V,ES) be a star
backbone of G. If k = 2 then G is bipartite, and we use colors 1 and λ + 1.
This proves the upper bound for case (a) of the theorem.

Case (b) 3 ≤ k ≤ 2λ− 3.

Consider the following color sets:

• Ci = {i, k + λ− 1− i} for i = 1, . . . , bk
2
c;

• Ci = {i, 2k + λ− 1− i} for i = bk
2
c+ 1, . . . , k.

The union of these k color sets consists of 2k colors, namely the colors in
{1, . . . , k} together with the colors in {k+λ−1−bk

2
c, . . . , 2k+λ−1−(bk

2
c+1)}.

The largest color used is 2k + λ− 1− (bk
2
c+ 1) = d3k

2
e+ λ− 2.

We construct a λ-backbone coloring of (G,S) such that every vertex in Vi
(i = 1, . . . , k) is colored with a color in Ci. Since the vertex subsets Vi are
independent, we will obtain a vertex coloring this way. To show that we can
obtain a λ-backbone (d3k

2
e+λ−2)-coloring this way, we have to be a bit more

careful.

For 1 ≤ i ≤ bk
2
c, a root vertex in Vi is colored with the first color of Ci. For

bk
2
c+ 1 ≤ i ≤ k, a root vertex in Vi is colored with the second color of Ci.

The leaves in a set Vj of a star with a root in a set Vi for 1 ≤ i ≤ bk
2
c are colored

with the second color of Cj. This does not give any conflict, since the smallest
gap appears if the root vertex is in Vb k

2
c and one of its leaves is in Vb k

2
c−1, or

the other way around. In both cases this gap is k+ λ− 1− bk
2
c − (bk

2
c − 1) =

k + λ− 2bk
2
c ≥ λ.

The leaves in a set Vj of a star with a root in a set Vi for bk
2
c + 1 ≤ i ≤ k
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are colored with the first color of Cj. This is possible, since the smallest gap
appears if the root vertex is in Vk and one of its leaves is in Vk−1, or the other
way around. In both cases this gap is 2k+ λ− 1− k− (k− 1) = λ. Hence, we
indeed have obtained a desired λ-backbone (d3k

2
e+ λ− 2)-coloring of (G,S).

Case (c) λ = 2, k = 3 or λ = 2, k = 4.

For proving that S2(3) ≤ 5 we use color sets C1 = {1}, C2 = {3}, C3 = {5}.
We color the vertices of V1 by 1, the vertices of V2 by 3, and the vertices of V3
by 5. This gives us a 2-backbone 5-coloring of (G,S).

For proving that S2(4) ≤ 6 we use color sets C1 = {1}, C2 = {2, 3}, C3 = {4, 5}
and C4 = {6}. We use color 1 for all vertices in V1, and color 6 for all vertices
in V4. We color all roots in V2 by color 3, and all roots in V3 by color 4. If
v ∈ V2 is a leaf of a star with root in V1, we color v by 3. Otherwise we color v
by 2. If w ∈ V3 is a leaf of a star with root in V4, we color w by 4. Otherwise
we color w by 5. This gives us a 2-backbone 6-coloring of (G,S).

For the cases (d)− (f) we need the following lemma.

Lemma 7 Let G = (V,E) be a graph with χ(G) = k and let V1, . . . , Vk denote
the corresponding independent sets in a k-coloring. Let S = (V,ES) be a star
backbone of G. For i = 1, . . . , p, let Ci = {ai} be a set consisting of one
color. For j = 1, . . . , q, let Dj = {bj, cj} be a set consisting of two colors.
Let d = max{a1, . . . , ap, b1, . . . , bq, c1, . . . , cq}. Then (G,S) has a λ-backbone
d-coloring if the following conditions are satisfied:

(i) p+ q = k.
(ii) Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ p.

(iii) Di ∩Dj = ∅ for all 1 ≤ i < j ≤ q.
(iv) Ci ∩Dj = ∅ for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.
(v) |ai − aj| ≥ λ for all 1 ≤ i < j ≤ p.

(vi) |ai − bj| ≥ λ for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.
(vii) |bj − cj| ≥ 2λ− 1 for all 1 ≤ j ≤ q.

Proof: Due to (i), we can map each vertex in Vi to a color in Ci for i = 1, . . . , p
and each vertex v in Vj to a color in Dj−p for j = p+ 1, . . . , k. Since the sets
Vi are independent, conditions (ii)-(iv) imply that this way we are guaranteed
to obtain a vertex coloring of G with colors in {1, . . . , d}. Below we explain
how we can refine this strategy such that we obtain a λ-backbone d-coloring
f of (G,S).

So far only the colors of vertices in Vi for i = 1, . . . , p have been fixed by a
coloring f as above. Due to (v), |f(u) − f(v)| ≥ λ for all star edges uv with
u ∈ Vi, v ∈ Vj for some 1 ≤ i < j ≤ p.
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We let f color a root vertex in Vj for p + 1 ≤ j ≤ k with color bj−p. Due to
(vi), we find that |f(v) − f(u)| ≥ λ holds for all star edges uv with leaf u in
Vi for some 1 ≤ i ≤ p and root v in Vj for some p+ 1 ≤ j ≤ k.

What about the other vertices? They are all leaf vertices in sets Vj with
p+ 1 ≤ j ≤ k. Let v ∈ Vj with p+ 1 ≤ j ≤ k be a leaf vertex of a star S with
root w. Let x be the color assigned to w. Then colors x− λ+ 1, . . . , x+ λ− 1
are forbidden colors for v. The distance between x + λ − 1 and x − λ + 1 is
2λ−2. Since the two colors in Dj−p have pairwise distance at least 2λ−1 due
to (vii), at least one of them is feasible for v. This finishes the proof of the
lemma. �

Case (d) 2λ− 2 ≤ k ≤ 2λ− 1 with λ ≥ 3.

We use color sets:

• C1 = {k};
• Dj = {j, j + 2λ− 1} for j = 1, . . . , k − 1.

We will show that these color sets satisfy the conditions of Lemma 7. First note
that these k color sets are pairwise disjoint: the union of these sets consists of
all the colors in {1, . . . , k} together with all the colors in {2λ, . . . , k+ 2λ− 2}.
We set bj := j for 1 ≤ j ≤ dk

2
e − 1. Then a1 − bj = k − j ≥ k − dk

2
e+ 1 ≥ λ.

for 1 ≤ j ≤ dk
2
e − 1. We set bj := j + 2λ − 1 for dk

2
e ≤ j ≤ k − 1. Then

bj − a1 = j + 2λ − 1 − k ≥ dk
2
e + 2λ − 1 − k ≥ λ for dk

2
e ≤ j ≤ k − 1. We

observe that the two colors bj, cj in any set Dj have pairwise distance 2λ− 1.
Hence, all conditions of Lemma 7 are satisfied. This implies that (G,S) has a
λ-backbone (k + 2λ− 2)-coloring.

Case (e) k = 2λ with λ ≥ 3.

We use color sets:

• C1 = {4λ− 1};
• Dj = {j, 2λ− 1 + j} for j = 1, . . . , k − 1.

We will show that these color sets satisfy the conditions of Lemma 7. Note that
these k color sets are pairwise disjoint: the union of these sets consists of all the
colors in {1, . . . , k−1} together with all the colors in {2λ, . . . , 4λ−1}. We set
bj := j for 1 ≤ j ≤ k−1. Then a1−bj = 4λ−1−j ≥ 4λ−1−(k−1) = 2λ ≥ λ
for 1 ≤ j ≤ k − 1. We note that the difference between the two colors bj and
cj in any set Dj is equal to 2λ− 1 + j − j = 2λ− 1. Hence, all conditions of
Lemma 7 are satisfied. This implies that (G,S) has a λ-backbone (4λ − 1)-
coloring.

Case (f) k ≥ 2λ+ 1.

11



We use color sets:

• Ci = {(i− 1)λ+ 1} for i = 1, . . . , b k
λ
c;

• Dj = {d jλ
λ−1e, j + k} for j = 1, . . . , b k

λ
c(λ− 1);

• Dj = {j − b k
λ
c, j + k} for j = b k

λ
c(λ− 1) + 1, . . . , k − b k

λ
c and k > b k

λ
cλ.

We will show that these k color sets satisfy the conditions of Lemma 7. If
j = s(λ−1) + t for some integers s ≥ 0 and 0 ≤ t ≤ λ−2, then d jλ

λ−1e is equal
to sλ in case t = 0 and to sλ + t + 1 in case t > 0. Then Ci ∩ Dj is empty
for all 1 ≤ i ≤ b k

λ
c and 1 ≤ j ≤ b k

λ
c(λ− 1). Hence the k color sets as defined

above are pairwise disjoint, and cover the whole range 1, . . . , 2k − b k
λ
c.

We observe that two colors ai, aj in two different sets Ci and Cj are at least λ
apart from each other. We define bj := j+k for 1 ≤ j ≤ k−b k

λ
c. The smallest

gap between a color bj and a color ai is 1+k−((b k
λ
c−1)λ+1) = k−b k

λ
cλ+λ ≥ λ.

For j = 1, . . . , b k
λ
c(λ− 1), the distance between two colors in a color set Dj is

j+k−d jλ

λ− 1
e = j+k−dj+ j

λ− 1
e = k−d j

λ− 1
e ≥ k−d

b k
λ
c(λ− 1)

λ− 1
e = k−bk

λ
c.

Also the distance between two colors in a color set Dj for j = b k
λ
c(λ − 1) +

1, . . . , k − b k
λ
c is at least k − b k

λ
c. We deduce that

k − b k
λ
c = dk(λ−1)

λ
e ≥ d (2λ+1)(λ−1)

λ
e = d2λ− 1− 1

λ
e = 2λ− 1.

Hence, all conditions of Lemma 7 are satisfied. This implies that (G,S) has a
λ-backbone (2k − b k

λ
c)-coloring.

5.2 Proof of the Lower Bounds

Let λ ≥ 2. The case k = 2 is trivial. For k ≥ 3, we consider the Turán graph
T (k2, k), i.e., a complete k-partite graph that consists of k independent sets
V1, . . . , Vk that are all of cardinality k. Let S = (V,ES) be a star backbone of
T (k2, k) that consists of k stars Sk−1. Each Vi contains exactly one root vertex
of some star in S and its other k−1 vertices are leaves of stars rooted in k−1
different sets Vj 6= Vi. See Figure 2 for an example of the graph T (9, 3) with
star backbone S; the sets Vi are indicated and the thick edges are the star
edges. For our case analysis we first prove a number of results for an arbitrary
λ-backbone `-coloring of (T (k2, k), S).

Let f be a λ-backbone `-coloring of (T (k2, k), S). Since T (k2, k) is complete
k-partite, any color that shows up in some set Vi can not show up in any Vj
with j 6= i. We denote by Ci the set of colors that are used on vertices in

12



Fig. 2. The graph T (9, 3) with star backbone S.

Vi. If |Ci| = 1, then Vi is called monochromatic, and if |Ci| ≥ 2, then Vi is
called polychromatic. We denote by s1 and s2 the number of monochromatic
and polychromatic sets, respectively. Then we immediately have s1 + s2 = k
and s1 + 2s2 ≤ ` implying the following observation.

Observation 8 Let f be a λ-backbone `-coloring of (T (k2, k), S) with s1
monochromatic sets. Then s1 ≥ 2k − ` holds.

Since all stars in S have (exactly) one leaf in any set that does not contain
their root vertex, we immediately have the following.

Observation 9 Let f be a λ-backbone `-coloring of (T (k2, k), S). Let x be the
color for the root in set Vi. Let Vj (j 6= i) be a monochromatic set colored by
y. Then the distance between x and y is at least λ.

We use Observation 9 to prove the following lemma.

Lemma 10 Let f be a λ-backbone `-coloring of (T (k2, k), S) with s1 monochro-
matic sets and s2 polychromatic sets. Then

` ≥

 (k − 1)λ+ 1 if s2 = 0;

s1(λ− 1) + k if s2 > 0.
(1)

Proof: Suppose s2 = 0. Then s1 = k, and by Observation 9 there are at
least (k − 1) gaps of at least λ− 1 colors that can not be used to color the k
roots. Then the total number of colors needed is at least (k− 1)(λ− 1) + k =
(k − 1)λ+ 1.

If s2 > 0, Observation 9 implies that there are at least s1 gaps of at least λ−1
colors. In this case the total range of colors is at least s1(λ− 1) + k. �

A root in a monochromatic set is called monochromatic as well. A root color is
a color that is used for a root. Recall that all stars in S have (exactly) one leaf
in any set that does not contain their root vertex. Then we can easily make
the following observation.

13



Observation 11 Let f be a λ-backbone `-coloring of (T (k2, k), S). Let x be
the color for the root in Vi. Then there are (at least) k − 1 different colors
y1, . . . , yi−1, yi+1, . . . , yk that have distance at least λ to x: every Vj (j 6= i)
contains a vertex with color yj.

Due to Observation 11 we can prove the following lemma.

Lemma 12 Let f be a λ-backbone `-coloring of (T (k2, k), S). If ` ≤ k+2λ−3,
then only colors from A = {1, . . . , `− k − λ + 2} and B = {k + λ− 1, . . . , `}
can be assigned to root vertices.

Proof: Suppose a root v is assigned color c with c in {`−k−λ+3, . . . , k+λ−2}.
By Observation 11 there have to be at least k− 1 colors with distance at least
λ from c. If λ+1 ≤ c ≤ `−λ, only colors in {1, . . . , c−λ} and in {c+λ, . . . , `}
can be used. These sets together contain c−λ+`−(c+λ)+1 = `−2λ+1 ≤ k−2
colors. Hence either c ≤ λ or c ≥ ` − λ + 1 holds. If c ≤ λ, then only colors
in {c + λ, . . . , `} are at distance at least λ. The cardinality of this set is
` − (c + λ) + 1 ≤ ` − (` − k − λ + 3) − λ + 1 = k − 2. If c ≥ ` − λ + 1, then
only colors in {1, . . . , c− λ} are at distance at least λ. The cardinality of this
set is c− λ ≤ k + λ− 2− λ = k − 2. �

We are now ready to make our case analysis.

Case (b) 3 ≤ k ≤ 2λ− 3.

Suppose there exists a λ-backbone `-coloring of (T (k2, k), S) with ` = d3k
2
e+

λ−3 colors. Then ` = d3k
2
e+λ−3 ≤ k+dk

2
e+λ−3 ≤ k+2λ−3 and by Lemma 12

only colors in A = {1, . . . , dk
2
e−1} and colors in B = {k+λ−1, . . . , d3k

2
e+λ−3}

can be used on roots. Each root is in a different independent set Vi. Therefore
the number of different root colors is equal to k. However, the total number
of colors in A united with B is 2(dk

2
e − 1) < k. This contradiction shows that

we must have ` ≥ d3k
2
e+ λ− 2.

Case (c,d) 2λ− 1 ≤ k ≤ 2λ with λ = 2 or 2λ− 2 ≤ k ≤ 2λ− 1 with λ ≥ 3.

Suppose there exists a λ-backbone `-coloring of (T (k2, k), S) with ` = k+2λ−3
colors. By Lemma 12, only colors in A = {1, . . . , λ − 1} and B = {k + λ −
1, . . . , k + 2λ − 3} may be used on roots. By Observation 8, s1 ≥ 2k − ` =
k− 2λ+ 3 ≥ 2λ− 2− 2λ+ 3 ≥ 1. So there exists at least one monochromatic
set. Let y be the (root) color used on this set. Without loss of generality we
may assume that y is in A. By Observation 9, all other k− 1 root colors must
be in B. However, B contains λ− 1 < k − 1 colors. This contradiction shows
that we must have ` ≥ k + 2λ− 2.

Case (e) k = 2λ with λ ≥ 3.
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Suppose there exists a λ-backbone `-coloring of (T (k2, k), S) with 2k − 2 =
4λ−2 colors. If s2 = 0, then by (1) we would have 2k−2 = ` ≥ (k−1)λ+1 ≥
3(k − 1) + 1 = 3k − 2. Hence s2 > 0.

By Observation 8, s1 ≥ 2k − ` = 2. Together with (1) we then deduce that

4λ− 2 = ` ≥ s1(λ− 1) + k ≥ 2(λ− 1) + 2λ = 4λ− 2.

Hence we find that s1 = 2, and ` = s1(λ− 1) + k. Due to Observation 9, there
are only three feasible ways to choose k different root colors:

1. monochromatic roots: 1, λ+ 1, other roots: 2λ+ 1, . . . , 4λ− 2;
2. monochromatic roots: 1, 4λ− 2, other roots: λ+ 1, . . . , 3λ− 2;
3. monochromatic roots: 3λ− 2, 4λ− 2, other roots: 1, . . . , 2λ− 2.

Consider situation 1. Since color 2λ+ 1 is a root color, by Observation 11, in
every other color set there must be at least one color that has distance at least
λ to color 2λ + 1. This necessary condition is already met for the sets with
root color 1, root color λ + 1 or root colors 3λ + 1, . . . , 4λ − 2. However, the
sets with root colors 2λ+ 2, . . . , 3λ need an extra color. Hence, we need λ− 1
extra colors that have distance at least λ to color 2λ + 1. There are exactly
λ−1 such colors available, namely colors 2, . . . , λ. So one of the colors 2, . . . , λ
must be in the same set with color 2λ+ 2.

Simultaneously, since color 2λ+ 2 is also a root color, in every other color set
there must be at least one color that has distance at least λ to color 2λ + 2.
This condition is not met yet for the sets with root color 2λ+ 1 or root colors
2λ+ 3, . . . , 3λ+ 1. To satisfy the condition, we need λ extra colors that have
distance at least λ to color 2λ+2. The only available colors are colors 2, . . . , λ
and color λ+2. This implies that none of the colors 2, . . . , λ can be in the same
set with color 2λ+ 2. This contradiction shows that we must have ` ≥ 2k− 1.

Consider situation 2. Since color λ + 1 is a root color, by Observation 11, in
every other color set there must be at least one color that has distance at least
λ to color λ+ 1. This necessary condition is already met for the sets with root
color 1, root color 4λ− 2 or root colors 2λ+ 1, . . . , 3λ− 2. However, the sets
with root colors λ+ 2, . . . , 2λ need an extra color. Hence, we need λ− 1 extra
colors that have distance at least λ to color λ + 1. There are exactly λ − 1
such colors available, namely colors 3λ − 1, . . . , 4λ − 3. So one of the colors
3λ− 1, . . . , 4λ− 3 must be in the same set with color λ+ 2.

Simultaneously, since color λ + 2 is also a root color, in every other color set
there must be at least one color that has distance at least λ to color λ + 2.
This condition is not met yet for the sets with root color λ+ 1 or root colors
λ + 3, . . . , 2λ + 1. To satisfy the condition, we need λ extra colors that have
distance at least λ to color λ+ 2. The only available colors are color 2 and the
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colors 3λ−1, . . . , 4λ−3. This implies that none of the colors 3λ−1, . . . , 4λ−3
can be in the same set with color λ+2. This contradiction shows that we must
have ` ≥ 2k − 1.

By symmetry, situation 3 yields the same conclusion as situation 1. Hence,
we conclude that any λ-backbone `-coloring of (T (k2, k), S) has ` ≥ 2k − 1.

Case (f) k ≥ 2λ+ 1.

Suppose there exists a λ-backbone `-coloring of (T (k2, k), S) with ` = 2k −
b k
λ
c − 1 colors. Suppose s2 = 0. Then there are only monochromatic sets, i.e.,

s1 = k. By (1) the total number of colors needed is at least (k − 1)λ + 1.
However, the difference between this number and ` is

(k − 1)λ+ 1− (2k − b k
λ
c − 1) = k(λ− 2) + b k

λ
c − λ+ 2 ≥ 2λ2 − 4λ+ 2 > 0.

Hence s2 > 0. Write k = aλ+ r for some integers a ≥ 2 and 0 ≤ r ≤ λ−1. By
Observation 8, s1 ≥ 2k−` = b k

λ
c+1 holds. Together with (1) this implies that

we need at least (b k
λ
c+1)(λ−1)+k colors. However, the difference between this

number and ` is (b k
λ
c+1)(λ−1)+k−(2k−b k

λ
c−1) = b k

λ
cλ+λ−k = λ−r > 0.

This contradiction shows that we must have ` ≥ 2k − b k
λ
c.

This finishes the proof of the lower bounds, and we have completed the proof
of Theorem 4.

6 Proof of Theorem 5

We prove Theorem 5 in two parts. First we show that bbcλ(G,M) for any
graphG with arbitrary matching backboneM is at most the value ofMλ(χ(G))
as given in Theorem 5. Next we present a class of graphs G that have a match-
ing backbone M such that bbcλ(G,M) is at least the value ofMλ(χ(G)) that
is given in Theorem 5. This way we obtain coinciding upper and lower bounds
on Mλ(k) proving the theorem.

6.1 Proof of the Upper Bounds

Let G = (V,E) be a graph with χ(G) = k and let V1, . . . , Vk denote the cor-
responding independent sets in a k-coloring. Let M = (V,EM) be a matching
backbone of G.

Case (a) 2 ≤ k ≤ λ.
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If k = 2 then G is bipartite, and we use colors 1 and λ+ 1. Let k ≥ 3. Let uv
be a matching edge with u ∈ Vi and v ∈ Vj for some 1 ≤ i < j ≤ k. We color
u by i and v by λ + j − 1. Then the difference between the colors of u and v
is at least λ. So vertices in V1 get color 1, vertices in Vi with 2 ≤ i ≤ k − 1
get color i or λ+ i− 1, and vertices in Vk get color λ+ k− 1. Hence, we have
obtained a λ-backbone (λ+ k − 1)-coloring of (G,M).

Case (b) λ+ 1 ≤ k ≤ 2λ.

Let uv be a matching edge with u ∈ Vi and v ∈ Vj for some 1 ≤ i < j ≤ k.
We color u by i and v by k+ j−2. This way we obtain a λ-backbone (2k−2)-
coloring of (G,M).

For the cases (c)− (f) we need the following lemma. Observe that this lemma
is exactly the same as Lemma 7 except that condition (vi) of Lemma 7 could
be dropped. The first two paragraphs of the proof can be copied from the
proof of Lemma 7.

Lemma 13 Let G = (V,E) be a graph with χ(G) = k and let V1, . . . , Vk
denote the corresponding independent sets in a k-coloring. Let M = (V,EM)
be a matching backbone of G. For i = 1, . . . , p, let Ci = {ai} be a set consisting
of one color. For j = 1, . . . , q, let Dj = {bj, cj} be a set consisting of two colors.
Let d = max{a1, . . . , ap, b1, . . . , bq, c1, . . . , cq}. Then (G,M) has a λ-backbone
d-coloring if the following conditions are satisfied:

(i) p+ q = k.
(ii) Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ p.

(iii) Di ∩Dj = ∅ for all 1 ≤ i < j ≤ q.
(iv) Ci ∩Dj = ∅ for all 1 ≤ i ≤ p and 1 ≤ j ≤ q.
(v) |ai − aj| ≥ λ for all 1 ≤ i < j ≤ p.

(vi) |bj − cj| ≥ 2λ− 1 for all 1 ≤ j ≤ q.

Proof:

Let uv be a matching edge, where u ∈ Vi with 1 ≤ i ≤ p, and v ∈ Vj with
p + 1 ≤ j ≤ k. Then u has color ai. Then colors ai − λ + 1, . . . , ai + λ − 1
are forbidden colors for v. The distance between ai + λ− 1 and ai − λ + 1 is
2λ−2. Since the two colors in Dj−p have pairwise distance at least 2λ−1 due
to (vi), at least one of them is feasible for v.

For all matching edges uv with u ∈ Vi and v ∈ Vj for some p+ 1 ≤ i < j ≤ k
we choose u to be the root. We color u with bi. The remaining vertices, whose
colors have not yet been fixed, are all leaf vertices in sets Vj with p+1 ≤ j ≤ k.
Again due to (vi) we can color them with a feasible color from Dj−p. This
finishes the proof of the lemma. �
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Below we show which color sets we use for each case. To check that these color
sets satisfy the conditions of Lemma 13 is a simple exercise and left to the
reader.

Case (c) k = 2λ+ 1.

We use color sets:

• Ci = {iλ+ 1} for i = 0, . . . , 3;
• D1,j = {j, 2λ+ j} for j = 2, . . . , λ;
• D2,j = {λ+ j, 3λ+ j} for j = 2, . . . , λ− 1 and λ ≥ 3.

Case (d) k = t(λ+ 1) with t ≥ 2.

We use color sets:

• Ci = {iλ+ 1} for i = 0, . . . , 2t− 1;
• Di,j = {iλ+ j, (t+ i)λ+ j} for i = 0, . . . , t− 1 and j = 2, . . . , λ.

Case (e) k = t(λ+ 1) + c with t ≥ 2, 1 ≤ c < λ+3
2

.

We use color sets:

• Ci = {iλ+ 1} for i = 0, . . . , 2t;
• D0,j = {j, 2tλ+ 2j − 2} for j = 2, . . . , c and c ≥ 2;
• D0,j = {j, tλ+ j} for j = c+ 1, . . . , λ and c < λ;
• Di,j = {iλ+ j, (t+ i)λ+ j} for i = 1, . . . , t− 1 and j = 2, . . . , λ;
• Dt,j = {tλ+ j, 2tλ+ 2j − 1} for j = 2, . . . , c and c ≥ 2.

Case (f) k = t(λ+ 1) + c with t ≥ 2, λ+3
2
≤ c ≤ λ.

We use color sets:

• Ci = {iλ+ 1} for i = 0, . . . , 2t;
• C2t+1 = {2tλ+ 2c− 2};
• D0,j = {j, 2tλ+ 2j − 2} for j = 2, . . . , c− 1;
• D0,j = {j, tλ+ j} for j = c, . . . , λ;
• Di,j = {iλ+ j, (t+ i)λ+ j} for i = 1, . . . , t− 1 and j = 2, . . . , λ;
• Dt,j = {tλ+ j, 2tλ+ 2j − 1} for j = 2, . . . , c− 1.

6.2 Proof of the Lower Bounds

Let λ ≥ 2. For k ≥ 2, we consider the Turán graph T (k2 − k, k − 1), i.e., a
complete k-partite graph that consists of k independent sets V1, . . . , Vk that
are all of cardinality k − 1. For 1 ≤ i ≤ k, let {vi,j | 1 ≤ j ≤ k, j 6= i} be
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the vertices of Vi, and let M be a matching backbone of T (k2− k, k− 1) such
that EM = {vi,jvj,i | 1 ≤ i < j ≤ k}. See Figure 3 for an example of the graph
T (6, 2) with matching backbone M . So VT (6,2) = {v1,2, v1,3, v2,1, v2,3, v3,1, v3,2}
and EM = {v1,2v2,1, v1,3v3,1, v2,3v3,2}. For our case analysis we first prove a

Fig. 3. The graph T (6, 2) with matching backbone M .

number of results for an arbitrary λ-backbone `-coloring of (T (k2 − k, k −
1),M).

Consider some λ-backbone `-coloring f of (T (k2− k, k− 1),M). Since T (k2−
k, k− 1) is complete k-partite, any color that shows up in some set Vi can not
show up in any Vj with j 6= i. As in the star backbone case, we denote by Ci
the set of colors that are used on vertices in Vi. Recall that a set Vi is called
monochromatic if |Ci| = 1, and polychromatic if |Ci| ≥ 2. Again we denote by
s1 and s2 the number of monochromatic and polychromatic sets, respectively.
Let m ≤ ` be the number of different colors used on V . Then we immediately
have s1 + s2 = k and s1 + 2s2 ≤ m implying the following observation.

Observation 14 Let f be a λ-backbone `-coloring of (T (k2 − k, k − 1),M)
using m colors and with s1 monochromatic sets. Then s1 ≥ 2k −m holds.

Since there exists a matching edge between any two independent sets Vi and
Vj, we obtain the following observation.

Observation 15 Let f be a λ-backbone `-coloring of T (k2 − k, k− 1),M). If
color x is assigned to a monochromatic set Vi, and color y is assigned to a
monochromatic set Vj, then the distance between x and y is at least λ.

We use Observation 15 to prove the following lemma.

Lemma 16 Let f be a λ-backbone `-coloring of (T (k2 − k, k − 1),M). Then

` ≥ 2λk

λ+ 1
− λ− 1

λ+ 1
. (2)

Proof: Let m be the number of different colors that f uses. Observation 15
yields ` ≥ λ(s1 − 1) + 1. Together with Observation 14 and m ≤ `, we obtain
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` ≥ λ(s1− 1) + 1 ≥ λ(2k−m− 1) + 1 ≥ λ(2k− `− 1) + 1, which is equivalent
to inequality (2). �

Also the following lemma is useful.

Lemma 17 Let f be a λ-backbone `-coloring of (T (k2−k, k−1),M). If ` ≤ k+
2λ−3 then only colors from A = {1, . . . , `−k−λ+2} and B = {k+λ−1, . . . , `}
can be assigned to monochromatic sets.

Proof: Suppose a vertex v from a monochromatic set is assigned color c with
c in {` − k − λ + 3, . . . , k + λ − 2}. Recall that there exists a matching edge
between any two independent sets Vi and Vj. Then there are at least k − 1
colors that have distance at least λ to c. If λ + 1 ≤ c ≤ ` − λ, only colors in
{1, . . . , c − λ} and in {c + λ, . . . , `} can be used. These sets together contain
c−λ+`−(c+λ)+1 = `−2λ+1 ≤ k−2 colors. Hence either c ≤ λ or c ≥ `−λ+1
holds. If c ≤ λ, then only colors in {c + λ, . . . , `} are at distance at least λ.
The cardinality of this set is `− (c+λ)+1 ≤ `− (`−k−λ+3)−λ+1 = k−2.
If c ≥ `− λ + 1, then only colors in {1, . . . , c− λ} are at distance at least λ.
The cardinality of this set is c− λ ≤ k + λ− 2− λ = k − 2. �

We are now ready to make our case analysis.

Case (a) 2 ≤ k ≤ λ.

The case k = 2 is trivial. Let k ≥ 3. Suppose (T (k2 − k, k − 1),M) has a
λ-backbone `-coloring with ` = k + λ− 2 colors. By Lemma 17, we find that
s1 = 0. Colors k − 1, . . . , λ can not be used at all, since there is no color in
{1, . . . , λ+ k− 2} that has distance at least λ to one of them. So we can only
use colors in {1, . . . , k− 2} and {λ+ 1, . . . , λ+ k− 2}. Then the total number
m of different colors is at most 2(k−2). Hence, by Observation 14 we find that
s1 ≥ 2k −m > 0. This contradiction shows that we must have ` ≥ k + λ− 1.

Case (b) λ+ 1 ≤ k ≤ 2λ.

Suppose (T (k2 − k, k − 1),M) has a λ-backbone `-coloring with ` = 2k − 3
colors. By Observation 14, we find that s1 ≥ 2k − m ≥ 2k − ` ≥ 3 must
hold. By Lemma 17, only monochromatic colors in A = {1, . . . , k−λ−1} and
B = {k + λ − 1, . . . , 2k − 3} can be used. Both sets have k − λ − 1 ≤ λ − 1
elements. Then, by Observation 15, at most one color in A and at most one
color in B can be used for monochromatic sets. Hence we find that s1 ≤ 2.
This contradiction shows that ` ≥ 2k − 2.

Case (c) k = 2λ+ 1.

Analogously to the proof of the previous case we can show that ` ≥ 2k − 3
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must hold for any λ-backbone `-coloring of (T (k2 − k, k − 1),M).

Case (d) k = t(λ+ 1) with t ≥ 2.

Inequality (2) yields ` ≥ 2tλ − λ−1
λ+1

= 2tλ − 1 + 2
λ+1

for any λ-backbone
`-coloring of (T (k2 − k, k − 1),M). Since ` is an integer, this implies that
` ≥ 2tλ.

Case (e) k = t(λ+ 1) + c with t ≥ 2 and 1 ≤ c < λ+3
2

.

Inequality (2) yields ` ≥ 2tλ+ 2λc
λ+1
− λ−1

λ+1
= 2tλ+2c−1+ 2−2c

λ+1
> 2tλ+2c−1+

2−λ−3
λ+1

= 2tλ + 2c− 2 for any λ-backbone `-coloring of (T (k2 − k, k − 1),M).
Since ` is an integer, we have found that ` ≥ 2tλ+ 2c− 1.

Case (f) k = t(λ+ 1) + c with t ≥ 2 and λ+3
2
≤ c ≤ λ.

Inequality (2) yields ` ≥ 2tλ+ 2λc
λ+1
− λ−1

λ+1
= 2tλ+2c−1+ 2−2c

λ+1
≥ 2tλ+2c−1+

2−2λ
λ+1

= 2tλ+2c−3+ 2
λ+1

for any λ-backbone `-coloring of (T (k2−k, k−1),M).
Since ` is an integer, this implies that ` ≥ 2tλ+ 2c− 2.

This finishes the proof of the lower bounds, and we have completed the proof
of Theorem 5.

7 Matching Backbones for Planar Graphs

7.1 Implications of the Four Color Theorem

In the last section of this paper we focus on some open problems for matching
backbone colorings on planar graphs. For simplicity we assume λ = 2. The
Four Color Theorem together with Theorem 5 implies that bbc2(G,M) ≤ 6
holds for any planar graph G with a matching backbone M . It seems likely that
this bound 6 is not best possible. However, the planar graph G1 with indicated
matching backbone M consisting of edges ab′, bc′, cd′, da′ as in Figure 4 shows
that one can not improve this bound to 4.

We prove here that we can not find a backbone coloring of (G1,M) with
color set {1, 2, 3, 4}. First of all observe that G1 can be obtained from a plane
embedding of the K4 induced by the vertices a, b, c, d, by putting a new vertex
in each face and adding edges from this new vertex to the three vertices on
the boundary of the face, and assigning the label x′ to the new vertex in the
triangular face bounded by the cycle uvwu, where {u, v, w, x} = {a, b, c, d}.
Suppose we only use colors 1, 2, 3, 4. Then it is clear from this construction
that a, b, c and d get different colors, and that the colors of a vertex and its
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primed counterpart are the same. Without loss of generality assume that a
and a′ get color 2. Then both b′ and d must get color 4, a contradiction. It is
routine to check that bbc2(G1,M) = 5.
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Fig. 4. A graph G1 with a matching backbone M such that bbc2(G1,M) = 5.

The following problems are still open.

Problem 18 Is bbc2(G,M) ≤ 5 for any planar graph G with a matching
backbone M?

Problem 19 Is there a proof of bbc2(G,M) ≤ 6 that does not require the
Four Color Theorem?

7.2 Cyclic Backbone Colorings

In the last part of this section we introduce a special kind of 2-backbone
coloring with a cyclic property as defined below. Our motivation for doing
this is to get a better understanding of the structure of the original (acyclic)
2-matching backbone colorings of planar graphs. We prove a sharp result with
respect to the upper bound on the number of colors needed to color planar
graphs in the way explained below.

Let H = (V,EH) be a backbone of the graph G = (V,EG). A 2-backbone
coloring f : V → {1, . . . , `} of (G,H) is called an `-cyclic 2-backbone coloring
of (G,H), if no edge of EH joins two vertices with color 1 and color ` in V . In a
2-backbone coloring we say that two colors x and y are adjacent if |x−y| ≤ 1.
In an `-cyclic 2-backbone coloring we also say that color 1 and color ` are
adjacent.

The study of cyclic colorings in the context of frequency assignment is well-
motivated in [17].
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For the proof of Theorem 21 below we first construct the following useful
gadget.

Lemma 20 Let H be the graph with a matching M consisting of edges ab, cd,
eu, fg and hi as in Figure 5(a). Let G be a graph with a matching backbone
M ′. If H ⊆ G and M ⊆ M ′, then vertex u and vertex v can not be colored
with two adjacent colors in a 5-cyclic 2-backbone coloring of (G,M ′).

uu uvu
i

uh ug
ufue
ud uc
ub
ua

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

,
,
,
,
,
,
,,

J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ
J
JJ

������������������������������

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�






























�
�
�
�
�
�
�
�
�

�
�
�
�
�
�
�
�
�

��
��

��
��

�

((((
(((

((

A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

J
J
J
J
J
J
J
J
J
J
J
J
J
J

S
S
S
S
S
S
S
S
S
S

@
@

@
@

@
@
@

@
@

Q
Q

Q
Q

Q
Q
Q

Q
Q

HH
H
HH

H
HH

PP
PP

PP
PP

P

hhhh
hhh

hh

�
�
�

��

L
L
L
L

(a) (b)
uu1 uu3

ua1

H1

ua3
H3

u
u2

uv

u
a2

H2

uw

��
��

��

�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
B
BB

PP
PP

PP
A
A
A
A

�
�

�
�
�
�

@
@
@
@
@
@

�
�
�
�
�
�
�
�
�
�
�
�

Fig. 5. (a) Graph H with matching M (b) Planar graph G2

Proof: Suppose vertex u and vertex v can be colored with two adjacent colors
in a 5-cyclic 2-backbone coloring of (G,M ′). Since we use a 5-cyclic 2-backbone
coloring, we can without loss of generality assume that vertex u is colored with
color 1 and vertex v is colored with color 2. This leaves us with three possible
colors for vertex d: color 3, color 4 or color 5.

• If vertex d is colored with color 3, then vertex e must get color 4. Continuing
this way, vertex f gets color 5, vertex g gets color 3 and vertex h gets color
4. Since there is no feasible color for vertex i, this implies a contradiction.
• If vertex d is colored with color 4, then vertex e gets color 3, vertex f gets

color 5, vertex g gets color 3 and vertex h gets color 4. Again, we find a
contradiction, since there is no feasible color for vertex i.
• If vertex d is colored with color 5, then vertex c must get color 3 and the

only feasible color for vertex b is color 4. We get a contradiction, since there
is no feasible color for vertex a.

This completes the proof of Lemma 20. �

Theorem 21

(a) Let G be a planar graph with a matching backbone M . Then (G,M) has
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a 6-cyclic 2-backbone coloring.
(b) There exist planar graphs that do not have a 5-cyclic 2-backbone coloring

along a matching.

Proof: (a) By the Four Color Theorem, we know that the chromatic number
of a planar graph G is at most 4. For a vertex v in G, we denote by n(v) the
only neighbor of v in M . We can construct a 6-cyclic 2-backbone coloring b of
(G,M) by replacing the colors of a 4-coloring c of G as follows:

• if c(v) = 1: b(v) := 1;
• if c(v) = 2: b(v) := 3;
• if c(v) = 3: b(v) := 5;
• if c(v) = 4 and c(n(v)) = 1: b(v) := 4;
• if c(v) = 4 and c(n(v)) = 2: b(v) := 6;
• if c(v) = 4 and c(n(v)) = 3: b(v) := 2.

(b) We construct a planar graph G2 as follows. First we make three copies
(H1,M1), (H2,M2), (H3,M3) of the pair (H,M) from Figure 5(a), and glue
them together at vertex v. Then we add one new vertex w and four new edges:
the edge vw and the edges u1u2, u2u3, u3u1 (see Figure 5(b)). The vertex w and
the edge vw are only added to guarantee that G2 has a perfect matching. Let
M ′ be a matching backbone of G2 that contains all matchings Mi (i = 1, 2, 3)
and the edge vw.

Suppose there exists a 5-cyclic 2-backbone coloring of (G2,M
′). Without loss

of generality we may assume that the vertex v is colored with color 1. Then,
by Lemma 20, the vertices u1, u2 and u3 can not be colored with colors 1, 2
and 5. On the other hand, u1, u2 and u3 must all get different colors, since
they induce a K3. This contradiction completes the proof of Theorem 21. �
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