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Abstract

We study some topological and algorithmic properties of a recently
defined hierarchical interconnection network, the hierarchical crossed
cube HCC(k, n), which draws upon constructions used within the
well-known hypercube and also the crossed cube. In particular, we
study: the construction of shortest paths between arbitrary vertices
in HCC(k, n); the connectivity of HCC(k, n); and one-to-all broad-
casts in parallel machines whose underlying topology is HCC(k, n)
(with both one-port and multi-port store-and-forward models of com-
munication). Moreover, some of our proofs are applicable not just to
hierarchical crossed cubes but to hierarchical interconnection networks
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formed by replacing crossed cubes with other families of interconnec-
tion networks. As such, we provide a generic construction with accom-
panying generic results relating to some topological and algorithmic
properties of a wide range of hierarchical interconnection networks.

keywords: hierarchical interconnection networks; hierarchical crossed
cubes; hypercubes; crossed cubes; routing; broadcasting; connectivity;
diameter; twisted cubes; Möbius cubes.

1 Introduction

The choice of interconnection network is crucial in the design of a distributed-
memory multiprocessor. As to which network is chosen depends upon a
number of factors relating to the topological, algorithmic, and communication
properties of the network and the types of problems to which the resulting
computer is to be applied. There is no one optimum interconnection network
and a plethora of interconnection networks have been proposed, each with
different qualities which vary according to the parameter of interest. For
example: K. Chi et al. and S. Zhou recently studied network-coding-based
multicast networks in [5] and a class of arc-transitive cayley interconnection
networks in [27], respectively.

Hierarchical interconnection networks are, roughly speaking, networks
whose edges are partitioned into hierarchies, with each hierarchy defined ac-
cording to some specific (previously studied) interconnection network. As
such, they usually involve a mix of concepts relating to different existing
interconnection networks. Hierarchical interconnection networks often have
the following structure. The vertices of the network are first partitioned into
groups of vertices, with the vertices of each group interconnected according
to some prescribed topology. The edges used in this ‘layer’ of the network are
often called internal edges. Next, the vertices of the network (sometimes not
all of them) are partitioned in some alternative way and the vertices of each
resulting group are interconnected according to some possibly different pre-
scribed topology. The edges used in this layer of the network are often called
the external edges. For example: in [8] the two-level binary hypercube-based
hierarchical interconnection network is defined where there are 2D collections
of d-dimensional hypercubes with unique vertices in each hypercube forming
a set of vertices that are interconnected as aD-dimensional hypercube; in [13]
the hierarchical cubic network is defined where 2n n-dimensional hypercubes

2



are joined so that each vertex in an n-dimensional hypercube is joined to
exactly one vertex from some other n-dimensional hypercube; and in [20] the
hierarchical hypercube network is defined where 22

m

m-dimensional hyper-
cubes are joined so that each vertex in an m-dimensional hypercube is joined
to exactly one vertex from some other m-dimensional hypercube. There
are many other existing hierarchical networks including those developed and
studied in [2, 7, 9, 11, 12, 14, 19, 21, 22, 23, 25, 26].

As remarked in [25], hierarchical interconnection networks are appealing
because: parallel machines with an underlying hierarchical interconnection
network topology can be easily expanded so that changes to both the hard-
ware configuration and the communication software of each processor can be
minimized; in comparison with some non-hierarchical interconnection net-
works, such as the hypercube, they can integrate more vertices yet still use
the same number of edges; they can integrate the positive features of two
or more (non-hierarchical) networks so as to minimize the negative features;
and they can support new hybrid computer architectures utilizing both op-
tical and electronic technologies (specifically, processors are partitioned into
groups where electronic interconnects are used to connect processors within
the same group, while optical interconnects are used for inter-group commu-
nication).

A new hierarchical interconnection network, the hierarchical crossed cube
HCC(k, n), was proposed in [16]. The hierarchical crossed cube draws upon
constructions used within the well-known hypercube[22] and also the crossed
cube (a variation of the hypercube as proposed by Efe [11, 12]). In this pa-
per, we study some topological and algorithmic properties of HCC(k, n). In
particular, we study: the construction of shortest paths between arbitrary
vertices in HCC(k, n); the connectivity of HCC(k, n); and one-to-all broad-
casts in parallel machines whose underlying topology is HCC(k, n) (where
these machines have one-port or multi-port store-and-forward models of com-
munication). These properties are absolutely fundamental when networks are
to be used to inter-connect processors within a distributed-memory multi-
processor. This paper subsumes the results in [16] (we provide improved
proofs of these results) and includes new results relating to one-to-all broad-
casts. Moreover, some of our proofs are applicable not just to hierarchical
crossed cubes but to hierarchical interconnection networks formed by replac-
ing crossed cubes with other families of interconnection networks. As such,
we provide a generic construction with accompanying generic results relating
to some topological and algorithmic properties of a wide range of hierarchical
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interconnection networks.

2 Preliminary definitions

In this section we provide definitions relating to hierarchical crossed cubes
(first defined and considered in [16]). For definitions of relevant concepts
from graph theory and interconnection networks we refer the reader to [24].

As we shall see, the construction of hierarchical crossed cubes is built
around those of hypercubes and crossed cubes. The n-dimensional hypercube

Qn is possibly the most ubiquitous interconnection network and the related
research [1, 10] is still active. Its vertex set is {0, 1}n and there is an edge
joining two vertices if, and only if, their names differ in exactly one bit
position. Of relevance to us is the fact that the shortest path joining any two
vertices of the n-dimensional hypercube is the Hamming distance between
the two vertices; that is, the number of bit positions where the names of
the vertices differ. We denote the length of a shortest path joining any two
distinct vertices u and v of any connected graph G by dG(u, v), and say that
the distance between u and v is dG(u, v), with the diameter of G being the
maximum from

{d : there exist vertices u and v in G such that the distance between

u and v is d}.

Consequently, the diameter of Qn is n. The connectivity of a graph G is the
minimum number of vertices that have to be removed from G (along with
their adjacent edges) so as to produce a disconnected graph. By Menger’s
Theorem (see [24]), the connectivity of a graph G is equal to the minimum,
taken over all pairs of distinct vertices, of the maximum number of vertex-
disjoint paths joining the two vertices (where a collection of paths joining
vertices x and y is vertex-disjoint if no vertex, apart from x and y, appears
on more than one path). Moreover, it is trivial to see that if a graph G has
connectivity κ, x is a vertex of G, and S is a subset of κ distinct vertices each
different from x, then there are κ vertex-disjoint paths joining the vertices in
S to x in G. The n-dimensional hypercube is well-known to have connectivity
n (see, for example, [24]).

The n-dimensional crossed cube CQn is a variant of the n-dimensional
hypercube. Like the n-dimensional hypercube, its vertex set is {0, 1}n. How-
ever, the definition of the edges of CQn is more involved. We say that
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u2u1 and v2v1, where u1, u2, v1, v2 ∈ {0, 1}, are pair related if (u2u1, v2v1) ∈
{(00, 00), (10, 10), (01, 11), (11, 01)}. The 1-dimensional crossed cube CQ1

consists of a solitary edge. The n-dimensional crossed cube CQn is defined
recursively and is built from two disjoint copies of an (n − 1)-dimensional
crossed cube, CQ0

n−1 and CQ1
n−1, where the name of any vertex in CQi

n−1 is
that of the corresponding vertex from CQn−1 (that is, a bit-string of length
n− 1) prefixed with the bit i, for i = 0, 1. There are additional edges joining
vertices in CQ0

n−1 to vertices in CQ1
n−1. The vertex 0un−1un−2 . . . u2u1 of

CQ0
n−1 is joined to the vertex 1vn−1vn−2 . . . v2v1 of CQ1

n−1 if, and only if,

(i) un−1 = vn−1, if n is even;

(ii) u2iu2i−1 and v2iv2i−1 are pair related, for all i such that 1 ≤ i < ⌈n
2
⌉.

A simple induction yields that CQn has n2n−1 edges (note that by the defi-
nition of CQn, every vertex in CQ0

n−1 has exactly one neighbour in CQ1
n−1,

with CQ1 consisting of a single edge). The diameter of CQn is known to be
⌈n+1

2
⌉ [11] (there is also a formula for the distance between any two vertices

of CQn, in terms of their names as bit-strings [3]) and CQn has connectivity
n [17].

We are now in a position to give the main definition of this section.

Definition 1 Fix k, n ≥ 1. The hierarchical crossed cube HCC(k, n) has
vertex set {0, 1}k+2n. Each vertex ofHCC(k, n) is written as (u,v,w), where
u ∈ {0, 1}k and v,w ∈ {0, 1}n (throughout the paper, bold type denotes a
bit-string). The set of edges of HCC(k, n) is partitioned into 2 sets, Eint and
Eext. The set Eint is referred to as the set of internal edges, whilst the set
Eext is referred to as the set of external edges. In more detail,

Eint = {((u,v,w), (u,v,w′)) : (w,w′) is an edge of CQn}

and
Eext = {((u,v,w), (u′,w,v)) : (u,u′) is an edge of Qk}.

In effect, HCC(k, n) is formed by taking 2k+n disjoint copies of CQn,
with CQn(u,v) denoting the copy of CQn on the set of vertices {(u,v,w) :
w ∈ {0, 1}n} (the edges of these copies of CQn form the internal edges).
The vertices in these copies of CQn are then joined by additional edges
(the external edges) whereby the vertices are partitioned into 22n sets of 2k

vertices, with each set of 2k vertices joined by edges to form a copy of Qk.
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Consequently, edges lie in the ‘internal layer’ or the ‘external layer’. Clearly,
HCC(k, n) has 2k+2n vertices, n2k+2n−1 internal edges, and k2k+2n−1 external
edges, making (n+k)2k+2n−1 edges in total. By the definition of HCC(k, n),
every vertex has n internal neighbours and k external neighbours, and so
HCC(k, n) is (n+ k)-regular. The graph HCC(2, n) can be visualized as in
Fig. 1, where the grey ovals are the copies of CQn and the black edges are the
external edges. Note that the ‘twist’ in our definition of the external edges
(where the positions of v and w are swapped) is necessary as otherwise the
resulting graph would not be connected.
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Figure 1. Visualizing HCC(2, n).

We shall write a path of vertices in any graph as u = u0 → u1 → u2 →
. . . → um = v, where ui → ui+1 denotes that an edge joins ui and ui+1, or
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as u →∗ v if we do not need to detail the vertices of the actual path (note
that if we write u →∗ v then it might be the case that u = v and the path
is degenerate). However, in HCC(k, n) we write (u,v,w) →CQn

(u,v,w′)
to denote that the edge is an internal edge and (u,v,w) →Qk

(u′,w,v) to
denote that the edge is an external edge (we write →∗

CQn
and →∗

Qk
to denote

paths of internal or external edges, respectively, of arbitrary lengths where
these paths might, in fact, be degenerate). Finally, for any u ∈ {0, 1}, we
denote by u the complementary bit to u, and we write 0 to denote a tuple
of 0’s (of some appropriate length).

3 Shortest paths

In this section, we look at determining the shortest path between any two
vertices of HCC(k, n), and hence the diameter of HCC(k, n).

Theorem 2 Let (u,v,w) and (u′,v′,w′) be two distinct vertices of the graph

HCC(k, n), where k, n ≥ 1. Any path ρ joining (u,v,w) and (u′,v′,w′)
contains at least dQk

(u,u′) external edges, unless u = u′ and v 6= v′ when it

contains at least 2 external edges. Furthermore, the length of any such path

ρ is

• at least dQk
(u,u′)+dCQn

(v,v′)+dCQn
(w,w′), if dQk

(u,u′) is even, un-
less u = u′ and v 6= v′ when the length of ρ is at least 2+dCQn

(v,v′)+
dCQn

(w,w′)

• at least dQk
(u,u′) + dCQn

(v,w′) + dCQn
(w,v′), if dQk

(u,u′) is odd.

Proof Let ρ be any path from (u,v,w) to (u′,v′,w′) in HCC(k, n) where
dQk

(u,u′) is even. Such a path ρ has the form

(u,v,w) = (u0,v0,w0)

→∗

CQn
(u0,v0,w1) →Qk

(u1,w1,v0) →
∗

CQn
(u1,w1,v1) →Qk

(u2,v1,w1)

→∗

CQn
(u2,v1,w2) →Qk

(u3,w2,v1) →
∗

CQn
(u3,w2,v2) →Qk

(u4,v2,w2)

→∗

CQn
(u4,v2,w3) →Qk

(u5,w3,v2) →
∗

CQn
(u5,w3,v3) →Qk

(u6,v3,w3)

→∗

CQn
. . . →Qk

(u2m,vm,wm) →
∗

CQn
(u2m,vm,wm+1) = (u′,v′,w′),

for some m ≥ 0 for which 2m ≥ dQk
(u,u′). Thus: there is a path

w = w0 →
∗ w1 →

∗ w2 →
∗ . . . →∗ wm →∗ wm+1 = w′
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in CQn; a path

v = v0 →
∗ v1 →

∗ v2 →
∗ . . .vm−1 →

∗ vm = v′

in CQn; and a path

u = u0 → u1 → u2 → . . . → u2m−1 → u2m = u′

in Qk. Consequently, the length of ρ is at least dQk
(u,u′) + dCQn

(v,v′) +
dCQn

(w,w′). However, suppose that u = u′ and v 6= v′. Any such path
ρ must necessarily contain an external edge, and consequently at least two
external edges (because dQk

(u,u′) is even). Thus, the length of ρ is at least
2 + dCQn

(v,v′) + dCQn
(w,w′).

Let ρ be any path from (u,v,w) to (u′,v′,w′) in HCC(k, n) where
dQk

(u,u′) is odd. Such a path ρ has the form

(u,v,w) = (u0,v0,w0)

→∗

CQn
(u0,v0,w1) →Qk

(u1,w1,v0) →
∗

CQn
(u1,w1,v1) →Qk

(u2,v1,w1)

→∗

CQn
(u2,v1,w2) →Qk

(u3,w2,v1) →
∗

CQn
(u3,w2,v2) →Qk

(u4,v2,w2)

→∗

CQn
(u4,v2,w3) →Qk

(u5,w3,v2) →
∗

CQn
(u5,w3,v3) →Qk

(u6,v3,w3)

→∗

CQn
. . . →Qk

(u2m,vm,wm) →
∗

CQn
(u2m,vm,wm+1)

→Qk
(u2m+1,wm+1,vm) →

∗

CQn
(u2m+1,wm+1,vm+1) = (u′,v′,w′),

for some m ≥ 0 for which 2m+ 1 ≥ dQk
(u,u′). Thus: there is a path

w = w0 →
∗ w1 →

∗ w2 →
∗ . . . →∗ wm →∗ wm+1 = v′

in CQn; a path

v = v0 →
∗ v1 →

∗ v2 →
∗ . . .vm →∗ vm+1 = w′

in CQn; and a path

u = u0 → u1 → u2 → . . . → u2m → u2m+1 = u′

in Qk. Consequently, the length of ρ is at least dQk
(u,u′) + dCQn

(v,w′) +
dCQn

(v,w′). The result follows.

Corollary 3 Fix k, n ≥ 1. Let (u,v,w) and (u′,v′,w′) be distinct vertices

of HCC(k, n).
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• Suppose that dQk
(u,u′) is even. If u = u′ and v 6= v′ then we have

that dHCC(k,n)((u,v,w), (u′,v′,w′)) is equal to

2 + dCQn
(v,v′) + dCQn

(w,w′);

otherwise it is equal to

dQk
(u,u′) + dCQn

(v,v′) + dCQn
(w,w′).

• Suppose that dqk(u,u
′) is odd. Then dHCC(k,n)((u,v,w), (u′,v′,w′)) is

equal to

dQk
(u,u′) + dCQn

(v,w′) + dCQn
(w,v′).

In consequence, the graph HCC(k, n) has diameter max{2, k}+ 2⌈n+1
2
⌉.

Proof Let (u,v,w) and (u′,v′,w′) be distinct vertices of HCC(k, n). Sup-
pose that:

u = u0 → u1 → u2 → . . . → ui = u′

is a shortest path in Qk from u to u′;

v = v0 → v1 → v2 → . . . → vj = v′

is a shortest path in CQn from v to v′; and

w = w0 → w1 → w2 → . . . → wl = w′

is a shortest path in CQn from w to w′ (of course, any of i, j and l might
be 0).

Suppose that dQk
(u,u′) is even and that it is not the case that u = u′

and v 6= v′. Define the path ρ as

(u,v,w) = (u0,v0,w0) →CQn
(u0,v0,w1) →CQn

. . . →CQn
(u0,v0,wl)

→Qk
(u1,wl,v0) →CQn

(u1,wl,v1) →CQn
. . . →CQn

(u1,wl,vj)

→Qk
(u2,vj ,wl) →Qk

(u3,wl,vj) →Qk
. . . →Qk

(ui−2,vj,wl)

→Qk
(ui−1,wl,vj) →Qk

(ui,vj ,wl) = (u′,v′,w′).

Suppose that u = u′ and v 6= v′. Define the path ρ as

(u,v,w) = (u,v0,w0) →CQn
(u,v0,w1) →CQn

. . . →CQn
(u,v0,wl)

→Qk
(u′′,wl,v0) →CQn

(u′′,wl,v1) →CQn
. . . →CQn

(u′′,wl,vj)

→Qk
(u,vj ,wl) = (u′,v′,w′),
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where u′′ is any neighbour of u in Qk.
Suppose that dQk

(u,u′) is odd. Define the path ρ as

(u,v,w) = (u0,v0,w0) →CQn
(u0,v0,w1) →CQn

. . . →CQn
(u0,v0,wl)

→Qk
(u1,wl,v0) →CQn

(u1,wl,v1) →CQn
. . . →CQn

(u1,wl,vj)

→Qk
(u2,vj ,wl) →Qk

(u3,wl,vj) →Qk
. . . →Qk

(ui−2,wl,vj)

→Qk
(ui−1,vj,wl) →Qk

(ui,wl,vj) = (u′,w′,v′).

Of course, to obtain a path (of the same length) from (u,v,w) to (u′,v′,w′),
we simply work with paths in CQn from v to w′ and from w to v′ instead of
paths from v to v′ and from w to w′. The result follows by Theorem 2 and
the facts that the diameters of Qk and CQn are k and ⌈n+1

2
⌉, respectively.

4 Connectivity

In this section, we consider the connectivity of HCC(k, n). We begin with
HCC(1, n), where n ≥ 1. We can assume that n ≥ 3 as given the depic-
tions of HCC(1, 1) and HCC(1, 2) in Figs. 2 and 3, it is trivial to see that
HCC(1, 1) and HCC(1, 2) have connectivity 2 and 3, respectively.

000 001 100101

010 011 110111

Figure 2. The graph HCC(1, 1).
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Figure 3. The graph HCC(1, 2).

Proposition 4 Let n ≥ 3. The graph HCC(1, n) has connectivity n+ 1.
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Proof Let x and y be any two distinct vertices of HCC(1, n). We shall
show how n + 1 vertex-disjoint paths joining x and y can be constructed.
There are three essential cases.

Case 1: x = (0,v,w) and y = (0,v,w′).

By [12, 17], there are n vertex-disjoint paths in CQn(0,v) joining x and
y. Also, consider a path x = (0,v,w) →Q1

(1,w,v) →CQn
(1,w,v′) →Q1

(0,v′,w) →∗

CQn
(0,v′,w′) →Q1

(1,w′,v′) →CQn
(1,w′,v) →Q1

(0,v,w′) =
y, where v′ is a neighbour of v in CQn and where the path (0,v′,w) →∗

CQn

(0,v′,w′) is a path in CQn(0,v
′) corresponding to some path in CQn from

w to w′ (we adopt this denotation of paths throughout this proof). This
path from x to y is vertex-disjoint from the other n paths joining x and y.

Case 2: x = (0,v,w) and y = (0,v′,w′), where v 6= v′.

Choose n distinct vertices {(0,v, zi) : zi 6∈ {v,v′,w,w′}, i = 1, 2, . . . , n} in
CQn(0,v) (note that n ≥ 3). By [12, 17], there are n vertex-disjoint paths in
CQn(0,v) joining x with the vertices from {(0,v, zi) : zi 6= v,v′,w,w′, i =
1, 2, . . . , n}. Denote the path from x to (0,v, zi) by ρi, for i = 1, 2, . . . , n,
and consider the path ρi extended by the path (0,v, zi) →Q1

(1, zi,v) →
∗

CQn

(1, zi,v
′) →Q1

(0,v′, zi). By [12, 17], there exist n vertex-disjoint paths in
CQn(0,v

′) from the vertices of {(0,v′, zi) : i = 1, 2, . . . , n} to y. Hence, we
clearly have n vertex-disjoint paths in HCC(1, n) from x to y.

Suppose that w 6= w′. Consider the path: x = (0,v,w) →Q1
(1,w,v)

→∗

CQn
(1,w,v′′) →Q1

(0,v′′,w) →∗

CQn
(0,v′′,w′) →Q1

(1,w′,v′′) →∗

CQn

(1,w′,v′) →Q1
(0,v′,w′) = y, where v′′ is a vertex of CQn different from v

and v′. Suppose that w = w′. Consider the path x = (0,v,w) →Q1
(1,w,v)

→∗

CQn
(1,w,v′) →Q1

(0,v′,w) = y. In both cases, the resulting path from x

to y is clearly vertex-disjoint from the other n paths constructed above.

Case 3: x = (0,v,w) and y = (1,v′,w′).

Sub-case (a): (v 6= w′ and w 6= v′) or (v = w′ and w = v′).

Choose n distinct vertices {(0,v, zi) : zi 6∈ {v,v′,w,w′}, i = 1, 2, . . . , n} in
CQn(0,v) (note that n ≥ 3). By [12, 17], there are n vertex-disjoint paths
joining x with each of the vertices from {(0,v, zi) : zi 6= v,v′,w,w′, i =
1, 2, . . . , n}. Denote the path from x to (0,v, zi) by ρi, for i = 1, 2, . . . , n. By
[12, 17], there are n vertex-disjoint paths joining y with each of the vertices
from {(1,v′, zi) : zi 6= v,v′,w,w′, i = 1, 2, . . . , n}. Denote the path from y

to (1,v′, zi) by ρ′i, for i = 1, 2, . . . , n.
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For each i = 1, 2, . . . , n, extend ρi with the path (0,v, zi) →Q1
(1, zi,v)

→∗

CQn
(1, zi, zi) →Q1

(0, zi, zi) →
∗

CQn
(0, zi,v

′) →Q1
(1,v′, zi) and then with

the path ρ′i. This results in n vertex-disjoint paths.
Suppose that v 6= w′ and w 6= v′. The path x = (0,v,w) →Q1

(1,w,v) →∗

CQn
(1,w,w′) →Q1

(0,w′,w) →∗

CQn
(0,w′,v′) →Q1

(1,v′,w′) =
y is vertex-disjoint from the n paths above. The situation can be visualized
as in Fig. 4. Suppose that v = w′ and w = v′. The path x = (0,v,w) →Q1

(1,w,v) = y is trivially vertex-disjoint from the n paths above.

CQ  (0, v)n

CQ  (0, z )n 1

CQ  (0, z  )n n

x = (0, v, w)
(1, w, v)

(0, v, z )1

(0, v, z  )n

(1, z , v)1 (1, z  , v)n

CQ  (0, w )n

...

...
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.
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.
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.
..

.
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.
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.
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.

..
.
..

.

..

.

..
.
..

.

..

...

...

...

...

...

...

...

...

...

'

(0, w , w)'

CQ  (1, w)n

(1, w, w )'
(0, w , v )' '

y = (1, v , w )' '

(1, z , z )1 1

(1, z  , z  )nn(0, z  , z  )nn(0, z  , v )n '
(1, v , z  )' n

CQ  (1, v )n '

CQ  (1, z )n 1 CQ  (1, z  )n n

(0, z , v )1 ' (0, z , z )1 1
(1, v , z )'

1

Figure 4. Sub-case 3(a) when v 6= w′ and w 6= v′.

Sub-case (b): v = w′ and w 6= v′.

Choose n−1 distinct vertices {(0,v, zi) : zi 6∈ {v,v′,w,w′}, i = 1, 2, . . . , n−
1} in CQn(0,v) and set zn = (0,v,v′) (note that n ≥ 3). By [12, 17],
there are n vertex-disjoint paths joining x with each of the vertices from
{(0,v, zi) : zi 6= v,v′,w,w′, i = 1, 2, . . . , n − 1, and zn = v′}. Denote the
path from x to (0,v, zi) by ρi, for i = 1, 2, . . . , n.

Choose n distinct vertices {(1,v′, z′i) : z
′

i 6= v,v′,w,w′, i = 1, 2, . . . , n} in
CQn(1,v

′). By [12, 17], there are n vertex-disjoint paths joining y with each
of the vertices from {(1,v′, z′i) : z

′

i 6= v,v′,w,w′, i = 1, 2, . . . , n}. Denote the
path from y to (1,v′, z′i) by ρ′i, for i = 1, 2, . . . , n.

For each i = 1, 2, . . . , n− 1, extend ρi by the path (0,v, zi) →Q1
(1, zi,v)

→∗

CQn
(1, zi, z

′

i) →Q1
(0, z′i, zi) →∗

CQn
(0, z′i,v

′) →Q1
(1,v′, z′i) and then by

the path ρ′i. This results in n− 1 vertex-disjoint paths.
Consider the path ρn extended with the path (0,v,v′) →Q1

(1,v′,v) =
y: denote this path by σ. Consider also the path x = (0,v,w) →Q1

12



(1,w,v) →∗

CQn
(1,w, z′n) →Q1

(0, z′n,w) →∗

CQn
(0, z′n,v

′) →Q1
(1,v′, z′n)

extended by ρ′n to obtain a path σ′ from x to y. The paths σ and σ′ are
vertex-disjoint and also vertex-disjoint with all of the n−1 paths constructed
above. The situation can be visualized as in Fig. 5.
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CQ  (0, z )n 1
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CQ  (1, w)n

(1, z , z )1 1

(1, z    , z    )
(0, z    , v )'

(1, v , z    )'

CQ  (1, v )n '

CQ  (1, z )n 1 CQ  (1, z    )n

(0, z , v )1 ' (0, z , z )1 1
(1, v , z )'

1

(0, v, v )'

(1, v , v)'

n-1

''

n-1

n-1 'n-1

'

'

'

(0, z    , z    )n-1' n-1n-1'
CQ  (0, z    )n n-1'

n-1'

(1, w, z  )'n
(0, z  , w)'n (0, z  , v )'n '

(1, v , z  )'n'
CQ  (0, z  )n 'n

Figure 5. Sub-case 3(b) when v = w′ and w 6= v′.

Sub-case (c): v 6= w′ and w = v′.

Consider the mapping (0,x,y) 7→ (1,x,y) and (1,x,y) 7→ (0,x,y) on the
vertices ofHCC(1, 1). This mapping is clearly an automorphism (see Fig. 2).
This reduces this case to Sub-case (b).

The result follows.

Theorem 5 For k, n ≥ 1, HCC(k, n) has connectivity n+ k.

Proof Let x and y be distinct vertices inHCC(k, n). We prove by induction
on k that there are n + k vertex-disjoint paths from x to y in HCC(k, n).
The base case follows by Proposition 4 and the discussion of the cases of
HCC(1, 1) and HCC(1, 2), above. Suppose, as our induction hypothesis,
that there are n+k−1 vertex-disjoint paths joining any two distinct vertices
inHCC(k−1, n). For i = 0, 1, denote by Hk−1(i) the subgraph ofHCC(k, n)
induced by the vertices of {(iu,v,w) : u ∈ {0, 1}k−1,v,w ∈ {0, 1}n}.
Clearly, Hk−1(0) and Hk−1(1) are isomorphic to HCC(k − 1, n).
Case 1: x = (0u,v,w) ∈ Hk−1(0) and y = (1u′,v′,w′) ∈ Hk−1(1).

Sub-case (a): x is not adjacent to y in HCC(k, n).
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Let y′ = (0u′,w′,v′) (and so y′ 6= x); that is, y′ is y’s neighbour in Hk−1(0).
Similarly, define x′ = (1u,w,v) to be x’s neighbour in Hk−1(1) (and so
x′ 6= y). By the induction hypothesis applied to Hk−1(0), there are n+ k− 1
vertex-disjoint paths {ρi : i = 1, 2, . . . , n+k−1} in Hk−1(0) joining x and y′.
Choose n+k−2 of these paths, omitting the path x → y′ if it exists (and so
all of the chosen paths have length at least 2). W.l.o.g. let the chosen paths
be {ρi : i = 1, 2, . . . , n+ k− 2}. Let the penultimate vertex of the path ρi be
zi (that is, each zi is a neighbour of y′ and is not equal to x) and let ρ′i be the
path ρi truncated at zi. Furthermore, let the neighbour in Hk−1(1) of each
zi be z

′

i. By the induction hypothesis applied to Hk−1(1), there are n+ k− 1
vertex-disjoint paths joining the vertices of {z′i : i = 1, 2, . . . , n+k−2}∪{x′}
to y. Denote the path from each z′i to y by σi, and the path from x′ to y

by σ. Hence, by extending each path ρ′i by the path zi →Qk
z′i and then by

the path σi, for i = 1, 2, . . . , n + k − 2, we obtain n + k − 2 vertex-disjoint
paths from x to y. We also obtain a path from x to y by extending the path
x →Qk

x′ by the path σ, which is vertex-disjoint from all of the other paths
constructed from x to y. Finally, consider the omitted path from x to y′,
ρn+k−1, above, in Hk−1(0). We can extend this path by the path y′ → y to
obtain yet another path from x to y which is vertex-disjoint from the n+k−1
other paths just constructed from x to y. The situation can be visualized as
in Fig. 6.

...

x

y'

...

y

x'

ρ1'

ρn-k-2'

σ1

σn-k-2

...
σ

z1

z1'

zn-k-2'

zn-k-2

H    (0)k-1 H    (1)k-1

ρn-k-1

Figure 6. Visualizing the situation in Sub-case 1(a).

Sub-case (b): x is adjacent to y in HCC(k, n).
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So, x = (0u,v,w) and y = (1u,w,v). Let z be any neighbour of x in
Hk−1(0). By the induction hypothesis applied to Hk−1(0), there are n+k−1
vertex-disjoint paths from x to z in Hk−1(0), one path of which is the path
x → z; denote the other paths by ρ1, ρ2, . . . , ρn+k−2. For i = 1, 2, . . . , n+k−2,
truncate the path ρi at the penultimate vertex zi and denote it by ρ′i (so,
zi is a neighbour of z). Let z′ be the neighbour of z in Hk−1(1), and let
z′i be the neighbour of zi in Hk−1(1), for i = 1, 2, . . . , n + k − 2. By the
induction hypothesis applied to Hk−1(1), there are n + k − 1 vertex-disjoint
paths in Hk−1(1) from the vertices of {z′i : i = 1, 2, . . . , n + k − 2} ∪ {z′} to
y: denote the path from z′i to y by σi and denote the path from z′ to y by σ.
Extend the path ρ′i by the path zi →Qk

z′i and then by the path σi, for each
i = 1, 2, . . . , n + k − 2. Also, extend the path x → z by the path z →Qk

z′

and then by the path σ. This yields n + k − 1 vertex-disjoint paths from
x to y in HCC(k, n). Finally, the path x →Qk

y gives another path. The
situation can be visualized as in Fig. 7.

...

x

...

y

σ1

σn-k-2

...
...

z1
1z'

zn-k-2'
zn-k-2

H    (0)k-1 H    (1)k-1

z

z'

ρ'
1 ρn-k-2'

σ

Figure 7. Visualizing the situation in Sub-case 1(b).

Case 2: x = (0u,v,w) ∈ Hk−1(0) and y = (0u′,v′,w′) ∈ Hk−1(0) (the case
when both x and y are in Hk−1(1) is almost identical).

By the induction hypothesis applied to Hk−1(0), there are n + k − 1 vertex-
disjoint paths from x to y in Hk−1(0). Let x′ and y′ be the neighbours of x
and y in Hk−1(1), respectively. There is a path σ from x′ to y′ in Hk−1(1).
Hence, the path obtained by extending the path x →Qk

x′ by the path σ and
then by the path y′ →Qk

y yields an additional path joining x and y that is
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vertex-disjoint with the other n+k−1 paths. The result in the statement of
this theorem now follows by induction as HCC(k, n) is (n+ k)-regular (and
so cannot have connectivity greater than n + k).

Tables 1 and 2 show the major topological characteristics (degrees, con-
nectivities, and diameters) of hypercubes [22], crossed cubes [11, 12], hier-
archical hypercubes (HHC) [20], hierarchical cubic networks (HCN)[13], and
hierarchical crossed cubes (HCC)[16] for various practical network sizes of 2l.
As seen from the tables, hierarchical crossed cubes compare favourably with
these networks, most notably hypercubes and hierarchical cubic networks.

Table 1: The HCC and similar networks compared.

network vertices degree connectivity diameter
Ql [22] 2l l l l

CQl [11, 12] 2l l l ⌈ l+1
2
⌉

(m+ 2m)-HHC [20] 2m+2m m+ 1 m+ 1 2m+1

HCN(s, s) [13] 22s s+ 1 s+ 1 s+ ⌊ s
2
⌋ + 1

HCC(k, n) [16] 2k+2n k + n k + n max{2, k}
+2⌈n+1

2
⌉

Note: l = m+ 2m = 2s = k + 2n

5 One-to-all broadcasting

In this section, we examine one-to-all broadcasting in HCC(k, n). Our ba-
sic assumption is that we have a synchronous distributed-memory parallel
machine M whose underlying topology is that of the graph HCC(k, n); that
is, there is a global clock which governs when messages are sent from and
received by the processors, which lie at the vertices of HCC(k, n) so that
any message is sent along some edge of HCC(k, n). It is always assumed
that any sent message is received within the same cycle of the global clock.
The machine M is one-port if at any time any processor can send at most
one message and simultaneously receive at most one message. The machine
M is multi-port if at any time any processor can send messages to any sub-
set of its neighbours and simultaneously receive messages from any subset of
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Table 2: Detailed numerical comparison

desired size 2l 26 211 220 237 270

Ql [22] degree 6 11 20 37 70
connectivity 6 11 20 37 70
diameter 6 11 20 37 70

CQl [11, 12] degree 6 11 20 37 70
connectivity 6 11 20 37 70
diameter 4 6 11 19 36

l −HHC [20] m 2 3 4 5 6
degree 3 4 5 6 7

connectivity 3 4 5 6 7
diameter 8 16 32 64 128

HCN(s, s) [13] s 3 10 35
degree 4 11 36

connectivity 4 11 36
diameter 3 16 53

HCC(k, n) [16] k 2 3 4 5 6
n 2 4 8 16 32

degree 4 6 11 21 38
connectivity 4 6 11 21 38
diameter 6 11 14 23 40

Note: l = m+ 2m = 2s = k + 2n

its neighbours. A one-to-all broadcast in M is a distributed algorithm that,
first, constructs a spanning tree within (the underlying topology of) M and,
second, disseminates a message from the root of the tree, using the edges of
the tree, so that this message is delivered to every other vertex. The aim
is usually to complete a one-to-all broadcast in as short a time as possible
(where time is measured according to the global clock). We always assume
that any message has unit size and that each edge has unit capacity; that is,
we have a store-and-forward model of computation.

Intimately related with one-to-all broadcasts is the existence of spanning
trees within HCC(k, n), for any spanning tree gives rise to a multi-port
algorithm for a one-to-all broadcast in M which takes (global) time equal
to the depth of the tree (the message originates at the processor at the root
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of the tree and is disseminated according to the tree structure). Of course,
this requires that the actual tree can be constructed by M , in a distributed
fashion, so that any processor has an explicit representation of its parent
and children (if any) within the tree. If M is a one-port machine then a
spanning tree still gives rise to a one-port algorithm (in fact, numerous such
algorithms, depending upon the dissemination strategy) but the resulting
algorithm might take time greater than the depth of the tree. Of course, for
a universal one-to-all broadcast algorithm we need spanning trees rooted at
every vertex ofHCC(k, n). We call a spanning tree of a graph a broadcast tree
if the (rooted) tree is used as the basis of a one-to-all broadcast algorithm.

We shall primarily be concerned with the existence of spanning trees in
HCC(k, n) and their structure, in relation to one-to-all broadcasting in a one-
port or a multi-port model, rather than the actual (distributed) construction
of these trees within some synchronous distributed-memory parallel machine.
We shall comment briefly on the actual construction of our trees at the end
of the section.

The following theorem shows how broadcast trees in hypercubes and
crossed cubes can be composed to form broadcast trees in hierarchical crossed
cubes. One problematic aspect of this theorem is that the crossed cube CQn

is known not to be vertex-symmetric when n > 4 [18], although Qk is vertex-
symmetric (see [24]; a graph G is vertex-symmetric if given any two distinct
vertices u and v of G, there is an automorphism of G mapping u to v). Con-
sequently, our theorem is more involved than it would have been were CQn

vertex-symmetric.

Theorem 6 Fix k ≥ 3 and n ≥ 1. For each v ∈ {0, 1}n and u ∈ {0, 1}k−2,

let T v

C and T u

Q be broadcast trees in CQn and Qk−2 rooted at v and u, re-

spectively. Let : δC be the maximum degree of any vertex in any T v

C ; δQ be

the maximum degree of any vertex in any T u

Q; rC be the maximum degree of

the roots in any T v

C ; rQ be the maximum degree of the roots in any T u

Q; βC

be the maximum depth of any tree T v

C ; and βQ be the maximum depth of any

tree T u

Q. If k = 2 and n ≥ 1 then define the trees T v

C and the parameters

δC, rC, and βC as above, and set δQ = βQ = 0. For any chosen vertex x of

HCC(k, n), there exists a broadcast tree T in HCC(k, n), rooted at x, such

that

• T has depth at most βQ + 2βC + 2

• any vertex in T has degree at most max{δQ + rC + 2, δC + 2}.
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Proof We shall begin with the graph HCC(2, n), which can be visualized
as in Fig. 1. Fix u1, u2 ∈ {0, 1} and v,w ∈ {0, 1}n. We shall iteratively build
a spanning tree T ′ in HCC(2, n) rooted at (u2u1,v,w) as follows.

• Initialize the tree T ′ as the tree Tw

C in CQn(u2u1,v) rooted at (u2u1,v,

w).

• Extend T ′ by joining each vertex (u2u1,v,x) of T ′ to its neighbour
(u2u1,x,v) in CQn(u2u1,x).

• Extend (the new) T ′ by joining each vertex (u2u1,v,x) of T ′ to its
neighbour (u2u1,x,v) in CQn(u2u1,x).

• For each vertex (u2u1,x,v) in T ′, take the tree T v

C in CQn(u2u1,x)
rooted at (u2u1,x,v) and extend T ′ by incorporating this tree T v

C .

• For each vertex (u2u1,x,v) in T ′, take the tree T v

C in CQn(u2u1,x)
rooted at (u2u1,x,v) and extend T ′ by incorporating this tree T v

C .

• For each vertex (u2u1,x,y) in T ′, where y 6= v, extend T ′ by joining
(u2u1,x,y) to its neighbour (u2u1,y,x) of CQn(u2u1,y).

• For each vertex (u2u1,x,y) in T ′, extend T ′ by joining (u2u1,x,y) to
its neighbour (u2u1,y,x) of CQn(u2u1,y).

The resulting tree T ′ has depth at most 2βC + 2, maximum degree at most
δC+2, and the degree of the root in T ′ is at most rC+2. It can be visualized
as in Fig. 8, where: for simplicity we have that u2u1 = 00 and v = w = 0;
the grey ovals are copies of trees T x

C ; and the black edges are (external) edges
used in T ′. Note that the actual tree T ′ of HCC(2, n) just constructed will,
in general, depend upon u1, u2, v, and w; so, we refer to it as T ′[u2u1,v,w].

Now let us turn to HCC(k, n), for k > 2. For any x ∈ {0, 1}k−2, de-
note the subgraph of HCC(k, n) induced by the vertices of {(xu2u1,v,w) :
u1, u2 ∈ {0, 1},v,w ∈ {0, 1}n} as H2(x). Clearly, any such H2(x) is isomor-
phic to HCC(2, n).

Fix u = ukuk−1 . . . u1 ∈ {0, 1}k and set u′ = ukuk−1 . . . u3. Also, fix
v,w ∈ {0, 1}n. Let HQ be the connected component of the subgraph of
HCC(k, n) induced by the vertices of {(xu2u1,v,w), (xu2u1,w,v) : x ∈
{0, 1}k−2} that contains the vertex (u,v,w) = (u′u2u1,v,w) (note that if
v 6= w then HQ has two connected components). Clearly, this connected
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component of HQ is isomorphic to Qk−2. Consider the tree T u
′

Q in Qk−2

rooted at u′. Initialize the tree T0 to be the isomorphic copy of T u
′

Q in HQ

rooted at (u′u2u1,v,w) (note that if v 6= w then T0 is not a spanning tree
of HQ and all edges of T0 join vertices of the form (yu2u1,v,w) to vertices
of the form (y′u2u1,w,v)).
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Figure 8. Visualizing T ′ in HCC(2, n).

Consider some vertex (xu2u1,v,w) (resp. (xu2u1,w,v)) of T0. Also,
consider the spanning tree T ′[u2u1,v,w] (resp. T ′[u2u1,w,v]) in HCC(2, n).
From above, H2(x) is isomorphic to HCC(2, n). So, H2(x) has an isomorphic
copy of T ′[u2u1,v,w] (resp. T ′[u2u1,w,v]), denoted T ′[xu2u1,v,w] (resp.
T ′[xu2u1,w,v]), rooted at (xu2u1,v,w) (resp. (xu2u1,w,v)). Extend T0 by
including all the edges of T ′[xu2u1,v,w] (resp. T ′[xu2u1,w,v]). Moreover,

20



do this for all vertices of the form (xu2u1,v,w) or (xu2u1,w,v) of T0. Denote
the sub-graph so obtained by T

Our new graph T is indeed a tree, for given any x ∈ {0, 1}k−2, there
is exactly one vertex of T0 whose first component is xu2u1, and H2(x) and
H2(x

′) are vertex-disjoint when x 6= x′. Moreover, T is a spanning tree
of HCC(k, n), and has depth at most βQ + 2βC + 2 and degree at most
max{δQ + rC + 2, δC + 2}.

Theorem 6 is particularly flexible in that different broadcast trees, with
different properties, can be substituted for the trees T v

C and T u

Q. Of particular
importance are the binomial trees . The binomial tree B0 consists of a solitary
vertex which is the root. For n ≥ 1, the binomial tree Bn is defined recursively
by taking two disjoint copies of Bn−1, joining their roots by an edge, and
making one of these roots the root of Bn. The binomial tree Bn clearly
has depth n and 2n vertices. If we have a binomial tree embedded in (the
underlying topology of) a one-port synchronous distributed-memory parallel
machine then we can perform a one-to-all broadcast from the root of this tree
to all of the processors in the tree in time equal to the depth of the tree (a
simple induction shows this, where the first message sent by the root of Bn,
say, is to the root of the adjacent sub-tree Bn−1). As simple inductions show,
both Qk and CQn contain spanning binomial trees which may be rooted
at any vertex. To see this, for k ≥ 2, Qk is the vertex-disjoint union of
two copies of Qk−1, and for n ≥ 2, CQn is the vertex-disjoint union of two
copies of CQn−1 (with Q1 and CQ1 forming binomial trees, as they both
consist of single edges). The induction hypothesis applied to both copies of
Qk−1 or both copies of CQn−1 yields the result (note that CQn contains a
binomial tree rooted at any vertex irrespective of the fact that CQn is not
vertex-symmetric, for n > 4).

The following corollary is immediate from Theorem 6 by substituting
binomial trees for the trees T v

C and T u

Q (along with the fact that, as remarked
above, the depth of the binomial tree Bn is n).

Corollary 7 Fix k ≥ 2 and n ≥ 1. For any chosen root, there exists a

broadcast tree in the graph HCC(k, n) of depth k + 2n.

Of course, the broadcast tree in HCC(k, n) in Corollary 7 is not binomial
and so it is not immediate that we can use it to perform an efficient one-to-
all broadcast in a one-port synchronous distributed-memory parallel machine
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M whose underlying topology is HCC(k, n) (note that k ≥ 2). However, it
turns out that we can ‘almost achieve’ an optimal such algorithm. Let T be
the broadcast tree in HCC(k, n) obtained from Corollary 7, rooted at some
vertex (u,v,w) of HCC(k, n) and by using binomial trees. Our broadcast
algorithm proceeds as follows (we equateHCC(k, n) with the interconnection
network of the machine M).

1. Build the tree T within HCC(k, n) with root (u,v,w), where u =
u′u2u1.

2. We broadcast our message in HCC(k, n) from the root (u,v,w) and
according to the binomial tree of Qk−2 so that after k − 2 time units,
every processor in {(xu2u1,v

′,w′) : x ∈ {0, 1}k−2, (v′,w′) = (v,w), if
dQk−2

(u′,x) is even, and (v′,w′) = (w,v), if dQk−2
(u′,x) is odd} has

received the message.

3. As soon as any processor (xu2u1,v,w) or (xu2u1,w,v) has finished
sending messages in phase 2, above, it broadcasts the message in H2(x)
(see the proof of Theorem 6 for a definition ofH2(x)) as we now explain.

4. As any H2(x) is isomorphic to HCC(2, n), let us assume that our root
processor is the processor (u2u1,v,w) of HCC(2, n) (the case when
the root is (u2u1,w,v) is identical). This root processor begins by
broadcasting the message in CQn(u2u1,v) according to the binomial
tree in CQn; thus, after at most an additional n time units, every
processor in CQn(u2u1,v) has received the message.

5. As soon as any processor (u2u1,v,y) of CQn(u2u1,v) has finished send-
ing messages in phase 4, above, it sends the message to its external
neighbour (u2u1,y,v) and then to its external neighbour (u2u1,y,v).
These neighbours then embark upon broadcasting the message in
CQn(u1u2,y) and CQn(u2u1,y), respectively, according to the bino-
mial tree in CQn; thus, after at most an additional n + 2 time units,
every processor in every CQn(u1u2,y) and CQn(u1u2,y) has received
the message.

6. Finally, as soon as any processor (u1u2,y,x) of any CQn(u1u2,y), apart
from (u1u2,y,v), has finished sending messages in phase 5, above, it
sends the message to its external neighbour (u2u1,x,y). Similarly, as
soon as any processor (u1u2,y,x) of any CQn(u1u2,y) has finished
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sending messages in phase 5, above, it sends the message to its ex-
ternal neighbour (u1u2,x,y). Thus, after an additional 1 time unit,
every processor in HCC(k, n) has received the message originating at
(u,v,w).

The following corollary is immediate.

Corollary 8 Let M be a one-port synchronous distributed-memory parallel

machine whose underlying topology is HCC(k, n), where k ≥ 2 and n ≥ 1.
For any chosen vertex x, there is a distributed algorithm that performs a

one-to-all broadcast from x in M in time k + 2n+ 1.

Note that our one-port one-to-all broadcast in Corollary 8 is ‘almost optimal’,
for consider any one-to-all broadcast in our machine M . A simple induction
shows that at any time t, at most 2t processors have received the message.
Thus, any one-to-all broadcast in M necessarily takes time at least k + 2n
(when k ≥ 2).

When k = 1 and n ≥ 1, we can employ almost the same construction in
HCC(k, n) as we did in the proof of Theorem 6 (the reader should refer to
the ‘top half’ of Fig. 8) to obtain the following result.

Corollary 9 Fix n ≥ 1. For each v ∈ {0, 1}n, let T v

C be a broadcast tree

in CQn rooted at v. Let δC be the maximal degree of any vertex in any T v

C

and βC be the maximal depth of any tree T v

C . For any chosen vertex x of

HCC(1, n), there exists a broadcast tree T in HCC(1, n), rooted at x, such

that

• T has depth at most 2βC + 2

• any vertex in T has degree at most δC + 1.

Choosing our broadcast trees in Corollary 9 to be binomial trees and
proceeding similarly to as we did prior to Corollary 8, we immediately obtain
the following result.

Corollary 10 Let M be a one-port synchronous distributed-memory parallel

machine whose underlying topology is HCC(1, n), where n ≥ 1. For any

chosen vertex x, there exists a broadcast tree in HCC(1, n), rooted at x and of

depth 2n+2, and a distributed algorithm that performs a one-to-all broadcast

in M , according to this tree, in time 2n+ 2.
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Again, our broadcast algorithm in Corollary 10 is ‘nearly optimal’ as any
one-to-all broadcast in our machine M necessarily takes time at least 2n+1.
We should remark that it might be the case that our one-to-all broadcasts
in Corollaries 8 and 10 are, in fact, optimal for HCC(k, n), where k ≥ 1 and
n ≥ 1, for if could well be the case that such broadcasts in HCC(k, n) can
not be undertaken in time k + 2n, where k ≥ 2, and 2n + 1, where k = 1,
respectively, irrespective of our lower bound arguments. These questions
remain open.

Consider when our machine M is an all-port synchronous distributed-
memory parallel machine whose underlying topology is HCC(k, n), where
k ≥ 2. In [12] it is shown that given any vertex x, there is a broadcast
tree Sx

C in CQn rooted at x and of depth the diameter of CQn; that is,
Sx
C has depth ⌈n+1

2
⌉. Of course, the binomial tree Bk in Qk has depth k.

Consequently, Theorem 6 and Corollary 3 immediately yield the following
result.

Corollary 11 Let M be a multi-port synchronous distributed-memory paral-

lel machine whose underlying topology is HCC(k, n), where k ≥ 2 and n ≥ 1.
Given any vertex x, there is a distributed algorithm that performs a one-to-all

broadcast in M in time k + 2⌈n+1
2
⌉. This algorithm is time-optimal.

Similarly, Corollary 9 and Corollary 3 yield the following result.

Corollary 12 Let M be a multi-port synchronous distributed-memory paral-

lel machine whose underlying topology is HCC(1, n), where n ≥ 1. Given any

vertex x, there is a distributed algorithm that performs a one-to-all broadcast

in M in time 2 + 2⌈n+1
2
⌉. This algorithm is time-optimal.

We end this section with a brief remark concerning the algorithmic con-
struction of the trees used in our one-to-all broadcasts, above, under the
assumption that at some point in time a particular processor x in our ma-
chine M wishes to undertake a one-to-all broadcast of some particular mes-
sage. Hitherto, we have not considered the time actually taken to construct
these trees (we have simply assumed that these trees are available). Consider
broadcasting via a binomial tree in Qk or in CQn. For simplicity, suppose
that we wish to broadcast using a binomial tree Bk of Qk where x = 00 . . . 00
is to sit at the root of the tree. The processor x would compute its neighbour
in dimension 1, namely 00 . . . 01, and send the message to this neighbour. In
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the next round, both 00 . . . 00 and 00 . . . 01 would compute their neighbours
in dimension 2, namely 00 . . . 010 and 00 . . . 011, respectively, and send the
message to these neighbours. This would continue with the 4 active proces-
sors and their neighbours in dimension 3; and so on. Note that the one-to-all
broadcast is such that in each round the amount of time spent on deciding
which of a processor’s neighbours is to be sent the message is constant. Thus,
although the eventual binomial tree has a vertex of degree k, no matter what
the value of k the one-to-all broadcast can be completed in k rounds and
O(k) inclusive time (where ‘inclusive time’ is to include the time spent in
the construction of the tree). An analogous statement can be made as re-
gards CQn. Hence, we may assume that the times in Corollaries 8 and 10
refer to inclusive time (subject to replacing the actual times k + 2n+ 1 and
2n+2 with some constant times these numbers). As regards multi-port syn-
chronous distributed-memory parallel machines, we can use Efe’s distributed
algorithm to embed the tree S

y
C in CQn, where the root is y, and all lo-

cal computation undertaken in any round in order to construct the tree S
y
C

takes constant time. Note that in a multi-port model of computation, we
may assume that when broadcasting according to a binomial tree only one
message is ever sent from any processor in any clock cycle. Hence, again all
local computation undertaken in any round in order to construct a binomial
tree in Qk takes constant time. Thus, we may assume that the times in
Corollaries 11 and 12 can be taken to mean inclusive time (subject to the
same proviso as above). We can make analogous remarks as regards devising
shortest-path routing algorithms in our machines (given the shortest-path
routing algorithm in [12] and the standard shortest-path routing algorithm
in hypercubes).

6 Conclusions

In this paper we have established some basic topological and algorithmic
results concerning hierarchical crossed cubes which are hierarchical intercon-
nection networks obtained by fusing hypercubes and crossed cubes. However,
we now make a crucial observation: nowhere throughout this paper have we

used any structural properties of crossed cubes apart from the facts that they

have diameter ⌈n+1
2
⌉, have connectivity n, contain binomial broadcast trees,

and contain the broadcast trees as constructed by Efe [12]. Consequently, we
can allow any interconnection network to play the role of the crossed cube
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so long as we substitute the appropriate parameters relating to diameter,
connectivity, and so on in any consequent results. We have chosen to present
our research via the crossed cube so as to make it concrete and apparent as
to the advantages of our general approach.

For example, one could substitute one of the many variants of hyper-
cubes for crossed cubes in our construction such as the twisted cube or the
1-Möbius cubes. It is known that the n-dimensional twisted cube [15] and
the n-dimensional 1-Möbius cube [6] have diameter ⌈n+1

2
⌉ and connectivity n

and n−1, respectively [4, 6]. Thus, we would obtain that hierarchical twisted
cubes and hierarchical 1-Möbius cubes have diameter max{2, k} + 2⌈n+1

2
⌉,

with the former having connectivity n+k and the latter connectivity n+k−1.
We need not restrict ourselves to substituting only hypercube variants. We
can choose any family of interconnection networks to obtain a new hierarchi-
cal family to which our results apply. Of course, given appropriate broadcast
trees for any new (substitute) interconnection network, we obtain one-to-all
broadcast results in the corresponding hierarchical interconnection network.

We end with some proposals as regards further research. Of course, there
are many topological and algorithmic properties of hierarchical crossed cubes
still to examine, in both fault-free and faulty environments. However, we
feel that our generic construction is interesting as it is widely applicable with
other interconnection networks replacing crossed cubes. Indeed, we could
choose to replace the hypercubes with different interconnection networks too;
however, there are no immediate results derivable from those in this paper
for such networks as we have explicitly used the internal structure of the
hypercube in our proofs. We feel that further investigation of our construc-
tion, with other networks replacing hypercubes and crossed cubes, would be
beneficial as we can use the ‘modular’ aspects of the construction to piece
together the properties of the component networks in order to establish re-
sults for the hierarchical interconnection network. We feel that this line of
research is exciting and will yield significant results. As yet, and as far as we
are aware, there has only been one attempt, in [7], to provide a systematic
consideration of hierarchical interconnection networks, and we feel that such
a systematic consideration should be further developed.
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