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Abstract – The processes that led to the onset and evolution of the North Atlantic Igneous Province
(NAIP) have been a theme of debate in the past decades. A popular theory has been that the impingement
on the lower lithosphere of a hot mantle plume (the ‘Ancestral Iceland’ plume) initiated the first
voluminous outbursts of lava and initiated rifting in the North Atlantic area in Early Palaeogene times.
Here we review previous studies in order to set the NAIP magmatism in a time–space context. We
suggest that global plate reorganizations and lithospheric extension across old orogenic fronts and/or
suture zones, aided by other processes in the mantle (e.g. local or regional scale upwellings prior to and
during the final Early Eocene rifting), played a role in the generation of the igneous products recorded
in the NAIP for this period. These events gave rise to the extensive Paleocene and Eocene igneous
rocks in W Greenland, NW Britain and at the conjugate E Greenland–NW European margins. Many
of the relatively large magmatic centres of the NAIP were associated with transient and geographically
confined doming in Early Paleocene times prior to the final break-up of the North Atlantic area.
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1. Introduction

The North Atlantic Igneous Province (NAIP) is a
classic Large Igneous Province associated with a
volcanic rifted margin. It has traditionally been consi-
dered to comprise the voluminous Palaeogene igneous
rocks occurring at the conjugate E Greenland–NW
European margins and in the W Greenland–Baffin
Bay area (Upton, 1988; Saunders et al. 1997; Meyer,
Van Wijk & Gernigon, 2007 and references therein).
Other contemporaneous magmatism occurred in the
northernmost parts of Greenland (Kap Washington
Group at c. 64 ± 3 Ma, (Estrada, Höhndorf & Henjes-
Kunst, 2001) and in the W Barents Sea (Vestbakken
Volcanic Province, c. 54 Ma, (Tsikalas, Eldholm &
Faleide, 2002) (Fig. 1).

The major Early Palaeogene NAIP rocks can be
regionally divided into: W Greenland–Baffin Island,
SE Greenland, (central–east) CE Greenland, NE Green-
land, Vøring margin, Møre margin, Faroe Islands,
Rockall–Hatton area, Faroe–Shetland Basin, Rockall
Trough and the NW British Isles (Saunders et al.
1997) (Fig. 1). Other contemporaneous, smaller and
more isolated parts of the NAIP are also shown in
Figure 1. The CE Greenland–Faroe Islands Ridge
and Iceland formed subsequent to the onset of sea-
floor spreading in the area (Meyer, Van Wijk &
Gernigon, 2007). Exposed and submerged basaltic
rocks of the NAIP extend roughly NE–SW for more
than 2000 km along the conjugate East Greenland–
NW European margins (Saunders et al. 1997) (Fig. 1).
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The extrusive rocks of the province cover a surface
area of at least ∼ 1.3 × 106 km2, while the extrusive
and intrusive rocks of the NAIP are together estimated
to comprise a volume of ∼ 6.6 × 106 km3 (Eldholm &
Grue, 1994). The majority of the extrusive rocks at
the conjugate E Greenland–NW European margins (the
Faroe Islands; Rockall–Hatton and Vøring–Møre) were
extruded in subaerial or shallow-marine environments
onto continental crust (e.g. Natland & Winterer, 2005).
Similarly, the vast majority of the Early Palaeogene
W Greenland igneous products were emplaced in
continental crust (e.g. Larsen et al. 1999a) in a subaerial
and/or in a shallow marine environment (Storey et al.
1998).

Here we use published studies to show that the
formation of the NAIP could have been aided by the
combined actions of a number of magmatic centres,
whose initial actions in part were governed by regional
and/or provincial plate tectonic reorganizations.

2. Geological setting prior to and during magmatism

In the context of a large igneous province such as
the NAIP, it is pertinent to consider relevant tectonic
events prior to the onset of magmatism and to consider
possible temporal and spatial links between the igneous
products.

2.a. Tectonic settings

Following the closure of the Iapetus Ocean and
the collapse of the Caledonian Orogen in Silurian–
Devonian times (Roberts, 2003), the proto-North
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Figure 1. Simplified geological map of the North Atlantic Igneous Province and surrounding areas modified from Saunders
et al. (1997); Nielsen, Larsen & Hopper (2002) and Nielsen, Stephenson & Thomson (2007). The ages are from the
references in Table 1. The Early Palaeogene transient regional uplifts are from references in Table 2. The central igneous
complexes and/or seamounts are modified from Bull & Masson (1996); Ritchie, Hitchen & Edwards (1997); Naylor et al.
(1999); Edwards (2002); Hitchen (2004); Archer et al. (2005). Abbreviations: BJ – Bjørnøya; BJH – Bjørnøya High; CGFZ –
Charlie Gibbs Fracture Zone; EEC – East Erlend Complex; FTF – Faroe Transform Fault; GFZ – Greenland Fracture Zone;
JM – Jan Mayen; JMFZ – Jan Mayen Fracture Zone; JMR – Jan Mayen Ridge; MTFC – Møre–Trøndelag Fault Complex; RB –
Rosemary Bank; SFZ – Senja Fracture Zone; UFZ – Ungava Fracture Zone; VV – Vestbrona Volcanic rocks; VVP – Vestbakken
Volcanic Province; WEC – West Erlend Complex.
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Atlantic area to the south of the Caledonian front
(Figs 2, 3) was underlain by a patchwork of Archaean
and Proterozoic terranes (Dickin, 1992).

Permian and Triassic broadly E–W-directed ex-
tension between Eurasia and Greenland resulted in
the formation of numerous large half-graben basins
widely distributed at the margins (Ziegler, 1989;
Brekke et al. 1999; Doré et al. 1999; Surlyk, 1990).
Jurassic E–W extension between Eurasia and North
America–Greenland gave way to a dominantly NW–
SE-directed extension in Early to Middle Cretaceous
times (Doré et al. 1999). The Middle Cretaceous
extension resulted in northwards-narrowing sea-floor
spreading from the Rockall Trough to the Vøring Basin
off W Norway (Price & Rattey, 1984). Renewed NW–
SE-directed extension occurred in the proto-NAIP area
from the Late Cretaceous to the Early Palaeogene
(Doré et al. 1999). This event led to the initiation
of sea-floor spreading in the Labrador Sea in the
Early Paleocene (Chalmers & Laursen, 1995) and
the initiation and northwards propagation of sea-floor
spreading at the conjugate NW European–E Greenland
margins in Early Eocene times (Ziegler, 1989, 1992;
Doré et al. 1999). At around the same time, the
Eurasian Basin began to open (Ziegler, 1989). Early
Palaeogene exploitation/reactivation of Precambrian
and Caledonian fault zones are inferred for the early
phases of continental rifting and NAIP formation (Doré
et al. 1997, 1999).

Regional vertical movements and the formation
of transient domal uplifts preceded the main phases
of Early Palaeogene igneous activities in many parts of
the NAIP (e.g. Maclennan & Jones, 2006; Meyer, Van
Wijk & Gernigon, 2007; Saunders et al. 2007).
Published examples of some regional domal uplifts
are listed in Table 2 (Fig. 2). Without constraining
the depth of origin, Saunders et al. (2007) suggested
that the ascent of narrow hot mantle jets and broadly
contemporaneous rifting in areas of uplifts generated
doming.

2.b. Igneous settings

While the igneous rocks of the NAIP cover a
compositional spectrum from picrites to silicic rocks
(Table 1), most of the rocks encountered in the province
today are of basaltic composition (e.g. Saunders et al.
1997). Crustally contaminated rocks occur at or close
to the base of volcanic successions in many parts of
the basaltic sequences of the province (Gibson, 2002).
The igneous products include both fissure or point-
source fed lava-flows (Peate, Larsen & Lesher, 2003;
Single & Jerram, 2004; Passey & Bell, 2007), water-
influenced and water-lain volcanic successions (e.g.
Peate, Larsen & Lesher, 2003; Jerram et al. 2009,
this issue) and ignimbrites as well as plutonic or
sheet intrusions (sills and/or dykes) (Table 1; Fig. 1),
each reflecting the processes and crustal environment
that prevailed in that particular area during melt
emplacement. Most of the igneous activity of the

NAIP occurred in the time span from c. 62 to c.
53 Ma. Two main periods of melt emplacement have
been inferred for the NAIP, with ages of c. 62 to
58 Ma and c. 57 to 53 Ma, and detectable peaks at
c. 60 Ma and at c. 55 Ma, respectively (Saunders
et al. 1997; Torsvik, Mosar & Eide, 2001; Jerram &
Widdowson, 2005; Meyer, Van Wijk & Gernigon,
2007) (Table 1; Fig. 1). Smaller-scale igneous activity
preceded these main periods in, for example, the N
Rockall Trough (Morton et al. 1995; O’Connor et al.
2000), continued subsequently in parts of the NAIP
area for tens of millions of years (e.g. Tegner &
Duncan, 1999; O’Connor et al. 2000; Tegner et al.
2008), and is continuing on Iceland and on the island
of Jan Mayen (e.g. Trønnes et al. 1999) (Table 1;
Fig. 1).

3. The spatial distribution of known and inferred
magmatic centres of the NAIP

It is noticeable that many of the inferred earliest igneous
activities in the NAIP coincide well with some of the
transient uplifts recorded for this period (Figs 1, 2;
Tables 1, 2). Furthermore, it appears that a number of
the uplifted regions and the parts of the NAIP with the
most voluminous igneous production for this period,
namely in the NW British Isles, the Faroe Islands,
(central-east) CE Greenland and the Disko region in W
Greenland (Upton, 1988; Saunders et al. 1997; Meyer,
Van Wijk & Gernigon, 2007), were emplaced in the
vicinity of old orogenic sutures and/or fronts from
the Palaeozoic Caledonian Orogen, at suture zones
between Archaean–Proterozoic terranes at the conjug-
ate East Greenland–NW European margins and at the
suture zone between the Archaean Nagssugtoqidian–
Rinkian Orogen in the Disko–Baffin Island area
(Figs 1, 2, 3).

In a reconstructed map of the NAIP region intended
to show the spatial distribution of the igneous activities
for the Middle Paleocene (Fig. 2; Table 1), the
magmatic regions and/or centres at the conjugate
E Greenland–NW European margins seem to form
conspicuous double zigzag and roughly NNE–SSW-
directed trends, from just to the north of Hold With
Hope and southwards to the Ammassalik area along
the E Greenland margin and from the Vøring area and
southwards to the NW British Isles area at the NW
European margin, converging at the CE Greenland–
Faroe Islands area. According to current published
data the igneous activities in N and W Greenland were
spatially isolated from these events.

The suggested trends of igneous activities at the
conjugate E Greenland–NW European margin from the
Middle Paleocene seem to be more or less repeated
in the Early Eocene (Fig. 3; Table 1), apart from
the westward relocation of magmatism at the Vøring
margin, the eastward relocation of magmatism at the
Blosseville Kyst and the establishment of volcanism
in the W Barents Sea. Final sea-floor spreading at the
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Figure 2. Simplified map of the NAIP at around 62 to 58 Ma modified from Torsvik et al. (2001) and Torsvik, Mosar & Eide (2001).
The inferred locations of the Caledonian fronts and the Iapetus suture zone are from: Bott (1987); Soper et al. (1992); Ziegler (1992);
Masson, Hauser & Jacob (1999); Skogseid et al. (2000); Hansen & Brooks (2002); Roberts (2003); Foulger, Natland & Anderson
(2005a,b); Cocks (2005). The inferred Archaean–Proterozoic suture zone in the Rockall–Hatton–NW Britain area is modified from
Dickin (1992). The inferred Nagssuqtocidian–Rinkian suture zone in the Disko region is modified from Krawiec (A. Krawiec, unpub.
M.S. thesis, Univ. Texas Austin, 2003) and Connelly et al. (2006). The three major sinistral transforms are modified from Nielsen,
Stephenson & Thomsen (2007). Broadly NW-trending lineaments at the NW European margin are modified from Kimbell et al. (2005).
General spreading directions are from Harrison et al. (1999) and Nielsen, Stephenson & Thomsen (2007). Abbreviations: ADL – Anton
Dohrn Lineament; CGFZ – Charlie Gibbs Fracture Zone; CL – Claire Lineament; JL – Judd Lineament; JML – Jan Mayen Lineament;
FI – Faroe Islands; MF – Moray Firth; MFL – Marflo Lineament; MTFC – Møre–Trøndelag Fault Complex; PB – Porcupine Basin;
SHL – South Hatton Lineament; SI – Shetland Islands; UFZ – Ungave Fault Zone; WTR – Wyville-Thomson Ridge; YR – Ymir Ridge.
See text for further explanation.
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Figure 3. Simplified map of the NAIP at around 57 to 55 Ma modified from Torsvik et al. (2001) and Torsvik, Mosar & Eide (2001).
Explanation and abbreviations as in Figure 2. See text for further explanation.

Blosseville Kyst latitude occurred further to the east at
c. 54 Ma (Bott, 1985).

Each part of the double zigzag geometry for the
inferred Early Palaeogene magmatic trends of the
NAIP in the NE Atlantic area (Figs 2, 3) seems
to resemble the classic rifting trends associated with
the embryonic stages of continental rifting where the
surface expression of the rift processes appears as
interconnected triple junctions at various stages of

development (Burke & Dewey, 1973; Ziegler, 1989;
Park, 1995; Sears, George & Winne, 2005).

3.a. The NW British Isles (Fig. 1; ‘I’ in Figs 2, 3)

A magmatic centre at an Early Palaeogene triple
junction in the Hebrides–Ireland area has been inferred
to have caused the contemporaneous magmatism in the
NW British Isles (Burke & Dewey, 1973; Geoffroy,
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Table 1. Summary of Early Palaeogene ages for the key regions of the North Atlantic Igneous Province (most studies are overlapping and fall
within the time frames from c. 62 Ma to c. 53 Ma)

Regions: average emplacement ages
Rock compositions: modes of

emplacements Published examples

British Isles: c. 61 to c. 55 Ma Ultramafic, mafic, silicic: volcanic,
plutons, sills, dykes

Gamble, Wysoczanski & Meigham (1999);
Chambers, Pringle & Parrish (2005); Storey,
Duncan & Tegner (2007)

Rockall-Hatton margin: c. 58 to c. 53 Ma Mafic, silicic: volcanic, plutons, sills, dykes Sinton & Duncan (1998); Hitchen (2004)
Rockall Trough: c. 70 to c. 54 Ma Mafic, silicic: volcanic, sills Hitchen & Ritchie (1993); Morton et al. (1995);

Sinton, Hitchen & Duncan (1998); O’Connor
et al. (2000); Archer et al. (2005)

Faroe-Shetland Basin: c. 61 to c. 55 Ma Mafic, silicic: volcanic, sills, dykes Hitchen & Ritchie (1993); Trude et al. (2003)
Vøring margin: c. 61 to c. 55 Ma Mafic, silicic: volcanic, sills, dykes Skogseid et al. (1992); Sinton, Hitchen & Duncan

(1998); Planke et al. (2005)
Møre Margin: c. 56 to c. 55 Ma Mafic: sills Planke et al. (2005)
Faroe Islands: c. 61 to c. 55 Ma Ultramafic, mafic: volcanic, sills, dykes Waagstein, Guise & Rex (2002); Storey, Duncan

& Tegner (2007)
NE Greenland: c. 59 Ma to c. 53 Ma Ultramafic, mafic: volcanic, sills, dykes Upton et al. (1995); Price et al. (1997)
CE Greenland: c. 61 to c. 53 Ma Ultramafic, mafic, silicic: volcanic,

plutons, sills, dykes
Karson et al. (1998); Tegner et al. (1998); Hald &

Tegner (2000); Lenoir, Féraud & Geoffroy
(2003); Peate et al. (2003); Storey, Duncan &
Tegner (2007)

SE Greenland: c. 62 Ma to c. 55 Ma Ultramafic, mafic, silicic: volcanic, sills,
dykes

Sinton & Duncan (1998); Sinton, Hitchen &
Duncan (1998); Tegner & Duncan (1999);
Storey, Duncan & Tegner (2007)

W Greenland: c. 61 Ma to c. 54 Ma Ultramafic, mafic, silicic: volcanic, dykes Storey et al. (1998); Larsen et al. (1999a);
Geoffroy et al. (2001)

N Greenland: c. 64 Ma Mafic, silicic: volcanic, dykes Estrada, Höhndorf & Henjes-Kunst (2001)
Bjørnøya Marginal High: c. 54 Ma Mafic: volcanic Tsikalas, Eldholm & Faleide (2002)
Vestbrona, off SW Norway: c. 55 Ma Mafic: volcanic Bugge, Prestvik & Rokoengen (1980)

The ages presented in this table reflect only the initial main phases of NAIP magmatism. Subsequent magmatism occurred in many of the
same regions as those presented in this table. For further information see e.g. Tegner et al. (2008), Morton et al. 1995 and O’Connor et al.
(2000) and references in these papers.

Table 2. Early Palaeogene transient uplifts reported for regions within the North Atlantic Igneous
Province

Regional locations Cited example

Disko area, W Greenland Japsen, Green & Chalmers (2005)
Ammassalik area, SE Greenland Clift, Turner & ODP Leg 152 Scientific Party (1995);

Larsen & Saunders (1998)
Kangerlussuaq area, CE Greenland Peate, Larsen & Lesher (2003)
Scoresby Sund area, CE Greenland Mathiesen, Bidstrup & Christiansen (2000)
Hold With Hope, NE Greenland Thomson et al. (1999)
Vøring margin, off Norway Ren et al. (2003)
Møre margin, off Norway Brekke et al. (1999)
North N Sea Basin Nadin, Kusznir & Cheadle (1997)
Faroe-Shetland Basin Nadin, Kusznir & Cheadle (1997); Rudge et al. (2008)
North Rockall Trough Archer et al. (2005)
Moray Firth to Shetland Mackay et al. (2005); Rudge et al. (2008)
NW British Isles (Scotland) Green et al. (1993); Mudge & Jones (2004)
Irish Sea Cope (1994)
Porcupine Basin Jones, White & Lovell (2001)

Bergerat & Angelier, 1996). In accepting the presence
of a junction in this region, a broadly SE-trending failed
rift arm or leaky transform with NE–SW to ENE–
WSW-directed extension fits roughly with the observed
orientation of dykes (NW–SE to NNW–SSE-directed)
emplaced in NW Britain during this period (Speight
et al. 1982; England, 1988; Geoffroy, Bergerat &
Angelier, 1996). The later Eocene extension in NW
Britain has been interpreted to result from broadly
NW–SE-directed crustal extension associated with the
opening of the North Atlantic (Geoffroy, Bergerat &
Angelier, 1996). The Early Palaeogene magmatism in
NW Britain has been associated with melting of the
‘Iceland Plume’ (Kent & Fitton, 2000; Upton et al.
2002), although Nadin, Kusznir & Cheadle (1997)

tentatively suggested that a separate distinct mantle
plume may have been active in the NW Britain area
during this period. Tectonic activity has also been
invoked by some authors to have facilitated melt
generation in the area (Upton et al. 2002; Chambers,
Pringle & Parrish, 2005).

3.b. The Faroe Islands–N Rockall Trough (Fig. 1; ‘II’ in
Figs 2, 3)

Geoffroy, Bergerat & Angelier (1994) suggested that
an Early Palaeogene triple junction was more or less
centred on the Faroe Islands, while Burke & Dewey
(1973) proposed a contemporaneous triple junction
in the Faroes–N Rockall Trough area with magmatic
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centres in the N Rockall Trough and to the SSW
and/or SW off the Faroe Islands. This accords with
the inferences by Waagstein (1988) regarding the
depocentre of the Faroe Islands Beinisvør› Formation
(formerly lower basalt series: e.g. Passey & Bell,
2007) being located in the southern or central part
of the Faroe Islands area. A NW-trending failed rift
arm or leaky transform from this inferred junction(s)
or from a junction that migrated within this region
during Paleocene and Eocene times with relative
extension directed towards the NE–SW and another
rift arm or leaky transform with extension towards
the NNW–SSE may explain the NW–SE and ENE–
WSW sub-parallel igneous emplacement trends of
contemporaneous central igneous complexes in the
SW parts of the area (e.g. Archer et al. 2005), as
well as NW-trending lineaments reported for this
region (e.g. Johnson et al. 2005; Kimbell et al.
2005). A hypothetical connection between a Faroese
and a NW British triple junction (Figs 2, 3) would
presumably have been sub-parallel to the N–S-trending
contemporaneous dykes in mainland Scotland to the
E and S of Skye (e.g. Speight et al. 1982). Morton
et al. (1995) tentatively suggested that volcanism at
the Rosemary Bank (Fig. 1) in the N Rockall Trough
was due to a separate underlying source, and Hitchen
et al. (1997) likewise suggested a local source for the
Early Palaeogene rocks in the area. Other authors have
associated the Early Palaeogene magmatism in this area
with the ‘Iceland plume’ (Holm, Hald & Waagstein,
2001; Archer et al. 2005).

3.c. The NE Faroe–Shetland Basin; N North Sea; offshore
W Norway (Fig. 1; ‘III’ in Figs 2, 3)

An Early Palaeogene triple junction to the NNE off
Shetland has been suggested by Burke & Dewey
(1973), and an additional contemporaneous magmatic
centre was active further to the NNE off the SW
Norwegian coast. Based on reported Early Palaeogene
uplifts and igneous activity in the area, Mudge & Jones
(2004) and Rudge et al. (2008) suggested that the
‘Iceland Plume’ could be responsible for contempor-
aneous uplifts recorded in the northern North Sea and
the NE Faroe–Shetland Basin area. Kanaris-Sotiriou,
Morton & Taylor (1993) interpreted the Early Pa-
laeogene basaltic and associated intermediate volcanic
rocks of the Erlend Complex in the northern North
Sea to be a result of extensional volcanism in the area.
The Møre–Trøndelag Fault Complex, which extends
offshore from the SW Norwegian coast, trends towards
the area of this inferred junction and is thought to
have been active in Early Palaeogene times (Doré et al.
1997; Redfield et al. 2004) and could have been linked
to the contemporaneous igneous activity in the area.
Torske & Prestvik (1991) tentatively suggested that the
igneous products recorded off W Norway were related
to an Early Palaeogene precursor to the subsequent Jan
Mayen Fracture Zone (Fig. 1).

3.d. The Vøring margin; NE Greenland (Fig. 1; ‘IV’ in
Figs 2, 3)

The inferred magmatic activity at the Vøring margin
in Early Palaeogene times occurred at some distance
from the future break-up zone in the region, but moved
westwards with time (Eldholm, Thiede & Taylor, 1989).
Early Eocene magmatism in NE Greenland and at
the Vøring margin had a close spatial relationship
(Viereck et al. 1988; Upton et al. 1995) and recent
studies reveal a continuous Early Eocene igneous
complex that directly linked these two regions together
in the early stages of sea-floor spreading (Olesen
et al. 2007). The igneous activities (volume and
rock types) associated with these centres resemble
those found in some places in the Rockall Trough
(Upton, 1988) and on the NW British Isles (Viereck
et al. 1988 and references therein). Volumes of the
Paleocene to Early Eocene volcanism decreased from
the central Vøring margin towards the south and
north, respectively (Berndt et al. 2001), indicating melt
supplies from a relatively confined magmatic source.
An ‘Iceland Plume’ origin has been inferred for the
NE Greenland magmatism (e.g. Upton et al. 1995)
and for the igneous products at the Vøring margin
by some authors (Skogseid et al. 1992). Conversely,
Eldholm, Thiede & Taylor (1989) and Van Wijk
et al. (2001) suggested that decompression melting
triggered by rifting caused the magma generation
at the Vøring margin. Recent re-interpretations of
available magnetic, bathymetric, gravity and seismic
data from the Vøring margin strongly suggest local
Eocene magmatism related to an Azores-type triple
junction linked to the embryonic stages of sea-floor
spreading in the Norwegian–Greenland Sea (Gernigon
et al. 2008).

3.e. The (central-east) CE Greenland (Fig. 1; ‘V’ in
Figs 2, 3)

The voluminous and widespread igneous products
in this region were probably the result of several
contemporaneous magmatic centres (e.g. Callot, Geof-
froy & Brun, 2002). The locations of hypothetical
triple junctions at the CE Greenland margin have
been estimated from Early Palaeogene magmatism and
uplifts in the area (Larsen & Watt, 1985; Nielsen, 1987;
Mathiesen, Bidstrup & Christiansen, 2000; Callot,
Geoffroy & Brun, 2002; Peate, Larsen & Lesher, 2003)
and from triple junction localities as suggested by
Burke & Dewey (1973); Karson & Brooks (1999) and
Tegner et al. (2008). This vast area was characterized
by Early Palaeogene episodic igneous activity and
frequent migration of magmatic centres (Larsen &
Watt, 1985; Peate, Larsen & Lesher, 2003), and at least
three separate rifting events have been recorded for this
region, some of which occurred far inland (Nielsen,
1987; Olesen et al. 2007). The rifting associated with
the bulk of the magmatism in CE Greenland and the
Faroe Islands approximately at anomaly 24 (c. 55 Ma)
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occurred close to the Blosseville Kyst (Larsen & Watt,
1985; Nielsen, 1987; Larsen et al. 1999b). This is in
accordance with inferences that the magmas of the
younger basalt formations of the then neighbouring
Faroe Islands were supplied from the north during this
period (Waagstein, 1988; Larsen et al. 1999b). The
onset of final sea-floor spreading at the Blosseville
Kyst latitude occurred further to the east along the now
extinct Ægir Ridge at c. 54 Ma (Bott, 1985). On the
one hand, Larsen & Marcussen (1992) and Hanghøj,
Storey & Stecher (2003) considered the magmatism in
CE Greenland to be related to extension in the area; on
the other hand, authors such as Tegner et al. (2008 and
references therein) suggested that the CE Greenland
igneous products resulted from actions of the ‘Iceland
Plume’.

3.f. The Hatton–Edoras margin; SE Greenland (Fig. 1; ‘VI’
in Figs 2, 3)

Only parts of this extensive area have been investigated
in detail, but the close proximity in the Early
Palaeogene suggest that these two margins perhaps
shared some magmatic centres prior to the sea-floor
spreading in the region (Figs 2, 3). Locations for
some possible triple junctions in this region in Early
Palaeogene times have been implied previously by
Burke & Dewey (1973), Bull & Masson (1996),
Karson & Brooks (1999), Nielsen, Larsen & Hopper
(2002) and Nielsen, Stephenson & Thomsen (2007),
and locations of some separate large magmatic centres
and domal uplifts have been recorded by Morgan &
Barton (1990), Barton & White (1997), Larsen &
Saunders (1998) and Elliot & Parson (2008). A
hypothetical SE-trending failed rift arm or transform
from a triple junction in the southern parts of the
Hatton Bank (Figs 2, 3) would be sub-parallel to the
South Hatton Lineament (Johnson et al. 2005; Kimbell
et al. 2005). Another major lineament intersecting
the Hatton margin is the Anton Dohrn Lineament,
which in part has been interpreted by Dickin (1992)
to include an ancient orogenic suture zone (Figs 2,
3). Morgan & Barton (1990) detected a large separate
Early Palaeogene magmatic centre on the NW Hatton
Bank, and recent work by Elliot & Parson (2008)
revealed that the Hatton rifted margin could be divided
into three separate segments, each with a distinctive
magmatic evolution. They tentatively suggested that the
northern parts of the Hatton margin only experienced
diffuse spreading in the Early Palaeogene prior to
Chron 21 (c. 50 Ma) when regular coherent spreading
was established. The phenomenon of diffuse sea-floor
spreading has been inferred to reflect low obliquity
rifting in a magmatically starved environment (e.g.
Corti et al. 2001). In the southernmost parts of this
margin, Elliot & Parson (2008) recorded relatively
concentrated syn- to post-break-up volcanism. Most
authors infer the ‘Iceland Plume’ to be the main source
for the magmatism in these two margins (Barton &
White, 1997; Fitton et al. 2000), but Edwards (2002)

considered any ‘Iceland Plume’-dominated processes
further eastwards toward the Rockall–Hatton Basin to
be problematic, and Barton & White (1997) suggested
that there was no major long-distance lateral migration
of the melts supplying the magmatism at the Edoras
Bank.

3.g. The West Greenland–Baffin Island area (Fig. 1; ‘VII’ in
Figs 2, 3)

Based on reported locations for large concentrations
of Early Palaeogene igneous products (e.g. Chalmers,
Larsen & Pedersen, 1995; Skaarup, Jackson & Oakey,
2006), large contemporaneous igneous centres (Callot,
Geoffroy & Brun, 2002), doming (Japsen, Green &
Chalmers (2005) and the trends of major faults thought
to have been active in the same period (Chalmers,
Larsen & Pedersen, 1995; Geoffroy et al. 2001; Callot,
Geoffroy, Brun, 2002; Skaarup, Jackson & Oakey,
2006), the location of a hypothetical triple junction at
the southern tip of the Ungava Fault System and another
at Ubekendt Ejland around 100 km north of Disko
seems to be reasonable. Another triple junction or kink
between major faults further to the north between Baffin
Island, Ellesmere Island and W Greenland reconstruc-
ted back at c. 60 Ma has been interpreted to have been
active during the same period (Burke & Dewey, 1973;
Torsvik et al. 2001; Nielsen, Stephenson & Thomsen,
2007). Gill, Holm & Nielsen (1995) associated a
presumed high-temperature melting required for the
generation of Early Palaeogene picrites in this region
with a separate ‘Baffin Bay Plume’ rather than with
a distant asymmetrical/irregular ‘Iceland Plume’ as
suggested by Chalmers (1997) and Storey et al. (1998),
among others. The generation of Eocene dykes in SW
Greenland and the volcanism along the Ungava Fault
System are supposed to have been facilitated by plate
reorganizations in the area during that period (Storey
et al. 1998; Larsen et al. 1999a; Skaarup & Pulvertaft,
2007 and references therein).

3.h. N Greenland (Fig. 1; ‘VIII’ in Fig. 2)

The Early Paleocene Kap Washington Group is thought
to have been generated in response to continental rifting
related to the break-up of the Laurasian plate (Estrada,
Höhndorf & Henjes-Kunst, 2001). A contemporaneous
triple junction off Kap Washington is in accordance
with the study of Torsvik et al. (2001); Torsvik,
Mosar & Eide (2001) and Nielsen, Stephenson &
Thomsen (2007).

3.i. The W Barents region (Fig. 1; ‘IX’ in Fig. 3)

Volcanic rocks in the W Barents Sea (Vestbakken
Volcanic Province) located at the inferred trace of the
Caledonian suture zone are interpreted to have formed
in response to Early Eocene transtension associated
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with plate reorganizations in the area (Tsikalas,
Eldholm & Faleide, 2002).

4. Discussion

4.a. Competing theories on the NAIP petrogenesis

A number of theories and geodynamic models (includ-
ing mantle processes such as delamination, orogenic
collapse, small-scale edge-driven convection, melting
of fertile mantle, and melting of an individual large
mantle plume) have previously been proposed to have
caused the Early Palaeogene magmatism of the NAIP
(e.g. Meyer, Van Wijk & Gernigon, 2007 and references
therein). Other mantle processes sometimes thought to
result in voluminous magmatism in general include
decompression melting in response to global-scale
extension (Ziegler, 1992), and melting resulting from
spontaneous upwellings of near-solidus buoyant mantle
material (Raddick, Parmentier & Scheirer, 2002). Other
models applied to lithospheric processes, sometimes
suggested to have influenced the NAIP genesis, include:
(1) the ‘soft-point model’, where the lithosphere is pre-
weakened locally by igneous activity and their sources
at depth, thereby localizing extensional stresses, which
in turn may control the rift propagation and geometry
(Corti et al. 2001; Callot, Geoffroy & Brun, 2002;
Geoffroy, 2005); (2) lithospheric extension due to
relaxation of intra-plate tensional stress regimes, which
in turn generates numerous centres of extension
dispersed over plate-wide areas, perhaps ultimately
facilitating rifting (Nielsen, Stephenson & Thomsen,
2007).

4.b. Exploring potential source regions for the NAIP
magmas

Key issues for theories regarding the NAIP petrogenesis
include the high temperatures necessary to explain
the common occurrence of picrites and the nature of
source rocks necessary to explain the heterogeneous
compositions of many of the encountered basalts
(Meyer, Van Wijk & Gernigon, 2007). Melting of
peridotites, contaminated with various amounts of
recycled oceanic crustal material, is frequently invoked
to explain the geochemical variations in flood basalt
provinces (Kogiso, Hirose & Takahashi, 1998; Yaxley,
2000; Green & Falloon, 2005). However, as subducted
oceanic crustal material is thought to reside in the lower
mantle (Zhao, 2004), in the middle mantle (Courtillot
et al. 2003, Zhao, 2004) and in the upper mantle
(Green et al. 2001; Donnelly et al. 2004), geochemical
signatures do not necessarily constrain a certain level
of the mantle as the source of origin. Picrites have
been interpreted to form at ∼ 1440 ◦C and ∼ 2 GPa
(Green et al. 2001; Green & Falloon, 2005), and mid-
ocean ridge basalts (MORB) are thought to form at
temperatures above ∼ 1240 ◦C but below ∼ 1400 ◦C
and at depths ranging from ∼ 30 km to ∼ 45 km
(Hirose & Kawamoto, 1995; Presnall, Gudfinnsson &

Walter, 2002). Presnall, Gudfinnsson & Walter (2002)
showed that a temperature increase of only ∼ 20 ◦C
was required to increase melt produtivity from 0 to
24 % in a homogeneous peridotitic mantle at near-
solidus temperatures. The presence of small amounts of
recycled oceanic crust and/or water in peridotitic source
rocks is inferred to increase the degree of melting at
fixed temperatures (Kogiso, Hirose & Takahashi, 1998;
Yaxley, 2000) and to lower the solidus temperature
(Hirose & Kawamoto, 1995; Yaxley, 2000; Presnall,
Gudfinnsson & Walter, 2002; Green & Falloon, 2005).

At average geothermal gradients for the upper mantle
in an ocean ridge environment (e.g. Blatt & Tracy,
1995), adiabatic ascent of uncontaminated potential
peridotitic source rocks from depths of > 400 km is
required in order to produce picrites at ∼ 1440 ◦C
and ∼ 2 GPa (Fig. 4a). Substantially shallower depths
may be required for picrite genesis from hypothetical
assemblages of contaminated and/or hydrated source
rocks (Fig. 4b, c). For flood basalts comparable in
composition to oceanic island basalts (OIB), melting of
enriched/hydrated source rocks would be expected to
commence a few tens of kilometres deeper than similar
melting of a pure peridotitic counterpart to produce
MORB (Yaxley, 2000) (Fig. 4d, e). In summary, the
adiabatic ascent of source material from depths of a
few hundred kilometres is probably required in order
to provide temperatures realistically needed to produce
picrites.

4.c. The NAIP in the context of rift geometry and triple
junctions

The geometry of the NAIP (Figs 2, 3) and the longevity
of the igneous activity, together with the involvement of
the Rockall–Faroe Islands microcontinent (Roberts &
Searle, 1979; Edwards, 2002) and the Jan Mayen
microcontinent (Kodaira et al. 1998; Mjelde et al.
2008) in the rift processes, suggest a complex and
discontinuous break-up history. A comparable complex
rifting evolution has been reported for the Afar Vol-
canic Province with migrating triple junctions and mag-
matism (Tesfaye, Harding & Kusky, 2003; Wolfenden
et al. 2004) and where microcontinents (Danakil and
Aisha) were involved in the rifting/igneous processes
and commonly defined their own secondary triple
junctions and associated magmatism (Garfunkel &
Beyth, 2006). Individual large mantle plumes have
commonly been linked to magmatism, rifting and triple
junction formation in flood basalt provinces like the
Afar Volcanic Province (Garfunkel & Beyth, 2006)
and the NAIP (Section 3), but other authors have
argued that the East African rift system in general
developed in response to global plate reorganizations
(e.g. Wolfenden et al. 2004). The common occurrence
of dissimilar geochemical and isotopic signatures in
rift-related basalts, within confined areas from, for
example, the East African rift system (Barrat et al.
1998; Orihashi, Al-Jailani & Nagao, 1998; Rogers et al.
2000; George & Rogers, 2002; Keranen & Klemperer,
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Figure 4. Simplified diagram showing depths versus Mid-Ocean Ridge mantle geotherms (right y axis) from (Blatt & Tracy, 1995).
(a) Required depths of adiabatic ascent and melting of dry peridotitic source rocks to generate picrites at ∼ 2.0 GPa (around 60 km
depth) and at ∼ 1440 ◦C have been calculated/estimated. Adiabatic gradients of (i) 0.60 ◦C km−1 (McKenzie & Bickle, 1988),
(ii) 0.54 ◦C km−1 (McKenzie, Jackson & Priestley, 2005) and (iii) 0.42 ◦C km−1 (Ichiki et al. 2006) have been applied in the
calculations/estimations. In assuming lowering of solidus temperatures of ∼ 50 ◦C for source material containing H2O (Green &
Falloon, 2005) and a further decrease of solidus of ∼ 50 ◦C for fertile source material (Yaxley, 2000) calculations/estimations are
carried out for (b) wet and (c) wet + fertile source rocks. However, the scenarios in (b) and (c) may produce normal basalts unless
melting starts at deeper levels (e.g. Yaxley, 2000). (d) MORB generation from partial melting at ∼ 30 to ∼ 45 km depth. (e) Increased
melting column for the generation of OIB (oceanic island basalts). See text for further explanation.

2008), from Iceland (Kitagawa et al. 2008) and from
the Azores (Beier et al. 2008), suggests melting from
distinct mantle reservoirs.

The association between enhanced magmatism and
rift geometry, that is, triple junctions (Sears, George &
Winne, 2005) or kinks in rifting trends (Abdel-Rahman
& Nassar, 2004; Wolfenden et al. 2004), is well
known. In this context the evolution of the proto-
Iceland region may be of relevance for the Early
Palaeogene NAIP magmatism, as the great increase
in the volume of magma production in that area in
Middle Palaeogene times (Foulger & Anderson, 2005)
coincided with the establishment of the ridge–ridge–
transform triple junction (Reykjanes ridge–Kolbeinsey
ridge–Faroe transform fault) recorded by Bott (1985).

4.d. NAIP in the context of plate tectonic processes in
adjacent areas

In the context of Early Palaeogene global plate-tectonic
processes, it is noteworthy that the relative convergence
and associated compression of Africa and Iberia with
respect to W Europe came to a standstill from the
earliest Paleocene to the Early Eocene (Rosenbaum,
Lister & Duboz, 2002), that is, in the same time
interval as the occurrence of the majority of Early
Palaeogene NAIP magmatism and the initiation of the
continental break-up of the proto-North Atlantic area
(Table 1; Figs 1, 2, 3). The causal mechanism for this
standstill of relative plate convergence has been tent-
atively interpreted to result from a contemporaneous
continental collision in the Alps between the African

and European plates at around 65 Ma (Jolivet &
Faccenna, 2000; Rosenbaum, Lister & Duboz, 2002).
A recent complementary tectonic model inferred to
have terminated compression and perhaps facilitated
extension in the NW Atlantic area in the Early
Palaeogene involves major left-lateral displacements
between Greenland and Europe and within the NW
parts of Europe (Fig. 2) that ultimately resulted in nar-
rowing (contraction) and retreat of the European plate
relative to the African plate (Nielsen, Stephenson &
Thomsen, 2007).

In a rifting perspective, Lundin & Doré (2005)
argued that the Early Palaeogene igneous–tectonic
activities in the proto-North Atlantic area that generated
the NAIP were merely a result/expression of the final
phases of the ongoing break-up of Pangaea, spatially
and temporally linking the Early Paleocene central
Atlantic rifting (e.g. Ziegler, 1989, 1992) in the south
with the Early Eocene rifting in the Eurasian Basin
to the north (e.g. Srivastava, 1985; Brown, Parsons &
Becker, 1987).

4.e. Lithospheric strength

An important issue to be addressed in complex large
igneous provinces like the NAIP is: what caused the
magmatism to be so widespread until a relatively nar-
row sea-floor-spreading zone was finally established?
Clearly, the strength of certain parts of the lithosphere
and its relative capability to resist stretching, rupture
and/or intrusion of magmas must have played a major
role. Studies on lithospheric strength in a laterally
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homogeneous undeformed lithosphere have been dealt
with in a number of studies (e.g. Kohlstedt, Evans &
Mackwell, 1995; Hirth & Kohlstedt, 1996; Kusznir &
Park, 2002; Van Wijk & Cloetingh, 2002; Jackson et al.
2008). In brief, these authors concluded that increased
heat flow and high rates of spreading generally resulted
in a net weakening of the lithosphere and conversely,
very slow spreading rates and low heat flows could
result in a net strengthening. Increased fluid pressure
further weakens all affected rock assemblages in the
lithosphere (Hirth & Kohlstedt, 1996; Jackson et al.
2008). Upper mantle heterogeneity and the presence
of old shear zones in the lithosphere may play a
prominent role in incipient rifting both by enhancing
partial melting and by reactivation of old shear zones
(Holdsworth, Butler & Roberts, 1997; Ryan & Dewey,
1997; Kohlstedt, Evans & Mackwell, 1995).

5. Conclusions and closing remarks

In this contribution we have reviewed some key mag-
matic centres of the NAIP in a geodynamic framework,
focusing on their interrelationships and the tectonic
developments during the onset and development of the
NAIP. The specific conditions directly prior to the onset
of the NAIP and the continued development of the
region during the Palaeogene, based on the findings of
the present study, are highlighted as follows:

(1) The onset of the rifting and igneous activity of the
NAIP area was a temporal and spatial continuation of
the rifting in the adjacent central Atlantic Ocean to the
south and a precursor for the rifting in the Eurasian
Basin to the north. The main igneous and tectonic
activities in the NAIP in Early Palaeogene times
coincide with contemporaneous changes in the relative
motion between the European and African plates,
which possibly halted the previous compressional
regimes in the NW Atlantic during this time span.

(2) Taken all together, the apparent geometry of the
main igneous regions of the NAIP at the conjugate E
Greenland–NW European margins in particular shows
similarities with trends of the embryonic stages of clas-
sic continental rifting regimes consisting of numerous
more or less interconnected triple junctions. However,
the locations of numerous smaller central igneous
complexes and/or seamounts at the NW European
margin (Fig. 1) do not seem to fit with such a simple
rifting model if they all formed contemporaneously
with the larger igneous NAIP regions.

(3) An aiding factor to NAIP rifting could have
been Early Palaeogene oblique extension and active
sinistral transforms (reactivation?) at the conjugate E
Greenland–NW European margins (Nielsen, Stephen-
son & Thomsen, 2007) (Fig. 2).

(4) While partial melting in the upper mantle to
produce the bulk of the (normal) basaltic rocks of
the NAIP is not necessarily dependent on deep mantle
convection, some ascent of hot mantle jets seems to be
required in order to generate the NAIP picrites (Fig. 4).

(5) Whether global plate reorganizations or a single
large mantle plume was the driving force for the
NAIP evolution, the close proximity of many parts of
the NAIP magmatism and transient uplifts to ancient
orogenic sutures and/or fronts (Figs 2, 3) suggests that
lithospheric control was an important factor in the
embryonic stages of magmatism and rifting.
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