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1. Introduction

We shall construct infinite dimensional symmetries of the action

Tr

∫

d2xΨ
((

∂2u + ∂2z
)

Ψ−Ψ [∂zΨ, ∂uΨ]
)

with Euler-Lagrange equation

(∂2u + ∂2z )Ψ− [∂zΨ, ∂uΨ] = 0

resulting from the dimensional reduction of the self duality condition in (2, 2) space. The

self-dual Yang-Mills action written in four dimensions has physically relevant solutions

and in particular in Euclidean space the solutions are referred to as instantons. Starting

with the Euclidean equations in R
4 they may be dimensionally reduced by demanding that

solutions are invariant under translations of two of the coordinates, [1]. The solutions of

the dimensionally reduced equations, called Hitchin’s equations, have the property that

they may be defined over a Riemann surface using analytic maps and are conformally

invariant, and they have found applications in the field of integrability amongst others; see

for example [2, 3, 4] and [5]. We review the procedure taken by Hitchin in [1].

In the paper, [6], it is shown how to construct infinite symmetries of the Chalmers

Siegel action [7] describing the self-duality equations in (1, 3) space using (complex) light-

cone coordinates, xo = t−x3, xō = t+x3, z = x1+ix2, z̄ = x1−ix2 for t, x1, x2 and x3 real.
(See also [8, 9, 10, 11, 12] for previous discussions on symmetries of Yang-Mills theories)

This work was based on the derivation of a Lagrangian formalism to the MHV rules,

[13, 14, 15, 16], in the papers [17, 18] and was extended to the N = 4 supersymmetric action

in the papers [19] and [20]. The procedure involves defining a canonical transformation

that maps the Chalmers Siegel action to a free theory. By writing symmetries of the free

theory and using the transformation and its inverse the authors construct symmetries of
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the self-dual action. In particular, it was mentioned in [6] that by making x2 imaginary,

the light-cone system became a set of real coordinates and the arguments in that paper

extended to (2, 2) space-time where Az and Az̄ are not related by complex conjugation.

By writing the Euclidean Cartesian coordinates (x1, x2, x3, x4) in terms of two complex

coordinates, z = x1 + ix2 and u = x3 + ix4 we write the Hitchin equations by assuming

that the fields do not depend on the imaginary parts of the new coordinates, x2 and x4
where we assume an anti-hermitian representation of the Lie algebra valued fields with

A∗

ū = −Au = and A∗

z̄ = −Az. In the case where x2 and x4 are pure imaginary then we

arrive at the same dimensionally reduced equations but now the fields are no longer related

by complex conjugation and on the plane we may impose the gauge Aū = 0. Since the

symmetry δAz, (written down in the introduction to [6]) with real momenta is a symmetry

of the 4d action in (2, 2) space (using the light-cone gauge), where fields are not related

by conjugation, it is necessarily a symmetry of the equation of motion. By dimensionally

reducing the expression, we write down an expression for the symmetry of the 2d equation

of motion.

2. The Hitchin system

The Hitchin equations result from the dimensional reduction of the self-duality equations

in Euclidean space, [1]. We shall review their derivation using real space-time coordinates

(x1, x2, x3, x4), before introducing the complex co-ordinates that allow immediate general-

isation to (2,2) signature. So the metric is ds2 = dx21 + dx22 + dx23 + dx24. Hitchin considers

the Lie-algebra valued curvature two form

F (A) = dA+A2
∑

µ<ν

Fµνdx
µ ∧ dxν

where A is the connection over the G-bundle

A = A1dx
1 +A2dx

2 +A3dx
3 +A4dx

4,

and we choose an anti-hermitian representation of the Lie algebra generators, T a, so that

if A = Aa T
a, then A∗

a = Aa and A∗ = −A. When written out explicitly the self-duality

condition,

Fµν =
1

2

√
gεµνλρF

λρ,

becomes the set

F12 = F34, F13 = F42, F14 = F23. (2.1)

Hitchin, [1], then assumes that the functions Aµ are independent of two of the coordinates,

x2 and x4 say, (note, for later convenience, this is a different choice form that of [1]). So

that the connection becomes

A = A1dx
1 +A3dx

3.

Re-naming the fields A2 and A4 as

A2 = ϕ, A4 = ψ
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which are reminiscent of Higgs fields, [1], puts the equations of motion into the form

F12 = [D1, ϕ] = [D3, ψ] = F34

F13 = [D1,D3] = [ψ,ϕ] = F42

F14 = [D1, ψ] = [ϕ,D3] = F23.

3. The Self-Duality Equations in Complex and Light-Cone Co-ordinates

We have seen the derivation of the Hitchin equations in Cartesian coordinates. The ap-

proach in the papers [18], [17] and [6] is to write the self-dual action and its symmetries in

(1, 3) light-cone momentum space coordinates, p̌ = pt − p3, p̂ = pt + p3, p̃ = p1 + ip2 and

p̄ = p1 − ip2 where p̃ and p̄ are related by complex conjugation. However, it was discussed

in [6] that we can make p2 pure imaginary thereby making all (p̌, p̂, p̃, p̄) real. Then the

arguments written down in [6] extend to (2, 2) space. In fact the authors used this to derive

their results to begin with.

With that in mind, we write the self-duality equations that are dimensionally reduced

from Euclidean space-time in a complex coordinate system. We define complex coordinates

(u, ū, z, z̄) for Euclidean space by

u = x3 + ix4, z = x1 + ix2

ū = x3 − ix4, z̄ = x1 − ix2 (3.1)

so now

ds2 = dx21 + dx22 + dx23 + dx24 = dudū+ dzdz̄

The self-duality equations

Fµν =
1

2

√
gεµνλρF

λρ,

with εuūzz̄ = 1, written out in components are now

Fuū = −Fzz̄, Fuz = 0, Fūz̄ = 0, (3.2)

or more explicitly,

∂uAz − ∂zAu + [Au, Az ] = 0

∂ūAz̄ − ∂z̄Aū + [Aū, Az̄ ] = 0

∂uAū − ∂ūAu + [Au, Aū] = −∂zAz̄ + ∂z̄Az − [Az, Az̄ ] (3.3)

where the fields are related by conjugation with A∗

ū = −Au and A∗

z̄ = −Az because of the

anti-hermitian generators. Following Hitchin’s procedure, we assume that the fields are

independent of the coordinates x2 and x4. Then we have

∂x4
Aµ = ∂uAµ − ∂ūAµ = 0

∂x2
Aµ = ∂z̄Aµ − ∂zAµ = 0 (3.4)
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for all the field components, Aµ. The Hitchin equations (3.3) in this coordinate system,

are then

∂uAz − ∂zAu + [Au, Az ] = 0 (3.5)

∂uAz̄ − ∂zAū + [Aū, Az̄ ] = 0 (3.6)

∂uAū − ∂uAu + [Au, Aū] = −∂zAz̄ + ∂zAz − [Az, Az̄ ] (3.7)

and the Higgs fields are,

ϕ =
i

2
(Az̄ −Az)

ψ =
i

2
(Aū −Au) .

In the papers [17, 18] and [6] we had a time-like co-ordinate and were able to use a

light-cone gauge condition. This would be analogous to Aū = 0 which we are not free to

choose in Euclidean space because the components are related by A∗

ū = −Au. So now we

consider the problem in (2, 2) space by writing x2 = iy and x4 = it, with t and y real.

Then the coordinates (u, ū, z, z̄) are all real and independent. Furthermore, the fields Au

and Aū are no longer related by complex conjugation, and neither are Az and Az̄.

In an appropriate domain we can now make the gauge choice Aū = 0 and then by (3.7)

we can set Az̄ = 0 (without constraining Az). Then using (3.5) we can write

Au = −∂z
∂u
Az (3.8)

and substitute into (3.6) to arrive at

(

∂u +
∂2z
∂u

)

Az −
[

∂z
∂u
Az, Az

]

= 0 (3.9)

or, to make a simplification by defining Az = ∂uΨ, we can write

(

∂2u + ∂2z
)

Ψ− [∂zΨ, ∂uΨ] = 0. (3.10)

4. Symmetries of the 2D Euclidean Self-Dual Equations on the plane

In [6], infinite dimensional symmetries of the self-dual action in (1, 3) space were constructed

but by assuming real momenta then the results are valid in (2, 2) space. The procedure

was extended to the N = 4 supersymmetric theory in [20]. The Chalmers-Siegel action

that gives rise to the self-duality equation for A = Az as its Euler-Lagrange equation is

S =
4

g2
Tr

∫

d4xA (∂u∂u + ∂z∂z)A+
4

g2
Tr

∫

d4x
(

∂z∂
−1

u A
) [

A, ∂uA
]

(4.1)

We define the notation, (pnu, p
n
ū, p

n
z , p

n
z̄ ) = (ň, n̂, ñ, n̄) and ζp = p̄/p̂, and

∫

1···n

=

∫

d4p1
(2π)4

· · · d
4pn

(2π)4
.
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Writing the action in momentum space gives

Tr

∫

1

{p̄1p̃1 + p̂1p̌1}A1̄A1 − iTr

∫

123

p̂1 (ζ3 − ζ2)A1̄A2̄A3̄(2π)
4δ(p1 + p2 + p3)

where we use the shorthand Ap = A(p) and Ap̄ = A(−p), and we perform the transforma-

tion A→ A′ = A+ εδA and Ā→ Ā′ + εδĀ with

δA1 = −ε
∞
∑

n=2

n
∑

i=2

n
∑

j=i

∫

2···n

1̂

q̂
Γ(qG, iG, · · · , jG)Γ(q, j + 1, · · · , n, 1 · · · , i− 1)×

×A2̄ · · ·AīG · · ·Aj̄G · · ·An̄

(4.2)

and

δA1 = −ε
∞
∑

n=2

n
∑

k=2

k−1
∑

i=2

k−1
∑

j=i

∫

2···n

k̂2

1̂q̂
Γ(qG, iG, · · · , jG)Γ(q, j + 1, · · · , n, 1, · · · , i− 1)×

×A2̄ · · ·AīG · · ·Aj̄G · · ·Ak̄ · · ·An̄

+ε
∞
∑

n=2

n
∑

k=2

k
∑

i=2

n
∑

j=k

∫

2···n

q̂

1̂

(k̂G
−1
)2

(q̂G−1)2
Γ(qG

−1

, iG
−1

, · · · , jG−1

)Γ(q, j + 1, · · · , n, 1, · · · , i− 1)×

×A2̄ · · ·AīG
−1 · · ·A

k̄G
−1 · · ·A

j̄G
−1 · · ·An̄

−ε
∞
∑

n=2

n
∑

k=2

n
∑

i=k+1

n
∑

j=i

∫

2···n

k̂2

1̂q̂
Γ(qG, iG, · · · , jG)Γ(q, j + 1, · · · , n, 1, · · · , i− 1)×

×A2̄ · · ·Ak̄ · · ·AīG · · ·Aj̄G · · ·An̄.

where Γ(12 · · · n) was first written in [17] as

Γ(1, · · · , n) = −(i)n
1̂

(1, 2)

1̂

(1, 2 + 3)
· · · 1̂

(1, 2 + · · · (n− 1))
.

and p→ pG is an isometry. The bracket (i, j) is defined as (i, j) = (̂ij̃− ĩĵ). The invariance
of the action under these transformations is proven in [6]. Given that they are symmetries

of the action, that is sufficient for us to be able to infer that they are indeed symmetries

of the equation of motion which we derived earlier (3.9). We could have also derived this

equation using the action (4.1).

Here, we are concerned with finding symmetries of the dimensionally reduced equation

(3.10) where, as before, we have defined Az = A = ∂uΨ,

(

∂2u + ∂2z
)

Ψ− [∂zΨ, ∂uΨ] = 0.

which in momentum space is

(1̌2 + 1̃2)Ψ1 −
∫

d2p1d
2p2(2, 3)Ψ2̄Ψ3̄δ

2(p1 + p2 + p3).

where d2p = dp̌dp̃
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By writing Ap = −ip̂Ψp the expression for δA, (written in the introduction to [6]),

becomes

δΨ1 = −ε
∞
∑

n=2

n
∑

i=2

n
∑

j=i

∫

2···n

q̂

1̂
D(qG, iG, · · · , jG)D(q, j + 1, · · · , n, 1, · · · , i− 1)×

×Ψ2̄ · · ·ΨīG · · ·Ψj̄G · · ·Ψn̄δ
4(
∑

m

pm)

(4.3)

where D(1, 2, · · · , n) is given by

D(12 · · · n) = −(−1)n
1̂n−32̂3̂ · · · n̂

(1, 2) (1, 2 + 3) · · · (1, 2 + 3 + · · · + (n− 1))
(4.4)

in momentum space. The Ψ(p1, p2, p3, p4) are the Fourier transform of Ψ(x1, x2, x3, x4),

Ψ(p1, p2, p3, p4) =

∫

d4x

(2π)4
eipµx

µ

Ψ(x1, x2, x3, x4).

Since we assume that Ψ depends only on x1 and x3, we have

Ψ(p1, p2, p3, p4) =

∫

dx2

2π
eip2x

2

∫

dx4

2π
eip4x

4

∫

d2x

(2π)2
eip1x

1+ip3x
3

Ψ(x1, x3)

= δ(p2)δ(p4)Ψ
′(p1, p3)

= δ(p̂ − p̌)δ(p̃ − p̄)Ψ′(p̌, p̃).

Substitute this into (4.3) and evaluate the integrals over p̂i and p̄i for i = 2, · · · , n and we

have

δΨ1 = −ε
∞
∑

n=2

n
∑

i=2

n
∑

j=i

∫

2···n

q̂

1̂
D(qG, iG, · · · , jG)D(q, j + 1, · · · , n, 1, · · · , i− 1)×

×Ψ′

2̄
· · ·Ψ′

īG · · ·Ψ′

j̄G · · ·Ψ′

n̄δ
2(
∑

m

pm)δ(p̂1 − p̌1)δ(p̃1 − p̄1)

where now
∫

1···n

=

∫

d2p1
(2π)2

· · · d
2pn

(2π)2

and the kernels, D, (4.4) are written in terms of p̌ and p̃ using p̌ = p̂ and p̃ = p̄. Then

write the inverse Fourier transform, δΨ(x1, x2, x3, x4), of δΨ(p1),

δΨ(x) =

∫

d4p1e
−ip1µx

µ
1 δΨ(p1)

and evaluating the integrals over p̂1 and p̄1 the final expression is

δΨ′

1 = −ε
∞
∑

n=2

n
∑

i=2

n
∑

j=i

∫

2···n

q̂

1̂
D(qG, iG, · · · , jG)D(q, j + 1, · · · , n, 1, · · · , i− 1)×

×Ψ′

2̄
· · ·Ψ′

īG · · ·Ψ′

j̄G · · ·Ψ′

n̄δ
2(
∑

m

pm)
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and the isometry x→ xG is simply a rotation of the plane about angle t, viz

uGt = cos(t)u+ sin(t)z

zGt = − sin(t)u+ cos(t)z.

Given two transformations, δt1 and δt2 and the argument in [6], the commutator of the

transformations is

[δt1 , δt2 ] Ψ = 0

and the infinite set of transformations clearly forms an Abelian algebra. Similarly, by

defining Ψ̄ = ∂uĀ, we can write the transformation δΨ̄ as

δΨ1 = −ε
∞
∑

n=2

n
∑

k=2

k−1
∑

i=2

k−1
∑

j=i

∫

2···n

q̂

1̂
D(qG, iG, · · · , jG)D(q, j + 1, · · · , n, 1, · · · , i− 1)×

×Ψ2̄ · · ·ΨīG · · ·Ψj̄G · · ·Ψk̄ · · ·Ψn̄

+ε
∞
∑

n=2

n
∑

k=2

k
∑

i=2

n
∑

j=k

∫

2···n

q̂

1̂
D(qG

−1

, iG
−1

, · · · , jG−1

)D(q, j + 1, · · · , n, 1, · · · , i− 1)×

×Ψ2̄ · · ·ΨīG
−1 · · ·Ψ

k̄G
−1 · · ·Ψ

j̄G
−1 · · ·Ψn̄

−ε
∞
∑

n=2

n
∑

k=2

n
∑

i=k+1

n
∑

j=i

∫

2···n

q̂

1̂
D(qG, iG, · · · , jG)D(q, j + 1, · · · , n, 1, · · · , i− 1)×

×Ψ2̄ · · ·Ψk̄ · · ·ΨīG · · ·Ψj̄G · · ·Ψn̄.

5. Summary

We reviewed the derivation of Hitchin’s equations on Euclidean space using complex co-

ordinates. These give an immediate generalisation to (2, 2) space-time, resulting in the

two-dimensional equation

(

∂2u + ∂2z
)

Ψ− [∂zΨ, ∂uΨ] = 0.

because in this signature we are free to impose a light-cone gauge condition, as in [6].

By dimensionally reducing the results of that paper we obtained symmetries of this two-

dimensional equation δΨ (and δΨ) and, importantly, the action whose Euler-Lagrange

equation this is,

S =
4

g2
Tr

∫

d2xΨ
((

∂2u + ∂2z
)

Ψ−Ψ [∂zΨ, ∂uΨ]
)

where Ψ̄ = ∂uĀ.

E. Brézin (et-al), [21] consider two dimensional non-linear sigma models and construct

infinite, on-shell, conserved currents of the motion iteratively, subject to the equations of

motion being

∂µA
µ = 0, [∂µ +Aµ, ∂ν +Aν ] = 0,
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and the authors give a number of examples of such systems. The system we have studied

is an example of such a model1 since, from (3.8) and Az = ∂uΨ, we have Au = −∂zΨ and

∂zAz + ∂uAu = 0

[∂z +Az, ∂u +Au] = 0

using (3.10). Our symmetries of the action extend the program of [21] and also [10, 8, 9]

off-shell.

In the introduction to this paper we alluded to the fact that the solutions to the

Hitchin equations may be defined over Riemann surfaces using analytic maps. It would

be interesting to consider how we might extend our approach to find symmetries of the

self-dual equations on such surfaces, for example Riemann spheres or tori.
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