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Abstract 
 

The paper undertakes a comparison of Ragin‟s fuzzy set Qualitative Comparative 

Analysis with cluster analysis. After describing key features of both methods, it uses a 

simple invented example to illustrate an important algorithmic difference in the way 

in which these methods classify cases. It then examines the consequences of this 

difference via analyses of data previously calibrated as fuzzy sets. The data, taken 

from the National Child Development Study, concern educational achievement, social 

class, ability and gender. The classifications produced by fsQCA and fuzzy cluster 

analysis (FCA) are compared and the reasons for the observed differences between 

them are discussed. The predictive power of both methods is also compared, 

employing both correlational and set theoretic comparisons, using highest 

qualification achieved as the outcome. In the main, using the real data, the two 

methods are found to produce similar results. A final discussion considers the 

generalisability or otherwise of this finding. 
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Introduction 

 

There has been considerable critical discussion of the assumptions underlying 

regression methods (Abbott, 2001; Freedman, 1987; Lieberson, 1985; Pawson, 1989; 

Ragin, 2000). In lieu of, or in addition to, these linear algebraic methods, several 

sociologists have argued for a greater use of case-based approaches (Elman, 2005; 

George & Bennett, 2005; Ragin & Becker, 1992). Amongst suggestions for particular 

case-based methods, Ragin and others have argued for configurational approaches 

based in set theory (Ragin, 2000; Kvist, 2007). The approach developed by Ragin 

(crisp and fuzzy set based Qualitative Comparative Analysis, or QCA/fsQCA) has, 

thus far, been used mainly with small to medium sized samples, but can be used with 

large datasets (Cooper, 2005a,b, 2006; Cooper & Glaesser, 2007, 2008; Glaesser, 

2008; Ragin, 2006b). Some have seen cluster analysis (CA) as an alternative fruitful 

way forward (Byrne, 2002), others sequence analysis (Abbott, 2001; Wiggins et al, 

2007). 

 

Users of analytic methods should have, alongside technical knowledge, some 

understanding of underlying assumptions, embedded procedures, strengths and 

limitations. In using Ragin‟s methods to analyse large datasets, we have become 

aware of important similarities and differences between his procedures and those of 

cluster analysis. At root, these are the consequences of two different mathematisations 

of procedures for classifying cases. While both approaches work with 

multidimensional spaces, QCA addresses the positioning of cases in these spaces via 

set theoretic operations while CA relies on geometric distance measures and concepts 

of variance minimisation. 

 

Elman (2005), referring back to Lazarsfeld and Barton‟s work on classification, 

argues for “explanatory typologies”. George and Bennett (2005), discussing 
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“typological theorising”, argue for a combining of case-based comparative analyses 

with process-tracing as a route to causal explanation. We have considerable sympathy 

with these approaches, but here, given our focus on procedures and their 

consequences, and given the nature of the data employed, we stay at the descriptive 

and predictive levels.  

 

We first introduce key features of fsQCA and CA. We then provide an abstract two-

dimensional illustration of a important algorithmic difference between the partitioning 

procedures of fsQCA and CA. This difference is the central theoretical focus of the 

paper, on which the subsequent empirical three-dimensional comparison of fsQCA 

and fuzzy CA builds. In the empirical section, we compare classifications produced 

by fsQCA and FCA and compare their respective predictive power. We conclude by 

considering the generalisability of our results. 

 

QCA/fsQCA 

 

Ragin‟s QCA analyses the necessary and/or sufficient conditions for some outcome. 

These conditions are often described in the QCA literature as “causal” conditions 

though QCA offers no algorithmic solution to the problem of distinguishing 

association from causation. What it does allow is the establishment of those complex 

combinations of conditions, from amongst those selected as potentially causal by the 

researcher, that are able logically to account for some outcome. We later use the fuzzy 

set version of QCA but we first introduce key ideas using crisp sets.  

 

Mahoney and Goertz (2006) give the following (deterministic) example of a Boolean 

algebraic solution that might arise from a set theoretic analysis of some outcome, Y: 

 

Y = (A*B*c)+(A*C*D*E)      

 

In such equations the symbol * indicates Logical AND (set intersection), + Logical 

OR (set union), upper case letters the presence of factors, lower case letters their 
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absence. In this fictional example of “causal” heterogeneity, the equation indicates 

that there are just two paths to the outcome Y. The first, captured by the configuration 

A*B*c involves the presence in the case of features A and B, combined with the 

absence of C. The second, captured by A*C*D*E, requires the joint presence of A, C, 

D and E. Either of these configurations is logically (and perhaps causally) sufficient 

for the outcome to occur, but neither is necessary, considered alone. A is necessary, 

assuming there are just these two paths to Y, but not sufficient. The factor C behaves 

differently in the two configurations.  

 

Sufficiency, understood logically, involves a subset relation. If a condition is 

sufficient for an outcome to occur, the set of cases with the condition will be a subset 

of the outcome set. This is shown in Figure 1, based on a hypothetical relation 

between an individual‟s being of service class origin and achieving a degree. Given 

the condition, s/he has the outcome. In applications to real large n data, such perfect 

sufficiency is unlikely, and a situation like Figure 2 might be found, where most but 

not all of the cases with the condition are members of the outcome set.  

 

  
Figure 1: Perfect Sufficiency Figure 2: Quasi-Sufficiency 

 

 

For crisp sets, the proportion of the members of the condition set who are also 

members of the outcome set is used as a measure of the degree of consistency of the 
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empirical relation with a relation of perfect sufficiency. Figure 2 illustrates a relation 

describable as only „nearly always sufficient‟. Alternatively, using a probabilistic 

view of causation, being of service class origin here is a sufficient condition, all else 

being equal, for raising the probability of achieving the outcome to a level equal to 

this “consistency” proportion. 

 

Venn diagrams can also illustrate Ragin‟s concept of explanatory coverage (Ragin, 

2006a). The proportion of the outcome set that is overlapped by the condition set is 

used as a measure of the degree to which the outcome is covered („explained‟) by the 

condition. In Figures 1 and 2, the coverage of the outcome by the condition is low, 

with only around 40% of the (grey) outcome set covered by the (white) condition set.  

 

As a simple example of how crisp set QCA copes with the problem of less than 

perfect sufficiency, consider the data in Table 1, taken from the National Child 

Development Study (NCDS) of individuals born in one week in March 1958.  The 

5800 cases are those we have used elsewhere (Cooper & Glaesser, 2007). In this 

“truth table”, each row captures one type of case as a configuration of conditions, 

showing the number of cases with each particular combination of the absence or 

presence of the conditions and the proportion of these achieving an outcome 

(consistency). 

Table 1: Highest qualification better than ‘Ordinary’ level by class, ability and sex (Cooper & 

Glaesser, 2007) 

CLASS_S 

= service 

class 

origin 

HIGH_ABILITY 

=  measured 

ability in top 

20% (at age 11) 

MALE Number 

of cases 

HQUAL = 

highest 

qualification 

better than 

„O‟ level 

Consistency 

with 

sufficiency 

1 1 1 262 1 0.863 

1 1 0 333 1 0.793 

0 1 1 359 1 0.691 

1 0 1 502 0 0.584 

0 1 0 413 0 0.521 

1 0 0 458 0 0.485 

0 0 1 1676 0 0.358 

0 0 0 1797 0 0.224 
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The 1s in the table indicate, respectively, membership in the sets “SERVICE CLASS 

ORIGIN”, “HIGH ABILITY” and “MALE”, with zeros indicating non-membership. 

The outcome, HQUAL, is having highest qualifications at age 33 better than Ordinary 

level. In no row does the proportion with the outcome reach 100%. This will surprise 

few readers. Social causation is complex, it is unlikely that these three conditions 

capture all relevant processes, and “chance”, however understood, will have played a 

role. Ragin‟s proposed solution is to work with a notion of quasi-sufficiency and 

quasi-necessity (Ragin, 2006a; also Boudon, 1974; Mahoney, 2008).  Here, for 

illustrative purposes, we set 0.67 as a minimum proportion for quasi-sufficiency. 

Three rows marked out by entering a 1 in the outcome column go forward to the 

solution:  

 
HQUAL =  

 

(CLASS_S*HIGH_ABILITY*MALE)+(CLASS_S*HIGH_ABILITY*male)+(class_s*HIGH_ABILITY*MALE).   

 

This simplifies to
1
: 

 

HQUAL = HIGH_ABILITY*(CLASS_S+MALE).  

 

Quasi-sufficient conditions for predicting this level of qualification are being of high 

ability combined with either service class origin or being male (or both). The 

consistency of this solution is 0.774 and its coverage 0.299 (the latter reflecting the 

large proportion of cases with the outcome that fall outside the three configurations in 

this solution). 

 

fsQCA 
   

Because we will be comparing the fuzzy set version of QCA (fsQCA) with FCA, we 

now introduce fuzzy sets and some operations employed in fsQCA. Fuzzy sets have 

the advantage of addressing the concern raised by Goldthorpe (1997) that crisp set 
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QCA, using dichotomies, often jettisons detailed information. Whereas in crisp sets 

there are just the two states of zero and full membership, in the fuzzy approach there 

can also be partial memberships. Consider membership of the set of adults (Kosko, 

1994). Most judges would agree that an age of ten would rule out adulthood (a 

membership score of zero) and one of 30 would rule it in (a score of one). What about 

the age range 15 to 21? Here it would seem inappropriate to allocate a score of either 

zero or one – the only possibilities available in the crisp set context. In fuzzy set based 

descriptions of cases, where a score of 0.5 indicates a case is as much in as out of a 

set, we might allocate a score of 0.9 for the 20 year-old to indicate almost but not 

quite full membership of the set. 

 

Matters become more complicated when we move on to consider fuzzy set union 

(OR) and intersection (AND). Various candidates have been proposed for these 

operations in the fuzzy context (Smithson, 1987). A commonly accepted pair of 

definitions (see Ragin 2000) defines the intersection operator as the arithmetic 

minimum of the scores being combined
2
, and union as the arithmetic maximum. 

These are the operators embedded in Ragin‟s current fsQCA software (Ragin et al., 

2006a&b). If we wish to negate a set (analogous to moving from „HIGH_ABILITY‟ 

to „high_ability‟ in the earlier crisp set context) we subtract the score from 1.  A case 

with membership in the set of adults of 0.9 has membership in the set of not-adults of 

0.1.  

 

Methods for evaluating the subsethood relation required for assessing sufficiency and 

necessity have also been much debated (Smithson 1987). Ragin has moved through 

four measures of consistency while developing fsQCA (Cooper, 2005b). FsQCA 

currently works with an analogue of the “overlap” approach employed in discussing 

the crisp sets in Figure 2. Using this approach, the „truth table algorithm‟ in fsQCA 

(version 2.0) creates indices of consistency to assess sufficiency (and coverage) using 



 9 

the formulae in Table 2 (where mx indicates the membership score of a case in set x, 

the causal configuration; my indicates the membership score of a case in set y, the 

outcome; and mx∩y is the intersection of sets x and y, defined as the minimum of the 

two scores; and sums are taken over cases {the i} in the respective sets).  

 

Table 2: Consistency and coverage indices 

Consistency 



 

i

x

i
yx

m

m

 

 Coverage 



 

i

y

i
yx

m

m

 

 

 

The final issue is calibration, i.e. the allocation of fuzzy membership scores to 

features of cases. Ragin (2000) stresses the importance of using knowledge of cases 

alongside theoretical and substantive knowledge in this process. Since much use of 

QCA has been with small and medium sized datasets, this has been possible and 

fruitful. However, we do not have detailed case knowledge of the thousands of 

individuals in the NCDS. Verkuilen (2005) provides a review of ways we might 

proceed in such situations. In his terms, Cooper, in earlier work with these data, 

employed a method of „direct assignment‟ based on theoretical and substantive 

expertise to allocate fuzzy scores to class and qualification categories
3
. We use those 

calibrations in this paper (see Cooper, 2005a, for details) because we wish to explore 

the use of CA with previously analysed calibrated data
4
. In this paper, both QCA and 

cluster analysis are applied to these existing fuzzy measures. 

 

When using fuzzy sets, because cases can have non-zero membership in more than 

one configuration, a special procedure is needed to create a truth table analogous to 

Table 1, where cases are uniquely in one configuration. The truth table algorithm 

employed in the current version of fsQCA achieves this. We can illustrate this via a 
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simple invented example with two causal conditions, A and B, for each case and 

where cases have been allocated fuzzy membership in sets A and B. Columns 2-5 of 

Table 3 show the fuzzy set membership values of A, B and their negations (calculated 

by subtracting these values from 1). Columns 6-9 show the degree of membership in 

the four possible intersections
5
 of the sets A, B and the negations a, b. Crucially, some 

cases have non-zero membership in more than one of the configurations AB, Ab, aB 

and ab. 

 

Table 3: Fuzzy memberships in A and B and derived sets 

Case id A B a b AB Ab aB ab 

1 1.00 0.00 0.00 1.00 0.00 1.00 0.00 0.00 

2 1.00 0.51 0.00 0.49 0.51 0.49 0.00 0.00 

3 0.55 0.45 0.45 0.55 0.45 0.55 0.45 0.45 

4 0.65 0.55 0.35 0.45 0.55 0.45 0.35 0.35 

5 0.20 0.45 0.80 0.55 0.20 0.20 0.45 0.55 

6 0.20 0.51 0.80 0.49 0.20 0.20 0.51 0.49 

 

 

For each case we have also shown in bold the largest of the four values amongst the 

four possible intersections. In each row, given we have no values of A or B equal to 

0.5,  we have just one value greater than 0.5, i.e. greater than the crossover value for 

being more in than out of a fuzzy set. In his „truth table algorithm‟ Ragin uses this 

particular value to locate each case in one „corner‟ of the property space (and 

therefore the truth table) comprising the four sets AB, Ab, aB and ab. This move, 

effectively removing the problems caused by each case potentially having non-zero 

membership in all four intersections, allows cases to be allocated to just one row of a 

truth table.  It is the key move in fsQCA, given prior calibration , in allocating cases 

to the theoretically defined types which together comprise the multidimensional space. 

Each case is allocated to the one set, i.e. the one row in a truth table, in which it has a 

membership greater than 0.5.  
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We will return to some other features of fsQCA later, but now turn to CA. 

 

Cluster analysis 

 

Since cluster analysis is better known than fsQCA, we describe it briefly. 

Conventional (crisp, hard) cluster analysis comes in many forms (Bailey, 1994). What 

they have in common is the goal of dividing some set of cases into subgroups whose 

members are potentially of similar kinds or types
6
. Cases are seen as distributed in a 

multidimensional space, candidate cluster centres are represented by particular 

coordinates in this space, each case is allocated to just one cluster, and minimising the 

sum of some measure of the distances of cases from their cluster centres is the typical 

procedure used to determine, iteratively, the final cluster structure and the allocation 

of cases to it. Some algorithms (agglomerative) begin by assuming that each case is a 

cluster and gradually merge these small clusters to form larger ones; others (divisive) 

begin by allocating all cases to one cluster and then gradually divide this to form some 

smaller number of final clusters (Bailey, 1994). In the less well-known fuzzy cluster 

analysis (FCA), CA can also be used to allocate cases non-uniquely to clusters. Here 

cases can have fractional degrees of membership, analogous to fuzzy set 

memberships, in several clusters, with these memberships, in the basic so-called 

probabilistic variant of FCA, set to add to 1
7
 (de Oliveira & Pedrycz, 2007; Kruse et 

al., 2007). In all these variants of CA, the cluster structure found depends partly on the 

particular sample analysed. 

 

While there has been much energy expended trying to mechanise the choice of an 

optimal number of clusters in a given analysis, this choice is still often presented as 

involving judgment based on whether theoretical or substantive sense can be made of 

the clusters found  (Lattin et al., 2003). Here, we constrain the number of clusters to 

match the number of configurations in our fsQCA analyses.  

 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Witold+Pedrycz
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Having introduced these two classificatory approaches, we present, before employing 

real data, a simple illustration of a key difference between fsQCA and crisp CA that 

also applies to FCA.  

 

fsQCA versus CA: a 2-dimensional non-empirical illustration  

 

While fsQCA uses an explicit (set theoretic) argument to justify its partitioning of a 

dataset, forms of cluster analysis depend, most commonly, on distance-based 

measures of similarity or dissimilarity. Looking at Figure 3 – and thinking in terms of 

four clusters to match the number of configurations generated by a truth table analysis 

involving two conditions A and B – we can see that, given the distribution of the 

twelve cases across the two-dimensional space, a clustering algorithm based on 

minimising distances between the cases and the geometric centres of the unique 

cluster to which they belong, would be expected, if set to find four clusters, to 

produce the four groupings represented by different shapes. We can also see that 

fsQCA using the minimisation rule for set intersection, coupled with its rule of 

allocating cases to the set (or configuration) in which they have a membership greater 

than 0.5, would produce the same partitioning of this population (see discussion of 

Table 3). 
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Figure 3: 12 invented cases with membership in A and B 

 

 

Now consider the distribution of cases in Figure 4. Here, using any obvious distance 

measure to produce four clusters, we will obtain via CA the four groupings shown 

differentiated by shape. The fsQCA partition will however be different, given the 

critical role of the 0.5 membership score. Here, employing fsQCA‟s truth table rule 

for allocating cases to a unique set, the left-most triangle goes to aB, but its two 

cluster companions to AB. We obtain two different partitions, reflecting the algorithm 

employed. This exercise sets up a potential competition between the two approaches. 

Which of the two partitionings might better account for some outcome?  
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Figure 4: 12 different invented cases with memberships in A and B 

 

One message to take from this comparison is that the extent of the difference in the 

partitionings produced by the two approaches will be affected by the distribution of 

the cases across the two-dimensional space (and, more generally, across n-

dimensional spaces). In populations where the density of cases is greatest near the 0.5 

fuzzy membership scores, differences between the two partitionings will tend to be 

greater.  

 

We move now to a three-dimensional space, using real data from the NCDS. We 

employ fuzzy measures of class origin, ability and the binary measure of sex, with 

highest qualification achieved by age 33 as our outcome. We have two reasons for 

including the binary condition of sex. First, we wanted to apply CA to the sorts of mix 

of crisp and fuzzy factors that have appeared in published work using fsQCA and, 

second, given the way CA treats the binary factor, we can use 2-d figures to make our 

discussion of the 3-d case clearer. The differences we discuss between fsQCA and CA 

are not, however, dependent on this decision to include a binary factor. 

 

FsQCA versus FCA: a 3-dimensional empirical illustration 

 



 15 

We address a three-dimensional space on the conditions side (fuzzy class, fuzzy 

ability, sex) and employ fuzzy highest qualifications as our outcome. We need briefly 

to describe the measures/calibrations. Given space constraints, we will not set out the 

rationale for these calibrations (see Cooper, 2005a). Our purpose here is to compare 

the ways fsQCA and CA treat already calibrated measures. Sex is a crisp set, with a 

score of 1 indicating full membership in the set MALE. Class origin, labelled 

CLASS_F, is allocated the fuzzy scores shown in Table 4. A score of 1 here indicates 

membership of the upper service class and other scores partial or zero membership in 

CLASS_F. The fuzzy outcome measure we label HQUAL_F (Table 5). The 

calibration of the ability scores (at age 11) is shown in Figure 5. This reflects its origin 

in Cooper (2005a) where having high ability was defined as having a score in the top 

20% of the cohort distribution. We label this fuzzy version ABILITY_F. A 

considerable number of cases have been given scores of 1 or zero, though the majority 

have partial scores. A score of 1 in ABILITY_F therefore indicates having high 

ability as defined.  

 

Table 4: Class scheme employed (Erikson & Goldthorpe, 1993) and fuzzy scores 

Class Label CLASS_F: Fuzzy score 

1 Upper service 1.000 

2 Lower service 0.830 

3 Routine non-manual 0.583 

4 Petty bourgeoisie 0.583 

5 Supervisors etc. 0.417 

6 Skilled manual 0.170 

7 Semi- and unskilled manual 0.000 

 

Table 5: Fuzzy scores for highest qualification at age 33 

Highest qualification gained at age 33 HQUAL_F:  Fuzzy score 

Degree or higher NVQ5 , 6 1.00 

Higher qualification NVQ4 0.83 

A Level/equiv NVQ3 0.67 

O Level/equiv NVQ2 0.42 

CSE 2-5/equiv NVQ1 0.17 

No qualification 0.00 
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Figure 5 : Fuzzy calibration of ability (variable n920 in the NCDS files) 

 

Three conditions generate 8 rows in an fsQCA truth table. We use fuzzy clustering to 

produce 8 clusters to explore the match with these 8 fsQCA configurations. We 

crosstabulate the fsQCA and FCA partitions, then discuss some cases that fall off the 

main diagonal. We then focus on accounting for our outcome, HQUAL_F. We 

employ 5800 cases from the NCDS with no missing data on these and some other 

variables we have used elsewhere (Cooper & Glaesser, 2007).  

 

Recall that probabilistic FCA, instead of allocating cases to just one cluster, allows 

cases to have partial membership in several, with the total of the memberships for any 

case set at 1 (Pedrycz, 2005)
8
. We employ the commonly used fuzzy c-means 

algorithm (a fuzzy relative of crisp k-means) in the software Fuzzy Grouping 2 

(Pisces Conservation, 2005) to produce our eight clusters
9
.  Given the iterative nature 

of this procedure and its dependence on random starting seeding of candidate cluster 

centres, we have checked that our solution is relatively stable under repetitions of the 

procedure with and without reordering of the cases in the data spreadsheet.  

 

Table 6 gives the cluster centres for the resulting eight clusters.  Allowing for small 

errors introduced, we assume, by the iterative procedure, we can see that sex is 

preserved as a crisp feature by FCA. Apart from this, though less clearly for cluster 7, 

http://eu.wiley.com/WileyCDA/Section/id-302479.html?query=Witold+Pedrycz
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the cluster centres are distinguished by the various possible combinations of high and 

low scores on CLASS_F and ABILITY_F.  

 

Table 6: Cluster centres from FCA 

 Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 Cluster 6 Cluster 7 Cluster 8 

CLASS_F 0.848 0.743 0.143 0.828 0.117 0.141 0.644 0.113 

ABILITY_F 0.940 0.288 0.834 0.928 0.113 0.863 0.420 0.097 

MALE 0.003 0.992 0.996 0.997 0.003 0.003 0.008 0.997 

 

 

Table 7 crosstabulates membership in the fsQCA configurations with membership in 

the cluster in which each case has the largest membership. 94.28% of cases fall on the 

leading diagonal, and no cells mix sexes. If we repeat this exercise, but only using 

cases from the FCA solution who have a degree of membership over 0.5 (to simulate 

the way the fsQCA truth table algorithm locates cases in a unique configuration), then 

97.46% of 4652 cases fall on the leading diagonal.  

 

Table 7: The fsQCA configurations by best FCA cluster (number of cases) 

 FCA cluster where each case has its maximum membership 

fsQCA configuration 

(Class, Ability, Male) 

4 1 2 7 3 6 8 5 

111 742 0 60 0 0 0 0 0 

110 0 784 0 155 0 0 0 0 

101 0 0 400 0 0 0 0 0 

100 0 0 0 306 0 0 0 0 

011 0 0 3 0 705 0 0 0 

010 0 0 0 22 0 848 0 0 

001 0 0 33 0 29 0 827 0 

000 0 0 0 30 0 0 0 856 

 

 

The cluster centres from the FCA, four for each sex, seem to represent four ideal 

typical cases that cover the same high/high, low/low, high/low and low/high 

combinations of class and ability as does fsQCA. There are, however, some fairly 

large groups off the diagonal (e.g. the 155 cases comprising configuration 110 by 

cluster 7). Who are they? Why are they are off the diagonal?  
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Since it‟s the largest absolute mismatch, let‟s take the cell with 155 cases as an 

example. For QCA, these are cases in the set/configuration 110, i.e. females with 

membership above 0.5 in both CLASS_F and ABILITY_F. We find, as would be 

expected from our earlier 2-d illustration, that at least one of the fuzzy scores for class 

or ability is near the 0.5 boundary. These cases are females, either in Goldthorpe‟s 

class 3 or they are in the service class (1 or 2) but with ability scores close to 0.5.  

Holding sex to female, i.e. taking a 2-d slice through the 3-d space, the 155 cases are 

shown in Figure 6, which also shows the 4 cluster centres for females. The 155 cases 

hug at least one of the 0.5 boundaries. We have here an empirical example of the 

problem we described in Figure 4. 

 

 
Figure 6: the 155 cases in both configuration 110 and with maximum membership in 

fuzzy cluster 7 (with 4 cluster centres for females) 

 

 

Turning to FCA, we need to look at cluster „7‟, of which these 155 cases are 

members. The cluster centre for this cluster is at 0.64, 0.42 and 0 for class, ability and 
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sex. The prototypical member of this cluster (0.64, 0.42, 0) would not be allocated, 

under fsQCA, to the configuration 110 since ability is not above 0.5. Most cases in 

cluster 7 are, in fact, in the fsQCA configuration 100. These 155 members of cluster 

7, however, have fuzzy ability scores above 0.5, as well as a fuzzy class score above 

0.5 and a MALE score of zero, and so go to 110.  

 
 

We can take, for further illustration, the modal cases, of which there are 16, from 

among the 155; they have scores of 0.58, 0.58, 0 (Figure 6). Notwithstanding their 

membership in the configuration 110, their distance from the centre of cluster 7 is 

smaller, as expected, than their distance from any of the other clusters containing 

females. They are nearer this cluster centre than the one that appears most like QCA‟s 

110 (which is cluster 1 with centre 0.85, 0.94, 0). The nearness of these 16 cases to 

two 0.5 boundaries is the basis of this difference in classification. Although they are 

in 110, they are only just more in than out of CLASS_F and ABILITY_F.  

 

 

Comparison 1: prediction (conventional approach) 

 

We now look at the extent to which the two classifications predict HQUAL_F. We 

begin with a conventional approach. We compare the size of the contingency 

coefficient for, first, the relation between the cases‟ memberships in fuzzy highest 

qualification (Table 5) and in their fsQCA configuration, and, second, for the relation 

between their membership in fuzzy highest qualification and their membership in the 

fuzzy cluster in which each case has maximum membership. The two contingency 

coefficients are 0.487 (for fsQCA) and 0.492 (for FCA). Both classifications explain 

very similar amounts of variation.  

 

Comparison 2: prediction (set theoretic) 

 

We now compare fsQCA and FCA-based prediction using a set theoretic approach.  

Here, we compare fsQCA and FCA on fsQCA‟s own ground. We attempt a 
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comparison of the predictive power of two classifications based on CLASS_F, 

ABILITY_F and MALE using quasi-sufficiency in place of variance explained. First, 

we describe the set theoretic solution of the model HQUAL_F=Function(CLASS_F, 

ABILITY_F, MALE). In doing this, we introduce a feature of the truth table 

algorithm in fsQCA that will be seen to have motivated our use of fuzzy CA. This 

additional complicating feature is that the truth table algorithm in fsQCA, although it 

allocates cases to a unique row of the truth table on the basis of their having a score of 

over 0.5 in just one configuration, actually calculates the consistency and coverage 

indices for each configuration for all cases with non-zero membership, not just these 

strongest ones (Ragin, 2004). Ragin‟s argument is that the number of cases in each 

row can be used as an indicator of the existence or otherwise of strong exemplars of 

each configuration but that the relation between the sets represented by the 

configurations and the outcome should be tested using all non-zero memberships in 

the configurations.  

 

Table 8: HQUAL_F=Function(CLASS_F, ABILITY_F, MALE): the resulting truth table 

most 

similar 

FCA 

cluster  

CLASS_F ABILITY_F MALE number HQUAL_F Consistency 

(from fsQCA 

software) 

Coverage 

(from Excel 

calculation) 

4 1 1 1 802 1 0.876 0.248 

1 1 1 0 939 1 0.830 0.268 

3 0 1 1 708 1 0.791 0.233 

2 1 0 1 400 0 0.750 0.133 

6 0 1 0 870 0 0.721 0.252 

7 1 0 0 306 0 0.721 0.118 

8 0 0 1 889 0 0.560 0.183 

5 0 0 0 886 0 0.496 0.163 

 

 

The truth table, from the fsQCA software, for the outcome HQUAL_F and the 

conditions CLASS_F, ABILITY_F and MALE is part of Table 8. One additional 

column has been added to indicate the number of the FCA cluster that is nearest in 

shared membership to each configuration. Another provides row coverage figures. For 
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an illustrative solution, we take the three highest consistency levels as indicating 

consistency with quasi-sufficiency. Doing this allows three configurations into the 

solution (111, 110, 011). The simplified solution becomes:  

 

(CLASS_F*ABILITY_F)+(ABILITY_F*MALE) or, simplifying further,  

 

ABILITY_F*(CLASS_F+MALE).  

 

The software calculates the overall consistency and coverage for this solution. To do 

this, cases‟ memberships in ABILITY_F*(CLASS_F+MALE), calculated using the 

individual scores for the three conditions, become the mx in the formulae in Table 2 

(and cases‟ scores on HQUAL_F supply the my). Overall consistency is 0.789 and 

overall coverage is 0.653. 

 

As explained, the consistencies with quasi-sufficiency in the penultimate column of 

Table 8 are calculated using all cases with non-zero membership. To simulate this 

using cluster analysis we must use FCA rather than crisp k-means CA, where cases 

have membership in only one cluster. We now turn to the analysis of quasi-

sufficiency, with HQUAL_F as the outcome, treating the FCA clusters as sets in 

which cases have the partial memberships allocated by FCA. Here we simulate the 

approach used in fsQCA‟s truth table algorithm, i.e. we allow all cases with non-zero 

membership in a cluster to contribute to the calculation of consistency and coverage. 

Table 9 is the resulting truth table giving consistency and coverage figures for each 

cluster. It includes the fsQCA configurations that are the „lookalikes‟ for FCA 

clusters. The cluster rows are ordered by descending consistency. Given the 

approximate mapping of configurations onto clusters, the orderings of consistency are 

almost the same in Tables 8 and 9. Row coverage figures are also similar. A three-row 

solution of this table comprises FCA clusters 4, 1 and 3. A glance at the „lookalike‟ 

configurations for these clusters shows this to be the parallel solution to the one 
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derived using fsQCA. Using FCA, we have, in our simulated set theoretic analysis, 

produced results structurally similar to those of fsQCA. 

 

Table 9: HQUAL_F as outcome, using FCA clusters as the rows 

fsQCA „lookalike‟ configuration FCA cluster consistency coverage 

111 4 0.874 0.208 

110 1 0.840 0.218 

011 3 0.771 0.190 

101 2 0.756 0.132 

100 7 0.745 0.137 

010 6 0.702 0.198 

001 8 0.522 0.145 

000 5 0.457 0.126 

 

 

We now calculate the overall consistency and coverage for this FCA solution, as we 

did for the parallel one produced by fsQCA. We noted, in producing overall 

consistency and coverage for fsQCA, that we needed to use the individual fuzzy 

values of CLASS_F, ABILITY_F and MALE to calculate the membership of a case 

in the illustrated solution, ABILITY_F*(CLASS_F+MALE). Now, we don‟t have 

such a tidy simplified Boolean expression for our FCA-based solution. We rather have 

CLUSTER_4+CLUSTER_1+CLUSTER_3, analogous to the configurations 111, 110 

and 011. A case‟s membership in this can be calculated by applying the maximum 

rule for fuzzy set union (logical OR) to the three partial cluster memberships
10

. Doing 

this, we obtain, for the three-cluster solution, an overall consistency of 0.812 and a 

coverage of 0.516. The consistency figure can be seen to be very close to the 0.789 in 

the fsQCA solution. The coverage figures are less close (0.516 v. 0.653) but we have, 

in simulating fsQCA via FCA, produced similar results.   

 

 

Discussion 

 

We have discussed some of the underlying procedures involved in fsQCA and shown 

where they differ from those of cluster analysis. We have employed FCA, a technique 
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not well-known in sociology. Our experience tells us that the only way to understand 

the affordances and limitations of complex analytic techniques is to work through 

them in the detail we have. We will keep this conclusion brief.  

 

Given that fsQCA, via the truth table algorithm, builds its classification of cases on 

the basis of the assumption that the boundaries set by fuzzy scores of 0.5 should 

determine, in conjunction with a particular definition of set intersection, where cases 

belong, while FCA employs an iterative approach based on minimising some 

distance-based function, it is perhaps surprising that we have found these methods 

producing similar results. This applies to both the classifying stage of the work and 

the subsequent stage of „explaining‟ an outcome in both conventional and set theoretic 

ways. There are, however, a number of points to make concerning the likely 

generalisability of these results. 

 

First, we employed existing fuzzy calibrations. Given that we have shown that it is 

cases with fuzzy scores near 0.5 that are likely to be differently classified by fsQCA 

and FCA, it is easy to see that the distribution of fuzzy scores will play a role in 

determining the proportion of cases that fall off the leading diagonal in any 

comparison. Of our two non-binary conditions, one, ABILITY_F, had a large 

proportion of cases with scores of 1 or 0. About a quarter of the scores for CLASS_F 

were also 1 or 0. Distributions of scores with a higher proportion of cases near the 0.5 

boundary than ours will tend to produce greater differences in classification. 

 

This leads to a second point. The researcher using fsQCA needs to create fuzzy 

calibrations of factors. We can see that different calibrations will produce different 

degrees of mismatch between fsQCA and CA, simply as a consequence of cases being 

moved nearer to or further from 0.5. Only therefore in some cases, we anticipate, will 

comparisons come out like ours.  
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Third, there is an important point that we have not yet explicitly discussed. The 

configurational categories that enter into any fsQCA analysis of the achievement of an 

outcome are given once the choice of factors has been made
11

. Membership in them is 

determined once the fuzzy scores have been allocated to these features of cases (such 

as CLASS_F and ABILITY_F here). The approach is explicitly theoretical in this 

particular sense rather than inductive (though some may be tempted to finesse 

calibrations in an ad hoc manner in order to raise consistency and/or coverage 

figures). The key point is that the distribution of fuzzy scores over the cases does not 

determine the classification itself, only membership in the configurations comprising 

it. CA is quite different. Cluster structure and membership are produced together, 

iteratively. The cluster structure is usually determined by some sort of distance 

minimising procedure and it is partly dependent on the particular sample employed 

(Lattin et al., 2003). In FCA, alongside the cluster structure, the fractional cluster 

memberships will also change with sample
12

. Readers should bear this in mind; again, 

other comparisons may not come out like ours.  

 

Fourth, we should note that we have put a restriction on FCA in forcing it to produce 

a number of clusters that match the number of configurations in our fsQCA truth 

tables. Although other work we have done does not suggest that FCA with a greater 

number of clusters would have had much more predictive power than that we have 

reported, this is an important point to bear in mind. On the other hand, an advocate of 

fsQCA might point out, in the interests of a fair comparison, that the predictive power 

of fsQCA itself might have been greater given a different calibration of the factors.  

 

Fifth, in this paper we have compared the classifications produced by different 

methods partly by crosstabulating classifications and partly by assessing the 

predictive power of classifications. In so far as we have relied on the latter, we have 
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implicitly taken the view that the types comprising a classification, in so far as they 

capture real types in the social world, might be expected to have varying causal 

powers. We have not attempted to assess the validity of each classification by 

comparing it with some independent source of evidence on the nature of such real 

types. Indeed, it is not clear to us that, for our purposes, there is any such independent 

source of evidence.  

 

Finally, we have observed the tendency, deplored by some, for the ready availability 

of software such as SPSS to lead to uncritical application of analytic techniques to 

data (Uprichard et al., 2008). We do not want to see this happening to the exciting 

research tool, constantly being developed by Charles Ragin and colleagues, embodied 

in the fsQCA software. Ragin himself has, especially in Fuzzy Set Social Science 

(2000) but also, more recently, in Redesigning Social Inquiry (2008), provided plenty 

of detail about the complexities and paradoxes of the fuzzy set approach. Researchers 

should not, in our opinion, employ fsQCA without an understanding of the material in 

these works. We hope our contribution here will also act as an additional aid to 

understanding for those embarking on the mode of configurational analysis made 

easier by fsQCA and for those who have wondered about its relation to other ways of 

classifying cases. 

 

 

                                                 
1
 We have „111 OR 110 OR 011‟. From „111 OR 110‟ we can note, given the chosen threshold of 0.67, 

that sex makes no relevant difference, and can reduce these to 11- where the - indicates that this third 

condition makes no relevant difference. From „111 OR 011‟ we can similarly derive -11. From „11- OR 

-11‟ we can see that „CLASS*HIGH_ABILITY OR HIGH_ABILITY*MALE‟ is a simpler solution, 

and we can take out the common factor of HIGH_ABILITY to produce the simplest solution. 

2
 For Ragin‟s argument for using the minimum for fuzzy set intersection, see Ragin (2000).  

3
 Cooper (2006) explored a method not fully dependent on such expertise, derived from Cheli and 

Lemmi‟s (1995) work.  
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4
 It also ensures that we use, during CA, only variables scaled to have the same range of values (0-1). 

5
 Calculated by taking the minimum value of each pair. 

6
 The „potentially‟ is important here. CA can report a cluster structure even where no real kinds exist. 

Of course, the relation of the configurations in QCA to any real types will be only as good as the choice 

of factors and calibrations. 

7
 In fuzzy clustering, partitions of cases produced under this constraint can be misleading (Kruse et al., 

2007, p10) given some distributions of cases in multidimensional space. For our data, we know that 

crisp k-means CA and probabilistic c-means fuzzy CA produce very similar classifications. This gives 

us confidence that the „sharing‟ of memberships produced by probabilistic FCA is not greatly 

compromising the „typicality‟ aspect here (on these features of membership, see Kruse et al. (2007)). 

8
 We had initially, in a longer earlier version of this paper, begun by using crisp clustering procedures, 

with each case being allocated to just one cluster. However, we had then also to employ, in a second 

stage, fuzzy clustering procedures, where each case can have partial membership in several clusters, in 

order to be able to undertake a set theoretic comparison with fsQCA of the predictive power of QCA 

and CA. For our sample, a crosstabulation of membership in the crisp k-means clusters with 

membership in the FCA cluster in which a case has its maximum membership has 98.16% of cases on 

the leading diagonal. In comparing, therefore, “best” FCA cluster membership with membership in 

fsQCA configurations we are working with nearly the same crosstabulation structure as we had when 

employing crisp k-means, but we are able, in addition, to make use of partial cluster memberships. 

9
 We use the normally recommended setting of the “fuzziness coefficient”. 

10
 Because of paradoxes in the fuzzy set context (Ragin, 2000, page 241) the results obtained by 

plugging in fuzzy membership scores to the simplified solution ABILITY_F*(CLASS_F +MALE) and, 

alternatively, to 

(CLASS_F*ABILITY_F*MALE)+(CLASS_F*ABILITY_F*male)+(class_f*ABILITY_F* MALE) 

can be different, while they would be the same in a crisp set context. For an example, consider the 

triplet CLASS_F=0.55, ABILITY_F=0.6, MALE=1. Indeed, while the overall consistency of our 

fsQCA solution using the simplified solution (the choice made in the fsQCA software) is 0.789, it 

would become, if taking the maximum of 111, 110 and 011, 0.814.  The comparable coverage figures 

are 0.653 and 0.630.  In the FCA context, we are constrained to use the approach that takes the 

maximum of the three cluster memberships. 



 27 

                                                                                                                                            
11

 Some of these may not have any empirical members, either for logical reasons or because of the 

limited diversity that characterises social data (Ragin, 2000). 

12
 As we noted earlier, if distribution-dependent methods are used as part of the calibration procedure in 

fsQCA applications, fuzzy memberships will also become partly dependent on sample. However, this 

sample-dependence is not a necessary feature of fsQCA, as it is in CA. 
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