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ABSTRACT
Semi-analytic models are a powerful tool for studying the formation of galaxies. However,
these models inevitably involve a significant number of poorly constrained parameters that
must be adjusted to provide an acceptable match to the observed Universe. In this paper, we set
out to quantify the degree to which observational data sets can constrain the model parameters.
By revealing degeneracies in the parameter space we can hope to better understand the key
physical processes probed by the data. We use novel mathematical techniques to explore the
parameter space of the GALFORM semi-analytic model. We base our investigation on the Bower
et al. version of GALFORM, adopting the same methodology of selecting model parameters based
on an acceptable match to the local bJ and K luminosity functions. Since the GALFORM model
is inherently approximate, we explicitly include a model discrepancy term when deciding if a
match is acceptable or not. The model contains 16 parameters that are poorly constrained by
our prior understanding of the galaxy formation processes and that can plausibly be adjusted
between reasonable limits. We investigate this parameter space using the Model Emulator
technique, constructing a Bayesian approximation to the GALFORM model that can be rapidly
evaluated at any point in parameter space. The emulator returns both an expectation for the
GALFORM model and an uncertainty which allows us to eliminate regions of parameter space
in which it is implausible that a GALFORM run would match the luminosity function data. By
combining successive waves of emulation, we show that only 0.26 per cent of the initial
volume is of interest for further exploration. However, within this region we show that the
Bower et al. model is only one choice from an extended subspace of model parameters that can
provide equally acceptable fits to the luminosity function data. We explore the geometry of
this region and begin to explore the physical connections between parameters that are exposed
by this analysis. We also consider the impact of adding additional observational data to further
constrain the parameter space. We see that the known tensions existing in the Bower et al.
model lead to a further reduction in the successful parameter space.
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1 IN T RO D U C T I O N

Semi-analytic galaxy formation models are a successful tool for
exploring the physical processes responsible for galaxy formation.
In essence this technique aims to understand the formation of galax-
ies by breaking the problem down into a discrete set of (typically
non-linear) differential equations describing each physical process.
For example, the amount of gas able to cool from the halo depends
non-linearly on the halo mass and its gas content. These discrete

�E-mail: r.g.bower@durham.ac.uk

processes are then coupled through a set of interactions. For exam-
ple, the cold gas mass grows as a result of gas accretion and cooling
and decreases as a result of star formation and gas ejection. In sim-
ple cases, the network of equations can be integrated analytically to
make quantitative predictions for the properties of the galaxy pop-
ulation. In more complex cases, the set of equations must be solved
numerically, but the computational task is still minor compared
to integrating fundamental physical laws on a particle-by-particle
(or cell-by-cell) basis, as required by a fully numerical approach
(for a few state-of-the-art examples of the fully numerical approach
see Crain et al. 2009; Gnedin, Tassis & Kravtsov 2009; Schaye
et al. 2010). However, although the description of each individual
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component of the semi-analytic model may appear simple, the com-
plex interplay between the components means that the outcome of
a model is notoriously hard to predict.

Nevertheless, such models have been very successful in defining
our current picture of how galaxies form. Initial models, such as
Lacey & Silk (1991), White & Frenk (1991), Kauffmann, White &
Guiderdoni (1993) and Cole et al. (1994), showed how the forma-
tion of galaxies resulted from a competition between gas cooling
and accretion, and the ejection of gas from galaxies in supernova-
driven winds. This type of feedback explained the observed paucity
of faint galaxies compared to the high abundance of low-mass cold
dark matter (CDM) haloes. By incorporating these effects into a
realistic model for the growth of dark matter haloes and galaxies,
these models were able to make a quantitative connection between
the assumptions about gas cooling, star formation, feedback, merg-
ing and other physical ingredients, and the observed properties of
galaxies. Over the past two decades, the sophistication of these
models has increased, allowing them to make predictions for many
more observational properties such as galaxy sizes, colours, in-
frared luminosities and correlation functions (e.g. Kauffmann et al.
1999; Somerville & Primack 1999; Cole et al. 2000; Granato et al.
2000, 2004; Baugh et al. 2005; Menci et al. 2005, 2006; Catta-
neo et al. 2006; Kang, Jing & Silk 2006; Monaco, Fontanot &
Taffoni 2007). At the same time, the improvement in our knowl-
edge of the cosmological parameters has tied down some of the
major uncertainties in the input physical description (e.g. Dunkley
et al. 2009). As a result, the comparative power of the models has
increased.

A particular issue that has been revealed is the need for additional
physics to match the sharp break at the bright end of the galaxy
luminosity function. A number of additional physical processes
have been proposed (cf. Benson et al. 2003a) but the currently
favoured explanation centres on an additional feedback channel
motivated by observations of the interactions between radio galaxies
and the surrounding IGM in clusters. Although implementations
differ, the aim of this ‘radio-mode’ feedback is to suppress cooling in
the most massive haloes leading to the sharp break in the luminosity
function (Bower et al. 2006, hereafter Bow06; Cattaneo et al. 2006;
Croton et al. 2006; Somerville et al. 2008). An important result
of implementing this type of feedback in the models is that they
then predict that much of the star formation in the largest galaxies
will be completed relatively early in the history of the Universe,
in many cases above redshift 2. This has largely eased the conflict
between observations of a large population of passive galaxies at
high redshift and the tendency for CDM models to form the largest
dark matter structures only recently (Bow06).

Despite these successes, the semi-analytic technique has been
criticized for a perceived lack of predictive power. Each component
of the model must simply encapsulate the physical process that
it describes. However, since the processes are poorly understood,
this almost inevitably involves parametrizing the process in such a
way that our limited knowledge or understanding can be included by
allowing parameters to vary between plausible limits. By comparing
the model to a limited set of observational results, the model can
be calibrated and then, with the values of the parameters fixed, the
model can be tested against additional observational constraints.
While the traditional approach, such as that used in Cole et al.
(2000) or Bow06, is iterate on an initial guess to find a single set
of parameters that adequately match the calibration data, this is
clearly a Bayesian problem in which we should seek to use the
observational data to successively constrain the parameter space of
acceptable models.

In this paper we set out to make a systematic exploration of the
parameter space of the Bow06 version of the GALFORM model. This
contains 16 parameters which can reasonably be adjusted over a
plausible range. We note earlier GALFORM models have considered
an even larger parameter space: for example, the Baugh et al. (2005)
model uses a different parametrization for the disc star formation
time-scale, includes a mode of superwind feedback (e.g. Benson
et al. 2003a), allows for a different initial mass function (IMF)
in starbursts from that in disc star formation and uses different
descriptions of gas cooling and gas reheating (cf. Bow06). These
differences are not considered here – our purpose is to compare the
parameter set identified by Bow06 with the full parameter space
available in that model. We explore the effect of introducing addi-
tional physical processes in Benson & Bower (2010).

A variety of strategies for calibrating the model parameters have
been adopted in published semi-analytical models. The majority
of models have used observational data on selected galaxy proper-
ties at z = 0 to choose a ‘best-fitting’ set of parameters, and have
then made predictions for higher redshifts, but some models have
also supplemented the z = 0 constraints with observational data
on high-redshift galaxies when choosing the ‘best-fitting’ model
parameters. Different authors have made different choices as to
what is the best set of z = 0 properties to use in setting the
model parameters. For example, Kauffmann et al. (1993, 1999),
Somerville & Primack (1999) and De Lucia, Kauffmann & White
(2004) used the normalization of the Tully–Fisher (TF) relation
and the gas masses of Milky Way like galaxies as their primary
observational constraints. On the other hand, Cole et al. (1994,
2000), Nagashima et al. (2001), Kang et al. (2006), Baugh et al.
(2005) and Bow06 all used the galaxy optical and near-IR luminos-
ity functions as their primary constraints. In addition, most models
have used additional z = 0 properties beyond their ‘primary’ con-
straint in choosing best-fitting parameters. For example, Cole et al.
(2000) used the gas fractions and sizes of galaxy discs, together
with the ratio of early to late morphological types and the stellar
metallicities of elliptical galaxies, in addition to the B- and K-band
luminosity functions. In contrast to this, Benson et al. (2003a) and
Bow06 chose to focus on obtaining a good match to the z = 0
B- and K-band luminosity functions [but it is important to note that
the starting point for iteration was taken from the Cole et al. (2000)
model]. Several subsequent papers have explored the performance
of the Bow06 model with respect to additional data sets (e.g. Bower,
McCarthy & Benson 2008; Font et al. 2008; González et al. 2009;
Gonzalez-Perez et al. 2009; Kim et al. 2009).

These different strategies for calibrating the model parameters
have different advantages and drawbacks. The Bow06 approach has
the advantage of simplicity, and that the z = 0 luminosity func-
tions are measured accurately and (largely) free from observational
selection effects. Furthermore, the model outputs do not require a
highly complex layer of additional processing to cast them into the
observed quantities (of course population synthesis models are still
required). A disadvantage is that the present-day optical and near-
IR luminosity functions are relatively insensitive to some model
parameters, such as those controlling the star formation time-scale
(e.g. Cole et al. 2000). For this reason, it is helpful to introduce addi-
tional observational constraints to which these other model param-
eters are more sensitive. For example, Cole et al. (2000) found that
the gas mass versus luminosity relation for disc galaxies provides
very good constraints on the model parameters for star formation.
Potential drawbacks of introducing extra observational constraints
beyond the z = 0 luminosity functions are that they may be less ac-
curately determined observationally, and that a subjective decision
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is required to assign relative weights to the different observational
constraints. In addition, if all the available data sets are used to
constrain the model, no observations will be immediately available
to independently test its validity. This is a deep philosophical issue
that we will not tackle here, but clearly we should seek a strategy
in which the physical role of each constraint is clear.

Thus, given the wide variety of observational data that could
be used to constrain semi-analytical models, each with their own
random and systematic errors, what is needed is some more ob-
jective procedures for evaluating what is the range of model pa-
rameters consistent with a particular combination of observational
constraints, and what is the effect on this range of adding or remov-
ing a particular observational constraint. In this way, we hope to end
up with an objective measure of how robust different predictions
from the model are, including how sensitive they are to including
different model ingredients and different observational constraints.

This paper is a first step in this program. We introduce a new
method of exploring the model parameter space to identify those
regions that produce acceptable matches to the observational data.
For simplicity, in this paper we follow the approach of Bow06 and
use only the bJ and K-band z = 0 luminosity functions to directly
constrain the acceptable regions of parameter space. Once we have
identified these regions, we briefly examine the performance of the
model with respect to additional z = 0 data sets, but these are not
used to define the initial search criterion. Furthermore, we use the
same version of GALFORM as in Bow06, making it simple to compare
the unique parameter set presented in Bow06 with the full parameter
space that we identify in our search here. Since the Bow06 model
is implemented on the Millennium N-body simulation (Springel
et al. 2005), we adopt the same fixed cosmological parameter set. In
principle, the methods we present here could be extended to allow
the cosmological background model to vary.

Our investigation aims to address some key questions: how large
is the range of parameter space that produces acceptable fits? Is the
parameter set selected in Bow06 in some sense typical or optimal?
It is unlikely that there is a single ‘best value’. Given the relatively
large number of model parameters, there will be a range of parameter
values giving acceptable fits. Moreover, we should be careful to
define what we mean by an ‘acceptable’ fit. Since the GALFORM model
is only an approximation to reality, we would not expect the model
to exactly reproduce all the observational data, even if the model’s
parameters were set to their ‘best’ values. The Bayesian approach
we adopt requires us to formalize this uncertainty by introducing
a ‘model discrepancy’ term (εmd) into our comparison with the
data. This has the effect of ensuring that we do not reject a region
of parameter space if the comparison with the data is sufficiently
good that future improvements in the model (which reduce the
degree of approximation) may result in improved agreement with
the data (in that region). This approach is fundamentally different
from simply requiring that we find the region of agreement within
the observational uncertainties – it recognizes that the model is itself
approximate. Ignoring εmd will lead us to focus on an unjustifiably
narrow region of parameter space. In this case, reducing the level of
approximation in the model would cause new regions of acceptable
parameter space to appear in areas that were previously deemed
implausible.

Of course, estimation of εmd is uncertain. In principle, one could
hope to arrive at a value by tracking changes to the model as the
level of approximation is reduced. This approach is an active subject
in the statistical literature (e.g. Goldstein & Rougier 2009), but the
methods are not yet suitable for application to GALFORM. Instead, we
addressed the model discrepancy term by constructing a series of

test luminosity functions and asking ourselves whether we would
comfortably reject the corresponding region of parameter space
on the basis of the comparison and our previous experience of
improvements to the GALFORM code. Reassuringly, our estimate of
εmd results in the Bow06 being marginally acceptable. Thus the
model discrepancy is consistent with our aim of searching parameter
space for parameter sets that perform comparably to (or better than)
Bow06.

Our task is therefore to evaluate the GALFORM model over the input
parameter space, identifying the portion of this space for which fits
to the local luminosity functions are acceptable. Unfortunately, the
16-dimensional (16D) parameter space (that is introduced below)
is extremely large. Dividing each axis into (just) five values and
exploring all possible parameter combinations would require 1011

evaluations of the model (and hence require computing time in ex-
cess of 108 CPU years). Even if this were possible, the resulting
grid would be of such low resolution that it would give little indica-
tion of the GALFORM parameter space. Clearly a much better targeted
strategy can be devised.

In this paper, we use the ‘model emulator’ technique (e.g. Craig
et al. 1997; Kennedy & O’Hagan 2001; Vernon, Goldstein & Bower
2010) to explore the parameter space. This technique has been
specifically developed within the statistics community in order to
analyse models that possess high-dimensional parameter spaces. It
involves constructing a stochastic model that emulates the output of
the GALFORM model. The emulator is constructed so as to reproduce
the results of known runs and statistically interpolate between them
taking into account the appropriate correlation length of the model.
At each new point, the model provides an expectation value for the
outcome of a GALFORM evaluation and a variance reflecting the degree
of uncertainty in the emulator output. An evaluation of the emulator
is of the order of 107 times faster than an evaluation of the full
model, and the emulator can therefore be used to eliminate regions
of parameter space for which it is implausible that an evaluation of
GALFORM will result in an acceptable match to the observational data.
By proceeding in waves of emulation, we successively reduce the
volume that must be investigated at each level until the volume that
must be directly evaluated is a tiny fraction (less than 0.3 per cent)
of the original parameter space. The primary advantage of the em-
ulator is its speed, which allows us to investigate the full parameter
space efficiently and restricts time-consuming evaluations of the
GALFORM model to regions of parameter space where the outcome
cannot be predicted with sufficient accuracy by the emulator. Com-
bining the emulator method with an efficient strategy for sparsely
sampling the parameter space, we can explore the parameter space
of galaxy formation with around a month of CPU time. These
techniques are gaining widespread acceptance in the climate re-
search community where full evaluations of the computer model
are prohibitively expensive. The parallel with the galaxy formation
problem is powerful and illustrative (Vernon et al. 2010). Our work
is also closely related to studies of the galaxy formation parame-
ter space that are based on exploration with Monte Carlo Markov
chain (MCMC) techniques (Kampakoglou, Trotta & Silk 2008;
Henriques et al. 2009). These methods currently consider lower
dimensionality than we address here, and it should be noted that,
in general, MCMC techniques may face problems when dealing
with high-dimensional input spaces. We should also stress that the
dimensionality of the problem that we consider here is likely to
greatly increase as additional physical processes are included in the
model. Indeed, this has been one of the major motivations for the
development of the emulation techniques presented here (Oakley &
O’Hagan 2004). For a summary of state-of-the-art emulation
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techniques see the Managing Uncertainty for Complex Models web
site http://mucm.group.shef.ac.uk/index.html.

The emulator process identifies a small fraction of the total input
space as generating acceptable luminosity functions. The geometry
and extent of the region is, however, hard to comprehend. As we will
see, some parameters (or parameter combinations) are poorly con-
strained: this can be viewed as telling us that these have little role in
determining certain observable properties of galaxies. Conversely,
some parameter combinations are tightly constrained: these play a
critical role, and we can hope to use this to understand more about
the interplay of the components in the GALFORM model, and thus
to better understand the physics underlying the galaxy formation
process.

As we have already stressed, this paper concentrates on the
Bow06 version of the GALFORM code. Future papers will explore
the much larger parameter space created by recent updates to the
code, introducing new physical processes to the problem, such as
better treatment of angular momentum, a physical description of
ram-pressure stripping (cf. Font et al. 2008), AGN heating of halo
gas (Bower et al. 2008) and a variable stellar IMF (Baugh et al.
2005). We also extend our new parameter search technique to use
a wider range of calibration data from the outset (cf. Benson &
Bower, 2010).

The paper is laid out as follows. In Section 2, we provide a brief
overview of the GALFORM code, and outline the physical meaning of
the parameters that we vary in this project. In Section 3, we describe
the model emulator technique on which our parameter exploration is
based. Section 4 presents the main results, Section 4.1 focussing on
our success in emulating the luminosity function and its dependence
on the model’s parameters. Although it is not the primary focus of
the paper, it is obviously of interest to see whether additional data
sets break the degeneracies evident in the luminosity function com-
parison. In Section 4.2, we briefly investigate the role of additional
data sets. In Section 5, we examine the physical implications of
these results using a principal component analysis (PCA) to iden-
tify important combinations of the input parameters. Finally, we
present a discussion of our work in Section 6 and briefly summarize
our main conclusions in Section 7. Throughout, we adopt a cosmol-
ogy in which �b = 0.045, �M = 0.25, � = 0.75 and σ8 = 0.9
at the present day. The model assumes H0 = 73 km s−1 Mpc−1, al-
though we quote luminosities and space densities in term of h =
H0/100 km s−1 Mpc−1.

2 PA R A M E T E R S O F TH E G A L F O R M C O D E

The GALFORM code contains many parameters. In Table 1, we list
the parameters used in the Bow06 version of the code, together
with the range of plausible values considered in our analysis. We
have grouped the parameters by the physical processes that they are
associated with. Below, we briefly describe the parameters. For a
full description, we refer the reader to Cole et al. (2000), Baugh
et al. (2005) and Bow06.

The first set of parameters is associated with star formation: ε�

determines the normalization of the star formation efficiency, while
α� determines its dependence on the disc circular speed:

SFR = ε�

(
Vc,disc/200 km s−1

)−α�
(
Mcold/τdyn,disc

)
, (1)

where SFR is the star formation rate, Mcold the mass of cold gas
in the galaxy, Vc,disc is the circular velocity of the disc and τdyn,disc

its dynamical time. We calculate chemical enrichment using the
instantaneous recycling approximation, so the rate of ejection of

Table 1. The parameters allowed to vary in our parameter space exploration.
The first column provides an indication of the physical process associated
with the parameter. The second column gives the parameter name; Column 3
gives the value of the parameter used in Bow06; and Columns 4 and 5 give
the range of the parameter explored in this paper. Active variables in the
model emulator (those that are important in capturing the behaviour of
the z = 0 luminosity function output of the model; see Section 3.5.2) are
indicated in Column 6.

Process Parameter Bow06 min max Active?
modelled name

Star formation ε−1
� 350 10 1000 A
α� −1.5 −3.2 −0.3 A

pyield 0.02 0.02 0.05 A
SNe feedback Vhot,disc 485 100 550 A

Vhot,burst 485 100 550 A
αhot 3.2 2.0 3.7 A

αreheat 0.92 0.2 1.2 A
AGN feedback αcool 0.58 0.2 1.2 A

εEdd 0.04 0.004 0.05
Galaxy mergers f df 1.5 0.8 2.7 A

f ellip 0.3 0.1 0.35
f burst 0.1 0.01 0.15
Fbh 0.005 0.001 0.01

Disc stability f stab 0.8 0.65 0.95 A
Reionization vcut 50 20 50

zcut 6 6 9

newly synthesized metals into the ISM is given by

ṀZ,ej = pyieldSFR (2)

where pyield is the yield of metals, which depends on the IMF. For
consistency with Bow06, we use a Kennicutt (1983) IMF through-
out, but treat pyield as an adjustable parameter. In Font et al. (2008)
and Bower et al. (2008), we showed that the match to the observed
colours of galaxies was improved by adopting a higher yield (0.04)
than the standard value (0.02).

The second group of parameters is associated with the supernova-
driven feedback: Vhot,disc and Vhot,burst control the normalization of
feedback in quiescent star formation and bursts, respectively; αhot

controls the dependence of the feedback on the circular velocity.
For example, the rate at which mass is returned from the cold phase
to the halo during quiescent star formation is given by

Ṁoutflow = SFR

(
Vc,disc

Vhot,disc

)−αhot

. (3)

Cold gas that is ejected from the disc becomes available to cool and
form further stars after a factor αreheat

−1 times the halo dynamical
time. In low-mass haloes cooling is very rapid, and this parameter
plays a key role in setting the disc fuelling rate.

AGN feedback is controlled by the parameters αcool, which ef-
fectively determines the halo mass at which this form of feedback
becomes effective, and εEdd,1 which controls the maximum energy
output possible for a central supermassive black hole of given Ed-
dington luminosity LEdd. Specifically, we only allow the AGN to
regulate cooling if

tcool(rcool) > αcool
−1 tff (rcool) (4)

1 Note that due to an error in Bow06, cooling luminosities were overesti-
mated by a factor 4π . Thus, while the paper quotes the efficiency parameter
εSMBH as 0.5, this should have been 0.5/4π = 0.04. With this correction
the results of Bow06 are unchanged.
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and

Lcool < εEddLEdd, (5)

where Lcool is the radiative cooling luminosity of the halo gas. Note
that larger values of αcool result in AGN feedback being effective in
lower mass haloes.

Galaxy mergers are dependent on the rate of decay of satellite
orbits due to dynamical friction and on the mass ratio of the merging
objects. The normalization of the orbital decay rate is set by f df (see
Cole et al. 2000), while f ellip and f burst are, respectively, the mass
ratios needed to transform the morphology of the main galaxy and
to cause a burst of star formation (see Baugh et al. 2005; Malbon
et al. 2007).2 The disc stability parameter, f stab, sets the self-gravity
threshold at which galaxy discs become unstable to bar modes (see
Bow06). This instability causes the cold disc gas to be consumed
in a burst of star formation. Smaller values of this parameter make
discs more prone to bar instabilities.

Finally, the parameters vcut and zcut encapsulate the effect of
reionization on cooling in small haloes. For further discussion of
this approximation, see Benson et al. (2003b). We will show that
these parameters have little impact on the galaxy properties we
consider here.

We list in Table 1 the GALFORM parameters which we allow to vary
in our parameter space exploration, together with their values in the
Bow06 model and the ranges over which we allow them to vary.
Ideally, we would know in advance what range for each parameter
is physically meaningful or interesting, but this is only possible for
a subset of the parameters. For example, the parameters f ellip and
f burst are constrained to lie in the range [0,1] by the way they are
defined, and numerical simulations of merging galaxies constrain
their values to an even narrower range. Similar arguments can be
applied to restrict the range of pyield, εEdd, fdf, fstab, vcut and zcut.
On the other hand, theory does not currently provide any useful
guide as to the value of ε�, so the value of this parameter is set
purely by comparison with observations and previous experience
with GALFORM. In these cases, we selected the range by posing the
question ‘if an acceptable model was found outside this range,
would it be interesting?’ We answered no if the parameter value
seemed inconsistent with the physical model that component of
the code was intended to describe. The range selected is intended
to be conservatively large, but is inevitably subjective. In some
cases the parameter value adopted in Bow06 is uncomfortably high
(e.g. the Vhot,burst and αhot parameters are in principle constrained by
the amount of energy available from supernova explosions) and we
deliberately extended the search range in order to bracket the value
from Bow06.

In the following analysis, it is often helpful to use scaled variables
so that each parameter covers the range ±1. We denote scaled
variables by α̃ (etc.) where

α̃ = α − 1
2 (αmax + αmin)

1
2 (αmax − αmin)

. (6)

The end result is that the model spans a 16D parameter space.
However, it is extremely important to stress that several of these
parameters have little impact on the GALFORM output for the selected
observables, and thus that it is initially possible for the emulator to
capture the behaviour of the model using many fewer parameters.

2 We note, however, that the parameter f gas,burst is set to 0.1 in this study,
and in Bow06, so that almost all sufficiently high mass ratio mergers result
in a burst of star formation. In Malbon et al. this parameter was set to 0.75.

Our first step was to identify the most important parameters whose
values were key to matching the selected galaxy properties. In terms
of the match to the bJ and K luminosity functions, there are 10 active
parameters (at Wave 4, see Section 3.5.2) that drive the majority of
the variation in model outputs. These are indicated by an A in
Column 4 of Table 1. As we will show, the parameter space of
acceptable models is limited to a very small fraction of this volume.
Even though adequate fits can be obtained for a wide range of
parameter values, variations in parameters must be carefully traded
off to keep the input parameter set on a narrow hypersurface.

Note, however, that a parameter that is inactive when the model is
constrained using the luminosity function data may play an impor-
tant role in fitting other data sets. For example, while the reionization
parameters vcut and zcut have little effect on the global luminosity
function (within the limits considered), these parameters play a key
role in determining the satellite galaxy population of the Milky Way
(Benson et al. 2003b).

3 TH E M O D E L EM U L ATO R TE C H N I QU E

3.1 Bayesian analysis of computer models

There has been much interest in the statistics community in de-
veloping techniques to help understand and analyse complex com-
puter simulations of real world processes, referred to generically as
Computer Models (Currin et al. 1991; Craig et al. 1997; Santner,
Williams & Notz 2003; O’Hagan 2006). Such models, of which
GALFORM is an example, generally take a significant time to run and
require the specification of a large number of input parameters. They
involve several distinct sources of uncertainty, all of which need to
be assessed and combined in a unified analysis. These fall into five
basic types.

(1) Parameter uncertainty: we do not know the appropriate val-
ues of the inputs to the simulator, and want to identify the class of
inputs that give acceptable matches to the observed data.

(2) Simulator uncertainty: due to the significant run time we
cannot hope to cover the input space with a suitably large number of
model evaluations. Therefore, we will be uncertain as to the output
of the model for regions of the input space where no evaluations
have been performed. This uncertainty is handled through the use
of an emulator as described in Section 3.2.

(3) Structural uncertainty: this aspect, which is less familiar to
the astronomical community, refers to the fundamental problem
that, however carefully the model has been constructed, there will
always be a difference between the system (in this case the Uni-
verse) and the simulator. Simplifications in the physics, based on
features that are too complicated for us to include, and simplifi-
cations and approximations in solving the equations determining
the system, lead to a discrepancy between the model and the sys-
tem. We represent this through use of the ‘model discrepancy’ term
described in Section 3.6.

(4) Observational error: we do not know the properties of the
real Universe exactly, but instead have observational measurements
with corresponding errors.

(5) Initial condition and forcing function uncertainty: most Com-
puter Models require the specification of initial conditions and/or
forcing functions, the form of which is most likely uncertain.

In order to analyse the input space of the GALFORM model, and to
determine which inputs are of interest, we need to address all of the
above five sources of uncertainty in a unified manner. A Bayesian
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approach provides a natural framework for such an analysis.
Powerful Bayesian techniques, centred around the idea of emu-
lation, have been developed in the Statistics community for such
problems, and have been successfully applied to models in sev-
eral scientific disciplines (e.g. Kennedy & O’Hagan 2001; Oakley
& O’Hagan 2002; Higdon et al. 2004; O’Hagan 2006; Schneider
et al. 2008; Heitmann et al. 2009). However, employing a fully
probabilistic Bayesian analysis (where every uncertain quantity is
assigned a probability distribution) is often unnecessarily challeng-
ing and involves specifying prior distributions that are in some cases
difficult to justify. Instead we employ the Bayes Linear approach
(Goldstein & Wooff 2007) which is a more tractable version of
Bayesian analysis that requires fewer assumptions, and that deals
with only expectations and variances of all uncertain quantities (see
Section 3.5.4). The Bayes Linear methods presented here have been
successfully applied to several complex models including Oil Reser-
voir Models and Climate Models (Craig et al. 1997, Goldstein &
Rougier 2009), and are well suited to the case of high-dimensional
models.

3.2 General emulation strategy

An emulator is a stochastic function that represents our beliefs
about the behaviour of a deterministic function at input settings that
are yet to be evaluated. Representing a model such as GALFORM as
a function that maps a vector of inputs x to a vector of outputs
f (x), an emulator would give, for each input parameter setting
x, quantities such as an expectation and variance of the function:
E ( f (x)) and Var( f (x)). In this way it represents the expected value
of the function at x but also gives a measure of our uncertainty at this
point through Var( f (x)). This uncertainty would be small at points
close to known model runs, and large at points far from known runs.
The expectation of the emulator will (in most cases, but not always)
interpolate the outputs of evaluated runs.

Emulators have many advantages, the most important being their
speed: in many cases an emulator will be many orders of magnitude
faster than the model it represents. Also, emulators are designed
to cope with high numbers of input dimensions, far more than
can be handled by more traditional methods such as MCMCs (e.g.
Heitmann et al. 2009).

Here, we use emulation techniques to identify the set of all in-
puts x that will give rise to an acceptable match (with respect to

all relevant uncertainties) between the bJ and K luminosity func-
tion outputs of GALFORM and the corresponding observational data
[Norberg et al. (2002) for the bJ luminosity function and Cole et al.
(2001) for the K band].

The general strategy is as follows. Initially, we design a suitable
set of 1000 runs of the GALFORM model chosen to be at parameter
locations that will cover the input space efficiently, and help the
construction of an acceptable emulator. Then, we identify a subset
of 11 outputs (i.e. the predicted values of the luminosity function
at selected magnitudes) which are representative of the bJ and K
luminosity functions, informative (about which regions of the input
space are unacceptable) and that are also straightforward to emulate.
We emulate each output by fitting a third-order polynomial (defined
over the input space) to each of the 11 outputs, and then modelling
the residuals of this fit as a Gaussian process. Using the emulators
and assessments of all other relevant uncertainties (as described in
Section 3.1) we then construct an Implausibility Measure defined
over the input space (see Section 3.7). Regions of the input space
that have a high Implausibility Measure are deemed highly unlikely
to give an acceptable match between the luminosity function output
of GALFORM and the observed data and are hence discarded from
further analysis. This defines a reduced region of input space that
we can explore further. We employ an iterative approach, and have
reduced the input space in four stages as is described below.

3.3 Designing the first set of runs

Determining a highly informative collection of points in input space
to perform evaluations of a Computer Model such as GALFORM is
an important task. The points must be space filling in addition to
avoiding repeated runs at similar values of one or more of the
inputs (as occurs regularly in a standard grid design). Maximin
Latin Hypercube (Stein 1987) designs fulfil both these properties
and were used to generate the initial set of runs. These designs are
also approximately orthogonal: a desirable property when trying
to fit polynomials to a function, as is the case when building an
emulator. To construct a Latin Hypercube of n points, the range of
each of the inputs must be divided into n equal intervals; the points
are then chosen randomly so that no two points occupy the same
interval for any of the inputs. Examples of two-dimensional (2D)
eight- and 20-point Latin Hypercube designs are shown in Fig. 1. A

Figure 1. Two examples of Latin Hypercube designs for a 2D parameter space. The range of each input is divided into n intervals where n is the number
of points. Note that only one point is placed in each of the n intervals over Input 1 and Input 2, and that these points have been placed at random within
each interval. The two panels show samplings with eight and 20 points. The Maximin strategy adopted in this paper ensures that the points are evenly spread
throughout the region that we wish to sample.
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Maximin Latin Hypercube is constructed by creating a large number
of Latin Hypercube designs, and then choosing the one that has the
largest minimum distance between any pair of points within that
design. For each design, we generated 2000 hypercubes and then
selected the best one using the maximin criterion. 1000 such runs
of the GALFORM model were performed based on such a Maximin
Latin Hypercube design, and these runs form the basis of Wave 1
of our analysis.

3.4 Choosing outputs

Once the 1000 runs were completed, 11 outputs (i.e. the values of
the luminosity function at selected magnitude points) were chosen
for emulation: six from the bJ luminosity and five from the K lu-
minosity functions. These are shown as the vertical black dashed
lines in Fig. 2, along with the full outputs from the 1000 runs and
the observed data (the error bars contain all relevant uncertainties
as discussed below). These particular 11 magnitude outputs were
chosen as they represented the form of the luminosity functions
well (and hence can be used to reconstruct the luminosity function),
were easy to emulate and, most importantly, were also sensitive
to changes in the input parameters implying that they are very in-
formative with regard to the input space. This last point implies

Figure 2. The bJ and K luminosity functions from the first 1000 runs
of the model (Wave 1) compared to observational data. The data, from
Norberg et al. (2002) and Cole et al. (2001), respectively, are shown as
black points with 2σ error bars which include all observational and model
discrepancy uncertainties as described in Section 3.6. Parameter values were
chosen using a Maximin Latin Hypercube design spanning the eight most
important parameters (see Table 2). The vertical dashed black lines show the
11 outputs chosen for emulation. These provide a good characterization of
the luminosity function. Note that below bJ = 16, some luminosity function
calculations are affected by numerical resolution. The colouring of lines
indicates the quality of the match to the observed data, with blue colours
indicating IM < 16.

that we can reliably cut out regions of the input space using only
these 11 outputs, and without being forced into emulating the lumi-
nosity function in every luminosity bin. The analysis of the initial
runs showed that adding additional outputs did not significantly im-
prove the characterization of the luminosity function, but did risk
weighting Implausibility Measures too much towards the faint-end
performance of a model. We also note that we did not attempt to
emulate the luminosity function for bJ < 16 mag or K< 20 mag be-
cause the limited resolution of the Millennium simulation becomes
important for some parameter values in this region.

3.5 Constructing the emulator

3.5.1 A simple example

Before we describe the construction of the emulator for the GALFORM

model, it is useful to briefly outline how the method might be applied
to a simple one-dimensional (1D) problem.

The first step is to construct an emulator of the simple 1D function
shown in Fig. 3. Imagine that the function, f (x), is a one parameter
model for some measurable quantity. In the left-hand panels, the
function (which is in fact a simple sine wave) has been evaluated
at n = 6 input points denoted as xi. We use the function output at
these points, ki = f (xi), to construct an emulator based on a random
Gaussian process, u(x), that is we say

f (x) = u(x) (7)

where we assume the prior expectation and variance of the process
u(x) to be E (u(x)) = 0 and Var(u(x)) = σ 2, and that the prior co-
variance structure is defined to be of Gaussian form with correlation
length θ :

c(x, x ′) = Cov(u(x)u(x ′)) = σ 2 exp(−(x − x ′)2/θ 2). (8)

We can now update the emulator u(x) using the knowledge of the
six evaluations of f (x). The updated emulator at a new point x ′ now
has expectation and variance given by

E[u(x ′)] = t(x ′)T A−1k (9)

Var[u(x ′)] = σ 2 − t(x ′)T A−1 t(x ′) (10)

where k = (f (x1), f (x2), . . . , f (xn))T (the vector of known function
values), t(x ′) = (c(x ′, x1), c(x ′, x2), ..., c(x ′, xn))T (the column vec-
tor of covariances between the new and known points) and A is an
n×n matrix with elements Aij = c(xi, xj) (the matrix of covariances
between known points; e.g. Williams 2002). In a fully probabilistic
analysis, equations (9) and (10) would be derived from condition-
ing a Gaussian Process on the six known evaluations, and would
give the mean and variance of the corresponding Normal distribu-
tion of u(x ′) at the input point x ′. However, here we use a Bayes
Linear analysis where equations (9) and (10) are derived directly
from the Bayes Linear update (described in Section 3.5.4 and given
by equations 15 and 17), and are considered as primitive quantities
which are used directly to assess whether parts of the input space
are acceptable.

The random process u(x ′) quantifies the uncertainty in this fit:
close to points at which the function has been evaluated the uncer-
tainty is small, while between points it is larger. Making a suitable
choice for σ and θ is problem specific. In this example, we set σ to
be 0.3 and chose θ to be 1/5 of the range of the input variable x.

Now we suppose that we have some measurement for the quantity
being modelled. This is shown by the horizontal black lines (thin
lines indicating the measurement uncertainty) in the figure. Using
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Figure 3. An example of the emulation of a 1D function (a sine wave). The top-left panel shows the emulator f (x) = u(x) after six evaluations of the function:
the blue line is the E (f (x)), the two red lines define a credible interval of E(f (x)) ± 2

√
Var(f (x)) and the black dots are the six model outputs. Observational

data z is represented as the middle black line, with 2σ errors given by the top and bottom black line. The bottom-left panel shows the implausibility function I(x)
in black, with the cut-off of three in green. Inputs along the x-axis are deemed implausible if I(x) > 3. The top right and bottom right panels show the situation
after three more runs have been performed in the non-implausible region. We re-emulate, and now, as the emulator is far more accurate, the implausibility
naturally gives the two regions of the x-axis where the function matches the observed data (approximately around x = 33 and x = 43).

our emulator, we now try to identify the parameter values at which
an evaluation of the model might be compatible with measured
data. While our emulator cannot guarantee that an evaluation will
successfully match the data, it identifies the regions at which a match
is implausible. This is quantified through the use of an implausibility
function, I(x), which is discussed in more detail in Section 3.7. In
this simple example I(x) is defined as

I 2(x) = |E(f (x)) − z|2/(Var(f (x)) + Var(εobs)), (11)

where z = −0.8 is the observation (the middle horizontal black
line), Var(εobs) is the variance of the observational errors which in
this case were taken to be 0.032, and E(f (x)) and Var(f (x)) are given
by equations (9), (10) and (7).

The value of I(x) is shown in the lower left-hand panel of Fig. 3:
where I(x) is large we reject the parameter values from further in-
vestigation. However, where I(x) is below our cut-off value (in this
case 3), we perform a small number of additional evaluations of f .
We then re-emulate using these additional evaluations, and this is
shown in the right-hand panels. Now the uncertainty in the critical
region is much reduced and the only ‘non-implausible’ regions are
closely centred on the regions where f truly matches the measure-
ment. This iterative approach is known as ‘history matching’ and
is explained in more detail below, but it can be see that the tech-
nique allows us to focus our evaluations of f on the regions where
additional knowledge is critical.

Obviously, this 1D example is highly simplified, and an emulator
is not required to solve this problem. In our GALFORM application we
are aiming to search a much higher dimensional parameter space and
the ability to quantify our knowledge of the model is critical. Further,
evaluation of the emulator is almost 107 times faster than running
an individual model, and thus this technique can be combined with

the Latin Hypercube scheme to explore a seemingly vast parameter
space. Note that for the simple example we have used an emulator
consisting of purely a Gaussian Process, given by equation (7).
When we come to emulate the GALFORM model we will use a more
advanced emulator that contains polynomial regression terms, a
Gaussian Process to model the residuals of the regression and a
white noise term to model ineffective variables. In the sections
below, we describe the construction of the GALFORM emulator in
more detail.

3.5.2 The GALFORM emulator

Here, we describe the construction of the emulators for each of the
11 outputs identified in Section 3.3. It must be stressed that although
we provide some detail, the construction of the emulators and the
subsequent analysis involve an extensive collection of statistical
techniques, and we cannot hope to give a comprehensive treatment
here. A much more extensive description is given in Vernon et al.
(2010). For examples of such techniques used in other applications
see Craig et al. (1996) and Goldstein & Rougier (2009).

We view the GALFORM model as a function that maps the 16 inputs
in Table 1 to the 11 identified outputs, and denote it by f (x) where f
is an 11 component vector of outputs and x a 16 component vector
of inputs with x = (x1, x2, x3, ...) = (Vhot,disc, αreheat, αcool, . . .).
(Note that we use the scaled variables directly, without taking logs
even when the variables cover a large range.) Great simplifications
can be made in the construction of emulators through the use of
active variables. Often, a subset of the inputs has strong effects on
the outputs that are to be emulated and we call these the Active
Variables (see Table 1). We define xA to be a vector composed of
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active variables only and model their effects on f (x) in detail (Craig
1996). The remaining inputs (the inactive variables) have only minor
effects on the outputs so are treated as contributing a noise process
to the emulator. The form of the emulator for component i of f (x)
would then be

fi(x) =
∑

j

βij gij (xA) + ui(xA) + wi(x). (12)

Here the gij(xA) are known functions chosen to be first-, second-
or third-order polynomial terms in the active variables [for exam-
ple, for output i = 1 we might have terms of the form g1j(xA) =
x1x2

2, x3
3 or x1x2x3, with different terms corresponding to different

values of j]; the βij are coefficients of the polynomial which will
be fitted using regression methods. ui(xA) is a Gaussian Process3

which also depends only on the active variables. The effects of the
inactive parameters are described by the wi(x) term, referred to
as a nugget, which is modelled as a random white noise process.
The regression term

∑
j βij gij (xA) on the right-hand side of equa-

tion (12) is included to capture the global behaviour of the GALFORM

function. The Gaussian process u(xA) represents localized devia-
tions from this global behaviour, and a simple specification is to
suppose, for each x, that ui(x) has zero mean, constant variance and
Cov(ui(x)ui(x ′)) which is a function of ‖x − x ′‖, here chosen to
be of Gaussian form (see equation 8). As we perform evaluations
of the model, the expectation and variance of fi(x) at a given point
is then updated using the Bayes Linear analysis as described in
Section 3.5.4.

The above describes the general structure for all the emulators
used in this analysis. As we perform the reduction of input space
iteratively, and at each iteration (or ‘wave’) we re-emulate changing
the specific form for the emulators (see the section on History
Matching below; Section 3.8). At each wave the number of active
variables increases as the emulator becomes more accurate, and the
random processes ui(xA) and wi(x) become less significant.

3.5.3 The Wave 1 emulator

Here we outline the construction of the Wave 1 emulators (full
details, and extensive discussion, are given in Vernon et al. 2010).
First, eight of the 16 inputs were chosen as candidate active variables
due to their clear effect on the luminosity output in a set of initial
test runs. In choosing the active variables, the aim is to explain
a large amount of the variance of fi(x) using as few variables as
possible. Initially, we ran GALFORM varying the primary parameters
and holding the others fixed at their central values. The effect of
the fixed variables is accounted for through a contribution to the
model discrepancy term (see Section 3.6). (Note that in Wave 4,
as the region of parameter space becomes more restricted, we will
allow the full set of parameters to vary.) For each of the 11 outputs,
the set of eight parameters was initially reduced by backwards
stepwise elimination, starting with a model containing the eight
linear terms in x. Then, individual inputs were discarded in turn
based upon the significance of their main (i.e. linear) effect. Before
an input would be discarded, a full third-order polynomial was
fitted to see the extent of variance explained with the current set of
active variables. It was found that five active variables could explain
satisfactory amounts of the variance of fi(x) for each output i, based
on the adjusted R2 of the polynomial fits (R2 is the Coefficient of

3 Technically, we should refer to ui(xA) as a weakly stationary random pro-
cess in the Bayes Linear context, as we are making no assertions regarding
the behaviour of higher order moments of ui(xA).

Table 2. The eight candidate active variables for Wave 1 bJ luminosity
function output (see Fig. 2), with the final five active variables for each
bJ output marked by an x. The adjusted R2 value gives a measure of how
effective the third-order polynomial is in capturing the global behaviour of
the particular bJ luminosity GALFORM output. Note the low adjusted R2 of
outputs 3 and 4: these were not used in the first wave analysis, but did feature
in later waves.

Output b1
J b2

J b3
J b4

J b5
J b6

J

Vhot,disc x x x x x x
αreheat x x x x x x
αcool x x x x
Vhot,burst x x x x x
ε� x x x x
f stab x x
αhot x x
pyield x

Adj. R2 0.92 0.71 0.55 0.59 0.71 0.70

Table 3. The eight candidate active variables for the Wave 1 K-band lumi-
nosity function output (see Fig. 2), with the final five active variables for
each K-band output marked by an x. Note the low adjusted R2 of output 3:
this was not used in the first wave analysis, but did feature in later waves.

Output K1 K2 K3 K4 K5

Vhot,disc x x x x x
αreheat x x x x x
αcool x x
Vhot,burst x x x x x
ε� x
f stab x x x x
αhot x x x
pyield

Adj. R2 0.87 0.75 0.61 0.72 0.80

Determination of the fit and takes values between 0 and 1, with
higher values implying that the fit explains more of the model
output’s behaviour). Note that the subset of five active variables is in
general different for each output variable, as shown in Tables 2 and
3. Including more than five variables would yield little extra benefit
at this stage, while using fewer than five leads to a significantly
worse description of the main trends.

Once the set of active variables has been determined, the full
set of regression terms [the βij gij (xA)] can be chosen. This was
done by starting with the full third-order polynomial in the five ac-
tive variables and using backwards stepwise elimination to remove
less significant terms from the model. Note that a large number of
model evaluations are required to enable the fitting of a third-order
polynomial, although this greatly depends on the number of active
variables. Now that the final regression terms have been chosen
for each output fi(x), estimates for the set of {βij } coefficients can
be obtained using Ordinary Least Squares, assuming uncorrelated
errors (a reasonable assumption as we have a large number of runs
sufficiently far apart in the input space that the residuals should not
be strongly correlated). Note that it is important to check that the
structure of the polynomials obtained from this process agree with
physical intuition.

For the two contributions to the residual process ui(xA) and wi(x)
we specify a correlation structure as follows. As the ui(xA) represent
local deviations from the regression surface we assume that there
will be a large correlation between ui at neighbouring values of
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the active inputs xA, and specify the following Gaussian covariance
structure:

Cov(ui(xA)ui(x ′
A)) = σ 2

ui
exp(−||xA − x ′

A||2/θ 2
i ), (13)

where σ 2
ui

is the point variance at any given xA, θi is the correlation
length parameter that controls the strength of correlation between
two separated points in the input space [for points a distance θ apart,
the correlation will be exactly exp (−1)], and || · || is the Euclidean
norm. As the nugget process wi(x) represents all the remaining
variation in the inactive variables, it is often small and we treat it
as uncorrelated random noise with Var(wi(x)) = σ 2

wi
. We consider

the point variances of these two processes to be proportions of
the overall residual variance: σ 2

i (which is obtained from the OLS
regression fit), and write that σ 2

ui
= (1 − δi)σ 2

i and σ 2
wi

= δiσ
2
i for

some usually small δi .
Various techniques for estimating the correlation length and

nugget parameters θi and δi from the data are available (e.g. vari-
ograms, REML, maximum likelihood; Cressie 1991), however an
alternative is to specify them from previous experience of com-
puter models (Craig et al. 2001, Kennedy01) which is the approach
we adopt here. Specifically, in Wave 1 we choose θi = 0.35 and
δ = 0.2, remembering that the inputs have all been scaled so that
their range is [−1, 1]. The choice for theta is motivated by the
fact that we are fitting third-order polynomials to the model output,
and therefore the residuals from this fit, which are modelled by
the stationary process, will behave like a fourth (or higher) order
polynomial. This suggests a correlation length of 0.35 would be
reasonable. The value for δ is assessed by examining the variance
of the model output explained by the inactive variables by fitting
various polynomials using only the inactive variables. It should be
noted that the choices for θ and δ are more conservative than values
obtained using alternative estimation techniques, and that this was
a deliberately cautious choice. More details of the motivation of
these parameter choices, and description of the diagnostic used to
confirm the accuracy of this approach, are given in Vernon et al.
(2010).

The next step is to update the process fi(x) at a new point x, with
the information contained in the 1000 runs of the model. We do
this using the Bayes Linear update formula discussed in the next
section.

3.5.4 Bayes linear approach

For large-scale problems involving computer models such as
GALFORM, a full Bayes analysis (involving probability distributions
for all random quantities) is difficult for the following reasons. First,
it is very difficult to give a meaningful full prior probability speci-
fication over high-dimensional input spaces. Secondly, the compu-
tations for learning from both observed data and runs of the model,
and choosing informative runs, may be technically very challeng-
ing. Thirdly, in such computer model problems, often the likelihood
surface is extremely complicated, and therefore any full Bayes cal-
culation may be extremely non-robust. However, the basic idea of
capturing our expert prior judgments in stochastic form and modi-
fying them by appropriate rules given observations, is conceptually
appropriate.

The Bayes Linear approach is (relatively) simple in terms of
belief specification and analysis, as it is based only on the mean,
variance and covariance specification which, following De Finetti
(1974), we take as primitive. Therefore, a Bayes Linear approach
proceeds by the specification and modification of mean and variance
structures only.

We replace Bayes Theorem (which deals with full probability dis-
tributions) by the Bayes Linear adjustment which is the appropriate
updating rule for expectations and variances. The Bayes Linear ad-
justment of the mean and the variance of a random quantity B given
data D is

ED[B] = E(B) + Cov(BD)Var(D)−1(D − E(D)), (14)

VarD[B] = Var(B) − Cov(B, D)Var(D)−1Cov(D,B). (15)

E D[B], Var D[B] are the expectation and variance for B adjusted by
knowledge of D.4 In equations (14) and (15), B and D can represent
scalars or vectors of uncertain quantities. In the latter case (15) and
(17) become matrix equations where if B is a vector of length nB

and D is a vector of length nD, Cov(B, D) is a matrix of dimension
nB × nD and Var(D) a matrix of dimension nD × nD .

The Bayes linear adjustment may be viewed as an approximation
to a full Bayes analysis, or more fundamentally as the ‘appropriate’
analysis given a partial prior specification based on expectation. For
more details see Goldstein & Wooff (2007).

3.5.5 Updating the emulator

Equations (14) and (15) give the rule for updating the emulator with
the knowledge of the 1000 model evaluations, where the random
quantities B and D will represent an unknown output and the col-
lection of 1000 known outputs, respectively. We proceed with the
update as follows. As we have a relatively large number of runs,
we first assume that the regression coefficients βij in the emulator
equation (12) are known and hence have zero variance. As ui(xA)
and wi(x) both have zero expectation, equation (12) gives the ex-
pectation of model output i at input x to be

E(fi(x)) =
∑

j

βij gij (xA) (16)

and the variance of fi(x) to be

Var(fi(x)) = Var(ui(xA)) + Var(wi(x)) = σ 2
ui

+ σ 2
wi

= σ 2
i . (17)

As the ui(xA) and the wi(x) terms are uncorrelated, the covariance
between output i at two different inputs x ′ and x can now be written
(using equations 12 and 13) as

c(x ′, x) = Cov(fi(x ′)fi(x))

= Cov(ui(x ′
A)ui(xA)) + Cov(wi(x ′)wi(x))

= σ 2
ui

exp
(−||x ′

A − xA||2/θ 2
i

) + σ 2
wi

δx′x
(18)

where δx′x is a Kronecker delta, equal to 1 when x ′ = x and zero
otherwise. The second term in equation (18) comes from the nugget
wi(x) which gives a zero contribution except when x ′ = x.

We can now define the following quantities corresponding to the
n = 1000 model evaluations. We write the locations of the n runs
in input space as xj with j = 1, . . . , n where each xj represents
the vector of inputs for the jth run. Similarly xA,j is defined to
be the vector of Active Variable inputs for the jth run. We define
Di = (fi(x1), fi(x2), . . . , fi(xn))T , that is the column vector of the
n evaluation outputs for output i, the prior expectation of which
(E(Di)) can be found using equation (16).

4 ED[B] and VarD[B] are the corresponding Bayes Linear quantities to
E(B|D) and Var(B|D), the conditional expectation and variance of B given
data D that would be extracted from a fully Bayesian analysis.
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Replacing the random quantity B in the Bayes Linear update
equation (15) with the unknown output fi(x) at input x gives the
adjusted expectation EDi

[fi(x)] to be

EDi
[fi(x)] = E(fi(x)) + Cov(fi(x)Di)Var(Di)

−1(Di − E(Di)),

which becomes (using equation 19)

EDi
[fi(x)] =

∑
j

βij gij (xA) + t(x)T A−1(Di − E(Di)), (19)

where now t(x) = (c(x, x1), c(x, x2), . . . , c(x, xn))T = Cov(fi(x) Di)
is the column vector of covariances between the new and known
points, and A is the matrix of covariances between known points: an
n × n matrix with elements Ajk = c(xj, xk). The Adjusted Variance
VarDi

[B] can similarly be found from equation (15) and (17) giving

VarDi
[fi(x)]

= Var(fi(x)) − Cov(fi(x)Di)Var(Di)−1Cov(Difi(x)),

= σ 2
i − t(x)T A−1 t(x). (20)

The Adjusted Expectations and Variances, EDi
[fi(x)] and

VarDi
[B], given by equations (19) and (20) form the basic ingredi-

ents in the construction of the Implausibility Measure used to reduce
the input space to a much smaller ‘non-implausible’ volume. Note
that if we had chosen a simple emulator of the form fi(x) = ui(x),
such as was used in the 1D example in Section 3.5.1, then equa-
tions (19) and (20) would reproduce exactly equations (9) and (10).

3.6 Linking the model to the system: structural uncertainty
and model discrepancy

In order to declare regions of the input space as ‘implausible’, and
to then exclude them from the analysis, we need to formally link
the GALFORM model f (x) to the observed luminosity function data
which we represent as the 11 component vector z. We do this by
linking both f (x) and z to the actual system (in this case the real
Universe) represented by y, taking into consideration the Struc-
tural Uncertainty. In a rigorous Bayesian approach, this step is key
in order to justify any further uncertainty statements; it is, how-
ever, a relatively unfamiliar process to many scientists. We employ
a description that is widely used in computer modelling studies
(e.g. Craig 1996; Kennedy & O’Hagan 2001; Goldstein & Rougier
2009). This involves the notion that when we evaluate GALFORM at
the actual system properties, x∗ say, then we aim to reproduce the
actual system behaviour y. This does not mean that we would ex-
pect perfect agreement between f (x∗) and y. Although GALFORM

is a highly sophisticated simulator, it still offers a necessarily sim-
plified account of the evolution of galaxies, and involves various
numerical approximations. The simplest way to view the difference
between f ∗ = f (x∗) and y is to express this as

y = f ∗ + εmd,

where we consider the 11-vector εmd as a random variable uncor-
related with f ∗. The ‘Model Discrepancy’ term εmd represents the
Structural Uncertainty. It comes from our judgments regarding the
accuracy of the model and determines how close a fit between model
output, f ∗, and an observation of y we require for an acceptable
level of consistency between theory and observation.

As GALFORM is an approximation to the physical processes that
occur during galaxy formation in the real Universe, we must ac-
knowledge and attempt to quantify the level of this approximation,
represented by εmd, in order for further analysis to be meaningful.
While this is a difficult task, ignoring the model discrepancy will

lead to all future statements being conditional on the current ver-
sion of GALFORM being a perfect model of the Universe. Since we
know that this is not the case, it is essential that we build in some
degree of fuzziness into the comparison between the model and
data. Failure to do so may result in us prematurely rejecting regions
of parameter space in which a solution of interest resides. As the
level of approximation in the model is reduced (by considering an
improved version of the model say), εmd will become smaller. In
principle, this process of model improvement can be built into our
statistical emulation so that we use our knowledge of previous ver-
sions of the GALFORM code both to speed up parameter exploration
in newer versions and to obtain more realistic representations of the
Structural Uncertainty (Goldstein & Rougier 2009); however, we
have not explored this possibility here.

As we are employing a Bayes Linear approach we only need to
specify expectations and variances for εmd: we give a summary of
this process here, the full details of which can be found in Vernon
et al. (2010).

We decompose εmd into three uncorrelated contributions, each of
which are 11-vectors that are assumed to have zero expectation:

εmd = �IA + �DM + �E.

Here �IA represents the discrepancy due to the eight inactive param-
eters that we did not model in detail in the initial waves of the anal-
ysis (i.e. the parameters that do not feature in Table 3). We assessed
Var(�IA) from a small set of runs over the 8D inactive parameter
space and found for i = 1, . . . , 11 that 0.0152 < Var(
IA,i) < 0.322.
In later waves, we performed runs across all 16 inputs and hence
the �IA term was then set to zero as this model discrepancy was
now absorbed directly into the emulator.

�DM is the discrepancy due to the finite number (40) of sub-
volumes used for the model runs: Var(�DM) was found by analysing
the sample variance of the 1000 Wave 1 runs across sub-volumes,
and it was estimated for i = 1, . . . , 11 that 0.0142 < Var(
DM,i) <

0.0222. For a sub-set of 100 runs, we confirmed this estimate by
drawing a random set of 40 sub-volumes.

�E summarizes the structural deficiencies of the full GALFORM

model itself, and is the component derived from subjective judg-
ments regarding model accuracy. We proceeded by generating a
random test set of luminosity functions by perturbing the observa-
tional data and smoothly interpolating. These were then compared
to the observational data using an interactive tool which asked the
expert user to judge whether to reject the corresponding region
of parameter space on the basis of the comparison and previous
experience of improvements to the GALFORM code and changes in
cosmological models. Summarizing these tests, we concluded that
a credible interval around the observational data, within which runs
would be deemed acceptable would be approximately a factor of
2 wide in terms of galaxy counts, and hence ± 1

2 log10(2) on the
log scale used throughout this paper (see e.g. Fig. 2). Relating this
to a ±2σ interval (a conservative choice) this leads to the vari-
ance of each of the 11 components of 
E being assigned values:
Var(
E,i) = (log10(2)/4)2 = 0.07532 for i = 1, . . . , 11. Reassur-
ingly, this results in the Bow06 model being close to the boundary of
acceptable solutions. Examples of the range of fits that are deemed
acceptable are illustrated in Fig. 8. The expectation was again set
to E(
E,i) = 0, as it was thought that there were no significant
asymmetries concerning this component of the Model Discrep-
ancy. It is important to realize that while this assessment for �E

is necessarily subjective, it was also chosen to be deliberately con-
servative. Once the volume of acceptable inputs has been identified
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corresponding to all uncertainties discussed in this section, it is then
possible to explore the effect of reducing the size of Var(�E).

Finally, we must make allowance for the uncertainty in observa-
tional measurements. Since, we cannot observe the system y (i.e.
the actual Universe) without measurement error, we link it to the
observations z by

z = y + εobs,

where εobs is again a random quantity that represents the obser-
vational errors. It has expectation zero, and variance composed of
contributions from the luminosity calibration uncertainty, the nor-
malization uncertainty, k+ e errors and Poisson errors (see Norberg
et al. 2002 for a discussion of how these terms are estimated). Fig. 2
shows the 2σ error bars formed from the combination of all com-
ponents of Var(εmd) and Var(εobs). It should be noted that in most
cases the Model Discrepancy terms dominate over the observational
errors. (Fig. 5 shows the same error bars minus the �IA component
which is no longer relevant, as by Wave 4 we have modelled the
effect of the remaining inactive variables within the emulator di-
rectly.)

With this structure linking f (x), y and z in place we can now
proceed to learn about acceptable values of x.

3.7 Implausibility measures

We want to learn about which values of the input parameters x are
likely to give an acceptable match between model output and obser-
vational data. We do this through use of an Implausibility Measure
I(x) defined over the input space. The Implausibility Measure de-
scribes the magnitude of the difference between the expected value
of the GALFORM outputs and the observational data, standardized
with respect to all relevant uncertainties. The basic idea is that for a
particular value of x, if I(x) is large then we can discard this value
of x as it is highly unlikely to yield a good match between model
output and the observational data.

Using the emulator, the model discrepancy and the measurement
errors we define the Univariate Implausibility Measure, at any input
parameter point x, for each component i of the computer model
f (x) as

I 2
(i)(x) = |EDi

(fi(x)) − zi |2/VarDi
(EDi

(fi(x)) − zi) (21)

where EDi
(fi(x)) and VarDi

(fi(x)) are the emulator expectation and
variance adjusted by Di and zi is the observed data for component
i. Introducing the model discrepancy and observational error terms,
this can be re-written as

I 2
(i)(x) = |EDi

(fi(x)) − zi |2
(VarDi

(fi(x)) + Var(εmd,i) + Var(εobs,i))
(22)

where Var(εmd,i) and Var(εobs,i) are the (univariate) Model Discrep-
ancy variance and Observational Error variance.

When I(i)(x) is large this implies that, even given all the uncer-
tainties present in the problem, we would be unlikely to obtain a
good match between model output and observed data where we to
run the model at input x. This means that we can cut down the input
space by imposing suitable cut-offs on the implausibility function
(a process referred to as History Matching). Regarding the size of
I(i)(x), if we assume that for fixed x the appropriate distribution
of (fi(x∗) − zi) is both unimodal and continuous, then we can use
the 3σ rule which implies that if x = x∗, then I(i)(x) < 3 with
a probability of approximately 0.95. This is a powerful result that
applies to any distribution that is unimodal and continuous, even if
it is asymmetric. It suggests that values higher than 3 would imply

that the point x should be discarded. This is still a very conserva-
tive bound: we would expect the distribution of (fi(x∗) − zi) to be
somewhat better behaved and hence choose slightly tighter bounds,
as discussed in Section 3.8.

It should be noted that since the implausibility relies purely on
means and variances (and therefore can be evaluated using the Bayes
Linear methodology), it is both tractable to calculate and simple to
use to reduce the input space.

One way to combine these univariate implausibilities is by max-
imizing over outputs:

IM (x) = max
i

I(i)(x).

We can similarly define I2M(x) and I3M(x) to be the second and third
highest of the 11 univariate Implausibility Measures at the point x.
These are clearly more conservative measures since a model will
not be deemed implausible on the basis of a single bin.

If we construct both a multivariate emulator and multivariate
model discrepancy (as is described in detail in Vernon et al. 2010),
then we can define the corresponding multivariate Implausibility
Measure:

I 2
MV(x) = (ED( f (x)) − z)T VarD(ED( f (x)) − z)−1(ED( f (x)) − z),

which becomes

I 2
MV(x) = (ED( f (x)) − z)T (23)

×(VarD( f (x)) + Var(εmd) + Var(εobs))
−1(ED( f (x)) − z) (24)

where f (x) is the full 11-vector model output and
VarD( f (x)), Var(εmd) and Var(εobs) are all 11 × 11 covariance
matrices. Again, large values of IMV(x) imply that we would be
unlikely to obtain a good match between model output and ob-
served data where we run the model at input x. Choosing a cut-off
for IMV(x) is more complicated. As a simple heuristic, we might
choose to compare IMV(x) with the upper critical value of a χ 2 dis-
tribution with degrees of freedom equal to the number of outputs.
For further discussion of Implausibility Measures, see Vernon et al.
(2010).

3.8 History matching via implausibility

History Matching is the process of identifying the set X ∗ of all pos-
sible values of x∗, that is the set of points that would give acceptable
matches between model output and observational data. Identifying
X ∗ is a difficult task as often X ∗ represents a complicated object
in a high-dimensional space. X ∗ could also comprise disconnected
volumes, which could even possess non-trivial topology. In many
applications X ∗ occupies an extremely small fraction of the original
input space, with large volumes of input space leading to very poor
matches to the observed data.

We employ an iterative technique where the Implausibility Mea-
sures are used to perform the History Matching process. The basic
strategy is based around discarding values of x that are highly
unlikely to yield acceptable matches between model output and
observational data. This is done by applying a cut-off on the Im-
plausibility Measures defined in Section 3.7. As the Implausibility
Measures are constructed using the emulator, they are fast to eval-
uate and therefore we can efficiently identify values of x that will
be discarded, for example, in Wave 1 we discard all values of x that
do not satisfy both:

I2M (x) < I2cut and I3M (x) < I3cut (25)
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Table 4. The fraction of parameter space considered acceptable in each
wave of emulation. Column 1: the wave; Column 2, the number of model runs
used to construct the emulator; Column 3, the number of active variables;
Columns 4–7, the implausibility cut-off threshold; Column 8, the fraction
of the parameter space estimated to be acceptable. Note that in Wave 5 we
do not construct an emulator, but we impose a cut-off of IM < 2.5 on the
Wave 5 runs to generate the 113 acceptable runs used in Section 5.

Wave Runs #Act. Icut I2cut I3cut IMV cut fraction of
space (per cent)

1 1000 5 - 2.7 2.3 - 14.9
2 1400 8 - 2.7 2.3 - 5.9
3 1600 8 - 2.7 2.3 26.75 1.6
4 2000 10 3.2 2.7 2.3 26.75 0.26
5 2000 - 2.5 - - - (0.014)

where I2M(x) and I3M(x) are the second and third highest univariate
Implausibility Measures defined in Section 3.7 and I2cut and I3cut

are the corresponding implausibility cut-offs. Table 4 shows all
the Implausibility Measures used in each of the waves along with
the corresponding cut-offs. Note that in early waves we make the
conservative choice of using only I2M(x) and I3M(x) (and not IM(x)),
so that the cut-off we impose is not sensitive to the possible failings
of an individual emulator point on the luminosity function. This
allows slightly tighter cuts to be chosen for I2cut and I3cut as is
shown in Table 4.

Equation (25) defines a volume of input space that we refer to
as non-implausible and denote as X1. This non-implausible vol-
ume should hopefully contain the set X ∗, that is X ∗ ⊂ X1. In
the first wave of the analysis which we are describing here, X1

will be substantially larger than X ∗. This is because it will con-
tain many values of x that only satisfy the implausibility cut-off
given by equation (25) because of a substantial emulator variance
Var( f (x)). If the emulator had a high degree of accuracy over the
whole of the input space so that Var( f (x)) was small compared to
the Model Discrepancy and the Observational Error variances, then
the non-implausible volume defined by X1 would be comparable to
X ∗ and the History Match would be complete. However, to con-
struct such an accurate emulator for any realistic computer model
(and especially for GALFORM) would require an infeasible number of
runs of the model. Even if such a large number of runs were possi-
ble it would be an extremely inefficient method: we do not need the
emulator to be highly accurate in regions of the input space where
the outputs of the model are clearly very different from the observed
data.

This is the main motivation for our iterative approach. In each
wave we design a set of runs over the current non-implausible vol-
ume denoted as Xi , emulate using these runs, calculate the Implau-
sibility Measure and impose a cut-off to define a new (smaller)
non-implausible volume denoted as Xi+1 which should satisfy
X ∗ ⊂ Xi+1 ⊂ Xi . As we progress through each iteration the em-
ulator at each wave will become more and more accurate, but will
only be defined over the previous non-implausible volume defined
by the previous wave’s implausibility.

As we proceed through waves of emulation the volume being em-
ulated decreases, and the GALFORM function should become smoother
over the restricted range of interest. As a result, it becomes easier
to capture more of the behaviour using the regression terms in the
emulator (i.e. by fitting a cubic polynomial to the GALFORM output).
Furthermore, the density of runs that inform us about the models’
behaviour increases and the Gaussian Process part of the emula-

tor becomes more accurate. As the output of the runs have been
restricted and the effects of certain dominant variables limited, it
becomes easier to identify additional active variables which are then
used in both the regression and the Gaussian Process terms, further
increasing the accuracy of the emulation.

This iterative process is continued until the emulator variance
is smaller than the model discrepancy variance and observational
error variance. We have completed four iterations or Waves in this
analysis, and the subsequent results in this paper are from Wave 4.

3.9 Projection pursuit

The end result of the emulator analysis is to identify a region of
parameter space in which models produce an acceptable fit to the
bJ- and K-band luminosity functions. However, comprehending the
resulting space is rather challenging. As we will show, while the
parameter space of acceptable model occupies only a small fraction
of the overall parameter space, acceptable fits can be found over a
wide range of input parameters. This situation arises because the
acceptable space takes the form of a thin curved hypersurface.

The aim of projection pursuit is to select a suitable co-ordinate
system that allows the geometry of the acceptable region to be better
understood. We achieve this using PCA (e.g. Jolliffe 2002; Zito
et al. 2009). However, in contrast to many applications of PCA,
we are primarily concerned with the components with smallest
variance. These components define an optimal set of projections
for displaying the data, and the relation between the PCA vectors
and the input parameters. The latter connection has the potential to
inform us about the physics of galaxy formation.

3.10 Exploring constraints from additional data sets

We have adopted a strategy in which the primary calibration of our
model comes from the local bJ- and K-band luminosity functions.
Nevertheless, we wish briefly to explore whether adding additional
data sets would impose further constraints on the range of accept-
able model parameters. In this paper, we do not aim to make an
exhaustive exploration of the possible data sets and limit our at-
tention to just a small fraction of the possible local data. We use a
simple χ 2 statistic to assess the relative performance of models in
these additional tests and ask about the region of parameter space
which matches the additional data at a similar level of performance
to Bow06 (as well as adequately matching the observed luminos-
ity functions). As we show in Section 5.2, the model experiences
contradictory pressures from the observed disc sizes and the nor-
malization of the TF relation, possibly indicating that a revised
treatment of angular momentum is required in the Bow06 version
of the GALFORM code. This clearly illustrates the need to carefully
define the model discrepancy terms for these additional data sets
before they are used to exclude regions of parameter space. We
present further exploration of additional data sets in a future paper
(Benson & Bower 2010).

4 R ESULTS

The results described below were obtained with four waves of emu-
lation. The implausibility cut-off threshold for each wave is shown
in Table 4, together with the fraction of the parameter space consid-
ered acceptable after the emulator has been constructed. The table
also gives the number of runs used during each wave.

After four waves of emulation, the uncertainties in the emulator
are small and the implausibility of each run is becoming dominated
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by the intrinsic model discrepancy εmd. Uncertainties in the ob-
servational measurement of the luminosity function make almost
negligible contribution, and the dominant contribution to the model
uncertainty comes from the model discrepancy term, �E (see dis-
cussion in Section 3.6).

At this point, the emulator suggests that only 0.26 per cent of the
initial parameter volume is ‘not implausible’. While this volume is
small, we will show below that an ‘acceptable’ fit can be obtained
with a wide range of values for some parameters. Note that we are
being careful in our use of language here. We do not know for cer-
tain what the outcome of running the model will be at a particular
set of parameter values, except close to values at which we have
already performed a model run. We do, however, have a prediction
for the expectation and variance. Fig. 6 shows a comparison of the
expectation of the emulator and its uncertainty with the results of
actual model runs and we discuss this comparison further in Sec-
tion 4.2. However, as we should expect, only a fraction of the runs
within the ‘not implausible’ region actually result in sufficiently
good fits to the luminosity function to be considered ‘acceptable’.
There are two factors involved here. First, we are tightening the
required implausibility from 3.2 to 2.5. In 16 dimensions, this re-
sults in a large reduction in the surface of the interesting region.
Secondly, for many runs the expectation of the emulator is that
the model implausibility lies above 2.5, but the residual emulator
variance cannot rule out the region as unacceptable without direct
evaluation. This uncertainty arises from emulator variance, and not
from observational error or model discrepancy terms.

4.1 Emulating the luminosity function

A serious problem for such high-dimensional parameter sets is to
find a way of representing the implausibility map. Projecting the
full 10D map (of active variables) down to two dimensions so
that it can be printed loses considerable information. We can try
to compensate for this by showing the full set of projections as a
matrix (this is commonly referred to as a ‘pairs plot’.). Fig. 4 shows
the implausibility space projected on to pairs of parameters in this
way. Note that only active variables are shown so that there are 45
plots of 10 variable pairs. The parameters have been scaled to range
over ±1 using the initial range given in Table 1.

Plots below the diagonal show the projected minimum implau-
sibility surface. The colour code is set so that green indicates that
the region is ‘not implausible’. The implausible region is shown in
red. The minimum implausibility is determined by evaluating the
emulator over a grid of values for the two ‘visible’ parameters and a
Latin hypercube of parameters in the unseen variables. Because the
hypervolume of acceptable solutions is very thin in some projec-
tions, a large number of evaluations are required in order to obtain a
reliable projection of the minimum value. Even though each evalu-
ation is almost 107 times quicker than performing a GALFORM model
evaluation, this means that such plots cannot be made interactively.

It is immediately apparent that many of the projections contain a
substantial fraction of green covering a large fraction of the param-
eter space. For example, the αcool parameter was allowed to vary
in the range 0.1 to 1.2, and it is not implausible to find acceptable
fits throughout this region. This is the result of projecting over a
large number of hidden parameters, however, and it is apparent that
varying the visible parameters had physical effects that can be com-
pensated for by variations in the other parameters. In order to better
appreciate the underlying geometry, therefore, it is helpful to plot
the ‘optical depth’ of the projected hypervolume. Therefore above
the diagonal, we show the fraction of the evaluations (for each pair

of fixed visible parameters) that resulted in low implausibility val-
ues. This allows the viewer to distinguish regions that have a low
minimum implausibility but require very precise coordination of
the unseen parameters, from regions in which a low implausibility
is obtained for a wide range of the unseen parameters. One has
the intuitive sense that the ‘best’ solution lies in a region that has
a large depth, but this assertion does not necessarily hold. Thus,
the appearance of regions in this optical depth plot needs careful
interpretation. For reference, the Bow06 model is shown by a black
point. It is often centred in a ‘deep’ region of low implausibility,
but in some projections it is offset from the depth-weighted cen-
tre of the region. It is apparent from this that the Bow06 is not a
‘typical’ model that matches the zero redshift luminosity function:
illustrating the limitations of searching parameter space to find a
single acceptable model.

Higher dimensional projections can also be used to reveal more of
the underlying structure. The typical hypersurface geometry is that
of a thin, slightly curved plane. For a few variables, it is nevertheless
informative to look at the range of the ‘not implausible’ region in
a 1D sense, and this is given in Table 5. While this region covers
a large fraction of the initial range for many parameters, a few
of the parameters are significantly constrained. For example, the
emulator shows that it is implausible that runs with low values
of Vhot,disc (below 300 km s−1) will result in acceptable fits to the
luminosity functions. Similarly, the emulator suggests that the disc
stability parameter cannot be reduced below 0.73, showing that disc
instabilities are a key component of the model and that the role of
instabilities cannot be replaced by altering the sensitivity of galaxies
to high-mass ratio mergers (Parry, Eke & Frenk 2009).

The parameters that are shown as inactive in Table 1 have no
clear effect on the luminosity function and are treated as an ad-
ditional source of uncertainty in the emulator. Runs close to the
implausibility cut-off may result in acceptable fits to the luminosity
functions if these parameters are carefully chosen. However, our
procedure is conservative and this is taken into account in deciding
whether a region is implausible or not. However, while the emulator
can identify regions for which an acceptable fit is implausible, it
does not guarantee that a run in the remaining region will actually
result in a good fit to the luminosity function. This is a consequence
of our conservative approach: the ‘not implausible’ region has a
cut-off threshold of IM < 3.2, while we only deem a model to be
‘acceptable’ if IM < 2.5. Therefore, in order to demonstrate that an
acceptable match to the luminosity function can be obtained, we
must perform a model run at the point in question.

4.2 Comparing the emulator with model runs

In the previous section, we illustrated the shape of the low implausi-
bility region in parameter space. It is important to stress that this is
a region in which good fits might be obtained, but that an acceptable
match is not guaranteed. To proceed, we investigate the success of
the emulator technique by randomly generating 2000 model runs
(which we refer to as ‘Wave 5’) with various parameter values within
the not implausible region of Wave 4. Our aim is twofold. First, we
wish to show that the model runs do indeed return matches to the
luminosity function within the expected uncertainties, and that good
descriptions of the luminosity function are indeed found throughout
the range of parameter space illustrated in Fig. 4. Secondly, we wish
to identify a set of model runs that give acceptable matches to the
observed luminosity functions, and that can be used as the basis for
our exploration of the constraints imposed by additional data sets.
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Figure 4. 2D projections of the implausibility landscape of the Wave 4 emulator for some of the major parameters. Plots below the diagonal show the projected
minimum implausibility predicted by the Wave 4 emulator. We sample data points in the hidden dimensions using a Latin hypercube design, accumulating the
minimum implausibility and the fraction of points lying below the implausibility cut-off (see Table 4). The emulator suggests that green regions are likely to
give acceptable fits to the luminosity function data, for some choice of the hidden parameters (given our model discrepancy). In the red region the emulator
confidently suggests that acceptable matches are implausible, regardless of the values of the hidden parameters. For comparison, the Bow06 model is shown
as a black point. Plots above the diagonal give an impression of the line-of-sight depth of the acceptable region with blue/purple regions indicating that a
high fraction of the ‘not implausible’ points are aligned at this projected position. Note that plots above the diagonal have x and y axes transposed to make
comparison with the maximum implausibility plots more apparent. Although it seems that only a small region of the projected space is ruled out as implausible,
the projected space frequently has a very thin, but extended, geometry.

Since we are now comparing genuine model evaluations with the
data, the emulation stage is no longer required and the emulator
variance term, VarDi

(fi(x)) in equation (25), is replaced by a small
factor based on the stochastic variation in model evaluations. We
denote this revised Implausibility Measure I ′

M . The denominator in
I ′
M thus includes only contributions from the model discrepancy,

observational errors and the repeatability of model runs. Because
we are now referring to actual model evaluations, we can refer to
a model as ‘acceptable’ rather than ‘not implausible’. We identify
‘acceptable’ models as those for which I ′

M < 2.5. It is important
to note that we distinguish acceptable models by a lower implausi-

bility cut than the threshold used to reject implausible regions (see
Table 4).

The luminosity functions of the Wave 5 model runs are shown in
Fig. 5. The lines have been colour code to reflect the implausibility
derived for the run using the colour scale of Fig. 4. Note that the
2σ error bars shown on the observational points include the effect
of the model discrepancy and repeatability. Around the knee of the
luminosity function the statistical errors on the luminosity function
are small and are dominated by the model discrepancy term. Vertical
lines show the points at which we have emulated the luminosity
function. An acceptable luminosity function must pass close to
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Table 5. The parameter ranges of models
which gave acceptable luminosity function
matches. The inactive variables range over
their full range given in Table 1.

Min Max

ε−1
� 46 1000

α� −3.2 −0.3
pyield 0.02 0.05
Vhot,disc 300 550
Vhot,burst 190 550
αhot 2.3 3.7
αreheat 0.2 1.2
αcool 0.38 1.2
f df 0.8 2.7
f stab 0.73 0.95

Figure 5. The bJ and K luminosity functions of the model runs evaluated
in Wave 5. Runs are colour coded by the model run implausibility. For com-
parison, the Bow06 model is shown as a blue line. Note that 2σ error bars
are shown. The inner error bars include the contributions of observational
errors and repeatability, but exclude the subjective �E term. Outer error bars
also include the full model discrepancy term. Green curves are considered
acceptable fits and are tested against other observational constraints in Sec-
tion 4.3. Vertical lines show the magnitudes at which the model is compared
to the observational data in order to determine its implausibility.

the error bars at the lines. As can be seen, this generally provides
a good description of the shape of the luminosity function and
justifies our assertion that the shape is well described by the 11
outputs chosen for emulation. In common with previous version of
the code, acceptable models tend to lie above the lowest luminosity
measurements. The distinction between green (‘acceptable’) and
yellow (‘not quite acceptable’) models is that the latter tend to miss
one or more data points. It is clear, however, that the points at the

bright end of the luminosity function, particularly in the bJ band,
present the greatest challenge for the galaxy formation model.

We can first use the model evaluations to confirm the success
of the emulator in describing the luminosity function behaviour.
In Fig. 6, we compare the values of the luminosity function in
different absolute magnitude bins from direct evaluations of the
model with predictions from the Wave 4 emulator. The panels are
labelled by the absolute magnitude in either the bJ or K band at
which the luminosity function is sampled. The runs are shown in
order of their emulator expectation, which is drawn as a think black
line. Note that adjacent points are not adjacent in parameter space.
The result of evaluating the model for each parameter set is shown
as a blue circle. If the model evaluation agreed exactly with the
expectation value, the blue points would lie perfectly on the line.
However, we expect the points to scatter about the line as a result of
the uncertainties in the emulation and the Monte Carlo nature of the
model. The extreme of the predicted range of these uncertainties are
shown as the red shaded region. This is formally a 3.2σ deviation
(although we do not necessarily expect the tails of the distribution to
be Gaussian) that is used to define the not implausible region. Note
that some regions of the luminosity function are easily emulated,
and the points lie close to the expected value. In other regions,
particularly at the bright end of the bJ luminosity function, there
is significantly greater variance. This is telling us that it is hard to
precisely emulate the behaviour of GALFORM in these regions. The
uncertainty is, however, well described by the emulator’s predicted
uncertainty. The ability of the emulator to capture this variance is
key since it has allowed us to efficiently cut down the full parameter
space of models. Note that a series of similar diagnostics were
performed for each emulator at each wave of the analysis, and in
each case the emulator was found to provide the expected levels of
accuracy (see Vernon et al. 2010 for details).

Since we are confident that the emulator has successfully directed
the selection of Wave 5 parameter sets, we continue to compare the
parameter space of acceptable models with that suggested by the
emulator. Fig. 7 shows a pairs plot of the Wave 5 evaluations.
Each dot shows the implausibility of the model evaluation, colour
coded to match the implausibility colour scale of Fig. 4. The points
have been superposed so as to illustrate the most acceptable in
each region. Acceptable luminosity function fits (green points) are
found throughout the parameter space, and the figure bears striking
similarity to the analogous Fig. 4, which was based on emulator
predictions rather than model evaluations. This again confirms that
the emulator successfully captures the behaviour of the GALFORM

model.
Of the 2000 model evaluations, 113 resulted in acceptable models

according to the criterion I ′
M < 2.5. The reduction in volume is not

surprising since we have tightened the implausibility threshold and
eliminated the emulator variance. Furthermore, many of the evalu-
ations were performed for marginal models for which the emulator
gave only a small chance of an acceptable match (recall that the sur-
face of the acceptable parameter space is huge in 10 dimensions).
Despite this apparent inefficiency, if we wish to make a system-
atic investigation of parameter space it is important that marginal
models are evaluated. Of course, with only a relatively small
number of evaluations, some parameter space projections suffer
from considerable shot noise, particularly the low ‘optical depth’
regions seen above the diagonal in Fig 4. Further evaluations of the
model could be used to fill in these regions if required. It is already
apparent, however, that acceptable fits to the luminosity functions
can be found throughout the wide range of parameter values sug-
gested by the emulator analysis.
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The parameter space of galaxy formation 2033

Figure 6. Values of the bJ- and K-band luminosity functions for direct model evaluations compared with the expectation and variance predicted by the
emulator. The figure shows 200 runs selected at random from Wave 5. The panels are labelled with the relevant bJ or K magnitude at which the luminosity
function is sampled: these correspond to the vertical lines in Fig. 5. The x-axis shows the run number ordered by the value of the luminosity function predicted
by the emulator. The y-axis shows the value of the luminosity function. The solid black line shows the expectation value of the emulator: because the runs
have been ordered, the black line traces a smooth curve (but adjacent points need not be close in parameter space). The red shaded regions indicates the 3.2σ

range of uncertainty in the emulator output. The open circles show the values of model runs with each parameter set. Note that some regions of the luminosity
function are easily emulated, while other regions, particularly the bright end of the bJ luminosity function, show significantly greater variance.

We conclude that the emulator method provides an accurate
scheme for identifying model parameter sets that are very likely
to yield acceptable fits to the luminosity functions. Before we ex-
amine the physical links between the parameters in the acceptable
regions, we use the 113 acceptable runs to examine how well mod-
els which make acceptable fits to the luminosity functions perform
in matching other low-redshift data sets.

4.3 Further constraints from additional data

The main focus of this paper is to investigate the constraints derived
from the bJ and K luminosity functions. This follows the method-
ology of Bow06. However, it is interesting to briefly examine how
the model may be constrained by including additional data in the
comparison. In order to make an initial investigation, we apply
these constraints as a second phase, so that we only consider mod-
els which survive the primary criterion of generating an acceptable
match to the luminosity functions, and we base the further explo-
ration on the 113 fully acceptable models that were identified in
the previous section. The luminosity functions derived from these
models are shown in Fig. 8.

We now outline the additional data sets that we consider. Note that
the first four physical properties listed below were already used by
Cole et al. (2000) and Baugh et al. (2005) in choosing the parameter

values in their respective versions of GALFORM, though we have here
updated some of the observational data used. Further details of the
data sets and our approach to the comparison are given in Benson
& Bower (2010).

(i) Disc size: we compare to disc size data from de Jong &
Lacey (2000). We compute the χ 2 values in a series of bins in
both magnitude and size. The ideal model would therefore match
not only the sizes of local galaxies, but also the spread in size.
The predicted disc size distribution depends strongly on the angular
momentum of accreted gas which has a complex dependence on halo
growth.

(ii) TF relation: Galaxy formation models have traditionally
struggled to match the TF relation. The normalization and slope
of the relation depend both on the relationship between stellar mass
and halo mass and on the baryonic contraction of the halo. We
compare with i-band data from Pizagno et al. (2007).

(iii) Gas metallicity: this is an important constraint on the effec-
tiveness of supernova-driven feedback. We compare with data from
Tremonti et al. (2004) on the oxygen abundance of gas in late-type
galaxies in the SDSS.

(iv) Gas mass to LB: the cold gas reservoir is sensitive to the rate
at which gas is accreted, the rate at which it is converted into stars
and the effectiveness of supernova-driven feedback. We compare
with a compilation of H I data from Huchtmeier & Richter (1988)
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2034 R. G. Bower et al.

Figure 7. The Wave 5 model runs plotted on a set of 2D projections. The points are colour coded by the model run implausibility, rather than the emulator’s
predicted implausibility. Note that the model has only been evaluated in the ‘not implausible’ region defined by the Wave 4 emulator. Green points resulted in
acceptable luminosity functions given the model variance and repeatability. The Bow06 model is shown as a black point.

by computing the mean and standard deviation of the ratio of the H I

gas mass to B-band luminosity as a function of B-band magnitude.
We only consider model galaxies with a bulge to total ratio of less
than 0.4 and gas mass fraction greater than 3 per cent.

(v) SDSS colours: we compare with the overall distribution of
galaxy g − r colours from Weinmann et al. (2006). The vast amount
of data available for this test results in a large number of bins.
As discussed in Font et al. (2008), this match can be substantially
improved by adjusting the stellar yield of the model.

(vi) BH mass: we compare to data from Häring & Rix (2004).
This is a weak test for our model since although the parameter Fbh

has little effect on the luminosity function output, its value can be
adjusted to fine tune the black hole mass normalization. Since the
parameter is inactive, we could have made this adjustment without

having discernible effect on the luminosity function. We show the
comparison for completeness only, and we have not undertaken this
fine tuning step.

For each additional data set, we reduce the comparison to a
single χ 2 value. Except where indicated, this is achieved by com-
paring the binned distributions of model and observed galaxies.
The χ 2 values for the Bow06 model and an indication of the num-
ber of bins used in each test is given in Table 6. Some examples
of the fits to these additional data sets are shown in Fig. 9. Fur-
ther examples are shown in Benson & Bower (2010). As has been
extensively discussed, the χ 2 value gives only a coarse indica-
tion of the fit of the model to the data, and makes no allowance
for model discrepancy terms that estimate the level at which we
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The parameter space of galaxy formation 2035

Figure 8. The bJ and K luminosity functions of the 113 acceptable model
evaluations found in Wave 5. The axes, colour scale, error bars and lines are
the same as in Fig. 5.

Table 6. Additional data sets used to constrain the model fits. Column 1:
the property considered; Column 2: the data bins used in the comparison.
The χ2 of the Bow06 model is given in Column 3. Column 4 gives the χ2

value for the best-fitting model for each separate comparison. In order to
select an interesting set of models for further comparison between data sets,
we used the χ2 cut-off value listed in Column 5. Note that the cut-off values
used for the disc size and gas mass to LB constraints are far in excess of
those expected for a statistically acceptable model.

Data set Nbin χ2
Bow06 χ2

min χ2
cut

Disc size 40 7160 443 10000
TF relation 20 124 44 150
Gas metallicity 4 21 1 27
Gas mass to LB 9 3090 57 3500
SDSS colours 2400 16 600 5150 17 000
BH mass 8 5 3 60

expect the model to perform in each test. For this reason, we fo-
cus on the performance of each model relative to Bow06. It should
be noted, however, that Bow06 provides a poor match to the disc
size data, the gas mass to luminosity data and SDSS colour data.
In the case of the disc size data (cf. González et al. 2009), al-
though the best-fitting models significantly improve the match to
average sizes, they still fail to describe the variation with lumi-
nosity well, suggesting that the treatment of angular momentum in
the code may need improvement. Bow06 also fails to reproduce
the normalization of the gas mass to luminosity relation and the
colours. However, the better fitting models result in a substantial
improvement to these comparisons. The colours are significantly

improved by increasing the yield pyield, although the required value
is larger than the best estimates based on stellar evolution mod-
els (cf. Cole et al. 2000) but within the range of their plausible
uncertainty (cf. Font et al. 2008; Benson & Bower 2010). We see
below that the gas mass to luminosity ratio is sensitive to the as-
sumed star formation efficiency (as was earlier found by Cole et al.
2000).

In a future application of the emulator method, we will apply
the full emulator technique to encapsulate and hence emulate all of
these statistical outputs. This needs to be combined with a careful
analysis of the underlying statistical assumptions and the realistic
model discrepancy terms. For the moment we aim only to make an
indicative comparison, and we will only distinguish models which
perform comparably well to Bow06 (the cut-off χ 2 values are given
in the table). It is important to note that χ 2 cut-off values are not
intended to denote a statistically acceptable fit to the data. As we
will see, combining all these data sets in this way already restricts
the parameter space substantially.

The dependence of χ 2 for one of the data sets (disc sizes) is
illustrated in Fig 10. Each panel shows the χ 2 value as a function
of one of the 16 input parameters. The Bow06 model is high-
lighted in red, while green points highlight models which fall be-
low the cut-off χ 2 value in all of the data sets tested. While a
significant trend of χ 2(disc size) with ε−1

� is apparent, it is hard
to discern a pattern in most of the panels. The lack of depen-
dence may arise because the model output is not strongly depen-
dent on a parameter, or because the dependence is masked by de-
pendence on the other parameters. We describe our approach to
systematic identification of interesting parameter combinations in
Section 5.

We have plotted the parameter dependence of χ 2 for each of the
other data sets with similar results, and so do not reproduce each of
the figures here. However, many properties exhibit a strong depen-
dence on the parameter ε−1

� , and we illustrate this in Fig. 11. The
contradictory pressures on ε−1

� are apparent. Looking at the open
and filled points together, it is clear that a better match to disc sizes
is obtained by increasing this parameter; however, higher values of
ε−1
� tend to worsen the match to the TF relation and the gas mass to

luminosity ratios of the galaxies. The models highlighted in green
are models which pass the χ 2 cut-off in all of the data sets as well as
provide an acceptable match to the luminosity functions. Thus, it is
nevertheless possible to balance these opposing pressures, picking
lower values of ε−1

� and exploiting other parameter dependencies to
obtain adequate fits to the disc size. We discuss the implication of
these results for future directions of the model in Section 6.2. It is
notable that the green points all produce better matches to the SDSS
colour data than Bow06 even though we did not enforce this in their
selection (of course, we have enforced some colour information
by requiring that models match both the bJ and K-band luminosity
functions).

A final point to note from Fig. 10 is the hint of bimodality in
the distribution of green points in the αreheat and Vhot,disc parameters.
The two families of acceptable models correspond to models with
very strong supernova feedback, but a cycling time for the galactic
fountain close to the halo dynamical time, and models with weaker
feedback but with cycling times substantially longer than the halo
dynamical time. Bow06 belongs to the first family of models, while
the second family is more typical of the earlier Durham models
(Cole et al. 2000; Baugh et al. 2005) and models from the Munich
group (e.g. Croton et al. 2006; De Lucia & Blaizot 2007). Further
model runs, and fuller treatment of the additional data sets, are
required to explore this point further.
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2036 R. G. Bower et al.

Figure 9. This figure illustrates the comparison of models with additional data sets. Models which give an acceptable match to the luminosity function data,
and produce fits with χ2 < χ2

cut (see Table 6) for all of the additional data sets considered, are shown as green lines. The same models are highlighted as green
points in Fig. 10. The Bow06 model is shown as a red line for comparison, and the observational data are shown as black points with error bars or upper limits
(denoted by triangles). The source of the observational data is described in the text. With the exception of the gas mass to luminosity comparison, the panels
show the comparison for a single magnitude slice. The total χ2 values shown are derived by summing the contributions from several magnitude slices.

5 PRO J E C T I O N PU R S U I T

5.1 Luminosity function constraints

With such a high-dimensional data set, plotting the dependence of
model runs as a function of one or two input parameters conveys
only a small fraction of the complexity of the underlying parameter
space. This bi-variate approach assigns a special significance to
the input parameters and, thus, although it is not easily possible
to present higher dimensional projections, we can make a more
informed choice of the projection vectors. In particular, we can
optimize the projection to show (1) the reduced dimensionality of
the parameter space enforced by the constraints we have applied,
and (2) maximize the additional leverage of the other data sets that
we have considered in the previous section. This optimization is
often referred to as ‘projection pursuit’.

One approach is to project the parameter space of ‘acceptable’
models along its principal components. This effectively corresponds
to rotating the region of acceptable models to align with the direc-

tions of greatest to least variation of parameters. In many situations,
PCA is used to find the directions with greatest variance; in our
case, we are more interested in the directions with least variance.
These are the parameter combinations that are most tightly con-
strained by the observational data. Using PCA we can align the
hyperplanes revealed by our parameter space exploration so that
their cross-section is viewed. It should be stressed, however, that
PCA is inherently linear, and that the projected cross-section may
hide a much thinner, but warped, relationship between the variables.

One potential problem of PCA is that the input variables must be
scaled so that the variance along different axes can be compared.
This is somewhat arbitrary. Our approach is to scale the variables
by the initial search range, rather than restricting it to the range over
which fits were found to be possible. By restricting our range in this
way, we are aiming to determine whether the high dimensionality
of the acceptable space can be reduced by suitable combination of
parameters.

A principal component with low variance implies that this par-
ticular combination of the parameters is tightly constrained if the
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The parameter space of galaxy formation 2037

Figure 10. This plot shows the χ2 values of the models compared to the observed sizes of galaxy discs as a function of some of the more important parameters.
The y-axis ranges from 0 to 30000 in each case, while the model parameters cover the range given in Table 1. The Bow06 model is shown as a red filled circle.
All the open points shown provide an acceptable match to the bJ and K luminosity functions. Green points highlight models which have χ2 measures similar
to or better than Bow06 when compared to all of the observational constraints listed in Table 6. All the points shown (filled and open) produce acceptable fits
to the bJ and K-band luminosity functions.

model is likely to produce an acceptable luminosity function fit.
Of course, even if this constraint is satisfied, a good model is not
guaranteed; rather we can be confident that if it is not satisfied the fit
is unlikely to be good. When analysing the acceptable region in this
way, we also need to bear in mind that the PCA assumes that the rela-
tionships are linear, whereas we have seen that the actual acceptable
space is curved. This will prevent any of the suggested projections
being arbitrarily thin and limit the accuracy of constraints.

We begin by focusing on the luminosity function data alone.
Fig. 12 shows the result of applying the PCA to the 113 model runs
which resulted in acceptable matches to the luminosity function.
As with previous plots derived from luminosity function data alone,
we consider only the 10 ‘active’ variables identified by the emula-
tor analysis. The relationship between the PCA variables and the
original model parameters is given in Table 7.

We have previously seen that, by trading between parameters,
acceptable solutions can be found over almost the full range of
the input parameters. The PCA reveals a different story, however.
In the plot, the grey region illustrates the original parameter space
projected on to each pair of PCA components. The region is not
square because the new coordinate system is not aligned with the
axes of the original hypercube. The blue regions show the projection
of models for which the luminosity function was acceptable. In this
space, it is seen that many parameters are strongly constrained
compared to their initial range. In the projections of the three most
constrained parameters, the good fits shrink towards a point. For

comparison, we show the Bow06 model as a red point. In many
projections, it is evident that it lies well to the side of the main
parameter space.

We can quantify the degree to which parameters have been con-
strained by comparing the range of the PCA components in the
initial parameter space to the range covered by the acceptable mod-
els. Note that although all the input variable have been scaled to
±1, the range of the PCA components may be greater because the
component may be aligned with a diagonal of the hypercube. The
comparison of the ranges is shown in Fig. 13. The figure quantifies
the degree to which the components are constrained. We consider
the reduction in range, since the ratio of the standard deviation
is sensitive to the orientation of the original hypercube. However,
similar results are obtained when we consider the ratio of standard
deviation of the PCA components. Three components stand out in
particular, with ranges that are less than 1/4 of their initial range.
In order to have an adequate match to the luminosity function these
components must have quite precisely determined values. However,
simply matching these values does not guarantee a fit to the data,
since the other components also need to be considered. Indeed, all
of the PCA components cover a reduced range compared to the
initial parameter space.

It is important to emphasize again that PCA cannot extract the
full interdependence of the parameters since the analysis is intrin-
sically linear. Fig. 14 illustrates the limitations. The crescent shape
arises because the observational constraints generate a non-linear
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2038 R. G. Bower et al.

Figure 11. The variation in χ2 for various data constraints as a function of the ε−1
� parameter. From top left to bottom right, the y-axes show the χ2 derived

from comparison of disc sizes, the TF relation, gas metallicity, gas mass to luminosity ratio, SDSS colours and black hole mass. The colours of data points are
the same as in Fig. 10.

dependence between the components of Var 2 and Var 10. The PCA
has selected these directions to minimize the linear variance. On
the other hand, although the emulator analysis includes terms up
to third order, it is unclear how the physical dependencies can be
extracted. Thus, despite its limitations, PCA provides a good means
of gaining insight into the physical processes driving the match to
the luminosity function.

The relationship between the PCA variables and the original
model parameters is given in Table 7. This expresses each PCA
component as a vector direction in the scaled input variables. The
components have all been normalized to unit length in the 10D
space so that a large coefficient indicates that the PCA component
direction is closely aligned with the input variable. Without first
applying the scaling given in Table 1 the relative importance would
be obscured. We consider the weight of the input variables in the
most constrained components below: although none of the compo-
nents is completely aligned with the input parameters, most have
a dominant component that can be identified with one particular
input variable. These are highlighted in the table. Below we con-
sider the three most constrained PCs, focusing on components with
contribution greater than 0.3.

Var 10 is dominated by a 70 per cent contribution from Vhot,disc. This
parameter controls the amount of mass ejected from the galaxy
disc to the halo for each solar mass of stars formed. However, an
adequate match to the luminosity function may be maintained if
an increase in Vhot,disc is offset by an increase in αreheat (decreasing
the time-scale for the material to become available for reaccre-
tion), decreasing αcool (increasing the mass scale at which AGN

feedback becomes important) and/or decreasing αhot (reducing
velocity scaling of the mass ejected from the disc).

Var 9 is dominated by a 70 per cent contribution from αcool. In-
creases in αcool can be offset by reducing the star formation ef-
ficiency (through ε�) or increasing the mass dependence of the
disc feedback (through αhot). This PCA component also has im-
portant contributions from Vhot,disc (with the opposite sign to the
cross term in Var 10) and the disc stability criterion. The physi-
cal significance of the Var 9 becomes clearer if we consider the
effect of adding a small contribution from Var 10 to create a new
component that is independent of Vhot,disc. This strengthens the
dependence on αcool, while slightly weakening the dependence
on αhot. We explore the idea of optimally rotating principal com-
ponents in Section 6.2.

Var 8 is dominated by the disc stability criterion, εdisc, with signifi-
cant contributions from the star formation rate efficiency, ε�, and
the mass dependence of feedback efficiency, αhot.

Looking at the less constrained components, we see that these
often have dominant input variables too. Var 6 and Var 4 are domi-
nated by f df (the dynamical friction time-scale), Var 5 by the yield
(increasing the metal abundance normalization), Var 3 by α� (the
star formation law exponent), Var 2 by αreheat (the time-scale for
re-incorporating ejected disc gas). Var 1, the least constrained com-
ponent, has equally strong contributions from the yield and the star
formation rate efficiency.

We have ordered the variables in Table 7 so that the most con-
strained dominant parameters appear first. This emphasizes that the
most important parameters are Vhot,disc, αcool and f stab. It is also
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The parameter space of galaxy formation 2039

Figure 12. The space of acceptable models that reproduce the local bJ and K luminosity functions projected along pairs of principal components. Blue points
show models which produce luminosity functions with implausibility less than 2.5. Grey points show the geometry of the initial allowed parameter space
in each of these projections. The principal components are chosen to minimize the variance of the models with low values of χ2. The highest components
(e.g. Var 10) are the most constrained. The Bow06 model is shown as a red filled circle. This figure illustrates the reduction in the dimensionality of parameter
space resulting from requiring a good match to a particular LF.

notable that αhot (the mass dependence of the feedback) is not dom-
inant in any particular component, but makes an important contri-
bution to many of them.

5.2 Important directions from other data

Having shown that projection pursuit using PCA provides a useful
way of capturing the geometry of the region producing acceptable
luminosity functions, we proceed to apply a second level of analysis
to examine how the introduction of additional constraints further
restricts the allowed region of parameter space.

In order to perform this analysis, we first express each model as
a function of the principal components identified by the luminosity
function constraints, as described in Section 5.1. We then renormal-

ize these components so that their variance is equal (and recentre the
distribution on the mean). This has the effect of mapping the distri-
bution of acceptable parameter region (according to the luminosity
function criterion) into a roughly spherical distribution centred on
the origin. We then further restrict the data set using the additional
data, keeping only those runs with low χ 2, and characterize this
reduced space in terms of its new principal components. We then
map these vectors back into the space defined by the scaled input
parameters, providing insight into the physical differences between
models that satisfy both the luminosity function constraints and the
additional data and those that do not. The coefficients quoted in
Table 8 are the coefficients of the scaled input variables in the ad-
ditionally constrained direction. The scalings of the original input
parameters are given in Table 1.
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Table 7. Principal components for the acceptable space of luminosity functions. The columns give the PCA variables ordered by decreasing
relative standard deviation, where the relative standard deviation is the standard deviation of the component when the initial range of variables
has been scaled to the range ±1. Small relative standard deviations correspond to components that are tightly constrained by the requirement
of producing a good luminosity function. Dominant input variables in each of the vectors are highlighted in bold font. The variables have
been ordered so that the most constrained components appear last.

Var 1 Var 2 Var 3 Var 4 Var 5 Var 6 Var 7 Var 8 Var 9 Var 10

Ṽhot,disc 0.198 0.112 −0.231 −0.283 0.334 0.311 0.0637 −0.114 −0.256 0.724
α̃cool −0.386 0.361 0.136 −0.00109 −0.00943 −0.0733 0.0977 −0.265 0.713 0.33
f̃stab −0.149 −0.147 0.247 −0.312 −0.0218 0.331 −0.104 0.781 0.236 0.103

Ṽhot,burst −0.115 −0.167 0.414 −0.234 0.102 0.173 0.783 −0.181 −0.135 −0.168
τ̃0,mrg −0.203 0.0895 0.0975 0.729 0.0545 0.627 −0.0033 0.00626 −0.116 0.0238
p̃yield −0.581 0.043 −0.263 0.0517 0.632 −0.3 0.0585 0.223 −0.183 −0.109
α̃� 0.214 0.0194 0.718 0.0465 0.49 −0.152 −0.392 −0.127 −0.0453 0.0239

α̃reheat 0.0702 0.780 −0.031 −0.313 0.051 0.273 −0.0775 0.0104 −0.104 −0.44
ε̃−1
� 0.589 0.111 −0.166 0.297 0.348 −0.102 0.383 0.302 0.387 −0.082

α̃hot −0.013 0.421 0.27 0.213 −0.333 −0.41 0.229 0.341 −0.379 0.337

Range ratio 0.598 0.554 0.496 0.469 0.487 0.357 0.343 0.21 0.167 0.0945

Mean 0.00341 0.00371 −0.265 0.0368 −0.244 0.00854 −0.132 0.153 −0.279 0.697
Rel. Std. Dev. 0.679 0.65 0.564 0.487 0.418 0.393 0.323 0.224 0.145 0.0854

Figure 13. The reduction in the range of the PCA components from re-
quiring that the model produces a low implausibility luminosity function.
The PCA components are ordered by their variance, while the vertical axis
shows the ratio of the range of acceptable models to the range of the PCA
components in the initial parameter space.

We find that the analysis reveals significant constraints that arise
from adding data on the disc sizes, the MHI to LB ratio and the TF
relation. The dependence of χ 2 on the most constrained component
is shown for each of the data sets in Fig. 15. The importance of these
data sets was already apparent because of the clear dependence on
ε−1
� in Fig. 11; however, the PCA is capable of revealing constraints

that are based on combinations of parameters that would not have
been evident in a simpler analysis. For example, contrast the evident
bunching of the low χ 2 points in the first panel [which shows
χ 2(disc size)] with the absence of clear trends in Fig. 10.

The reduction in the standard deviation due to the PCA is shown
in Table 8, together with the model’s additionally constrained
directions. It is immediately apparent that the directions due to
the gas mass to LB ratio and the TF relation constraints are similar.
Not only do both have dominant contributions from ε−1

� , but the
weighting of most other variables are also similar.

While the disc size constraint also depends strongly on ε−1
� , the

overall direction of the constraint is different from that implied by
the Gas to LB ratio, and the TF relation, and the constrained direc-

Figure 14. Close up of one PCA projection, showing that the acceptable
space is not linear, and cannot be accurately described by the principal
components.

tion also depends equally strongly on the yield and αcool parameters.
Thus, models which match all the data sets tend to have low val-
ues of ε−1

� , selecting particular values for the other parameters to
compensate for this. This is evident in Fig. 11, and explains the
trend for the accepted models to be squeezed into the lower left
corner of the first panel. This tension has also been apparent in ear-
lier versions of the GALFORM code (e.g. Cole et al. 2000); however,
the analysis scheme presented here provides an objective means
of identifying the interplay between observational constraints and
model parameters.

6 D ISCUSSION

In this paper, we have set out to explore the parameter space of
the GALFORM semi-analytic model. The model implements the key
physical processes that define the formation of galaxies, including
the hierarchical growth of dark matter haloes, gas accretion and
cooling, and the feedback effects of supernovae and AGN. The
model we use contains 16 parameters that describe these processes.
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Table 8. The most additionally constrained directions using various complimentary data sets in addition to the luminosity
function constraints. For each data set, the table shows the most constrained component vector together with the factor by
which the standard deviation is reduced. Directions are quoted relative to the normalized parameter range: the scaling is
given in Table 1. These components provide physical insight into the effect of introducing the additional data sets. Only
data sets which resulted in a significant additional constraint are shown: the other data sets considered in Section 4.3
do not result in strong additional linear constraints on parameter combinations. Parameters with no contribution greater
than 0.2 have been suppressed. Note that the best constrained directions are similar for the TF and gas mass to luminosity
data sets.

Relative Std. Dev. Ṽhot,disc α̃cool ε̃−1
� f̃stab p̃yield α̃� ε̃Edd

Disc size 0.49 0.301 −0.519 0.468 −0.119 −0.449 −0.269 −0.021
Gas mass to LB 0.40 0.16 −0.251 0.764 −0.282 −0.197 −0.334 −0.205

TF relation 0.29 0.264 −0.33 0.775 −0.207 −0.202 −0.24 −0.196

Figure 15. We show the χ2 values of the models as functions of some of the most additionally constrained principal components identified in Table 8. In each
panel, we show the most constrained component (x-axis) resulting from requiring the model to match the data sets shown on the y-axis. Note that the vector
direction represented by the axis is different in each plot (see Table 8). The Bow06 model is shown in red. Green solid points highlight models which gave fits
comparable to, or better than, Bow06 in all the tests given in Table 6. Note how the chosen projection results in a bunching of the low χ2 models compared to
the full set. All the points plotted produce an acceptable match to the luminosity function data.

Some parameters have strongly constrained, physically plausible
values; others represent poorly understood physical processes and
are only weekly constrained by the observational data used here.
Bow06 identified a largely successful point in this parameter space
by matching the local bJ- and K-band luminosity functions. In this
paper we set out to find out how unique this point is and to explore
whether other parameter combinations could perform equally well
(or better) at reproducing local galaxy properties.

6.1 The model emulator technique

We have adopted the Model Emulator technique to efficiently but
conservatively search the 16D parameter space. The essence of the
approach is to build a statistical predictor for model results on the
basis of a limited set of model runs. This is a Bayesian approach,
where we are aiming to quantify the information we derive from
the runs. We use the statistical model to identify regions where
we are confident that an acceptable fit will not be found. Such
regions are denoted as ‘implausible’ and excluded from further
consideration. A second wave of emulation is then performed to
better characterize the surviving portion of parameter space. After
four waves of emulation, we are left with an accurate emulation
of the model that defines a ‘not implausible’ region containing
0.26 per cent of the original volume. A run within this region is not

guaranteed to give a statistical match to the observational data, and
subsequent runs within this region are needed to identify acceptable
model realizations.

In this paper, we have focused on matching to the observed bJ- and
K-band luminosity functions of galaxies in order to parallel the ap-
proach used in Bow06. An important issue has been to quantify the
observational and model uncertainties. A key concept has been that
of model discrepancy. This term accounts for the expected accuracy
of the model itself: since the semi-analytic model is inherently an
approximation to the true physical process, we are willing to accept
models which come close to the observational data but do not match
it exactly. This is a key concept in our Bayesian approach, and it
differs from most previous work in which the philosophy is to adapt
the model parameters to find fits consistent within the observational
uncertainties alone. We argue that it is important to explicitly ac-
count for the approximate nature of the model, and that ignoring the
model discrepancy term will lead to overzealous exclusion of some
regions of parameter space. In this sense, the model discrepancy
term makes our approach conservative. Naturally, it is potentially
of interest to investigate the effect of reducing the model discrep-
ancy term in order to guide improvements to the model. However,
we feel that improvements in the model are currently better driven
by comparison to additional data sets, where the tensions in the
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model can be more easily exposed (as illustrated in Section 4.3).
Formal discussion of the process of ‘model reification’ can be found
in Goldstein & Rougier (2009).

We have accepted models at the 2.5σ level, which equates to mod-
els that come within a factor of approximately 1.54 of the observed
luminosity function (i.e. a factor of 102.5×0.0753; see Section 3.6).
Since the dynamic range of the luminosity function covers almost
5 orders of magnitude in space density this term appears relatively
small in any visual comparison, as can be seen from Fig. 8. Ac-
ceptable luminosity functions are generally very good matches to
the luminosity function around the knee of the luminosity function.
It is evident that many models struggle to match the very bright
part of the bJ luminosity function, even though they provide a good
description of the break in the K-band luminosity function. Physi-
cally, these models tend to allow a small amount of star formation
to take place in the most massive systems.

Nevertheless, the model emulator suggests that plausible matches
to the luminosity functions may be found over a large fraction of
the parameter ranges. However, this results from a fine-tuned inter-
play between parameters and the acceptable models are confined
to thin hyperplanes. Out of the 16 input variables, we find that 10
need to be taken into account in order to make the emulator predic-
tions. These are labelled ’A’ in Table 1. The remaining parameters
(εEdd, fellip, fburst, Fbh, vcut and zcut) have a weak effect on the lumi-
nosity functions (although it may have significant impact on other
aspects of the model). Although we have achieved a large reduction
in parameter space, further model runs need to be performed to
determine whether each point actually returns a statistically accept-
able luminosity function. Out of a sample of 2000 runs surviving
the Wave 4 implausibility cut-off, we find 113 runs that provide
acceptable fits to the luminosity function, implying that only 0.014
per cent of the initial input parameter space is compatible with the
combined observational constraints and model discrepancy terms.

Although the model emulator technique is gaining favour in
other areas of scientific modelling, we could have applied the
MCMC method to the problem. This approach has been pursued by
Henriques et al. (2009) and Kampakoglou et al. (2008). How-
ever, they consider only a small subset of the possible parameters,
analysing a 6D and 7D space, respectively, while we consider 16D
space. We note that while ‘only’ 10 active variables are included
in our fitting functions, the full parameter space is considered by
the emulator. The active variables do not need to be guessed in
advance of the minimization process, and are all varied in all our
GALFORM runs. Moreover, the approach we adopt is readily adapted
as introducing new physical processes in the GALFORM model gen-
erates even higher dimensionality (e.g. Baugh et al. 2005; Benson
& Bower 2010).

Our galaxy formation model is most comparable to that used by
Henriques et al. (2009) (which is based on Croton et al. 2006).
Comparison of the results is, however, complicated because several
of their chosen parameters do not have direct equivalents in our code
and their analysis does not allow for any model discrepancy term.
Nevertheless, their results for luminosity function constraints are
qualitatively similar to ours, given the lower dimensionality of their
investigation. A significant difference is that they find that including
constraints on the black hole mass–bulge mass correlation strongly
constrains the parametrization. In contrast, we find that this relation
adds little constraint. This arises from the very different treatment
of black hole feedback in the two models: with the larger number of
parameters that we consider, we find that the black hole mass may
be adjusted largely independently of the galaxy luminosity function.
This illustrates the potential danger of including too few dimensions

in the analysis, since this artificially restricts the dimensionality of
the problem. As we have stressed, parameters should be allowed
freedom to vary even if their prior distributions are significantly
constrained. If the emulator finds that the prior range has little
impact on the model output, it will reject the parameter from further
consideration. This is not a qualitative decision that should be made
at the outset. In future models, we will also allow the cosmological
parameters to vary within their prior distributions. This is difficult
if the model is driven by N-body simulations, but is possible if
it is driven by the improved Monte Carlo merger-tree generators
such Parkinson, Cole & Helly (2008). In principle, the MCMC
method (e.g. Trotta 2008) could be applied to higher dimensionality
problems, however, it then becomes hard to drive convergence of
the MCMC chains. In the statistical model fitting literature, these
scaling problems have meant that MCMC is falling out of favour,
being replaced by the emulator techniques that we have applied here,
which were specifically designed to deal with high-dimensional
models (e.g. Oakley & O’Hagan 2004; Heitmann et al. 2009). As
the dimensionality of the GALFORM model increases further (Benson
& Bower 2010) the advantages of the emulator technique become
even more relevant.

Our experience in 16D space suggests that the techniques could
be extended to even higher dimensions, with a relatively modest
increase in computing effort. To arrive at the emulation presented
here, we performed 5500 model runs. This was by no means the
minimum number of evaluations, and we have tended to be very con-
servative in the strategy adopted. A number of techniques could be
used to speed up the calculations, for example performing smaller,
low accuracy runs for the initial waves, increasing the accuracy as
the not implausible region shrinks. An important aspect of the em-
ulator technique is that variables are only explicitly included in the
emulator, when the statistical improvement in doing so is justified.
Thus, adding irrelevant (and even degenerate) variables does not
unduly handicap the method.

6.2 Projection pursuit

The emulator technique provides a reliable statistical description of
the GALFORM model. This allows rapid estimation of the likely suc-
cess of different regions of parameter space. However, the statistical
model does not easily provide insight into the physical interactions
between parameters. PCA of the successful runs provides a compli-
mentary analysis, allowing us to orient the parameter space so as to
reveal the most tightly constrained model parameters. We find that
three directions are strongly constrained, corresponding to linear
combinations of the Vhot,disc, αcool, ε−1

� , αreheat and αhot. This makes
good physical sense: increasing the strength of disc feedback needs
to be balanced by reducing the time-scale for reheated gas to fall
back to the disc, for example. Setting these parameters to an ap-
propriate combination is necessary to arrive at good models but it
is not sufficient, and we stress that all 10 active parameters play a
significant role.

As well as providing physical insight, the PCA components pro-
vide a means of orienting future parameter space exploration. For
example, if we were to start from a single acceptable model, we
can attempt to generate another by moving along the PCA hyper-
planes. If we select a value for Ṽhot,disc, Var 10 (in Table 9) suggests
we adopt a particular combination of α̃cool, α̃reheat and α̃hot (plus
smaller contributions from the other parameters). Since Vhot,disc

is fixed, Var 9 and Var 8 provide two additional linear equations
linking (primarily) α̃cool, ε̃−1

� and α̃hot. By choosing one of the four
variables, we can invert the system of equations and arrive at a good
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Table 9. The three most constrained PCA components have been combined
to diagonalize the constraints on Vhot,disc, αcool and f stab. We use the nota-
tion Var′′ 8 (etc.) to emphasize that these variables are distinct from those in
Table 7. This rotation makes the physical dependence of these strongly con-
strained variables evident (see text for details). Coefficients larger than 0.2
have been highlighted in bold. Note that these directions are not normalized.

Var′′ 8 Var′′ 9 Var′′ 10

Ṽhot,disc 1
α̃cool 1
f̃stab 1

Ṽhot,burst 0.30 −0.14 0.13
τ̃0,mrg 0.03 −0.11 −0.08
p̃yield 0.17 0.32 −0.03
α̃� 0.16 0.0 −0.05

α̃reheat −0.14 0.26 −0.47
ε̃−1
� 0.44 −0.29 −0.30

α̃hot 0.37 0.43 0.62

Mean 0.29 −0.13 0.99

Table 10. Equations describing the broad brush interactions between the
most constrained parameters. These relations have been derived from Ta-
ble 9. Note that these relations are highly approximate and only capture a
small fraction of the behaviour described by the model emulator.

Vhot,disc = 550 + 110 α̃reheat + 70 ε̃−1
� − 140 α̃hot (km s−1)

αcool = 0.64 + 0.16 p̃yield + 0.13 α̃reheat − 0.14 ε̃−1
� + 0.22 α̃hot

f stab = 0.84 − 0.04 Ṽhot,burst − 0.07 ε̃−1
� − 0.06 α̃hot

‘guess’ for an acceptable model. For example, we have already sug-
gested that angular momentum transport in the model needs to be
improved. This would result in denser gas discs and thus a change
in the disc dynamical time. However, from outside the galaxy this
change would be broadly like a shift in the effective value of the
ε−1
� parameter.

We can investigate this further by noting that the variance of
Var 8, 9 and 10 is similar. Together, they define the directions of
a 7D hyperplane within which the model is significantly less well
constrained, while it is strongly constrained in the three perpendic-
ular directions. However, we can select a new linear combination
of these components and define the seven-plane equally well.5 In
particular, we can choose to ‘diagonalize’ the contributions from
Ṽhot,disc, α̃cool and f̃stab, the variables with the largest contributions
to the PCA components. The result of applying the diagonalization
procedure is to define the new component vectors given in Table 9.
If we now drop terms with coefficients less than 0.2, we can ar-
rive at a simple (but approximate) description of how Ṽhot,disc, α̃cool

and f̃stab should vary as a function of the other active variables in
order to keep within the seven plane. These equations are given in
Table 10, where we have translated the scaled variables back to their
original units in order to make the physical dependence more ap-
parent. Because we eliminated terms with small coefficients, τ̃0,mrg

and α̃� do not appear in these expressions. Examining the equations
gives useful insight into the interplay of the parameters. For ex-
ample, it shows that the most successful models require very high
values for the feedback parameter Vhot,disc, close to the maximum

5 If the variances had been equal, the PCA components would be degenerate
and all linear combinations would be equivalent. We could visualize a three-
disc lying within the seven-plane. Since the variances are not exactly equal,
the three-disc is distorted slightly into an ellipsoid.

value allowed in our analysis. In order to match the luminosity func-
tion with a lower value, low values must be chosen for α̃reheat (the
time-scale on which reheated gas fall back into the galaxy must be
increased) and ε̃−1

� (the disc star formation rate must be reduced) and
high values for α̃hot (the relative strength of feedback in low-mass
galaxies is increased). Similarly, we see that high values for α̃hot

imply that α̃cool must be increased (increasing the mass at which the
radio-mode feedback operates); however, decreases in both α̃reheat

and ε̃−1
� have a compensating effect on αcool. The appropriate choice

of αcool is also dependent on p̃yield, as would be expected from the
metallicity dependence of the cooling function.

These trends can be confirmed by looking at Fig. 4, however it
is evident that the description of the trends in terms of a few com-
ponents loses a great deal of the true complexity of the underlying
parameter space. Thus, while consideration of the PCA components
provides a useful guide to how we should remap the parameter space
in order to capture the best-fitting parameter region, it must be re-
membered that PCA is fundamentally linear and its description is
very approximate. The restriction to linear dependencies does not
apply to the emulator technique.

6.3 Additional data sets

In this paper, we have followed the approach of Bow06, primar-
ily requiring that the model be able to reproduce the bJ and K
luminosity functions at an acceptable level of accuracy, only exam-
ining the other data sets for the models which passed this test. Other
published models have often included additional observational con-
straints from the start (e.g. Cole et al. 2000). Clearly, an alternative
strategy to that followed here would be to emulate the full range
of data at the outset, perhaps including both high- and low-redshift
constraints. We have been initially cautious of this approach since
the model implausibility must be combined across different data
sets in a carefully thought-out manner and weighting the data from
prior knowledge would require much consideration. Moreover, if
the two data sets are in contradiction, this can lead to overcon-
fident exclusion of parameter space regions, rather than pointing
to a particular area in which the model needs improvement. The
tension between the disc size and TF relation data sets is a clear
case of this. Applying a strict requirement that the model match
both data sets greatly restricts the acceptable parameter region.
The physical cause of this tension is the baryonic contraction of the
halo, something that is perennial problem in models of disc galaxies
(cf. Cole et al. 2000). However, the degree of contraction is strongly
dependent on the angular momentum distribution of the accreted
material and the treatment of contraction in disc instabilities (see
Benson & Bower 2010). It is therefore questionable if we should re-
ject models on the basis of this tension at the outset, and an approach
of considering data sets separately may be preferable.

We find that the disc size, TF and gas mass to luminosity ratio
data sets provide the strongest additional constraints (i.e. in addi-
tion to the luminosity function constraints). Qualitatively similar
conclusions were reached previously by Cole et al. (2000), using an
earlier version of the GALFORM model, and following the traditional
approach of perturbing parameters away from their ‘best-fitting’
values and visually inspecting the results. In contrast, the methods
we develop here are objective and do not rely on visual assess-
ment. Although, data on colours and metallicity provide additional
restrictions, at the level that is considered here, they provide lit-
tle additional leverage over comparison of the luminosity functions.
Future model changes that improve treatment of angular momentum
and baryonic contraction should allow these data sets (and others
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that we have not considered here, such as the X-ray luminosities of
groups and clusters; Bower et al. 2008) to play a more consistent
role. Inclusion of high-z data sets is also possible; however, there
is clearly a balance to be struck between using all the available
data to calibrate the model and holding some data sets in reserve
to act as a test of the model’s predictive (or rather ‘post-dictive’)
power.

7 C O N C L U S I O N S

The GALFORM model is a semi-analytic model of the galaxy formation
process that has been extensively used to understand the formation
of galaxies. Different versions of GALFORM have used varying pre-
scriptions for some of the key physical processes, and have been
tuned to match different, though overlapping, observational data
sets (Cole et al. 2000; Baugh et al. 2005; Bow06). In particular,
the Bow06 version of the model, incorporating AGN feedback, has
been successful in providing a good description of both the bJ- and
K-band luminosity functions of present-day galaxies and the evolu-
tion of the K-band luminosity function with redshift. However, the
Bow06 model represents one selection of parameters from a vast
16D parameter space (which is in turn a subspace of the full GALFORM

parameter space), and it is natural to ask how unique the model is. In
particular, we would like to identify the region of parameter space
that is constrained in this way, allowing us to understand the degen-
eracies between the input parameters and their relative importance.
Unfortunately, direct evaluation of the model with a uniform and
sufficiently dense covering of the parameter space is not feasible
because of the high-dimensionality of the parameter space and the
relatively long run-time of the model. This is a common problem
in many computer-modelling disciplines, such as climate change
modelling, and there is great interest in developing efficient mathe-
matical techniques that optimize the use of the available computing
resource.

In this paper, we have used the model emulator technique (Craig
et al. 1996, 1997; Kennedy & O’Hagan 2001) to explore the full
16D parameter space of the Bow06 galaxy formation model. Rather
than trying to evaluate the model directly at all points in parameter
space, we run the model at a sparse sampling of points and then
construct an emulator of the model that allows us to interpolate
between these points. A key aspect of this construction is that we
are not only able to establish an expectation value for the model’s
performance between runs, but are also able to encapsulate the de-
gree of uncertainty in this estimate. Thus, we can use the emulator
to identify regions in which the run outcome is uncertain and target
additional evaluations there. By proceeding in waves of iterations,
we focus the model evaluation down on a smaller and smaller re-
gion in which run outcomes are likely to accurately reproduce the
observational data.

Another important aspect of our approach is that we introduce
the concept of ‘model discrepancy’. This is a small additional vari-
ance term that is included to explicitly account for the level of ap-
proximation inherent in the GALFORM model. This term means that
model luminosity functions which lie within a factor of 1.54 of the
observed luminosity functions are deemed acceptable, even if the
observational errors are much smaller than this. This term ensures
that we do not attempt to over fit the model and rule out regions of
parameter space when this is not justified (given the approximate
nature of the model).

The method is shown to be highly effective. We find that
0.014 per cent of the input parameter space produces model lu-
minosity functions that are acceptable matches to the observed bJ-

and K-band luminosity functions from Norberg et al. (2002) and
Cole et al. (2001) (although in common with previous versions of
the code, acceptable models tend to lie slightly above the faintest
K-band measurements). However, we find that although the region
of parameter space is small, acceptable fits can be obtained as pa-
rameters are adjusted over a large fraction of their input range. We
show that the choice of parameters in the Bow06 model is not unique
in reproducing the observational data and that other choices of pa-
rameters perform at least equally well: changes in one parameter
may be compensated by adjusting several other parameters to leave
the predicted luminosity functions almost unchanged. However,
while some parameters play a vital role in adjusting the luminosity
function to match the observational data, others have little effect on
this (when adjusted within the range explored). Interestingly, these
inactive parameters include the re-ionization parameters (vcut, zcut),
suggesting that these affect only galaxies below the faintest lu-
minosities included in our luminosity function, and the merger
parameters (these are masked by the dominance of disc instabil-
ities in the model and, to some extent, the lack of morphological
constraints).

In order to explore the parameter dependencies further, we have
investigated using PCA to identify the optimal projections of the
data. These allow us to identify the hyperplane on to which the data
are constrained by the luminosity function data. This analysis re-
veals physically interesting interactions between the data, although
each plane generally includes contributions from a large number of
parameters. We have briefly explored how these directions can be
rotated to reveal simple relations between the parameters that must
be obeyed in order to obtain a well-fitting model. For example, we
are able to quantify the relationship between the feedback parame-
ters (Vhot,disc, Vhot,burst, αhot), the return time-scale for reheated gas
(αreheat) and the star formation parameter (ε−1

� ). However, although
these relations can provide a useful check on physical intuition and
understanding, they do not reproduce the full non-linear complexity
of the model that is captured by the model emulator.

We have also briefly explored the impact of adding additional
data sets to constrain the model by evaluating a simple χ 2 statistic
against observational data sets describing disc sizes, the TF relation,
gas metallicity, the gas-mass-to-light ratio, the galaxy colour dis-
tribution and the black hole mass-bulge mass correlation. We find
that the disc sizes, the gas-to-light ratio and the TF relation place
the strongest additional constraints on the model. Similar conclu-
sions were reached by Cole et al. (2000) using an earlier version of
GALFORM, who followed the traditional approach of manually vary-
ing parameters and then visually inspected the results. The great ad-
vantage of the new approach presented here is that it is automated,
objective and reveals the couplings between different parameters
in their effects on observable quantities. However, we find that the
direction of constraint from the disc size data is in contradiction
to the constraints imposed by the gas mass to luminosity ratio and
TF relation data. The disc size data present a particular challenge
for the Bow06 model, and the issue has been explored in detail in
González et al. (2009).

The model considered here was deliberately restricted to the ver-
sion of GALFORM used in Bow06. In future papers we will apply the
same general methods to a broader class of GALFORM models, includ-
ing processes such as feedback from galaxy superwinds (Benson
et al. 2003a), variations in the IMF (Baugh et al. 2005), ram-pressure
stripping (Font et al. 2008), and X-ray emission from hydrostatic
haloes (Bower et al. 2008), greatly increasing the model parameter
space. This leads to a new challenge – but it is one that we now have
the statistical techniques to meet.
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