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Dissipation and maintenance of stable states in an enzymatic system: analysis and simulation 

 

Abstract 

The constraint-based analysis has emerged as a useful tool for analysis of biochemical networks. 

An essential assumption for constraint-based analysis is the formation of a stable steady state. 

This work investigates dissipation and maintenance of stable states in a simple reversible 

enzymatic reaction with substrate inhibition. Under mass-action kinetics, the conditions under 

which the reaction maintains a stable steady state are analytically derived and numerically 

confirmed. It is shown that, in order to maintain a steady state in the regulated reaction, maximal 

enzyme activity must be much higher than input rate. Moreover, it is revealed that requirements 

for large enzyme activity are due to substrate inhibition. It is suggested that high activities of 

enzymes may play a vital role in protecting a stable state from its catastrophic collapse, giving an 

additional explanation to an intriguing problem - why the activities of some enzymes greatly 

exceed the flux capacity of a pathway.  In addition, dissipation of the enzymatic reaction is 

analysed. It is shown that collapse of stable states is always associated with a point at which 

dissipation is the highest. Therefore, in order to maintain a stable state, dissipation of the reaction 

must be less than a critical value. Moreover, although external forcing may not change net mass 

flow, it may lead to collapse of stable states. Furthermore, when stable states collapse at a critical 

forcing amplitude and period, dissipation also reaches a highest value. It is concluded that 

collapse of stable steady state in the enzyme system with substrate inhibition always corresponds 

to critical points at which dissipation is highest, regardless if the reaction is forced or not. 

Therefore, for the substrate inhibited reaction, maintenance of stable states is intrinsically related 

to level of dissipation. 
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Introduction 

In a living system, a metabolic network comprises many complicatedly connected reactions, 

exchanges material and energy with its surrounding, and dissipates energy. Therefore, an 

metabolic network is an integrative and open system, its study needs to define a boundary at 

which materials are transported into or out of the network [1].  By analysing a network and its 

boundary fluxes as a whole, constraint-based approach has emerged as a useful tool for analysis 

of the integrated functions of the network [2-10].  Broadly speaking, constraint-based approach 

analyses the possible flux distributions under the constraints of stoichiometry, thermodynamics 

and kinetics, and links them with possible phenotypic outcomes.  Those constraints restrict 

different aspects of the network. Specifically,  stoichiometric constraints restrict the molar 

relation of reactants; thermodynamic constraints confine the direction of reactions [1, 11-15]; and 

kinetic constraints guarantee the formation of stable states that are necessary for implementing 

biological functions [16,17]. In a network, each enzymatic reaction is an essential component for 

constructing the network, and it also has a boundary at which substrate is supplied and product is 

removed. In general, an enzyme-catalysed reaction is embedded in a pathway, taking product 

molecules of the preceding reaction step and supplying substrate for the subsequent step [18]. 

Enzyme molecules bind with substrate molecules to form an intermediate complex. 

Subsequently, the intermediate complex releases product molecules and the enzyme becomes 

available for catalysis again. Finally, the freed enzyme molecules bind substrate molecules again, 

and the process repeats. Enzyme catalysis can be inhibited or activated by compounds which are 

themselves reaction products, and the consequent network of feedback and feedforward reactions 

are the basis of biological functioning in cells. 
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If an enzyme-catalysed reaction cannot establish a stable state when it is with substrate input and 

product removal, the network comprising the same reaction cannot reach a stable state. In this 

sense, a single enzyme-catalysed reaction is an important prototype for understanding the 

formation of stable states in a network. This work examines three aspects about maintenance of 

stable states in an enzyme reaction system with substrate inhibition.  

 

Firstly, based on mass-action kinetics, the conditions under which the reaction maintains steady 

states are analytically derived and numerically confirmed. It is shown that, in order to maintain a 

steady state in the regulated reaction, maximal enzyme activity must be much higher than input 

rate. Moreover, it is revealed that requirements for high enzyme activity are due to substrate 

inhibition. It is suggested that, when enzymes are regulated,  high activities of enzymes may play 

a vital role in protecting a stable state from its catastrophic collapse, giving an additional 

explanation to an intriguing problem - why the activities of some enzymes greatly exceed the flux 

capacity of a pathway  [19,20].  

 

Secondly, in terms of the Second Law of Thermodynamics, any reaction with non-zero flux 

dissipates energy. An enzymatic reaction comprises a number of elementary reactions. The total 

dissipation of those elementary reactions represents the thermodynamic dissipation of the enzyme 

reaction. Furthermore, dissipation is closely associated with the concept of thermodynamic 

constraints [1, 11-15]. Is the maintenance of a stable state related to other properties of the 

system? For example, is the collapse of a stable state related to dissipation?  We will examine the 

relation between dissipation and maintenance of stable states.  
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Thirdly, when an enzyme system settles onto a stable state, how does external forcing affect the 

state? What is the relation between dissipation and the changes induced by external forcing?  We 

examine the effects of forcing period and amplitude on the maintenance of stable states, and 

further investigate the relation between dissipation and maintenance of stable states.  

 

Dissipation and maintenance of steady states: a reversible enzymatic reaction with 

substrate inhibition as an example 

The simplest enzyme kinetic model involving substrate inhibition is the Michaelis-Menten 

formalism modified by adding a binding process between substrate-enzyme complex and free 

substrate [21,22]. When we consider that this reaction is embedded in a pathway, substrate is 

supplied by a preceding reaction, and product is removed by a subsequent reaction. Therefore, the 

reaction system is described as  
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The governing mass-balance equation of this reaction system is 
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Here total enzyme concentration, E0 ,  is conserved, i.e.  ]][][][ 20 ESESEE ++= . Therefore,  

][][][][ 20 ESEEES −−= . inV  is the input rate of substrate, S . Initially, it is assumed that the 

external pool from which S is supplied is buffered, and therefore inV  is a constant.  Product P  is 

transported out of the system with a first-order reaction, whose rate constant is Pk . 

 

The steady state of equation 1 can be obtained by setting its right hand to be zero. At a steady 

state,   after applying the conventional notation of Michaelis-Menten formalism for kinetic 

parameters, we have 
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In addition,  
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Analysis of equations 2-4 reveals that a steady state for which all concentrations are non-negative 

and finite only exists in a certain range of values of parameters, implying that kinetic constraints 

[16,17] restrict the formation of a steady state. Specifically, if ][S  at a steady state is non-

negative and finite, concentrations of all other species are non-negative and finite. Therefore, we 

examine the conditions for maintaining non-negative and finite ][S . 

 

In terms of equations 3 and 4, since a  and c are always non-negative, there are two possibilities. 

If b  is positive, there is no positive solution for ][S , since acbb 42 −±−  <0. If 0<b , non-

negative and finite solutions for ][S  may exist only if 042 >− acb . Therefore, equations 6 and 7 

are the steady-state conditions for ][S  

0<b          (6) 
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042 >− acb         (7) 

 

Equation 6 leads to  
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Equation (9) and (10) leads to 
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Since the first term in equation 11 is the same as the right hand of equation 8 and the last two 

terms are positive in equation 11, it is clear that, as long as equation 11 is valid, equation 8 is also 

valid. Therefore,   equation 11 is the condition under which the system establishes a non-negative 
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and finite steady state. Once a steady state exists, it has been shown that the state does not lose its 

local stability [22].  

 

Equation 11 can be employed to comprehensively analyse the effects of kinetic parameters on the 

formation of steady state. It can be seen that increasing inV  requires the increase in maxV . 

Similarly, increasing any of 1K , 2K , 4K , and mK  also requires the increase in maxV . However, 

increasing 3K  corresponds to the decrease in maxV . 

 

Numerical analysis confirms that equation 11 is the condition for maintaining a steady state in the 

system when values of the kinetic parameters change. For example,  if all rates constants are 

unity (i.e. 14321 ==== KKKK , .2=mK ),   equation 11 becomes equation 12. 

{ })1(22)31( 2
max ++++> inininin VVVVV     (12) 

Figure 1 shows an example of how equation 12 affects the evolution of the reaction system. In 

terms of equation 12, when 0.2=inV , 97.28max >V .  When 97.280.29max >=V , the system 

develops to a steady state for substrate S and product P (figure1a ). Simultaneously, E , ES  

and 2ES  reaches a steady state as well (data not shown). However, when 97.2890.28max <=V , 

the system cannot establish a steady state. Substrate S increases infinitely and product P infinitely 

approaches zero (figure 1b). Moreover, E  and ES  approaches zero, and 2ES  approaches 0E  

(data not shown). Consequently, the catalysing cycle in the system breaks down and the system 

cannot implement biological functions. In a similar manner, based on equation 11, effects of all 

kinetic parameters on formation of steady states can be numerically analysed. For example, if 

3K =0.5 ( 1421 === KKK , ),2=mK  equation 11 gives 533.52max >V  for 0.2=inV , numerical 
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calculation confirms that if 533.5254.52max >=V , the system develops to a steady state. If  

533.5252.52max <=V , no steady states exist. 

 

---figure 1 here---- 

 

Equations 11 and 12 show that maintenance of a steady state requires a highly nonlinear 

relationship between the input flux and the maximal enzyme activity. If the reaction is not 

inhibited by the substrate S, as long as inVV >max , the system establishes a steady state. 

Therefore, the nonlinearity of equations 11 and 12 is the consequence of substrate inhibition.  

 

The above analysis clearly demonstrates that the maintenance of a steady state in the reaction 

system is subject to the constraints of equation 11. If equation 11 is invalid, the catalysing cycle 

of the reaction breaks down, the reaction cannot perform biological functions. However, is the 

maintenance of a steady state related to other properties of the system? For example, is the 

collapse of a steady state related to dissipation?  Because energy efficiency is usually considered 

to be a vital aspect of biological functions [23-26], we further investigate if maintenance of a 

steady state is related to dissipation of the system. 

 

When a steady state is established in the reaction system, the general form of dissipation of the 

reaction system can be deduced from the reaction scheme, which is described by equation 13. 
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where hd is dissipation, ][S  and ][P   are the steady-state concentration of substrate and product, 

respectively.  R is the gas constant, and T is the absolute temperature. In an isothermal system, 

RT is a constant. In the following, we use equation 14 to describe dissipation. 

 

)
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kk
kk
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   (14) 

where D  is dissipation in the unit of RT . 

Based on equations 3, 4 and 14, dissipation at a steady-state can be calculated. Although effects 

of rate constants can be fully examined based on equation 14, for the simplicity we set all rate 

constants to be unity and examine the dependence of dissipation on maximal enzyme activity and 

input rate. Figure 2 summarises the results.   

 

---figure 2 here--- 

 

For a fixed inV , dissipation increases monotonically with the decrease of maxV  (figure 2a). When 

maxV  decreases to such a value that equation 12 becomes invalid, the dissipation reaches a highest 

value, beyond which no stable states exist. For a fixed maxV , dissipation increases monotonically 

with the increase of inV . When inV  increases to such a value that equation 12 becomes invalid, 

the dissipation reaches a highest value, beyond which no stable states exist. Effects of rate 

constants on dissipation have also been examined. It is revealed that, although rate constants may 

change dissipation quantitatively, they do not change the trend of figure 2. Therefore, although 

collapse of stable states may stem from either the decrease of maxV  or increase of inV ,  it always 

corresponds to a point at which dissipation is the highest.  In other words,  in order to maintain 
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stable states, the dissipation of the reaction system must not exceed a critical level. Therefore, for 

the substrate inhibited reaction with Michaelis-Menten formalism, maintenance of stable states 

intrinsically links with level of dissipation. 

 

Dissipation and maintenance of stable states under forcing  

In general, all enzymatic reactions in a living system are subject to a fluctuating input. These 

fluctuations may stem from varying environmental conditions, or from the interaction between 

reactions. For example, plant photosynthesis is subject to light intensity fluctuations and the 

processes of acquiring carbon resources are time-dependent. Moreover, since a particular reaction 

is always embedded in a pathway, its input is the output of preceding reactions. By taking into 

account the complex manner in the network of enzymatic reactions in vivo [18], any reaction may 

be considered to be forced by other reactions. 

 

In general, the fluctuations can take different forms. Here, we assume that the external forcing is 

represented by the following equation:  

))2sin(1(0 T
tVVinput

πε+=    (15) 

where ε and T are the forcing amplitude and period, respectively. In order to guarantee 0≥inputV  ,  

ε is limited to the range of 0 to 1. We note that the average of inputV over an exact period is equal 

to 0V   , implying that the forcing does not change the net input rate of the system. We choose the 

values of parameters such that the system establishes a steady state when it is not subject to 

forcing, and study how forcing affects the maintenance of the state and dissipation. 
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When the system settles onto a steady state without forcing, forcing may drive the system to lose 

its stable states. Subsequently, the system does not maintain any stable state and it therefore 

cannot implement biological functions. Figure 3 shows that two neighbouring forcing amplitudes 

may lead to completely different evolution of the reaction system. In figure 3a, a stable limit 

cycle sustains, in addition to concentration of substrate and product, all enzyme forms, E , ES  

and 2ES  periodically change. The reaction system settles onto a stable oscillatory state. 

However, in figure 3b, the catalysing cycle is destroyed. Consequently, E  and ES  approaches 

zero, and 2ES  approaches the total enzyme concentration, 0E . Substrate and product cannot settle 

onto any stable states. 

 

---Figure 3 and 4 here--- 

 

Figure 4 summarises the effects of forcing amplitude and period on the maintenance of stable 

states. When forcing amplitude and period are such that their values are in the range below each 

curve, the reaction system reaches a stable state. However, when their values are above each 

curve up to forcing amplitude to be 1, no stable states exist.   Specifically, for a fixed input rate 

( 0.10 =V ), as maximal enzyme activity, maxV , increases, the system is more possible to establish 

stable states (figure 4a). Moreover, for a fixed maxV  ( 7.26max =V ), as the input rate decreases, the 

system is more possible to establish stable states (figure 4b). In general, the reaction system can 

process external signals across a broad range in period provided they have small amplitudes, but 

large amplitude signals may lead to the collapse of stable states. Similarly, the system can 

withstand large amplitude signals provided the period is short, however large amplitude signals 

with long period will lead to the collapse of stable states. We emphasize that the forcing 
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superimposed does not change the (average) input rate. Therefore, under forcing, the (average) 

mass transported into the reaction system remains the same. However, as demonstrated by figure 

3 and 4, forcing is able to destroy stable states.  Is the collapse of stable states induced by forcing 

related to dissipation of the system? Therefore, we further investigate effects of forcing on 

dissipation. 

 

In order to examine how forcing affects dissipation,  relative dissipation, R, is defined as 

0D
DR =      (16) 

where 0D   is dissipation at a steady state when the system is not subject to forcing, and it does 

not change with time,  D  is dissipation under forcing, and it changes periodically with time 

(figure 5). D  is the average of D  over an exact period.  Therefore, D  is the dissipation for the 

oscillatory state.  

 

--- figure 5 and 6 here--- 

 

Figure 6 shows how forcing affects relative dissipation in the system.  In figure 6, 0.10 =V , 

1000=T , relative dissipation is calculated for five different values of maxV . In (a), 89.8max =V , 

which is the minimal value calculated from equation (12). In this case, if ,0.0=ε  a steady state is 

established. However, if ε  is any positive value, no stable states exist. In curves (b) to (e), 

relative dissipation, R  is always larger than 1, implying that the system under forcing always 

dissipates more energy. Importantly, when the system cannot maintain its stable states,  the 

relative dissipation reaches a  point, at which dissipation is the highest,. Therefore, under forcing, 
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the system may only accommodate a certain range of dissipation. If dissipation is higher than a 

critical value, the system cannot maintain any stable states. Further numerical analysis confirms 

that, when forcing period changes, the collapse of stable states also corresponds a critical point, at 

which dissipation is the highest (data not shown). Therefore, the collapse of stable states under 

forcing follows the following scenario:  when the system is forced, forcing changes the system 

from a steady state to an oscillatory state and the dissipation of the system increases.  When 

forcing amplitude and period are such values that stable states cannot be maintained, dissipation 

reaches a highest value. Subsequently,  the system cannot implement any functions.  

 

Concluding remarks 

By analysing a reversible enzyme reaction system, this work shows that the maintenance of a 

stable state requires a highly nonlinear relation between input rate and maximal enzyme activity. 

This nonlinearity is due to the consequences of substrate inhibition. Moreover, when the reaction 

system establishes a stable state with a constant input, external forcing may destroy the stable 

state. Consequently, the system cannot implement any biological functions. Importantly, under 

certain forcing amplitude and period, maximal enzyme activity is a key factor determining if the 

system establishes a stable state. Therefore, a reaction system with a certain configuration of 

enzyme activities may only stably evolve under certain external conditions. Furthermore, this 

work also shows that, for the specific reaction,  collapse of stable steady state is intrinsically 

related to its dissipation, regardless if the reaction is forced or not.  

 

Evolution of biochemical reactions is subject to constraints. Kinetic constraints [16,17] are 

conditions under which the reaction establishes stable states.  Thermodynamic constraints restrict 

the direction of the reactions [1, 11-15]. Although thermodynamic and kinetic constraints restrict 
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different aspects of the reaction, they can be closely related. Analysis of the reaction system with 

substrate inhibition shows that dissipates too much energy may not maintain its stable states. This 

corresponding relationship may originate from the foundation of kinetic and thermodynamic 

constraints. Both kinetic and thermodynamic constraints are based fundamentally on elementary 

reaction steps and mass-action kinetics.  

 

If the reaction system is not inhibited by the substrate, as long as inVV >max , the system 

establishes a steady state. In order to maintain a stable state in the reaction with substrate 

inhibition, maximal enzyme activity,  maxV , must be much higher than input rate. For example, in 

terms of equation 12, if  0.5=inputV ,  then 7.135max >V ; and if 0.10=inputV , then 0.608max >V . 

Approximately, maximal enzyme activity is required to be 27- and 61- fold higher than input rate 

for the two cases, respectively. In other words, in the regulated system, maximal enzyme activity 

must be drastically increased to maintain a stable state. In a pathway, the activities of some 

enzymes greatly exceed the flux capacity of the pathway. This intriguing problem attracts much 

attention [19, 20, and references therein]. For example, it has been argued that these high 

activities are necessary to ensure sufficient net flux in reactions that operate near equilibrium 

[19]. Recently, by analysing a kinetic model, it is suggested that large activities may reflect a 

close match of system design to performance requirements [20]. This work shows that, when an 

enzyme is regulated, high enzyme activities may be essential for forming a stable state. 

Furthermore, when external fluctuation exists, high activities play a vital role in protecting a 

stable state from its catastrophic collapse. Therefore, in addition to the roles previously 

suggested, it is also possible that high activities of enzymes may be necessary for maintaining a 

stable evolution in some regulated enzymatic reactions.  
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Energy conservation and dissipation in biochemical networks are important aspects for 

understanding biological functions [1, 11-15, 26]. In particular, in nonlinear autonomous and 

forced reaction systems, thermodynamic efficiency and dissipation have been systematically 

studied [23-25]. It has been shown that external forcing may have advantages improving 

thermodynamic efficiency in oscillatory reactions[27]. This work shows that , under external 

forcing, if the reaction system dissipates too much energy, the system cannot maintain stable 

states. Subsequently, no biological functions can be implemented. Therefore, reduction of 

dissipation by controlling the values of kinetic parameters such as maximal enzyme activity is 

important for maintaining a biologically functioning state. 

 

Although the rate laws for all reactions follow mass-action kinetics, for an enzymatic reaction the 

concentration of any form of an enzyme cannot arbitrarily change as it is limited by the total 

concentration of the enzyme. Therefore, although the saturation and regulation features of 

enzymatic rate laws cannot be immediately described by mass-action kinetics [28], they are the 

consequences of the mass-action kinetics in which the concentrations of all forms of an enzyme 

are limited. Enzymatic kinetics are usually derived from traditional mass-action kinetics together 

with simplifying assumptions such as the existence of a quasi-steady state [29,30]. At the level of 

enzymatic reactions, the kinetic rate laws exhibit some special features such as saturation and 

regulation [28]. Those features are due predominantly to the catalysing functions of enzymes, and 

they are captured by Michaelis-Menten type kinetics. When a number of enzymatic reactions 

interplay, based on enzymatic kinetics it has been shown that establishment of a stable state 

requires specific constraints on kinetic parameters, particularly maximal reaction activities 

[16,17, 31, 32]. In order to obtain a stable steady state based on the parameters in literature, many 
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of the parameters need to be adjusted [33, 34]. The constraints for formation of stable states in 

many interplaying enzymes are kinetic constraints for a biological network [17]. Based on mass –

action kinetics, this work shows that kinetic constraints in a single enzyme system are the 

constraints for maintaining the catalysing cycle of the enzyme. Therefore, kinetic constraints 

exist at the level of both mass-action and enzymatic kinetics.  
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Figure Captions 

Figure 1.  Effects of equation (12) on the formation of steady states. 0.2=inV . (a): ,0.29max =V  a 

steady state is established. (b): ,90.28max =V  no steady states exist. In (b), the y-axis is in 

logarithmic scale. 

Figure 2. Dependence of dissipation on maximal enzyme activity and input rate at steady states. 

Figures 2a and 2b show that, although collapse of stable states may stem from either the decrease 

of maxV  or increase of inV ,  it always corresponds to a point at which dissipation is the highest.   

Figure 3. Effects of two neighbouring forcing amplitudes on evolution of the reaction system., 

0.1=inV 7.26max =V , 1000=T . (a): 976.0=ε , the system develops to a stable oscillatory state; 

(b): 980.0=ε , the system cannot develop to any stable states. In (b), the y-axis is in logarithmic 

scale. 

Figure 4 . Effects of forcing amplitude and period on the maintenance of stable states. Below 

each curve, the reaction system reaches a stable state. (a): 0.1=inV . (b): 7.26max =V .  

Figure 5. Temporal dependence of dissipation relative to its value at the steady state. 

0.1=inV 7.26max =V , 1000=T . (a): 0.0=ε .  (b): 976.0=ε .  

Figure 6. Dependence of relative dissipation, R , on forcing amplitude, ε , and maximal enzyme 

activity, maxV . 0.10 =V , 1000=T . (a): 89.8max=V , (b): 68.10max =V , (c): 35.13max =V , (d): 

80.17max =V , (e): 7.26max =V . Each curve is calculated as follows. Firstly, dissipation 0D is 

calculated for unforced system (i.e.,  ε =0). Secondly, for a specific ε , time-dependent 

dissipation D is calculated. After the transient period dies out, a periodic oscillation is established 

for D  (figure 5). Thirdly, average dissipation D is calculated over an exact period. Then relative 

dissipation R is calculated using equation 16. 
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