
For Peer Review
 

 
 

Draft Manuscript for Review 
 

 
 

Magma-carbonate interaction processes and associated CO2 
release at Merapi volcano, Indonesia: insights from 

experimental petrology 
 
 

Journal: Journal of Petrology 

Manuscript ID: JPET-May-09-0068.R1 

Manuscript Type: Original Manuscript 

Date Submitted by the 

Author: 
30-Jan-2010 

Complete List of Authors: Deegan, Frances; Uppsala University, Department of Earth Sciences 
Troll, Valentin; Uppsala University, Department of Earth Sciences 
Freda, Carmela; INGV, Department of Seismology and 
Tectonophysics 
Misiti, Valeria; INGV, Department of Seismology and 
Tectonophysics 
Chadwick, Jane; Vrije Universiteit, Department of Petrology (FALW) 
Mcleod, Claire; Durham University, Department of Earth Sciences 
Davidson, Jon; Durham University, Department of Earth Sciences 

Keyword: 
carbon dioxide, experimental petrology, magma-carbonate 
interaction, Merapi, strontium isotopes 

  
 
 

 

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology



For Peer Review

Magma-carbonate interaction processes and associated CO2 release at Merapi 

volcano, Indonesia: insights from experimental petrology                                         

F.M. Deegan1, V.R. Troll1,2, C. Freda2, V. Misiti2, J.P. Chadwick3, C. McLeod4, & J.P. Davidson4.  

1Department of Earth Sciences, Uppsala University, Villavägen 16, Uppsala, Sweden 

2Istituto Nazionale di Geofisica e Vulcanologia, Rome, Italy 

3Department of Petrology (FALW), Vrije Universiteit, Amsterdam, Netherlands 

4Durham University, Durham, United Kingdom 

Corresponding authors: Frances Deegan [Email: Frances.Deegan@geo.uu.se]; Valentin R Troll [Email: 

Valentin.Troll@geo.uu.se], Carmela Freda [Email: freda@ingv.it]. 

 

 

Page 1 of 60

http://www.petrology.oupjournals.org/

Manuscript submitted to Journal of Petrology

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

1 

 

ABSTRACT 

There is considerable evidence for ongoing, late-stage interaction between the magmatic system at 

Merapi volcano, Indonesia, and local crustal carbonate (limestone). Calc-silicate xenoliths within 

Merapi basaltic-andesite eruptives display textures indicative of intense interaction between magma 

and crustal carbonate, and Merapi feldspar phenocrysts frequently contain individual crustally 

contaminated cores and zones. In order to resolve the interaction processes between magma and 

limestone in detail we have performed a series of time-variable de-carbonation experiments in 

silicate melt, at magmatic pressure and temperature, using a Merapi basaltic-andesite and local 

Javanese limestone as starting materials. We have used in-situ analytical methods to determine the 

elemental and strontium isotope composition of the experimental products and to trace the textural, 

chemical, and isotopic evolution of carbonate assimilation. The major processes of magma-

carbonate interaction identified are: i) rapid decomposition and degassing of carbonate, ii) 

generation of a Ca-enriched, highly radiogenic strontium contaminant melt, distinct from the 

starting material composition, iii) intense CO2 vesiculation, particularly within the contaminated 

zones, iv) physical mingling between the contaminated and unaffected melt domains, and v) 

chemical mixing between melts. The experiments reproduce many of the features of magma-

carbonate interaction observed in the natural Merapi xenoliths and feldspar phenocrysts. The Ca-

rich, high 87Sr/86Sr contaminant melt produced in the experiments is considered as a pre-cursor to 

the Ca-rich (often “hyper-calcic”) phases found in the xenoliths and the contaminated zones in 

Merapi feldspars. The xenoliths also exhibit micro-vesicular textures which can be linked to the 

CO2 liberation process seen in the experiments. This study, therefore, provides well-constrained 

petrological insights into the problem of crustal interaction at Merapi and points toward the 

substantial impact of such interaction on the volatile budget of the volcano. 

Key words: carbon dioxide; experimental petrology; magma-carbonate interaction; Merapi; 

strontium isotopes 
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INTRODUCTION 

Volcanoes sited above subduction zones are the most dangerous on the planet. Merapi volcano in 

Central Java, Indonesia, is one such hazardous volcano with both historical and geologically recent 

explosive eruptions (Voight et al. 2000 and references therein; Donoghue et al., 2009). Merapi is 

one of the most active volcanoes on Java and is located less than 30km north of Yogyakarta – the 

largest city in Central Java with a population of ca. 3.5 million (Fig 1 a, b).  

The role of intra-crustal contamination in volcanic arc settings is a source of on-going 

debate (e.g. Davidson et al., 2005). Its occurrence, however, has been well documented at many 

volcanic centres located in arc settings such as the Lesser Antilles arc (e.g. Smith et al., 1996; 

Macdonald et al., 2000 and references therein), the Kermadec arc (e.g. Macpherson et al., 1998; 

Smith et al., 2006), and the Sunda arc in Indonesia (e.g. Gasparon et al., 1994, Gasparon & Varne, 

1998).  

Merapi is an arc volcano beneath which the upper crust consists of Cretaceous to Tertiary 

limestone, marl, and volcaniclastic units up to 2km thick (van Bemmelen, 1949). Sedimentary units 

in the Central Java area extend to greater depths and the currently active central Javan volcanic arc 

is partly sited on the Kendang sedimentary basin, in which the sediment thickness ranges from 8 to 

11km (Smyth et al., 2005 and references therein). The upper crustal sediments overlie a basement, 

of uncertain character, extending to a depth of ca. 25km (Curray et al., 1977; Hamilton, 1979). 

Recent erupted products at Merapi display strong evidence for magma-crust interaction (Chadwick 

et al., 2007), including the presence of abundant calc–silicate xenoliths, which frequently exhibit 

well–developed, skarn-type, vesicular reaction rims. Crystal isotope stratigraphy and major element 

profiling of plagioclase phenocrysts in recent Merapi basaltic–andesites has identified carbonate 

assimilation and xenolith recycling as a process affecting magma compositions and potentially the 

volatile budget at Merapi (Chadwick et al., 2007). Merapi feldspars described by these authors are 

variably zoned: i) plagioclases with albitic cores mantled by anorthitic rims (An80-90), with 
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radiogenic 87Sr/86Sr in the rims, indicate the presence of a Ca–rich, crustally–derived melt during 

their crystallisation; and ii) plagioclases with anorthitic cores (up to almost An100) and crustal 

87Sr/86Sr ratios in the cores but less calcic and less radiogenic rim compositions. These latter types 

are interpreted as inherited, calc–silicate derived crystal cores. Note that magma-carbonate 

interaction of similar character has also been identified at other volcanic systems emplaced within 

carbonate-rich crust, such as the Alban Hills, Italy (Freda et al., 1997; Dallai, et al., 2004); 

Vesuvius, Italy (Gilg et al., 2001; Del Moro et al., 2001; Fulignati et al., 2004), and Popocatepétl 

volcano, Mexico (Goff et al., 2001; Schaaf et al., 2005), all of which, like Merapi, are prone to 

explosive eruptive behaviour. 

While considerable textural and geochemical ‘end–product’ evidence for interaction 

between Merapi magmas and crustal carbonates exists, detailed understanding of the mechanisms 

and rates of magma–carbonate interaction producing such textures and the associated chemical 

exchanges at the magma–crust wall-rock is very limited. To address this problem, we have designed 

a time–constrained experimental series to investigate the de–carbonation and contamination 

processes involved in magma–carbonate interaction in a controlled laboratory environment. 

Experimental petrology techniques have previously been used to examine processes of assimilation 

and contamination in magmatic systems (e.g. Watson, 1982; Watson & Jurewicz, 1984; Johnston & 

Wyllie, 1988; Beard et al., 1993; Sachs & Strange, 1993; McLeod & Sparks, 1998; Knesel & 

Davidson, 2002; García-Moreno et al., 2006); however, our experimental design differs 

significantly from previous works in two key aspects. Firstly, we focus on assimilation of crustal 

carbonate by magma, which is less frequently addressed in the literature than fusion and 

assimilation of silicic crustal components. Some experimental studies of limestone assimilation by 

magma have been carried out previously, contrasting the present study in that they have largely 

focussed on the phase assemblages resulting from carbonate digestion, rather than on the initial 

processes and progression of carbonate assimilation (see Freda et al., 2008a; Iacono Marziano et al., 
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2008; Mollo et al., 2010). Secondly, we have carried out experiments using very short and 

progressively increasing dwell times (0 to 300s), much shorter than those of any other experimental 

study of xenolith assimilation in the literature in which experiments typically run for hours to days. 

These design considerations allow for preservation of transient textures in the experimental 

products and for examination of some features of mass transport and intra-melt homogenisation at 

the contaminated melt front as carbonate assimilation proceeds. We have carried out piston cylinder 

experiments at T = 1200°C and P = 0.5 GPa, which corresponds to a relatively deeply-seated 

system (15-20km) compared to where carbonate assimilation is largely expected to occur (in the 

upper 10km of the crustal section beneath Merapi, Fig 1 c). We applied a pressure of 0.5 GPa as 

this is the lowest pressure that the piston cylinder apparatus is calibrated for. Our system hence 

closely simulates the deepest conditions under which carbonate assimilation might initiate and our 

results can, in turn, be sensibly extrapolated to a shallower system. With respect to the rate of 

decarbonation, this will proceed considerably faster under lower pressures. This means that the 

timescales of carbonate assimilation estimated from our experiments represent a maximum of what 

we can expect in nature under similar conditions to our experimental system.  

In our experiments the limestone contaminant is heated concurrently with the starting 

powdered glass (M-94), which may initially appear to represent a thermal limitation to the 

methodology. Considering some aspects of the magmatic system at Merapi, however, such as its 

long-lived nature (the onset of volcanism is estimated at 40,000 years BP, Camus et al., 2000) and 

its high heat flux (Chadwick, 2007; Koulakov et al., 2007; Wagner et al., 2007), the crust 

underlying Merapi must be already heated to several hundred degrees Celsius. We argue that 

simultaneous heating of the starting materials in our experiments therefore best simulates a long-

lived system, such as Merapi (Annen & Sparks, 2002). 

By considering the experimental data in combination with the natural products of magma-

carbonate interaction (xenoliths and feldspars), we can improve our understanding of both deep and 
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shallow crustal contamination processes. The experiments provide insights into the late–stage, short 

time scale de–carbonation processes that can seriously affect the eruptive behaviour of volcanoes 

sitting on carbonate crust with potentially very little forewarning.        

GEOLOGICAL BACKGROUND 

Merapi volcano is located within the active Sunda arc, in Central Java, Indonesia (Fig 1 a). 

Northward subduction of the Indian Ocean plate beneath the Eurasian plate has been occurring 

along the Java trench since the middle Eocene (Hamilton, 1979; Hall, 2002). This has resulted in an 

ancient Eocene to Miocene volcanic zone in the southern part of Java known as the Southern 

Mountain Zone, and the present day volcanic arc that is distributed along the entire length of the 

central part of the island, known as the Central Volcanic Zone (Smyth et al., 2007). Van Bemmelen 

(1949) described several stratigraphic–tectonic zones within Java, of which the major zones from 

south to north are: the Southern Mountain Zone, the Central Volcanic Zone, the Kendeng Zone and 

the Rembang Zone. The presently active Central Volcanic Zone is partly sited on the Kendeng 

Zone, which is the main Eocene–Miocene sedimentary basin in East Java, comprising 8–11km thick 

successions of volcanoclastic and marine sediments, including abundant limestone units up to 2km 

thick (van Bemmelen, 1949; de Genevraye & Samuel, 1972; Untung & Sato, 1978; Smyth et al., 

2005). Merapi is the youngest of a cross-arc NNW-trending chain of volcanoes, including 

Telemoyo, Merbabu, and Merapi, which are bound by the Southern Mountain and Kendeng Zones 

(Fig 1 b). The nature of the basement beneath Merapi is intermediate between oceanic and 

continental crust (Curray et al., 1977), with Merapi sited close to a structural lineation referred to as 

the Progo–Muria fault, thought to delimit the extent of Cretaceous continental basement beneath 

Java (Smyth et al., 2005, Fig 1 a). Geobarometric and tomographic methods applied to Merapi 

volcano and its basement by Chadwick (2008) indicates that an interconnected network of melt 

bodies is likely to exist beneath the edifice in a diffuse zone from a depth of ca. 3km to ca. 31km 

beneath the summit (summit elevation is ca. 3,000m) (Fig 1 c). Such a magmatic plumbing system 
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beneath the volcano provides ample opportunity for interaction between magma and upper- to mid-

crustal lithologies, including abundant carbonate rocks in the top 10km. 

Of the 89 Indonesian volcanoes with historical eruptions (van Bemmelen, 1949), Merapi is 

one of the most active and destructive. Recent volcanism at Merapi is characterised by the growth 

of viscous lava domes followed by collapse of the dome complex and resultant pyroclastic block 

and ash flows (BAFs or nuées ardentes, e.g. Abdurachman et al., 2000; Schwarzkopf et al., 2001, 

2005; Charbonnier & Gertisser, 2008: Donoghue et al., 2009). The volcanic products are basaltic–

andesite in composition and contain abundant xenolithic inclusions, among which thermally 

metamorphosed calc–silicate types are common (e.g. Clochiatti et al., 1982; Camus et al., 2000 and 

references therein). The various types of inclusion hosted within the Merapi lavas are described in 

Troll et al. (2003) and a detailed petrographic and geochemical description of a selection of typical 

Merapi calc–silicate xenoliths, including those presented here, is given in Chadwick et al. (2007). 

Hand specimen examples of the xenoliths described in this study, with distinctive macroscopic 

features such as vesicular textures and neo–mineralised skarn contact zones between magma and 

xenolith, are shown in Fig 2. The presence of such metamorphosed limestone xenoliths was the 

primary motivation for our experimental study as they indicate on–going, albeit poorly constrained, 

magma–carbonate interaction beneath Merapi, that we hypothesise has significant repercussions for 

the volcano’s short-term volatile budget and consequent eruptive behaviour. 

EXPERIMENTAL METHODS 

All of the experiments in this study were carried out using the piston cylinder apparatus at the HP–

HT Laboratory of Experimental Volcanology and Geophysics at the Istituto Nazionale di Geofisica 

e Vulcanologia (INGV) Rome. The piston cylinder is calibrated to perform experiments in the 

pressure range 0.5–2 GPa. All experiments reported here were carried out at the lowest end of this 

range, at 0.5 GPa, which corresponds to a mid–crustal depth of approximately 15km (note that the 

total crustal thickness in Java is ca. 25km) (Curray et al., 1977; Hamilton, 1979). Pressures 
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equivalent to shallower crustal depths cannot be simulated using the piston cylinder apparatus. 

However, the piston cylinder has a major advantage over low–pressure experimental devices, which 

is its rapid heating and quench rate. The piston cylinder apparatus reaches 1200 °C after only 6 

minutes, which is sufficiently fast to allow preservation of the carbonate phase in the shortest 

duration experiments and subsequent inspection of the interaction between carbonate and melt over 

a time-scale of minutes after the experimental temperature is reached. It is for this reason that the 

piston cylinder was selected as the most appropriate instrument for this study. Given that the 

magmatic system beneath Merapi extends from ca. 3km to 31km depth (Chadwick, 2008), the mid 

to upper parts of the system must be emplaced into sedimentary sequences that attain thicknesses of 

up to 11km (Smyth et al., 2005 and references therein). Our experimental approach, therefore, is a 

close replication of the physical conditions at which initial magma–carbonate interaction is likely to 

occur, i.e. the deep to mid level parts of the magma system at Merapi.  

Starting materials 

The experimental series was divided into two sub–series that were run in tandem: experiments using 

a nominally anhydrous starting material and experiments using a hydrated starting material. Each 

experimental run contained one anhydrous and one hydrated experiment to allow a direct 

comparison at each given set of parameters. The starting material for all experiments was a sample 

of Merapi basaltic–andesite (sample M-94-a-107, courtesy of L.M. Schwarzkopf) from the 1994 

block and ash flow deposits. Sample M-94-a-107 was chosen for use in the experiments as it is 

representative of the most recent volcanic material produced at Merapi, which is host to many calc-

silicate xenoliths. M-94-a-107 is a grey (M ≈ 50–60) finely crystalline rock with up to 45% 

phenocrysts by volume, predominantly of plagioclase, with some clinopyroxene and minor amounts 

of amphibole. The sample was crushed into 1–2 mm sized chips, hand–picked for pristine 

appearance, and then ground to a powder in a WC Tema mill. The powdered sample was 

subsequently fused, in order to produce a homogeneous glass of basaltic-andesite composition. The 
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nominally anhydrous glass was produced at the Università degli Studi Roma Tre, Italy by melting 

an aliquot of the M-94-a-107 powder at 1300°C and 1 atm in a rapid–quench furnace. The hydrous 

glass, in turn, was produced at the Universität Hannover, Germany by doping the M-94 powder 

with ca. 2 wt% H2O and melting in an internally heated pressure vessel at 1200°C at 0.2 GPa. The 

hydrated glass was analysed for its water content by Karl Fischer Titration (KFT) at Hannover, 

Germany (for details of the KFT method see Behrens, 1995). Both sets of glass (anhydrous and 

hydrous) were analysed for their composition (Table 1) and verified to be free of crystals and 

crystallites by BSE imaging using the electron microprobe at INGV Rome. The glasses were then 

hand–ground to a powder using an agate mortar and pestle before insertion into the experiment 

capsules.  

The calcium carbonate added to the experimental charges was from a sample of local crust 

sourced from a carbonate platform south of Merapi, at the town of Parangtritis (see Chadwick et al., 

2007 for sample location and Fig 1 b). The limestone sample was cut into solid cubes of ca. 3mm 

side length (ca. 9–10 mg) for use in the experiments. The composition of the carbonate starting 

material (Table 1) was determined by XRF (for major elements) and infra-red photometry (for CO2 

content) at IFM–GEOMAR, Kiel, Germany following the methodology given in Abratis et al. 

(2002).  

 Experimental conditions and procedure 

All of the experiments were carried out at 1200°C and 0.5 GPa (Table 2), except for one 

experiment run at 1 GPa to test for any additional pressure effects. The dwell time (td) is the length 

of time that the experiment was held at the experimental temperature. This parameter was varied 

from td = 0s (i.e. immediate quenching upon reaching 1200°C) to td = 300s. Experiments were 

carried out at super-liquidus temperature for the hydrated Merapi basaltic–andesite. This 

temperature has been used in Merapi assimilation and fractional crystallisation models (AFC) by 

Chadwick et al. (2007) and was verified as a super-liquidus temperature here for the hydrated 
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starting composition by running melting experiments, without carbonate, at 1200°C with P = 0.5 

GPa and td = 300s. These experiments yielded crystal–free products and are consistent with two–

pyroxene thermometry of 1994 Merapi BAF samples presented in Gertisser (2001) that yielded a 

pyroxene crystallisation temperature (sub-liquidus) of 1007 ± 12°C.  

Platinum capsules with 3.0mm outer diameter were used for all experiments. The capsules 

were welded at one end using an arc welder and loaded with the powdered M–94-a-107 glass to fill 

ca. 1/5th of the capsule volume. This was followed by insertion of a cube of limestone (8.5 to 10.3 

mg), after which the capsule was loaded with more powdered M–94-a-107 glass (38 to 42 mg) (see 

Table 2). The ratio of powder inserted before the carbonate and that after, was kept similar for all 

runs. The capsules were then welded shut and positioned into a 19.1mm NaCl–crushable alumina–

pyrex assembly, with the capsules containing the hydrated starting material additionally encased in 

pyrophyllite powder to prevent water loss (cf. Freda et al., 2001).  

Experiments were pressurised at room temperature to 0.5 GPa and then heated in two stages, 

from ambient temperature to 1180°C at a rate of 200°C/min, followed by gradual heating at 

20°C/min until the experimental temperature was reached. Temperature was controlled by a factory 

calibrated W95Re5–W74Re26 (type C) thermocouple and held within ± 3°C of the experimental 

temperature. For this type of assembly, the temperature gradient along the capsules is around 10°C 

(Hudon et al., 1994; Médard et al., 2008). An Oxygen fugacity of about NNO+2 was attained in the 

experiments due to the type of assembly used to encase the charges (Freda et al., 2008a and 

references therein).  

Generally, two capsules were inserted into the experiment assembly (one hydrous and one 

anhydrous); however, for some runs the assembly was constructed to hold three capsules equidistant 

from the thermocouple ‘hot spot’. This configuration was used to allow, for example, a carbonate–

free control experiment to be run under the same conditions as the hydrous and anhydrous de–
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carbonation experiments. Selected runs were repeated in order to verify the reproducibility of the 

results.  

Experiments were terminated by shutting down the power source. In this way the 

experimental charges were quenched at a rate of ca. 2000°C/min (to the glass transition) and the 

textural interplay between limestone and the melt was preserved. The experimental capsules were 

then retrieved, mounted in epoxy resin, opened on one side parallel to their long axes, and polished 

for microprobe analysis.   

ANALYTICAL METHODS 

Electron microprobe analysis (EMPA) 

Microprobe analyses and back-scattered electron images (BSE) of the experimental products were 

obtained at INGV Rome, Italy, using a JEOL-JXA8200 EDS-WDS combined instrument, equipped 

with five wavelength–dispersive spectrometers and twelve crystals. Microprobe WDS analyses 

were performed using an accelerating voltage of 15 kV, a beam current of 5nA, and a beam 

diameter of 5µm for glass and 1µm for mineral analyses (see e.g. Iezzi et al., 2008 for analytical 

details). Sodium and potassium were analysed first to reduce loss on volatisation. Analyses and 

imaging were carried out over several analytical sessions, with standards optimised for each 

session. Microprobe analyses and BSE images of a representative selection of natural Merapi calc–

silicate xenoliths were also obtained at INGV Rome using the same analytical conditions as for the 

experimental products. The average standard deviation (1σ) of each element in the analysed 

standards over 5 analytical sessions (including both experiment and xenolith analyses) is as follows: 

SiO2 (0.28), TiO2 (1.86), Al2O3 (0.27), FeO (0.47), MnO (0.33), MgO (0.44), CaO (0.33), Na2O 

(0.41), K2O (0.26), P2O5 (0.35). 

Micro-sampling and analysis of 
87

Sr/
86

Sr and trace elements 

Micro-sampling of the experimental products was carried out in the Arthur Holmes Isotope 

Geology Laboratory at Durham University, UK, using a New Wave™ Micromill™ following the 
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techniques given in Charlier et al. (2006) and references therein. The micro-mill apparatus consists 

of a drill and stage, a binocular microscope, and a computer workstation that integrates all 

components, allowing for precise control to ca. 1µm of the location of the drill points, the 

movement of the drill, and the depth of drilling. Suitable sampling areas were selected using BSE 

images of the experimental charges, taking care to avoid fractures and bubbles. Samples were then 

mounted as thick sections (up to 500µm thick) prior to micro-milling. The BSE images were used in 

conjunction with the binocular microscope optics at the drill workstation to locate the optimal 

sampling areas. Samples were milled in discrete arrays of points to a depth of ca. 90µm per sample 

by performing two passes of 45µm depth per sample. The size of each sample array varied due to 

nearby bubbles and fractures which limited the area that could be drilled. Milling was carried out 

under a drop of ultra-pure Milli-Q  water to collect the drilled sample powder. The water and 

sample powder mixture was then pipetted onto a gold boat and placed in an ultra-clean fume hood 

to evaporate the water. The sample powder was then dissolved in ultra-pure, distilled acids and the 

Sr fraction subsequently separated using micro-Sr column chemistry as described by Charlier et al. 

(2006) in preparation for thermal ionisation mass spectrometry (TIMS). Procedural blanks were 

obtained by milling within the water drop, but without touching the sample. The blank was 

thereafter treated identically to the samples. Samples were analysed at the University of Durham 

using a Thermo-Finnigan Triton TIMS operating in static mode. Details of the procedure used to 

load small Sr samples, TIMS running conditions, and data correction is given in Font et al. (2008). 

The Triton was in positive-mode from January – March 2009, during which 78 analyses of the 

international Sr standard NBS 987 were carried out on loads ranging from 3ng to 600ng. The 

overall average NBS 978 87Sr/86Sr value is 0.710246 ± 0.000016 (2σ) (n = 78), which agrees 

extremely well with the accepted NBS 987 87Sr/86Sr value reported by Thirlwall et al. (1991) of 

0.710248 ± 0.000023 (2σ) (n = 427). Aliquots of the dissolved samples were also analysed for their 

trace element concentrations by inductively coupled plasma mass spectrometry (ICP-MS) using a 
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Thermo Electron Element II system at Durham University. Procedural details can be found in Font 

et al. (2008). Total procedural blanks (n = 3) were less than 19 pg for all elements analysed; Sr 

blanks averaged 0 ± 1 pg (2σ) (n = 3). In total, 9 glass samples were micro-milled and analysed 

from two experiments: 379-17 (td = 0s) (n = 4) and 386-19 (td = 300s) (n = 5).  

EXPERIMENTAL RESULTS 

The textural progression of magma–carbonate interaction, in both anhydrous and hydrous 

experiments, is shown in the BSE images in Fig 3, and a summary of the phases detected in each 

experiment is given in Table 2. Images 3 a) to 3 e) show the major features of magma–carbonate 

interaction from td = 0s (immediate quenching at 1200°C) to td = 300s for experiments carried out 

using the nominally anhydrous starting M–94 glass. Images 3 f) to 3 j) show the same sequence for 

experiments carried out using the hydrated (H2O = 2.23 wt%) starting M–94-a-107 glass. The major 

textural features of carbonate assimilation include the development of copious amounts of gas 

bubbles and the generation of two compositionally distinct domains of glass which can be identified 

on the BSE images by their contrasting brightness. Note the faster rate of carbonate assimilation in 

the hydrated series.  

Major element profiles (EMPA) were obtained through the carbonate–glass and the intra-

glass interfaces in all experiments, where applicable. Representative element variation profiles are 

shown in Fig 4 for hydrous experiments only because the glass in the hydrous experiments is 

generally crystal free (only the shorter runs contain calcite crystallites within the Ca-contaminated 

regions). This allows for examination of the intra-melt transitions, excluding complications due to 

crystallisation at the interfaces. Furthermore, the hydrous series of experiments more closely 

represents the natural, ‘wet’ arc–magma system. It is noteworthy, however, that both the anhydrous 

and the hydrous experiments display similar features in terms of textures, major element 

composition, and the shapes of the chemical profiles that traverse the glass interfaces. 

Representative major element analyses of the experimental glasses are given in Table 3. The Sr 
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isotope profiles of two hydrous experiments are shown in Fig 5 and the data reported in Table 4. 

Trace element concentrations in the drilled samples can be found in the electronic appendix 

(http://petrology.oxfordjournals.org/). 

 

Overview of the experimental products 

In the anhydrous series, carbonate is preserved in experiments for td up to 150s (Fig 3 a - d), but 

appears to be largely consumed at td >150s (Fig 3 e). Experiments consist of three phases: solid 

(crystals with or without carbonate), melt (preserved as glass), and an exsolved volatile phase (CO2 

preserved as vesicles). Crystals of plagioclase (and minor amounts of spinel) always occupy some 

of the solid phase in the anhydrous experiments, but not in the hydrous ones.   

In the hydrous series the rate of carbonate consumption is higher than in the anhydrous 

experiments, as evidenced by the comparatively lesser amount of carbonate surviving with 

increasing dwell times. Hydrous experiments for td ≤ 60s are similar to their anhydrous 

counterparts, with three phases detected: solid (carbonate + dendritic calcite crystallites), melt 

(preserved as glass), and an exsolved volatile phase (predominately CO2 preserved as vesicles). 

Note that adding CO2 to the system causes a significant drop in H2O solubility, which may allow 

H2O to occupy some of the volatile phase (Botcharnikov et al., 2005; and see discussion). Hydrous 

experiments with td ≥ 90s are texturally the most simple of the entire experimental series with just 

two phases detected: melt (a glass of varying composition) and exsolved volatiles (as bubbles).  

The melt in the experimental products comprises two compositionally distinct domains that 

are defined with respect to their calcium content, as this is the most variable major element along 

with silica. There exists: i) a Ca-normal (or “Merapi-like”) end-member, with a CaO content in the 

range 7.98 – 9.99 wt.% (cf. anhydrous M–94-a-107 with CaO wt.% = 8.89 versus hydrous M-94-a-

107 with CaO wt.% = 9.19), and ii) a Ca-enriched (“contaminated”) end-member, with a CaO 
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content up to ca. 36 wt.%. A diffuse, hybrid composition melt zone exists where the Ca-normal and 

Ca-rich melts are in contact.  

 

Interfaces in the experiments 

Carbonate is always bordered by a zone of Ca–enriched glass, which can be distinguished in the 

BSE images by its brighter appearance, in strong contrast to the adjacent darker, Ca–normal glass. 

This Ca-rich border zone extends around the carbonate to varying degrees, and is most extensive in 

hydrous experiments (Fig 3 f, g). The contacts between the border zone and the surrounding Ca–

normal glass (± crystals) are usually lobate to irregular in shape (Fig 3). Calcite quench crystals are 

observed within the Ca-rich border zone for the shorter duration experiments only (td = 0s and 60s, 

e.g. Fig 3 f). These crystals have a dendritic to feathery morphology indicating rapid undercooling 

and local calcium super-saturation of the experimental melts.  

The contact between the two distinct glass domains (the “glass interfacial zone”, shaded 

grey on Fig 4) is a chemically diffuse zone of variable extent, composed of a hybrid melt 

composition falling between the Ca-normal and Ca-rich glass end-members (Table 3). This glass 

interfacial zone is defined principally by the coupled change in the wt.% of CaO and SiO2 and is 

always characterised by progressive calcium–enrichment and simultaneous silica–depletion towards 

the Ca–rich glass and/or the carbonate (where present). Aluminium is strongly correlated with Si in 

the experimental products, with the shape of the Al profiles consistently mimicking the Si profiles 

(Fig 4 a–c). The profile shapes of the alkali elements Na2O, K2O and MgO differ slightly to those 

of SiO2, CaO, and Al2O3, probably due to the much higher diffusivities of the alkalies (e.g. Freda & 

Baker, 1998). The Ca-rich glass is generally characterised by depletion in alkalies, with respect to 

the M-94-a-107 starting composition. With the exception of peculiar behaviour at td = 0s, the 

behaviour of K2O and Na2O appears to be closely coupled to that of SiO2 (Fig 4 d-f). The glass 

interfacial zone is also characterised by a mixed 87Sr/86Sr signature between the melt end-members 
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and lies within the 87Sr/86Sr range of Merapi feldspar Sr isotope values (Chadwick et al., 2007) (Fig 

5 and 6).  

The length of the glass interface along the EMPA profiles is measured as the mixing 

distance between end-members from the point where the glass composition begins to deviate from 

Ca-enriched to where it returns to the starting composition. Its length is greatest in the longest dwell 

time experiments, at ca. 450 µm, versus only ca. 80µm in the 0s experiments, demonstrating a 

greater degree of mixing in the longer experiments. A simple binary mixing model for the long 

dwell time experiment (300s), demonstrates a slight enrichment in CaO as the Ca-normal glass 

domain is approached, which exceeds that expected for simple chemical mixing between the end-

members (Fig 7 and see Discussion). 

 

Inter-carbonate glass 

In experiments where carbonate is still found, the Ca–rich glass frequently forms pools and fracture 

infills within the carbonatecube. Fractures can be extremely small and thread–like and frequently 

terminate in a triple–junction–type of arrangement; they are better developed in hydrous 

experiments than in the anhydrous ones. An excellent example of an experiment displaying these 

features is shown in Fig 8 where the fractures can be seen to form a zigzag interlocked array within 

the carbonate, with glass–filled pools sited at the meeting point of some of these fractures. The 

composition of the glass within the carbonate is the same as that of the Ca–enriched glass domain 

that surrounds the carbonate, indicating that the inter–carbonate glass is a mixture of infiltrating 

silicate melt and dissolved carbonate rather than a pure in-situ carbonate melt. Representative 

analyses of the inter–carbonate glass are given in Table 3.     

Vesicle distribution  

Carbon dioxide vesicles are present in all experiments. The quantity, size, and distribution of the 

vesicles vary, however, throughout the experimental series. Multiple vesicle populations are 
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identified in many of the experiments, in particular those in which carbonate is found, surrounded 

by a characteristic Ca–rich melt border. In these cases, the largest vesicles (up to 700µm across) are 

always found within the Ca–rich glass domain (Fig 3 a, b, c, d). This zone also frequently hosts a 

micro–bubble front at its furthest margin from the carbonate and at the carbonate – glass contact 

(Fig 8 c, three generations of vesicles can be observed). In experiments where the carbonate can no 

longer be found, the largest bubbles are consistently found within the Ca–enriched glass domain. 

The maximum vesicle size measured for this experimental series is 1.39 mm in a hydrous 

experiment of 300s duration (Fig 3 j and 9), suggesting that bubbles tend to coalesce with 

increasing experimental run-time. Overall vesicle distribution patterns are similar in both the 

anhydrous and hydrous series but vesicle density is greater in the hydrous series (see Misiti et al., 

2008). In comparison, vesiculation is much more vigorous in the carbonated experiments than in the 

corresponding control experiments in which no carbonate was added. In the hydrous control 

experiment(s) vesicles are randomly distributed and vesicle size is more or less constant at about 

1µm, whereas relatively large vesicles up to 1.97mm across can be found within the Ca-

contaminated glass where limestone has been added to the capsule. The 1µm vesicles observed in 

the control experiments can also be found in the “unaffected” regions in the de-carbonation 

experiments and probably simply represent “shrinkage bubbles”. 

 

Testing for pressure effects: 1 GPa experiment  

Although we could not test the effect of lowering the pressure to < 0.5 GPa on the experimental 

system, we performed a 300s hydrated experiment at 1 GPa to test the influence of increasing the 

pressure. The result of this experiment is shown in the BSE image in Fig 9, alongside a 0.5 GPa 

equivalent experiment for direct comparison. The 1 GPa experiment is texturally similar to the 0.5 

GPa experiment, and the vesicles produced are similarly sized.    
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NATURAL MERAPI CALC–SILICATE XENOLITHS 

To complement our experimental data, we made detailed observations on two selected and 

representative calc–silicate xenoliths hosted within Merapi basaltic–andesite. Sample MXCS-0 (cut 

into seven sections, a – g) and sample MXCS-1 (cut into two sections, a and b) are shown at hand–

specimen scale in Fig 2. These xenoliths have previously been described in terms of their 

mineralogy, whole–rock geochemistry, and for major element and Sr isotope variation in single 

plagioclase crystals by Chadwick et al. (2007) and references therein. Representative major element 

analyses of mineral and glass phases are given in Table 5 and notable micro–textural features of the 

xenoliths are illustrated in Fig 10.  

The xenoliths comprise a skarn–type mineral assemblage, dominated by crystallisation of 

wollastonite and anorthite (up to An98). Also present are: diopside, quartz, apatite, sphene, Fe-

oxides, calcite, and minor amounts of other calcium–silicate minerals such as grossular garnet, 

tremolite, larnite, and spurrite. Examination of the xenoliths with the SEM, i.e. on the micron–scale, 

reveals features which have counterparts in the experimental system. 

Vesicular textures are very common within the xenoliths, and are best developed along 

magma–xenolith contact zones at the hand specimen scale (Fig 2). On a finer scale, we observe 

micro–vesiculation throughout the samples, lending a sponge-like appearance to the most densely 

vesiculated zones (Fig 10 a, b). Although the xenoliths are thermally metamorphosed and largely 

re–crystallised, small amounts of CaCO3 are still preserved in places. Calcium carbonate is also 

found as inclusions within wollastonite crystals (Fig 10 c). Carbonate can be found bordered by a 

Ca-rich (“hyper-calcic”) glassy zone with the composition of spurrite, which is in turn closely 

associated with larnite (Fig 10 b). Ca–enriched glassy regions can also be found forming part of a 

compositional gradient between wollastonite and nearby larnite (Fig 10 a, c).  
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DISCUSSION 

The following discussion focuses on mechanisms of carbonate assimilation and the implications of 

our experimental results for the magmatic system at Merapi volcano, including both deep and 

shallow level parts of the system. Much of the discussion focuses on the hydrated experiments as 

these are considered a more reliable representation of the actual compositions involved in carbonate 

assimilation by a moderately hydrous basaltic-andesitic magma in nature. 

 

Mechanisms and timescale of carbonate assimilation 

The principle process of carbonate assimilation observed in the experiments is carbonate 

dissociation, i.e. the breakdown of the CaCO3 molecule into its component parts CaO and CO2. 

Transport of the resultant molecules in the experimental charges is governed by diffusion in 

response to the strong chemical gradient generated by the proximally dissociating carbonate. 

Carbonate dissociation and the resultant loss of CO2 are probably the main controlling factors on 

assimilation rates and are seen to act extremely rapidly. We can semi-quantitatively constrain the 

timescale of assimilation in the hydrous experiments. Two assumptions have to be made concerning 

the onset and the termination of assimilation: 1) Inspection of Fig 3 f demonstrates that carbonate 

dissociation began before the target temperature of 1200°C was reached. We hence estimate the 

onset of carbonate assimilation at td < -60s, based on the rapid rate of carbonate assimilation from td 

= 0s to td = 60s. 2) Carbonate assimilation apparently ceased by td = 90s. However, in preparation 

for micro-milling, the experiments were polished further, and exposed a minute amount of residual 

carbonate deep in the experimental capsule at td = 300s. We nonetheless set td = 300s as the time 

required for assimilation of the limestone cube, assuming that the minute amount of residual 

carbonate will not impact our timescale beyond an error of a few seconds. Bearing these points in 

mind, assimilation of 9.75g limestone (average) in 41.93g of magma (average) requires probably 
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not more than ca. 330s in total, under these experimental conditions. Note that the Ca-rich glass 

remains in contact with the carbonate throughout the experiment, and becomes saturated in the 

dissolving components, which then give rise to the calcite crystallites found in the Ca-rich zone in 

some cases. This indicates that carbonate assimilation is to some extent limited by the diffusivity of 

Ca through the contaminated melt region. In nature, we would expect convection within the melt to 

remove the Ca-rich glass from the carbonate reaction interface, which would increase the rate of 

assimilation by maintaining a large compositional gradient at the boundary between the carbonate 

and the host melt.  

In-situ melting of the solid carbonate was not identified in the experiments presented here. 

Intra-carbonate glass, occuring as pools and along fractures within the limestone cube, is calcium 

silicate in composition, indicating that it formed as a result of a mixture of the carbonate 

components and the M-94-a-107 silicate melt (i.e. a solution of carbonate in the melt, see Table 4 

for composition). Interestingly, the glass-filled fractures frequently intersect in a triple-junction 

arrangement (Fig 8 a, b), which could indicate grain-boundary melting. Based on the composition 

of the melt, we suggest that the network of intra-carbonate glass represents infiltrating Ca-enriched 

M-94-a-107 melt intruding the disaggregating and dissociating carbonate that has a polygonal 

fracture pattern and a set of original mineral cleavages that allow the rapid advance of invading 

melt. Pure calcium carbonate melts at temperatures in excess of 1300°C at 0.5 GPa (Irving & 

Wyllie, 1975). However, under magmatic conditions, calcite is prone to dissociating before its 

melting temperature is reached. We know that this process must begin before the target temperature 

of 1200°C is reached (i.e. during the experiment at heat-up phase) as is evidenced by the presence 

of a Ca-rich melt at td = 0s. Calcite begins to dissociate at around 600°C at atmospheric pressure 

(e.g. Ar & Doğu, 2001); however, the temperature at which this process begins increases with 

elevated CO2 pressure (Stern & Weise, 1969). Pressurising our experiments to 0.5 GPa is probably 

the reason why some carbonate remains undissolved in the zero-time experiments, even though they 
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were heated to 1200°C. However, we see that once the carbonate is no longer thermally stable it 

dissociates extremely rapidly, particularly so in the hydrated runs.  

Carbonate assimilation results in the generation of compositionally distinct melt domains 

with strongly contrasting viscosities. We can calculate the melt viscosities using the model of 

Giordano et al. (2008), with T set at 1200°C. The model does not incorporate a pressure 

component, but this should not affect the viscosity calculations significantly, given that melt 

viscosity is only weakly dependent on pressure (Richet & Bottinga, 1995). In addition, the model is 

not calibrated to calculate viscosities for melts with CaO contents exceeding 26 wt.%. For this 

reason we cannot reliably estimate the viscosity of the most Ca-enriched experimental melts (with 

CaO in excess of e.g. 34 wt%), but we can use melt compositions from the glass interfacial zone, 

which are moderately enriched in CaO (up to 24 wt.%) and which will provide some insights into 

the rheological properties of the contaminated melts. We focus on the hydrous melt composition, 

and calculate log η = 1.37 Pa s for a composition representative of the Ca-normal melt (experiment 

386-19, CaO = 9.75 wt%, Table 3) and log η = 0.27 Pa s for a composition representative of a 

moderately Ca-enriched melt (experiment 376-11, CaO = 24 wt%, Table 3). The moderately Ca-

enriched melt has a very low viscosity relative to the data set of silicate melt viscosities used to 

calibrate the model of Giordano et al. (2008). This may not be too surprising, considering that 

carbonatite melts are among the lowest viscosity melts on Earth (Dobson et al., 2006). For example, 

a K2Ca(CO3)2 melt at 1200°C has log η ≈ -4 Pa s (see the extrapolated trend in Fig 5 of Dobson et 

al., 2006). Note that the CO2 content of the experimental melts is not taken into account when 

calculating viscosity because a) it is not incorporated in the Giordano et al. (2008) model and b) it 

has not been measured in our experimental melts. As the effect of dissolved CO2 on silicate melt 

viscosity is qualtitatively similar to H2O (Bourgue & Richet, 2001), we expect that the experimental 

melts will, in fact, be less viscous than the calculations suggest. In either case, the relatively low 

viscosity of the Ca-rich melt has implications for some geochemical features of the experiments. 
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For instance, the CaO ‘pile-up’ at the glass interfaces (Fig 7) may be a function of contrasting melt 

viscosities, with CaO accumulating where it reaches a rheological barrier (the Ca-normal glass) that 

inhibits or slows diffusion. The extent of the contaminated glass is, in turn, dependent on the rate of 

e.g. Ca (and also Sr) diffusion away from the carbonate and its ability to overcome this barrier. 

What we see in the experimental products is a “frozen in” CaO (and Sr) pile up effect against such a 

rheological barrier.   

The duration of the experiments is too short for complete homogenisation of the melts to 

occur. We observe the onset of physical magma mixing (mingling) in localised regions of the 

experimental charge (e.g. Fig 8 d), probably as a consequence of the differening melt viscosities 

and/or compositional convection. Widely contrasting viscosities between melts can hinder the 

chemical mixing process (e.g. Watson & Jurewicz, 1984; Grasset & Albarède, 1994; Poli et al., 

1996; Troll et al., 2004), which would explain the mingled melt domains over distances of up to ca. 

100 µm in the experiments. Minor amounts of compositional convection (e.g. Seedhouse & 

Donaldson, 1996) may also give rise to the mingled textures and may be an additional mechanism 

of mass transport. The major interactive process between the melts, however, is chemical mixing by 

interdiffusion. This is evidenced by diffuse mixing zones between the melts over a range of 

distances from ca. 80 to 450 µm (Fig 4). Given sufficient time, the melts will mix fully, despite 

their contrasting viscosities. This is supported by plotting the composition of the CaO-rich melt in 

the ternary system (Na2O)-(Al2O3+SiO2)-(CaO) (Lee & Wyllie, 1998), where it falls outside the 

miscibility gap. The efficacy of mixing is hence time-dependent in the experiments, with mixing 

zones at their widest in the long dwell time experiments (i.e. ca. 450µm wide at 300s versus ca. 

80µm wide at 0s, Fig 4).   

Mixing is also reflected in the Sr isotope systematics of the melts. The 87Sr/86Sr profiles fit 

the CaO profiles well (Fig 5), hence they are well correlated with the major index of contamination 

in the experiments (i.e. CaO). When placed in a regional context, the contaminated experimental 
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glass overlaps the upper 87Sr/86Sr range for Merapi feldspars and is displaced from the Merapi 

basalt range towards crustal values (Fig 6). This supports a carbonate assimilation origin for the 

radiogenic, crustally contaminated zones in Merapi feldspars. When plotted on a binary mixing line 

(Fig 6 b), the Sr isotopes exhibit a similar feature to that shown in Fig 7 (Ca pile-up plot), with the 

most contaminated samples deviating from the mixing line. Furthermore, the longer dwell time 

experiment demonstrates a greater degree of mixing than the short dwell time experiment. This is 

consistent with the observations made on the major element profiles, whose interfacial mixing 

zones increase in length with time. It can be seen from a comparison of the mixing plots (Fig 6 b 

and 7) that the most contaminated glass in the 300s experiment is a mixture of ca. 40-45% 

carbonate derived 87Sr/86Sr  but only ca. 30% carbonate-derived CaO, probably indicating 

somewhat different rates of transport of Ca versus Sr in the experiments. 

Pressure effects on the de-carbonation reaction 

The experiments so far discussed were carried out at 0.5 GPa, simulating a mid to deep crustal 

magma chamber. To test for pressure effects on the de-carbonation reaction we carried out a 

hydrous experiment at P = 1 GPa and td = 300s (Fig 9). With respect to major textural features, the 

1 GPa experiment is consistent with equivalent experiments run at 0.5 GPa. Vesicles produced at 1 

GPa reach a maximum width of 1.97 mm, which is the same order of magnitude as the maximum 

vesicle width measured at 0.5 GPa of 1.39 mm; however, there were fewer vesicles present, 

explaining the slightly larger size in the 1 GPa experiment by simple coalesence. The outcomes of 

the 1 GPa experiment thus suggest that pressure is not a major influence on the carbonate 

dissociation reaction in the pressure range 0.5 < P < 1 GPa, and that increasing the pressure in the 

system will cause no perceivable change in the experimental results. Pressure effects may, however, 

occupy a more important role in a shallower system such as the upper parts of the inter-connected 

magmatic system beneath Merapi or in the volcanic conduit. Although we could not directly test the 

effect of lower pressure on the de-carbonation process, we expect that CO2 exsolution from the melt 
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will be considerably more vigorous than that observed at 0.5 Gpa, given that CO2 solubility in 

silicate melts exhibits a positive pressure dependence (Sparks et al., 1994 and references therein). 

Moreover, a basaltic magma at 0.5 GPa and 1200 to 1400°C can dissolve less than 1 wt% CO2 

(Blank & Brooker, 1994). Decreasing the pressure in our experimental system will thus cause an 

additional <1 wt.% CO2 to exsolve from the basaltic-andesite magma. This is minor in comparison 

to the large amount of CO2 liberated from the carbonate dissociation reaction.  

Decompression experiments in which carbonate-bearing mantle xenoliths were brought from 

2.5 GPa to 1.0 GPa demonstrate that carbonate dissociates rapidly on decompression, effectively 

liberating its CO2 component (Canil, 1990). We can hence infer that in the high-level parts of the 

Merapi magmatic system, limestone will be unstable and the decarbonation reaction will proceed at 

an even higher rate than in our 0.5 GPa experiments. The increased instability of carbonate under 

these (shallow) conditions may drive sudden over-pressurisation of the upper most parts of the 

system, and furthermore, if carbonate xenoliths are carried through the conduit on eruption, the 

effect of decompression may severely intensify volcanic explosions.          

Implications for the deep-seated system at Merapi 

Contamination via a crustal melt phase  

Calcium contamination of the starting M-94-a-107 basaltic–andesite melt is a ubiquitous feature of 

the experimental products. Carbonate assimilation results in a Ca-enriched, desilicified, and high  

87Sr/86Sr melt phase that is in diffusive contact with the normal, starting-composition melt. 

Evidence of a calc-silicate contaminant melt in the Merapi system can be found in the calc-silicate 

xenoliths and the high-Ca, high 87Sr/86Sr, feldspar zones. However, since the natural system is more 

complex than the experiments, we can expect that the occurrence of SiO2 in carbonates (e.g. in 

‘dirty’ or silicic limestones) plus a high SiO2 activity in the magma will promote crystallisation of 

calc-silicate minerals such as wollastonite, spurrite, and larnite along with generation of a CO2 
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volatile phase. Such products of carbonate assimilation are found intimately associated in the 

natural Merapi xenoliths studied: a) carbonate inclusions are found in wollastonite (Fig 7 c), b) 

wollastonite is found mantled by a ‘hyper-calcic’ glass, forming a compositional gradient between 

the wollastonite and nearby larnite (Fig 7 b), c) carbonate is found bordered by a glass zone with 

the composition of spurrite, which is in turn bordered by larnite (Fig 7 c), and d) vesicles recording 

carbonate de-gassing are present throughout the xenoliths (Fig 2). We should bear in mind that 

many of the xenoliths represent the ‘end-products’ of magma-carbonate interation in nature (or near 

end-products, depending on their residence time), but they nonetheless contain a record that 

resembles our experimental products. Model mineral stability fields have been calculated using 

THERMOCALC (Powell & Holland, 1988). With pressure set at 0.2 GPa (shallow system), 

wollastonite is the first stable phase following reaction between calcium carbonate and available 

silica in the presence of a CO2-bearing fluid at ca. 600°C. With increasing temperature (and/or 

addition of water), spurrite followed by larnite will stabilise, also following reaction of calcium 

carbonate and silica, thus verifying the paragenesis inferred from the xenoliths. Note that increasing 

the pressure in the model serves to increase the temperature at which the various phases are stable. 

For the deeper parts of the Merapi system, the Ca-rich melt in the experiments is hence interpreted 

as a precursor to the “hyper calcic” phases in the xenoliths, i.e. spurrite and larnite. 

 A consideration of all of the experimental data reinforces the above point. In Fig 11 we see a 

progressive enrichment of the starting material in the limestone-derived CaO. The glass analyses 

plotted represent all of the time stages of carbonate assimilation studied, and demonstrate how 

carbonate assimilation progresses and causes the contaminant melt to evolve towards the 

composition of the ‘hyper calcic’ contaminated regions in the calc-silicate xenoliths. This is strong 

evidence for the presence of on-going, progressive carbonate assimilation at Merapi volcano and for 

contamination via a carbonated, extremely calcic melt phase. Limestone contamination in this 

manner has also been suggested for other settings, such as the Hortavaer igneous complex in 
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Norway (Barnes et al., 2005), the Colli Albani volcanic district, Italy (Gaeta et al., 2009), and 

Oldoinyo Lengai volcano, Tanzania (Mitchell, 2009). 

Effect of a mobile calcic melt on the magma system 

Due to their relatively low viscosities, carbonated melts are highly mobile, thus enhancing their 

ability to migrate through a partially crystallised magma body and possibly even mobilise semi-

arrested regions of the magma system. In the deeper parts of the Merapi system, this process could 

aid mixing between magma pockets (e.g. Nakagawa et al., 2002) and enable recycling of 

phenocrysts (e.g. Charlier et al., 2005). The relatively mobile Ca-rich, high 87Sr/86Sr melt will then 

be able to contaminate local regions of the system, by convective mixing and/or diffusion.  

The rheology of the melt also has implications for bubble growth over relatively short length 

scales. The Ca-rich melt phase gives rise to the largest bubbles, which is probably a function of its 

relatively low viscosity, in addition to its volatile content. This type of melt offers less resistance for 

bubble expansion and coalesence. Moreover, the Ca-rich zone is locally CO2 super-saturated, due to 

the proximally decomposing carbonate, favouring additional bubble growth and enlargement.  

Implications for the shallow system at Merapi 

The volatile budget  

Volatile exsolution from the experimental melts, and associated vesiculation, reaches a maximum in 

the Ca-rich glass, and is observed at all time intervals of magma-carbonate interaction. Water 

solubility in a basalt at 1200°C and 0.5 GPa is ca. 8.5 wt.% (e.g. VoltileCalc, Newman & 

Lowenstern, 2002). However, adding CO2 to the system through carbonate dissolution causes a 

significant drop in H2O melt solubility (Botcharnikov et al., 2005). Hence, the vesicles in the 

experiments may be due to exsolution of both CO2 and H2O, with CO2 being the most abundant 

volatile. As ca. 0.4 wt.% CO2 is soluble in the basaltic-andesite starting material (e.g. King & 

Holloway, 2002), most of the CO2 added to the system through carbonate assimilation is expected 
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to be present as an exsolved volatile phase. We can hence calculate that an average of ca. 4.3 mg of 

CO2 is liberated in the experiments, which occupies ca. 7 vol.% of the experimental capsule. If we 

consider assimilation in nature of a limestone cube with 80m side length, ca. 5.6 x 105 tonnes of 

CO2 will be produced. Given the short timescale of carbonate assimilation observed in the 

experiments, it is wholly conceivable that up to 5.6 x 105 tonnes of CO2 could be generated over a 

period of two weeks by carbonate assimilation alone. Limestone assimilation and associated CO2 

release on this scale (5.4 x 105 tonnes of CO2 over 17 days) has been inferred for Popocatepetl 

volcano in Mexico based on measured excess CO2 emissions (Goff et al., 2001). 

 Models of CO2 provenance and fluxes at oceanic arcs generally do not take the arc crust into 

account as a potential volatile source (e.g. Hilton et al., 2002). For example, the proportion of the 

components of arc contributions to the global CO2 flux has been estimated at 10-15% from the 

mantle wedge and 85-90% from decarbonation of subducted carbonate and carbonate-bearing 

sedimentary rocks (after Hilton et al., 2002 and references therein). The experiments presented here 

show that CO2 liberated from carbonate-rich lithologies in the arc crust can constitute a significant 

contribution to the volatile budget at subduction zones (with ca. 32,000 t/day of excess CO2 being 

realistic, cf. Goff et al., 2001). Such late-stage CO2 fluxes are probably highly variable over long 

time-scales, but, on the short term, de-carbonation of limestone can produce substantial amounts of 

crustal CO2 and which should be considered when investigating and modelling volcanic volatile 

budgets.  

Crustal de-carbonation as an eruption trigger? 

Carbon dioxide gas liberation as a result of limestone assimilation at mid to shallow crustal depths 

in the Merapi magmatic system may have serious implications for the eruptive dynamics of this 

high–risk volcano. Intense episodes of carbonate de-volatisation within the mid to upper crust has 

the potential to over–pressurise the magmatic system over short timescales (hours to days), which 

may lead to an eruptive event with very limited forewarning. Although carbonate assimilation is 
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probably an on–going process at Merapi, its potential to act as an eruption trigger could be 

magnified if external forcing, such as an earthquake, were to act on the system. A case in point is 

the major 2006 Yogyakarta earthquake (M = 6.4, Walter et al., 2008), which coincided with activity 

at Merapi. The event was followed by an up to 3–fold increase in dome growth and dome collapse 

activity for a period of 16 days after the earthquake (Harris & Ripepe, 2007; Walter et al., 2007). 

We speculate that stress changes and vibration in the mid to upper crust associated with the 

earthquake may have fractured the crustal limestone units underlying Merapi, resulting in vigorous 

release of trapped CO2 and renewed crustal de–carbonation due to an increase in limestone surface 

area available to react with the magma. Decomposition of CO2-bearing xenoliths in this way is a 

much more efficient contamination mechanism than wall-rock interaction alone (e.g. Watson et al., 

1982; Freda et al., 2008b). This additional CO2 release, potentially of the order 32,000 t/day (cf. 

Goff et al., 2001), would have rapidly increased the CO2 pressure in the system, promoting 

increased eruptive activity following the 2006 earthquake. The risk of such intensified episodes of 

carbonate de-volatisation at Merapi has serious implications for hazard mitigation, which will need 

to be sufficiently flexible to cope with an eruptive crisis with very little forewarning. This would 

also apply to other volcanic systems emplaced within carbonate crustal rocks, that may likewise be 

succeptible to overpressurisation following vigorous reaction between magma and limestone, e.g. 

Popocatepetl, Mexico and Vesuvius, Italy, both of which have a record of sustained explosive 

activity.   

SUMMARY 

The time-constrained series of short duration experiments presented here provides a unique 

opportunity to observe the textural, chemical, and isotopic interaction between mafic magma and 

carbonate crustal rocks as carbonate assimilation proceeds. The major features of carbonate 

assimilation identified are: i) rapid decomposition and degassing of carbonate, ii) generation of a 

relatively low viscosity, calcic, high 87Sr/86Sr contaminant melt, iii) local CO2 volatile super-
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saturation and subsequent vigorous bubble growth within the affected region, iv) physical mingling 

between the contaminated and unaffected melt domains, and v) chemical mixing between melts.  

Considering the experimental data in conjunction with the existing petrological, 

mineralogical, and geochemical data for Merapi (e.g. Gertisser & Keller, 2003; Chadwick et al., 

2007), we can verify that intra-crustal to late-stage carbonate assimilation and associated volatile 

degassing are significant magma-chamber processes that affect mineral composition, magma 

evolution, and potentially the eruptive behaviour at Merapi volcano. In light of this realisation, the 

volatile budget at Merapi demands a re-evaluation to take into account late-stage, intra-crustal de-

carbonation events. 
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FIGURE CAPTIONS 

Figure 1 (a): Overview map of the Sunda arc, Indonesia. Unfilled circles represent volcanic 

centres; Merapi volcano (Central Java) is labelled. Cross hatched area is Mesozoic continental crust 

(Sundaland), which probably extends as far as Central Java. Map is modified after Gertisser and 

Keller (2003) using crustal boundaries from Smyth et al. (2007) and references therein. (b): 

Simplified map of the area surrounding Merapi and Merbabu volcanoes (corresponds to the box in 

Figure 1 a), showing the major geologic zones bounding the Central Volcanic Zone (see text for 

further explanation). Sample locations for this study are indicated (1998 and 1994 xenolith-bearing 

block and ash flows (BAF) on the S flanks of Merapi and the limestone sample site at Parangtritis 

beach, coast S of Merapi). Significant population centres in the vicinity of Merapi are also shown, 

the largest of which is Yogyakarta ca. 25 - 30km to the south. (c): Schematic section through the 

crust and mantle beneath Merapi to 50km depth, showing a hypothetical interconnected network of 

magma chambers beneath the volcano. Sketch is modified after Chadwick (2008), based on a 

combination of 3D seismic tomography and pyroxene + amphibole barometry data (see text for 

details). 

Figure 2: Representative examples of Merapi calc-silicate xenoliths (xcs) from a 1998 block and 

ash flow (for map location see Fig 1(b) at a hand-specimen scale. Samples display intensely 

developed xenolith-magma contact zones with vesicular textures and skarn-type mineral 

assemblages. Mineral abbreviations: Wo = wollastonite, Di = diopside, An = anorthite, Qz = quartz. 

Mineral assemblages listed in figure are in order of decreasing abundance. 

Figure 3: BSE images of the experimental products arranged to show the temporal sequence and 

major textural features of magma-carbonate interaction in the experiments. The anhydrous (a-e) and 

hydrous (f-j) experimental series are shown in the left and right columns, respectively. All 

experiments were carried out at T = 1200°C and P = 0.5 GPa. The Ca-rich and Ca-normal glass 

domains can be distinguished by their contrasting brightness in the images, where the bright glass is 
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Ca-rich and the dark grey glass is Ca-normal. Thick white lines on (f), (h), and (j) are EMPA 

traverses, corresponding to the graphs in Fig. 4.  

Figure 4: Representative major and minor element chemical profiles in hydrated runs at 0s (a, d), 

90s (b, e), and 300s (c, f), respectively. Profiles correspond to the traverses indicated in Fig 3 f, h, j. 

The glass interfacial region is highlighted with grey shading on the plots. This is the region 

spanning the Ca-enriched melt-Ca-normal melt contact over which a steady interchange between 

CaO and SiO2 is observed. Note that the glass interfacial region is considerably wider at 300s (ca. 

450µm max) than at 0s and 90s (ca. 80µm max for both).  

Figure 5: 87Sr/86Sr and CaO wt% profiles in (a) a 0s experiment (379-17) and (b) a 300s experiment 

(386-19). Drilled areas are highlighted in grey on the BSE images (taken prior to mounting for 

drilling), and correspond to the numbered rectangles on the plot. The length of the rectangles 

corresponds to the area drilled and their height includes ±2 SE. Grey shaded vertical bars represent 

the glass interfacial regions. 

Figure 6: (a) 87Sr/86Sr values for Merapi basalts, feldspars, crustal xenoliths, and local crust, 

(compiled using data in Gertisser & Keller (2003) and Chadwick et al. (2007)) relative to the 

experimental glass (this study). Note that the uncontaminated glass is within the range of recent 

Merapi basalts, while, in contrast, the Ca-enriched glass is displaced towards crustal values. (b) 

87Sr/86Sr binary mixing model between the end-members used in the experiments (the mixing line is 

straight because 1/Sr is used). The composition of the drilled samples of experimental glass has 

been affected by between 10 and 45% limestone-derived Sr. Note that the longer dwell time 

experiment (300s) exhibits the greatest degree of mixing (45%). Samples from the most severely 

contaminated regions in both experiments (drill areas 3 in Fig 5) are displaced from the mixing line 

(labelled as “samples of Ca-rich glass” on the plot). See also Figure 7. 

Figure 7: Experiment 386-19 with microprobe analysis traverse through the intra-glass interface 

shown by a thick white line (a). All points from this traverse (n = 59) are normalised to 100% and 
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plotted on a binary mixing line between the starting compositions used in the experiments, also 

normalised to 100% (b). Notice that in the low SiO2 range, the data closely fits the mixing line, 

whereas towards the Ca-normal glass composition the data indicate slight CaO enrichment. This 

feature is interpreted as a pile-up of Ca at the Ca-normal glass interface (see discussion). 

Figure 8: Fine scale textural features of experimental products. (a): An overview of the intra-

carbonate glass with Ca-rich glass forming a fine network of fracture in-fill and locally collecting in 

pools. Dendritic calcite crystals are also visible within the Ca-rich glass. (b): At higher 

magnification, intra-carbonate glass can be seen to collect into pools and the nature of the 

termination points of the intra-carbonate veinlets is visible. (c): Three generations of vesicles 

extending from the carbonate grain are shown, labelled Gen.1, 2, and 3. (d): Ca-normal glass (dark 

grey) displays a ‘swirly’, mingled texture within the Ca-enriched glass (light grey). 

Figure 9: Comparison of an experimental run at P = 1 GPa (a) with a similar run at 0.5 GPa (b), 

also shown in Fig 3 j). Both experiments were run at T = 1200°C, td = 300s, using hydrous starting 

material and display the same major textural features. The carbonate has assimilated and given rise 

to two compositionally distinct domains of glass (the boundary between the two domains of glass is 

highlighted with white dashed lines for clarity). The sizes of the vesicles in these experiments 

constitute the maximum for all experiments reported in this study, and are confined to the Ca-

enriched glass zones. Note that although the vesicles are larger in the 1GPa experiment, they are 

also fewer, which indicates a greater degree of bubble coalescence in this experiment. 

Figure 10: Selected BSE images displaying textural features within a representative set of natural 

Merapi calc-silicate xenoliths. Abbreviations: Pyx = pyroxene, Wo = wollastonite, Spu = spurrite.  

(a): Sample MXCS-0-c contains larnite with a pervasive micro-vesicular texture that grades into a 

slightly less calcic glassy zone towards wollastonite. (b): Sample MXCS-0-g contains preserved 

carbonate bordered by glass with the composition of spurrite, which, in turn, is bordered by larnite. 

(c): Sample MXCS-0-g contains carbonate inclusions hosted in wollastonite. Similar to (a), a Ca-
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gradation exists between the larnite and wollastonite. Numbers in (a), (b), and (c) are CaO wt% and 

volatiles present. See Table 5 for representative analyses of minerals and glass in the xenoliths. 

Figure 11: Ternary plot (SiO2-CaO-Al2O3) displaying glass analyses representative of all the 

experiments in this study. Analyses of mineral and glass phases in a representative natural Merapi 

calc-silicate xenolith are shown for comparison. Experimental data (both anhydrous and hydrous, 

grey field on the plot) includes: 374-4 (n = 23), 374-5 (n = 4), 375-6 (n = 11), 375-7 (n = 5), 376-10 

(n = 32), 376-11 (n = 35), 379-16 (n = 11), 379-17 (n = 32), 386-18 (n = 45), 386-19 (n = 81), 387-

20 (n = 41), 387-21 (n = 61). Merapi xenolith data include: MXCS-a (n = 4), MXCS-b (n = 2), 

MXCS-c (n = 2), MXCS-g (n = 3). Note that the experimental melts range from the relatively 

unaffected, Ca-normal composition (similar to the starting M-94-a-107 basaltic-andesite) to 

strongly contaminated, Ca-enriched glass.  
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Figure 1 a: Overview map of the Sunda arc, Indonesia. Unfilled circles represent volcanic centres; 
Merapi volcano (Central Java) is labelled. Cross hatched area is Mesozoic continental crust 

(Sundaland), which probably extends as far as Central Java. Map is modified after Gertisser and 
Keller (2003) using crustal boundaries in Smyth et al (2007) and references therein. 1 b: Simplified 
map of the area surrounding Merapi and Merbabu volcanoes (corresponds to the box in Figure 1 a), 

showing the major geologic zones bounding the Central Volcanic Zone (see text for further 
explanation). Sample locations for this study are indicated (1998 and 1994 xenolith-bearing block 
and ash flows (BAF) on the S flanks of Merapi and the limestone sample site at Parangtritis beach, 

coast S of Merapi). Significant population centres in the vicinity of Merapi are also shown, the 
largest of which is Yogyakarta ca. 25 - 30km to the south. 1 c: Schematic section through the crust 

and mantle beneath Merapi to 50km, showing an interconnected network of magma chambers 
beneath the volcano. Sketch is modified after Chadwick (2008), based on a combination of 3D 

seismic tomography and pyroxene + amphibole barometry data (see text for details).  
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Figure 2: Representative examples of Merapi calc-silicate xenoliths (xcs) from a 1998 block and ash 

flow (for map location see Fig 1 b) at hand-specimen scale. Samples display intensely developed 
xenolith-magma contact zones with vesicular textures and skarn-type mineral assemblages. Mineral 
abbreviations: Wo = wollastonite, Di = diopside, An = anorthite, Qz = quartz. Mineral assemblages 

listed in figure are in order of decreasing abundance.  
123x123mm (300 x 300 DPI)  
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Figure 3: BSE images of the experimental products arranged to show the temporal sequence and 
major textural features of magma-carbonate interaction in the experiments. The anhydrous (3 a-e) 
and hydrous (3 f-j) experimental series are shown in the left and right columns, respectively. All 
experiments were carried out at T = 1200°C and P = 0.5 GPa. The Ca-rich and Ca-normal glass 

domains can be distinguished by their contrasting brightness in the images, where the bright glass 
is Ca-rich and the dark grey glass is Ca-normal. Thick white lines on (f), (h), and (j) are EMPA lines, 

corresponding to the graphs in Fig. 4.  
106x218mm (300 x 300 DPI)  
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Figure 4: Representative major and minor element chemical profiles in hydrated runs at 0s (a, d), 
90s (b, e), and 300s (c, f), respectively. Profiles correspond to thick white EMPA lines in Fig 3 f, h, j. 
The glass interfacial region is highlighted with grey shading on the plots. This is the region spanning 
the Ca-enriched melt-Ca-normal melt contact over which a steady interchange between CaO and 
SiO2 is observed. Note that the glass interfacial region is considerably wider at 300s (ca. 450µm 

max) than at 0s and 90s (ca. 80µm max for both).  
92x138mm (300 x 300 DPI)  
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Figure 5: 87Sr/86Sr and CaO wt% profiles in (a) a 0s experiment (379-17) and (b) a 300s 
experiment (386-19). Drilled areas are highlighted in grey on the BSE images (taken prior to 

mounting for drilling), and correspond to the numbered rectangles on the plot. The length of the 
rectangles corresponds to the area drilled and their height includes ±2 SE. Grey shaded vertical 

bars represent the glass interfacial regions.  
130x103mm (300 x 300 DPI)  
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Figure 6: (a) 87Sr/86Sr values for Merapi basalts, feldspars, crustal xenoliths, and local crust, 
(compiled using data in Gertisser & Keller (2003) and Chadwick et al. (2007)) relative to 

experimental glass (this study). Note that the uncontaminated glass is within the range of recent 
Merapi basalts, while by contrast, the Ca-enriched glass is displaced towards crustal values. (b) 

87Sr/86Sr binary mixing model between the end-members used in experiment (the mixing line is 
straight because 1/Sr is used). Composition of the drilled samples of experimental glass have been 
affected by between 10 and 45% limestone-derived Sr. Note that the longer dwell time experiment 
(300s) exhibits the greatest degree of mixing (45%). Samples from the most severely contaminated 
regions in both experiments (drill areas 3 in Fig 5) are displaced from the mixing line (labelled as 

“samples of Ca-rich glass” on the plot). See also Figure 7.  

37x85mm (300 x 300 DPI)  
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Figure 7: Experiment 386-19 with microprobe analysis line through the intra-glass interface shown 
with a thick white line (5 a). All points from this traverse (n = 59) are normalised to 100% and 

plotted on a binary mixing line between the starting compositions used in experiment, also 
normalised to 100% (5 b). Notice that at the low SiO2 range, the data closely fits the mixing line, 
whereas towards the Ca-normal glass composition the data indicates slight CaO enrichment. This 

feature is interpreted as a pile-up of Ca at the Ca-normal glass interface (see discussion).  
93x39mm (300 x 300 DPI)  
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Figure 8: Fine scale textural features of experimental products. 8 a: An overview of the intra-
carbonate glass with Ca-rich glass forming a fine network of fracture in-fill and locally collecting in 

pools. Dendritic calcite crystals within the Ca-rich glass are also visible. 8 b: At higher 

magnification, intra-carbonate glass can be seen to collect into pools and the nature of the 
termination points of the intra-carbonate veinlets is visible. 8 c: Three generations of vesicles 

extending from the carbonate grain are shown, labelled Gen.1, 2, and 3. 8 d: Ca-normal glass (dark 
grey) displays a ‘swirly’, mingled texture within the Ca-enriched glass (bright grey).  

146x143mm (300 x 300 DPI)  
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Figure 9: Comparison of an experiment run at P = 1 GPa (9 a) with a similar experiment run at 0.5 
GPa (9 b, also shown in Fig 3 j). Both experiments were run with T = 1200°C, td = 300s, using 

hydrous starting material and display the same major textural features. The carbonate has 

assimilated and given rise to two compositionally distinct domains of glass (the boundary between 
the 2 domains of glass is highlighted with white dashed lines for clarity). The sizes of the vesicles in 

these experiments constitute the maximum for all experiments reported in this study, and are 
confined to the Ca-enriched glass zones. Note that although the vesicles are larger in the 1GPa 

experiment, they are also fewer, which indicates a greater degree of coalescence in this experiment. 
90x41mm (300 x 300 DPI)  
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Figure 10: Selected BSE images displaying textural features within a representative set of natural 
Merapi calc-silicate xenoliths. Abbreviations: Pyx = pyroxene, Wo = wollastonite, Spu = spurrite.  

10 a: Sample MXCS-0-c contains larnite with a pervasive micro-vesicular texture that grades into a 
slightly less calcic glassy zone towards wollastonite. 10 b: Sample MXCS-0-g contains preserved 

carbonate bordered by glass with the composition of spurrite, which, in turn, is bordered by larnite. 
10 c: Sample MXCS-0-g contains carbonate inclusions hosted in wollastonite. Similar to (a), a Ca-
gradation exists between the larnite and wollastonite. Numbers in (a), (b), and (c) are CaO wt% 

and volatiles present. See Table 5 for representative analyses of minerals and glass in the xenoliths. 
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Figure 11: Ternary plot (SiO2-CaO-Al2O3) displaying glass analyses representative of all 
experiments in this study. Analyses of mineral and glass phases in a representative natural Merapi 
calc-silicate xenolith are shown for comparison. Experimental data (both anhydrous and hydrous, 

grey field on the plot) includes: 374-4 (n = 23), 374-5 (n = 4), 375-6 (n = 11), 375-7 (n = 5), 
376-10 (n = 32), 376-11 (n = 35), 379-16 (n = 11), 379-17 (n = 32), 386-18 (n = 45), 386-19 (n 
= 81), 387-20 (n = 41), 387-21 (n = 61). Merapi xenolith data (field with cross pattern on the plot) 

includes: MXCS-a (n = 4), MXCS-b (n = 2), MXCS-c (n = 2), MXCS-g (n = 3). Note that the 
experimental melts range from relatively unaffected, Ca-normal composition (similar to the starting 

M-94-a-107 basaltic-andesite) to strongly contaminated, Ca-enriched glass.  
146x125mm (300 x 300 DPI)  
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Table 1: Composition of starting materials used in the experiments 

Sample 

Average 
composition 
(EMP) of 
anhydrous M-94-
a-107 glass1 

 
Average composition 
(EMP) of hydrous M-
94-a-107 glass2 

 
Whole-rock analysis 
(XRF) of limestone 
added4 

  
1σ 

(10)3 
 

1σ 
(9)3 

 

wt%      

SiO2 54.11 0.60 51.83 0.43 0.28 

TiO2 0.85 0.09 0.89 0.05 0.01 

Al2O3 18.98 0.17 18.08 0.24 0.13 

FeO 7.89 0.56 8.17 0.16 0.01 

MnO 0.24 0.03 0.20 0.03 0.00 

MgO 2.98 0.13 2.97 0.08 0.40 

CaO 8.89 0.17 9.19 0.16 56.72 

Na2O 3.56 0.13 3.48 0.09 0.12 

K2O 2.05 0.10 2.05 0.03 0.00 

P2O5 0.29 0.04 0.34 0.04 0.03 

Total 99.85  97.20  57.70 

      

H2O -  2.23  0.15 

CO2 -  -  44.93 

1 Glass synthesised using M-94-a-107 whole-rock powder in a Pt capsule at 1300°C, 1atm in air. 
2 M-94-a-107 glass uniformly hydrated at Universität Hannover (Germany) and measured for water 
content by Karl Fischer Titration (KFT). 
31σ standard deviation; the number in parentheses represents the number of analyses for each sample. 
4 XRF analysis carried out at IFM-GEOMAR (Kiel, Germany). 
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Table 2: Experimental conditions and phases present in the experiments 

Run-Sample P (GPa) T (°C) td
1
 (s) 

M-94-a-

107(mg) 

CaCO3  

added (mg) 
Phases present 

379-16 0.5 1200 0 40.5 9.9 S (cc + x), M, V 

379-17
2
 0.5 1200 0 40.4 9.9 S (cc + crys), M, V 

387-20 0.5 1200 60 38.3 9.6 S (cc + x), M, V 

387-21
2
 0.5 1200 60 41.7 10.0 S (cc + crys), M, V 

376-10 0.5 1200 90 40.9 9.6 S (cc + x), M, V 

376-11
2
 0.5 1200 90 42.9 9.1 M, V 

375-6 0.5 1200 150 42.5 10.1 S (cc + x), M, V 

375-7
2
 0.5 1200 150 42.7 10.3 M, V 

374-4 0.5 1200 300 40.5 8.5 S (x), M, V 

374-5
2
 0.5 1200 300 42.6 9.3 M, V 

386-18 0.5 1200 300 41.2 9.9 S (x), M, V 

386-19
2
 0.5 1200 300 41.3 9.9 M, V 

374-8
3
 0.5 1200 300 40.8 0.0 S (x), M, V (µ) 

378-l5
2,3

 0.5 1200 300 30.0 0.0 M, V (µ) 

1
 ‘td’ is an abbreviation for the dwell time of an experiment (i.e. the length of time that the experiment 

is held at 1200°C). 
2
 Experiments carried out using the hydrated M-94-a-107 glass. 
3
 Control experiments carried out with no added limestone. 

Abbreviations used: td (experiment dwell time); S (solid); cc (calcium carbonate); x (plagioclase 

crystals); crys (calcite crystallites); M (melt); V (volatiles, CO2 and/or H2O); µ (micro bubbles only) 
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Table 3: Representative EMP analyses of experimentally-derived glasses 

 Ca-normal glass   Ca-rich glass   

Run-

Sample 
379-17 376-11 386-19 374-5 379-17 376-11 386-19 374-5 

wt%         

SiO2 51.97 51.62 52.28 50.83 34.11 27.72 34.90 38.08 

TiO2 0.74 0.81 0.77 0.89 0.45 0.49 0.56 0.58 

Al2O3 17.94 18.21 18.50 18.70 12.27 10.32 12.23 13.93 

FeO 6.89 6.42 6.30 6.23 5.35 4.85 5.38 5.48 

MnO 0.17 0.10 0.10 0.20 0.11 0.18 0.13 0.14 

MgO 2.89 2.82 2.66 2.73 2.41 2.18 2.30 2.26 

CaO 9.13 8.88 9.75 8.83 31.16 34.34 31.08 27.39 

SrO 0.09 0.10 0.08 0.10 0.03 0.08 0.08 0.07 

Na2O 3.94 4.54 3.66 4.48 1.35 1.33 1.75 2.22 

K2O 2.40 2.48 2.50 2.26 0.73 0.65 0.79 1.21 

P2O5 0.32 0.28 0.30 0.27 0.22 0.16 0.24 0.22 

Total
1
 96.48 96.26 96.90 95.52 88.19 82.30 89.44 91.56 

 Hybrid glass
2
   Inter-carbonate glass  

Run-

Sample 
379-17 376-11 386-19 375-5 379-17 379-17 379-16 387-21 

wt%         

SiO2 46.25 41.15 50.72 49.18 31.19 30.23 36.45 34.68 

TiO2 0.62 0.66 0.64 0.67 0.52 0.44 0.53 0.47 

Al2O3 16.07 14.93 17.73 17.49 10.19 10.40 13.22 13.22 

FeO 6.23 5.28 5.05 4.98 4.07 3.81 5.60 4.91 

MnO 0.13 0.07 0.13 0.16 0.12 0.07 0.16 0.18 

MgO 2.46 2.27 1.96 2.05 2.10 2.15 2.33 2.02 

CaO 19.42 24.00 15.64 15.60 35.41 36.52 32.13 32.41 

SrO 0.05 0.07 0.04 0.11 0.09 0.01 0.08 0.03 

Na2O 2.35 2.07 2.81 3.54 2.46 2.60 1.73 1.74 

K2O 1.33 1.01 2.01 2.18 1.45 1.44 0.89 0.86 

P2O5 0.26 0.20 0.32 0.24 0.25 0.22 0.22 0.21 

Total
1
 95.17 91.71 97.05 96.20 87.85 87.89 93.33 90.70 

1
 Analysis totals are low (sometimes < 90 wt%) due to a combination of dissolved volatiles (mainly 

CO2) and unavoidable micro-bubbles.   
2 
Glass with composition intermediate between the Ca-normal and Ca-rich end-members. Analyses 

shown are from the glass interfacial regions. 
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Table 4: Strontium concentrations and isotope 

ratios in micro-milled experimental glass 

Experiment, 
 location 

Sr ppm 87Sr/86Sr 2 SE 

 
   

379-17 ( 0s) 
   

1 (M73-3) 494 0.705641 0.000020 

2 (M73-2) 472 0.705788 0.000008 

3 (M73-4) 466 0.706361 0.000056 

4 (M73-5) 500 0.705886 0.000106 

 
   

386-19 (300s) 
   

1 (M73-7) 509 0.705675 0.000056 

2 (M73-8) 370 0.706117 0.000020 

3 (M73-9) 390 0.706532 0.000082 

4 (M73-10) 420 0.706068 0.000030 

5 (M73-11) 375 0.705893 0.000020 

    

Location numbers refer to sampled areas in the 
experiments, as shown in Fig. 5. 
 

 

Table 80mm wide, to fit one column.  
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Table 5: Representative EMP analyses of minerals and glass in Merapi xenoliths 

Phase Larnite Spurrite Glass border at Wo Calcite 

Sample MXCS-c MXCS-g MXCS-c MXCS-g MXCS-g MXCS-a MXCS-g 

wt%        

SiO2 34.12 26.36 32.23 31.56 31.62 0.08 0.14 

TiO2 0.05 0.02 0.05 0.03 0.03 0.00 0.00 

Al2O3 0.07 0.08 0.00 0.07 0.05 0.01 0.25 

FeO 0.09 0.04 0.04 0.00 0.07 0.02 0.05 

MnO 0.00 0.00 0.01 0.00 0.06 0.01 0.19 

MgO 0.01 0.00 0.02 0.00 0.01 0.01 0.04 

CaO 65.97 62.71 61.57 61.44 62.08 56.81 47.55 

Na2O 0.00 0.03 0.03 0.00 0.01 0.00 0.04 

K2O 0.00 0.01 0.00 0.01 0.02 0.00 0.01 

P2O5 0.04 0.05 0.02 0.06 0.03 0.04 0.02 

Total1 100.35 89.30 93.97 93.17 93.98 56.98 48.29 

Phase Wollastonite   Pyroxene  Plag An98 Sphene 

Sample MXCS-b MXCS-c MXCS-g MXCS-1A MXCS-1B MXCS-b MXCS-b 

wt%        

SiO2 50.83 50.81 50.87 51.88 50.96 43.34 32.24 

TiO2 0.00 0.05 0.10 0.03 0.14 0.12 38.25 

Al2O3 0.24 0.05 0.08 0.44 0.80 35.52 1.41 

FeO 0.63 0.47 0.84 14.85 16.84 0.29 0.73 

MnO 0.40 0.41 0.61 0.40 0.81 0.01 0.11 

MgO 0.14 0.14 0.14 8.51 6.66 0.00 0.00 

CaO 47.71 47.78 47.84 23.86 23.80 20.21 27.58 

Na2O 0.02 0.00 0.03 0.07 0.16 0.18 0.00 

K2O 0.00 0.01 0.01 0.01 0.05 0.01 0.00 

P2O5 0.05 0.00 0.01 0.03 0.00 0.06 0.22 

Total 100.02 99.72 100.53 100.08 100.22 99.74 100.54 

1 Analysis totals for the glassy border zones in the xenoliths are low (< 95wt%) due to dissolved 
volatiles. Calcite and spurrite totals are low due to their CO2 component. 
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