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ABSTRACT 14 

Interest in social learning has been fuelled by claims of ‘culture’ in wild animals.  These 15 

remain controversial because alternative explanations to social learning, such as asocial 16 

learning or ecological differences, remain difficult to refute.  Compared to in the laboratory, 17 

the study of social learning in natural contexts is in its infancy.  Here, we apply two new 18 

statistical methods (Option Bias Analysis and Network Based Diffusion Analysis) for the first 19 

time to data from the wild, complemented by standard inferential statistics.  Contrary to 20 

common thought regarding the cognitive abilities of prosimian primates, we find evidence 21 

consistent with social learning, within sub-groups, in the Ring-tailed lemur (Lemur catta), 22 

supporting the theory of directed social learning (Coussi-Korbel & Fragaszy, 1995).  We also 23 

caution that, as the tool-box for capturing social learning in natural contexts grows, care is 24 

required in ensuring the methods employed are appropriate, in particular regarding social 25 

dynamics of study subjects. 26 

 27 
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  33 



INTRODUCTION 34 

Social learning, or learning from others, is of widespread current interest because it 35 

potentially provides a means by which animals can acquire adaptive information about their 36 

environment rapidly and efficiently. Social learning is thought to underlie the rapid diffusion 37 

of novel behavioral variants, inter-population variation in behavior, and cultural traditions, in 38 

animals from fishes to apes (Lefebvre & Palameta, 1988; Rendell & Whitehead 2001; 39 

Warner, 1988; Whiten, 1999).  Interest in animal social learning has also been fuelled by 40 

reports of intra- and inter-population variation in the behavioral repertoires of animal 41 

populations, spawning claims of ‘culture’ in apes (McGrew 1998; van Schaik et al., 2003; 42 

Whiten et al., 1999) cetaceans (Krützen et al., 2005; Rendell & Whitehead 2001), and 43 

monkeys (Leca, Gunst, & Huffman, 2007; Perry et al., 2003). However, claims that these 44 

data demonstrate animal cultures remain controversial because alternative explanations to 45 

social learning, such as genetic proclivities or ecological differences, remain difficult to 46 

refute (see Laland et al., 2009) despite innovative work in captivity (eg. Whiten, Spiteri, 47 

Horner, Bonnie et al. 2007). Moreover, as learning is frequently functional, adaptive, based 48 

on genetic proclivities, and responsive to ecological resources, the current ‘ethnographic’ 49 

method, which proclaims culture where the alternatives can be dismissed, is vulnerable to 50 

excluding genuine cases of social learning. Thus, compared to the controlled laboratory study 51 

of social learning, and despite pioneering work with apes and cetaceans (see Whiten et al., 52 

1999; Sargeant & Mann 2009; Whitehead, 2009), we are lacking in tools for unequivocally 53 

capturing social learning in natural contexts, whether in the wild or captivity. 54 

 55 

Recently, however, several statistical methods have been created to aid in the task of 56 

identifying social learning in naturalistic contexts (eg. Boogert, Reader, Hoppitt, & Laland, 57 

2008; Kendal, Kendal, & Laland, 2007; Kendal, Kendal, Hoppitt, & Laland, 2009a; Franz & 58 

Nunn, 2009; Matthews, 2009). We presented a solution to the problem, in the form of a 59 

method known as option-bias analysis (Kendal et al., 2009a).  The method is based on the 60 

well-established premise of social learning research, that –when ecological and genetic 61 

differences are accounted for - social learning can generate greater homogeneity in behavior 62 

between animals than expected in its absence (but see Thornton & Malapert 2009). For 63 

example, when probing for termites in their mound, chimpanzees are reported to use either a 64 

short- or long-twig method (Whiten et al., 1999) and when manufacturing ‘wide’ Pandanus 65 

leaf tools New Caledonian Crows, Corvus moneduloides, have three variants available to 66 

them (Holzhaider, Hunt & Gray, this issue). If this behavior is learned socially then a given 67 



population may disproportionately use one method, whereas if it is learned asocially one 68 

might expect use of both methods in proportion to their opportunity and profitability. Thus, 69 

provided alternative forms of bias can be ruled out (e.g. genetic or ecological), the level of 70 

homogeneity of behavior within a population potentially provides a metric that can be used 71 

probabilistically to detect a social influence on learning. In order to test for social learning in 72 

the observed data, however, the probability that option biases of the magnitude observed in 73 

the actual data could be the result of chance or asocial learning alone must be computed. 74 

 75 

The option-bias method compares the observed level of homogeneity to a sampling 76 

distribution generated utilizing randomization and other procedures, allowing claims of social 77 

learning to be evaluated according to consensual standards. The approach circumvents the 78 

inherent problems arising from the lack of a controlled ‘demonstrator-observer’ scenario, 79 

tasks that afford few alternatives for solution, incomplete data, small group sizes and low 80 

statistical power. Thus it was hoped that the method would prove useful to other researchers 81 

attempting to distinguish social and asocial learning in social contexts and provide a new and 82 

potentially valuable tool for the identification of cultural traditions.  Accordingly, the R code 83 

is freely available
1
 for others to apply this method, which can be deployed within controlled 84 

experimental and captive animal settings and to natural datasets too.  Crucially, the method 85 

does not require the researcher to record the inception and initial spread of the trait which 86 

further enhances its utility in natural populations.  The method was illustrated through 87 

application to data from groups of Callitrichid monkeys provided with novel two option 88 

extractive foraging tasks, providing evidence that social learning could be distinguished from 89 

unlearned processes and asocial learning, and revealing that the monkeys only employed 90 

social learning for the more difficult tasks (Kendal et al., 2009a). The method was further 91 

validated against published datasets, showing social learning using standard statistics, and 92 

through simulation, and exhibited higher statistical power than conventional inferential 93 

statistics (ibid). 94 

 95 

An alternative technique, recently developed by Franz and Nunn (2009; this issue) and 96 

extended upon by Hoppitt and colleagues (Hoppitt, Boogert & Laland, 2010; Hoppitt, 97 

Kandler, Kendal & Laland, this issue) is Network Based Diffusion Analysis (NBDA).  Here, 98 

rather than focusing on homogeneity of behavior, the social network of a group is utilized to 99 

                                                           
1
 Much of the freeware for these methods can be found at http://lalandlab.st-andrews.ac.uk/freeware.html 
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identify social learning. The method is based on the intuitive yet understudied and 100 

unsupported (see Boogert et al., 2008) theory of directed social learning (Coussi-Korbel & 101 

Fragaszy 1995) that information is transmitted or directed  through sub-sections of non-102 

human primate populations at different rates according to age, sex, status or association 103 

patterns. Accordingly in NBDA social learning opportunities are assumed to be constrained 104 

by a social network such that the probability of learning from skilled individuals is dictated 105 

by the strength of connection to them. The approach requires as inputs (i) a social network 106 

which may be asymmetrical, for example grooming, or symmetrical, for example proximity 107 

and (ii) diffusion data represented as either the order of acquisition - (OADA, Hoppitt et al. 108 

2010) or timing of acquisition - (TADA, Franz & Nunn, this issue) of a novel behavior 109 

pattern. In the extended NBDA/TADA method, agent based models of social and asocial 110 

learning (relating to the social network) and pure asocial learning (regardless of the network) 111 

are fit to the observed diffusion data using maximum likelihood estimation. The model with 112 

the best fit to the data is then identified using the Akaike information criterion.  The authors 113 

designed the method as a more reliable alternative to the use of diffusion curve analysis 114 

(Reader, 2004) in assessing evidence for social learning in free-living animals and as such 115 

made the R code freely available alongside their paper (Franz & Nunn 2009) and assess its 116 

utility in the field (this issue).  Although the method requires more substantial data than the 117 

option-bias method it has the potential to be used to asses the evidence for social learning 118 

strategies (Laland, 2004), especially regarding from whom individuals learn.  Development 119 

of the embryonic empirical investigation of social learning strategies (Kendal, Coolen, van 120 

Bergen & Laland, 2005; Kendal, Coolen & Laland, 2009b) in the wild can contribute 121 

extensively to our understanding of the evolution of human cultural capacities by facilitating 122 

comparative analysis. 123 

 124 

These alternative simulation and modeling methods will be most powerful when used 125 

alongside more conventional inferential statistics such as those used by other researchers of 126 

free-living groups.  For example, Perry (2009) in analysis of an extensive long-term data set 127 

used generalized linear models to investigate the assumption that the proportion of learned 128 

behavioral variants observed by an individual predicts the proportion of learned behavioral 129 

variants performed.  Specifically, such regression analyses revealed that the technique most 130 

frequently observed for accessing seeds from Luehea candida fruits, during development, 131 

significantly predicted the technique adopted by female, and to a lesser extent, male white 132 

faced capuchins (Cebus capucinus) in the wild.  An alternative measure of the influence of 133 



observational opportunities on subsequent learning is an investigation of the relationship 134 

between the ‘learning time’ (latency between first contact and first success) and the latency of 135 

first contact (Day, 2003; Boogert et al., 2008).  Here, a negative relationship is assumed to 136 

indicate social learning as those who contacted the task later are thought to have had 137 

increased observational opportunities and would thus have a reduced ‘learning time’.  Finally, 138 

we may profit, if only opportunistically where groups are not exposed to demonstrations of a 139 

novel behavioral variant by the experimenter, from techniques developed by researchers 140 

using the ‘two group with control’ method in captivity (e.g. Hopper et al., 2007; Whiten, 141 

Horner, & de Waal, 2005).  Consistent with the option-bias assumptions, traditions are 142 

identified by determining whether there is a statistical difference between groups, seeded 143 

with demonstrators trained in alternate techniques to gain a resource, in the proportion of one 144 

(of the two) alternative techniques used.  145 

  146 

Our aim is to use a variety of methods in combination to test for social learning in foraging 147 

data collected from wild ring tailed lemurs (Lemur catta), and to reflect on any constraints 148 

upon their use and other methodological considerations.  As the observation of a novel 149 

behavior (or innovation) in the wild is opportunistic, we adopt the strategy of a field 150 

experiment (see Reader & Biro, this issue).  Here we introduce artificial extractive foraging 151 

tasks and monitor the spread of the novel behavior pattern.  This has the advantage that we 152 

may observe the inception of the novel trait and test for social learning to solve the task and 153 

also the preference for extraction variants afforded by the task’s design.  Also as transmission 154 

of information may only occur when the task is in place, we may be sure that we do not miss 155 

any transmission events – a common worry with more opportunistic data collection regarding 156 

naturally occurring ‘tasks’(eg. termite fishing) in the field (see Franz & Nunn, this issue).   157 

 158 

Lemur catta live in multimale-multifemale groups of 5 to 27 individuals with a 1:1 sex ratio, 159 

female philopatry and male dispersal (Gould 1997; Nakamichi, Rakototiana & Koyama, 160 

1997). They exhibit top-down ‘despotic hierarchies’ (Sapolsky, 2005) and adult females are 161 

dominant over males (Jolly 1996) and although rank order in both sexes is usually linear, it 162 

can occasionally be triangular (Koyama, Ichino, Nakamichi & Takahata, 2005). Unlike 163 

Cercopithecine monkeys, adult daughters are not always ranked below their mothers 164 

(Koyama et al., 2005). Mothers, daughters and sisters often form affiliated pairs or triads, 165 

while barely tolerating more distantly related relatives (such as cousins or granddaughters) 166 

(Jolly & Pride, 1999).  There are conflicting reports regarding the cognitive abilities of 167 



lemurs with some reporting minimal comprehension when presented with novel foraging 168 

tasks (Fornasieri, Anderson, & Roeder, 1990; Anderson, Fornasieri, Ludes, & Roeder, 1992) 169 

or objects (Jolly, 1966), and others suggesting that lemurs learn to use tools as quickly as 170 

haplorhine species and, in some cases, more flexibly (Santos, Mahajan & Barnes, 2005). 171 

Lemur species are, however, understudied in the field of social learning.  An early open 172 

diffusion study of a single captive group of Lemur catta faced with a novel foraging task 173 

(Kappeler, 1987), whilst describing possible patterns of innovation and social transmission, 174 

did not attempt to assess the learning mechanisms (social or asocial) involved. Likewise, a 175 

study of the naturally occurring phenomenon of ‘drinking from tails’ in captive Lemur catta 176 

although suggestive of social learning offered no information regarding the transmission of 177 

the novel behavior pattern as it was already well established in the group (Hosey, Jacques & 178 

Pitts, 1997). Several studies of the introduction of novel foraging tasks in lemurs have, 179 

however, reported a strong influence of social rank upon access to novel tasks and 180 

consequent expression of the novel trait in individuals, whether through social or asocial 181 

learning (Kappeler, 1987; Anderson et al., 1992; Fornasieri et al., 1990).   182 

 183 

In this paper we aim to apply the Option Bias and NBDA methods for the first time to data 184 

from the wild, complemented by standard inferential statistical techniques.  In doing so, we 185 

examine the use of the methods in a species with strong social hierarchies and in particular 186 

extend the option bias method for use with tasks of more than two options and with 187 

underlying biases in their use.  188 

 189 

METHODS 190 

 191 

II Data Collection 192 

Study Site and Participants 193 

Two medium-sized groups of ring-tailed lemurs (Lemur catta) from Berenty Reserve, 194 

Southern Madagascar, were selected for the purposes of this study. Berenty Reserve consists 195 

of a 200 ha area of natural gallery forest, transitional scrub and spiny desert (Budnitz & 196 

Dainis, 1975). The home ranges of the selected lemur troops overlapped with tourist 197 

accommodation so  they were very well habituated to humans. In addition, the demographic 198 

histories of most troop members were known since they have been studied on a regular basis 199 

since the 1990s (Nakamichi, Rakototiana & Koyama 1997). 200 

 201 



The two study troops were given the letter and number codes YF and T1B by Koyama and 202 

his colleagues, henceforth labeled group 1 and group 2, respectively. Group 1 comprised 13 203 

lemurs: six adult females (three years or older), two unweaned infants, one juvenile female 204 

(1-2 years old) and four adult males. Group 2 consisted of 15 lemurs: six adult females, three 205 

unweaned infants, one juvenile female and five adult males. The ages, dominance ranks (as 206 

indicated by Nakamichi) and kin relationships are illustrated in figure 1. 207 

 208 

[Figure 1 – group diagram] 209 

 210 

Materials 211 

The lemurs were presented with a two-action puzzle feeder (Figure 2). The feeder was 212 

comprised of an 8cm long by 8cm wide transparent Perspex or plexiglass tube that was 213 

enclosed at each end by 1cm thick pieces of wood. A 4cm diameter hole was cut halfway 214 

down the length of the tube into which was inserted a plastic food cup. A hinged aluminum 215 

metal flap (6cm wide by 7cm high) was attached to the tube. The flap was curved so that it 216 

fitted snugly against the tube. A 2cm high by 1cm wide aluminum rod was fixed just above 217 

the flap’s hinge. The rod ensured the flap fell back into place over the food cup unless it was 218 

continually held up. The flap had a 4cm diameter hole cut into it, which was aligned with the 219 

food cup. A 0.5cm thick aluminum disc of 5cm diameter was fixed to the flap just above the 220 

hole using a metal pin. A lug-nut was fitted to the top right of the disc so that it would only 221 

swivel to the left. A combination of banana pellets, mashed banana, papaya and custard apple 222 

was loaded into the food cup as reinforcement. Thus, the lemurs could access the food reward 223 

by either swivelling the disc to the left or lifting/flipping the flap (Figure 2a&b). 224 

 225 

To prevent monopolization of a single task by dominant individuals, four to six tubes were 226 

presented simultaneously during each day of testing. The tubes were positioned 227 

approximately 30cm from the ground and were wedged between forks in the branches of 228 

trees or between the trunks of close growing saplings. Pilot studies using small open wooden 229 

boxes indicated that if test apparatus were placed too close together, one or two high ranking 230 

lemurs would monopolize access. Thus the tubes were presented at two sites 10 to 15 meters 231 

apart. At each site, the tubes were placed three to four meters apart from one another (Figure 232 

2c). The lemurs’ behavior was recorded using two Sony camcorders fixed to tripods. 233 

 234 

[Figure 2 – task apparatus here] 235 



 236 

Procedure 237 

Group 1 was tested first (between 4th to the 14
th

 of October 2006). Testing commenced at 238 

07:00 on each of ten consecutive days. Each testing session was 30 minutes long. There were 239 

two experimenters each of whom stood by one of the two camcorders and called out the 240 

names of each lemur that approached the tubes. The tubes were removed, refilled with food 241 

and replaced after 15 minutes of testing. 242 

 243 

Following completion of testing with group 1, testing commenced with Group 2 (between 244 

21st October to 7
th

 November 2006). Since group 1 showed a preponderance of flipping over 245 

swivelling, group 2 was seeded with swivelling demonstrators to ascertain whether they 246 

would learn a relatively non-preferred method. Two tubes, that could only be swivelled as the 247 

flaps were screwed shut, were placed into position. The two highest ranking females (TP and 248 

PE) monopolized these tubes during the demonstration phase and quickly learned to swivel. 249 

The tubes were presented in this manner, for 15 minutes, on each of eight consecutive days. 250 

During that time, only one other female (HC: the three year old daughter of PE) managed to 251 

gain access on one occasion and swivelled the disc twice. Thus, she was counted as a 252 

demonstrator thereafter. Throughout the demonstration phase only HC, PE and TP 253 

approached the tubes. Most of the other lemurs sat between 5 and 10 meters away; if they 254 

approached any closer they were chased away by TP or PE, thus we are confident that non-255 

demonstrators only observed task manipulations, rather than interacted with the task, during 256 

this phase. 257 

 258 

After the demonstration phase, tubes that could be opened by either swivelling or flipping 259 

were placed in the same configuration as for group 1 for 30 minutes on each of 10 260 

consecutive days (Figure 2). The same procedure was followed as when testing group 1 261 

except for one day. On day 6, a subgroup of three males was located approximately 30 meters 262 

away from the usual testing area. Since males were habitually chased away by females 263 

whenever they approached a tube, we took this opportunity to give them access to the 264 

apparatus. Thus, we placed the tubes in trees adjacent to the peripheral subgroup of males 265 

rather than in the usual testing area. 266 

 267 

Once testing was complete, two independent observers analyzed the digital video film of the 268 

testing sessions. The latency since session start, the subject’s letter code, their action upon the 269 



tube (Table 1), the tube part manipulated (disc, right side of flap, left side of flap or bottom of 270 

flap), the body part used (nose, left hand or right hand), whether the subject was successful or 271 

unsuccessful in obtaining a food reward, who was in proximity and at what distance from the 272 

tube (within zones of approximately 0-1m and >1m to 3m) and whether they were observing 273 

(the face being orientated towards the task) during a conspecific’s task manipulation were 274 

noted. There was ‘very good’ (Altman 1991) inter-observer reliability according to Cohen 275 

Kappa scores for two sessions from one site (5% of total testing with 273 separate task 276 

manipulations) for the action (0.85) and body part used (0.94), as well as for proximity (<1m 277 

and >1-3m) of conspecifics to the task (0.92) and whether they were ‘observing’ during 278 

manipulations (0.83).   279 

 280 

Baseline data were collected in the mornings and afternoons after testing to determine social 281 

dynamics outside of testing sessions. Proximity data were collected using focal subject 282 

sampling. Each focal session was 3 minutes long with data taken as point samples each 283 

minute. The identification of each lemur that was within one metre proximity of the focal 284 

subject was noted. Sixty such focals were collected per lemur between 30
th

 September to the 285 

23
rd

 of November 2006. The subjects were sampled in a randomized order.  286 

 287 

[Table 1 – definitions] 288 

 289 

Asocial Learning Controls 290 

Control subjects were four adult male ring tailed lemurs (ages 6-7 years) living in a social 291 

group at Zoo Atlanta.  Each lemur was tested individually and out of visual range of the other 292 

group members.  For each subject a device similar to that described above, was loaded with 5 293 

grapes and hung from the cage mesh with both defenses (flip and swivel) enabled before the 294 

start of the session.  Sessions began when a single subject was shifted into the cage with the 295 

device and ended after 10 minutes (for 4 of 6 sessions) or after 10 minutes of no interaction 296 

with the device (2 of 6 sessions). Two subjects that interacted with the device immediately 297 

received one session; one subject refused to interact with the device on his first session but 298 

did successfully interact on a second session.  The final subject refused to interact with the 299 

device on two sessions; given his fear response to the device, no additional sessions were 300 

attempted.  A video camera set up in an adjacent cage at a 45 degree angle was used to record 301 

all interactions with the device, and data on 1) latency of and method used (swivel or flip), 2) 302 



body part used (nose or L or R hand) and 3) success/no success in obtaining a food reward 303 

were extracted from the video recording. 304 

 305 

 306 

II Statistical Methods 307 

Assessing Social Dynamics 308 

During testing of each group DC made qualitative estimates of any apparent sub-groupings.  309 

Sociograms, a systematic method for representing subjects as points or nodes, with the 310 

relationships between them illustrated using lines (Moreno 1960), were constructed using the 311 

baseline proximity data collected outside of testing sessions. Finally, to test whether our 312 

assignment of individuals to subgroups was reasonable, we carried out permutation 313 

(randomization) tests on a measure of modularity (Newman and Girvan 2004, see Kasper & 314 

Voelkl 2009) in a directed social network within each group, where the strength of the 315 

connection (edge weighting) between any two individuals was measured by the number of 316 

times two individuals were within 1m proximity of each other during the baseline data 317 

collection sessions (using the modularity function in the R (2.10.1) package ‘igraph’ (v0.5.3), 318 

written by Gabor Csardi).  Individuals that were members of a group but not assigned to a 319 

subgroup were assigned membership to their own unique singleton ‘subgroups’.  The null 320 

distribution of modularity scores was derived by randomly assigning individuals to 321 

subgroups, repeated over 10,000 iterations (keeping subgroup sizes constant).   322 

 323 

Standard Inferential Statistics 324 

In all analyses the behavior of the trained demonstrators (found only in group 2) is excluded, 325 

with the exception of task manipulations produced by the demonstrators that are observed by 326 

conspecifics, which are incorporated into analyses of the predictive power of observational 327 

opportunities on behavior. Non-parametric tests were used when parametric assumptions 328 

were not met.  Where multiple tests were conducted, the family-wise error rate was controlled 329 

for by modifying the significance level of alpha, designated in the text as α
*
.  For each family 330 

of tests α
*
= α/c, where α=0.05 and c denotes the number of tests.   331 

 332 

To examine ‘learning time’ in the despotic Lemur catta we adapted the method of using 333 

success latency minus contact latency (Day, 2003), developed with the more egalitarian 334 

Callitrichid species. Thus, we calculated a ‘total time at the task prior to success’ [success 335 

latency - (contact latency + time not present at task)] to account for the skewed pattern of 336 



access to resources within groups (Sapolsky, 2005).  In addition, we did not assess the 337 

relationship between learning time and task contact latency as an indicator of social learning, 338 

as this assumes that later contactors have observed more task manipulations than earlier 339 

contactors (Day, 2003; Boogert et al., 2008).  Instead, we investigated the relationship 340 

between ‘learning time’ and the number of successful manipulations observed prior to 341 

success, as the latter provides a direct measure of observational opportunities. 342 

 343 

Option-Bias Analysis 344 

As emphasized by Kendal et al. (2009a) the underlying assumption of the method – social 345 

learning leads to homogeneity of behavior – calls for researchers to assess whether 346 

homogeneity is expected in their context, to account for other factors (eg. genetics, ecology) 347 

responsible for homogeneity, and to use a level of population analysis appropriate to the 348 

given context.  It was also emphasized that the method may be used where there are more 349 

than two options for solution. The presentation of novel tasks to wild ring tailed lemurs 350 

allowed us to apply the method where these factors come into play. 351 

 352 

Group structure or modes of transmission may cause heterogeneity of behavior between 353 

cliques within groups.  As there were distinct sub-groups, only within which the close 354 

proximity of members was tolerated, the option bias analyses were conducted at the level of 355 

group and sub-group.  The options used were categorized, and analyses conducted 356 

accordingly, into 2 broad options (flip/swivel); 3 options related to the subjects’ approach to 357 

flip (forward flip (ff)/over the top flip (ottf)/ up and under flip (uuf); see Table 1); and 6 358 

body-part options (flip vs. swivel by body part used – left or right hand and nose). Swivel 359 

was not broken down into further options as the disc’s left-turn only movement, restricted 360 

variability in methods used.   361 

 362 

The option-bias method calculates a chi-square value as a metric of within-group 363 

homogeneity of behavior.  In contrast to the callitrichid data previously analyzed using the 364 

method (Kendal, et al., 2009a), there appeared to be prior biases for use of the different 365 

options.  Thus, we altered the original method by deriving expected values for the chi-square 366 

metric probabilistically to assume independence across the cells of an option-by-group 367 

contingency table, rather than assuming an equal probability of each option for the expected 368 

value, as used in Kendal et al (2009a) (see supplementary material for the new function 369 

code).   370 



 371 

The method explicitly allows for the inputting of any underlying biases in option use when 372 

conducting power analyses or gaining estimates of Type I error.  For the broad option bias 373 

analyses we calculated the underlying bias in use of flip vs. swivel using the asocial learning 374 

controls (from Zoo Atlanta) and overall option use in the two open diffusions (note that the 375 

latter measure gives us a conservative assessment of social learning on within-group 376 

homogeneity over and above the influence of genetic/ecological biases and is used on the 377 

basis that any overall bias need not necessarily reflect within group homogeneity that results 378 

from social learning). Of the four asocial learning control individuals, one did not interact 379 

with the task and 3 did.  Of these, one showed no clear preference (f:s=3:4) and two showed 380 

some preference for flip (f:s=10:3, 5:2) giving an average of flip being 2.9 times more likely 381 

than swivel.   Excluding demonstrators, the overall option use in the two open diffusion 382 

groups (flip=3237, swivel=437) indicated that flip was 7.4 times more likely than swivel. The 383 

average of these preference values (for the controls and open diffusions) gives an underlying 384 

ratio for each option of 5 to 1 (f:s) which may be input as an underlying bias in option use. 385 

We also conduct a more accurate measure of the power to detect social learning by including, 386 

in the model, an estimate of the probability of asocial learning causing repeated use of one 387 

option over the other.  This is as opposed to the initial option-bias calculation which sets 388 

alpha at 0.5.  Here, we used the three asocial learning controls and the innovator from the 389 

unseeded open diffusion. All four individuals used the same option in their first and second 390 

manipulation, giving a strength of association (α) causing return to the same option of one 391 

(4/4 (using same) - 0/4 (using different, equivalent to chance probability of using same) = 392 

4/4).  Finally, in analyses of option bias in the three flip options, we were limited in 393 

parametization of both the underlying bias and uncertainty in alpha as the asocial learning 394 

controls did not provide useful data: due to task placement, they were unable to conduct 395 

manipulations requiring them to approach the task from behind and over the top (ottf) or 396 

behind and underneath (uuf), but were restricted to approaching the tube from the front and 397 

forward flipping (ff). However, excluding demonstrators, the overall flip option use in the 398 

two open diffusion groups gave an estimated underlying bias for ff:ottf:uuf  of 94:4:1.  399 

 400 

All simulations were repeated 10,000 times. 401 

 402 

Network Based Diffusion Analysis 403 



The NBDA analysis does not assess social learning of particular task options but of the task 404 

in general. In applying the method we used diffusions based on the time of acquisition (first 405 

successful task manipulation), coded using 20 second time intervals, for each for each 406 

individual. Two social networks were used in this analysis: (1) As we were interested in the 407 

role of rank-related directed social learning, the social network used in the analysis was a 408 

matrix of absolute rank differences among individuals (rank being indicated by Nakamichi). 409 

We used two symmetrical matrices, one in which high values indicated a large difference in 410 

rank and one in which they indicated a small difference in rank. Thus any significant finding 411 

of social learning would indicate that individuals are more likely to learn from (and follow in 412 

the diffusion) individuals that have a large rank difference to themselves or a very similar 413 

rank, respectively.  (2) As within group structuring is strong in Lemur catta we also ran the 414 

analysis using proximity matrices for each group.  Here the symmetrical matrices represented 415 

the number of point samples in which individuals were within 1m of each other during 416 

baseline data collection.  As all matrices had a high average connection strength, analyses 417 

began with the parameter tau (which determines the probability of social learning at each 418 

time step given the connection strengths between naïve and experienced individuals) bounded 419 

between 0 and 1 and the asocial learning parameter set at 0.5.  420 

 421 

 422 

RESULTS 423 

Following assessment of the groups’ social dynamics, the results section is divided into a 424 

series of standard inferential statistics and a series of modeling/simulation based methods for 425 

assessing the evidence for social learning in the data. 426 

 427 

Social Dynamics 428 

The qualitative sub-groupings apparent to DC during testing (1: TA-TI-AL, CA-CU-RA, 429 

remainder singletons; 2: HE-SE-WM, WH-RE, TP-PE-HC (demonstrators), remainder 430 

singletons) were reflected to an extent in the sociograms constructed from the baseline data 431 

(figure 3).  The permutation tests (Newman & Girvan 2004), using this baseline proximity 432 

data, indicated that in both groups the observed modularity was very low (Group 1: 0.033; 433 

Group 2: 0.186), possibly due to a lack of data.  However, the observed sub-group structures 434 

gave modularity scores that lay at the 100
th

 and 99.98
th

 percentile of the simulated 435 

distribution, based on the baseline data, for group 1 and 2 respectively.  Thus our assignment 436 

of individuals to sub-groups gives a significantly higher modularity than expected by chance. 437 



As the proximities of individuals outside of testing sessions corresponds to the sub-groupings 438 

observed during task presentations, we may be reasonably confident in our assignment of 439 

individuals to sub-groups. 440 

 441 

[Figure 3 - sociograms] 442 

 443 

Standard Inferential Social Learning Statistics 444 

 445 

Group Comparisons of Option Use 446 

The possible existence of traditions in each of the open diffusion groups was assessed by 447 

comparing their relative frequencies of task option use and assessing the level of asocial bias 448 

for one option over the other using the asocial learning control individuals.  As can be seen in 449 

table 2, the control individuals did not exhibit a strong bias for use of either flip or swivel in 450 

their first successful manipulation.  Task positioning negated the use of over the top flip (ottf) 451 

or up and under flip (uuf) as subjects could not approach the task from behind but only from 452 

the front, resulting in forward flips (ff) only. 453 

 454 

[Table 2 about here] 455 

 456 

There was no significant difference between the two open diffusion groups in the percentage 457 

of swivel manipulations ([number of swivels/(number of swivels + flips)] x 100) produced 458 

(median: group 1 =10.2%, group 2=9.4%; two-tailed Mann-Whitney U test: U=27, N1=8, 459 

N2=7, p=0.9) despite the fact that group 2 was seeded with swivel-trained demonstrators. 460 

When the category ‘flip’ was broken down into over the top-flip (ottf), up and under-flip 461 

(uuf) and forward-flip (ff) (with swivel) a Kruskall Wallis analysis indicated a significant 462 

difference between the groups in the use of the uu-flip option only (χ1
2
=5.65, p=0.017) with 463 

group 2 (median=0.42) producing more than group 1 (0) (see figure 4), however the result 464 

should not be treated as valid as it treats multiple manipulations from the same individuals as 465 

independent data points. As can be seen in figure 4, group 2 produce more ott-flips (median 466 

=4.35%; 5/7 individuals exhibiting them) than group 1 (0.311%; 3/8 individuals).  This is 467 

despite the fact that, ecologically, ottf manipulations are at least two times more likely in 468 

group 1 than group 2 (there were 4 trees at which ottf was possible for group 1 and only 1-2 469 

trees for group 2).   There was no significant difference between the two groups in option use 470 

at the level of flip or swivel using left or right hand or nose. 471 



 472 

[Figure 4 about here] 473 

 474 

Influence of Observation Opportunities upon Behavior 475 

The proportion of each type of successful manipulation used was assessed as a function of the 476 

proportion of the successful manipulation types observed.  We also investigated, across 477 

successful and unsuccessful manipulations, the number of different options used as a function 478 

of the number of different options an individual had observed others to use.  Full details may 479 

be seen in the supplementary material, but in summary, there was no indication that 480 

observation opportunities, either of actual manipulation type (eg. flip vs. swivel / ff vs. ottf 481 

vs. uuf / flip vs. swivel by body part) or of manipulation variety (number of options), had any 482 

influence on the type or variety of manipulations an individual produced. 483 

 484 

If social learning reduced the time taken to learn the task (‘learning time’) we would expect a 485 

negative relationship between learning time and the frequency of successful manipulations 486 

observed (from a zone of within 3m around the task) prior to success.  There was, however, a 487 

significant positive effect of ‘learning time’ (latency between first contact and first success 488 

accounting for time away from the task) as a function of the number of successful 489 

manipulations observed prior to first successful manipulation (Linear mixed model (LMM), 490 

with group as a random variable: t1,12=6.36, p<0.0001).  Thus, the more successful 491 

manipulations individuals observed prior to success, the greater the total time at the task prior 492 

to first success. Similarly, we found a significant positive correlation of absolute latency to 493 

first success and the number of successful manipulations observed prior to this success 494 

(Spearman’s rho13= 264.66, p=0.043, data pooled across groups). It is possible that our 495 

‘learning time’ measure was a poor indicator of learning.  If it were representative of learning 496 

we would expect a higher proportion of successful to unsuccessful task manipulations in 497 

individuals that were at the task for only a short, rather than extended, period prior to their 498 

first success.  Across individuals there was, however, no relationship between the proportion 499 

of successful manipulations produced (successful/ (successful+unsuccessful)) and the 500 

learning time. These results may indicate that time at the task is more representative of task  501 

monopolization than learning and those monopolizing the task, are tolerated in proximity to 502 

conspecifics at the task and thus observe more task manipulations than less dominant 503 

individuals. 504 

 505 



Investigating the Role of Rank 506 

 Linear mixed models, with group as a random variable, failed to find relationships fitting 507 

success order to either rank or the total time at the task prior to success. When non-solvers are 508 

included in the analysis by giving them a ceiling success order value, there is however, a 509 

positive relationship between success order and rank (LMM with group as a random variable: 510 

t1,18= 2.74, p =0.01) suggesting that subordinate individuals are prevented from solving the 511 

task by dominant individuals (see figure 5). Of those individuals that did solve the task, there 512 

was a significant negative effect of rank on the total time to solve the task (LMM: t1,12= -2.16, 513 

p=0.05).  In other words, subordinate individuals that gained sufficient access to solve the 514 

task learned the solution more quickly than dominant individuals (see figure 5).  There was, 515 

however, no significant correlation between the proportion of successful manipulations 516 

(successful / (successful+unsuccessful)) produced by individuals and their rank.  There is 517 

thus no hint that more dominant individuals have an extended trial and error period 518 

(represented by a greater proportion of unsuccessful to successful manipulations) compared 519 

to subordinate individuals, during their greater total time at the task prior to success. Total 520 

time at the task prior to success, may thus have more to do with monopolization than 521 

learning. 522 

 523 

[figure 5 about here] 524 

 525 

Due to the apparent role of rank in individuals’ interactions with the task we conducted an 526 

analysis of ‘learning time’ as a function of the opportunities to observe successful 527 

manipulations prior to first success, including rank as an explanatory variable.  As reported 528 

above, there was a significant main effect of observation of successful manipulations (LMM 529 

excluding non-solvers: t1,10=4.3976, df=10, p=0.0013), but no main effect of rank yet a 530 

significant interaction of successful manipulations observed and rank (t1,10=-2.4612, df=10, 531 

p=0.0336).  Thus, as can be seen in figure 6, more dominant individuals tend to observe 532 

many successful manipulations and have a relatively long total latency to task solution, whilst 533 

more subordinate individuals tend to observe little and have short latencies to task solution. 534 

However, extreme caution is required in interpretation of all rank related results as it is only 535 

in group 1 that the top ranking individuals feature in the data, as ranks 1,2 and 5 in group 2 536 

were ‘trained demonstrators’ and thus excluded.   537 

 538 

 [figure 6 about here] 539 



 540 

Option Bias Analysis 541 

The option bias analysis was conducted at the level of flip vs. swivel and also, as flip could 542 

be broken down into 3 options, at the level of over the top-flip (ottf), vs. up under-flip (uuf) 543 

vs. forward-flip (ff).  Likewise, one can consider body part used for each manipulation, 544 

giving 6 options (left or right hand or nose for flip or swivel).  All details can be found in the 545 

supplementary material, but in summary, the majority of option bias analyses (across the 2 546 

groups or 4 sub-groups, for all manipulations or successful manipulations only) yielded non-547 

significant results, despite high power. 548 

 549 

There was however, one significant option bias analysis when conducted on all manipulations 550 

of ff vs. ottf vs. uuf, across the 4 sub-groups (option bias: χ
2
=591.278, p=0.0001; 551 

LLM=292.6169, p=0.0001; see figure 7a).  The Type I error rates at p=0.0001, (where social 552 

learning (s) is set to zero and the asocial learning rate (α) to 0.5) with an underlying bias of 553 

94 (ff) to 4 (ottf) to 1 (uuf), were <0.0001 for both methods.  The family wise error rate does 554 

not need to be taken into account here as the option-bias method itself is highly conservative 555 

in this respect.  In addition, the p value is so small that it would remain significant after a 556 

reduction in α. We therefore have evidence consistent with social learning of different flip-557 

specific methods for extracting food from the tasks.  As previously mentioned, such an 558 

analysis as regards swivel was not conducted as the subjects appeared largely restricted to 559 

approaching the task from the front when swivelling. As can be seen in figure 6b it is largely 560 

the proportion of option use in sub-group 4 that results in the significant difference between 561 

the observed and simulated null distribution, although sub-groups 1-3 also deviate from the 562 

global proportions. As highlighted above, the bias for ottf and uuf in sub-group 4 (of group 2) 563 

cannot be accounted for by ecological differences as there were actually more tasks available 564 

at which these options were possible for group 1 than group 2.  It should also be noted that 565 

sub-groups were not restricted to the use of particular tasks (of the 4-6 simultaneously 566 

presented) and thus differing possibilities of flip options afforded by each tasks position 567 

cannot account for the significant option-bias result. 568 

 569 

[Figure 7 about here] 570 

 571 

Network Based Diffusion Analysis  572 



When conducting extended NBDA (or TADA as re-classified by Franz & Nunn, this issue) 573 

analyses, using difference in rank between individuals as indicative of the social network, 574 

there is no evidence for social learning.  For both groups, regardless of whether social 575 

network matrices allow similarity or dissimilarity in rank to indicate high connection 576 

strengths between individuals, the purely asocial learning model is always better supported 577 

than the model including both social and asocial learning (Akaike probabilities around 578 

0.73%; see supplementary information).  Thus, the difference in rank between individual A 579 

and B does not give any indication as to the likelihood that B will produce a successful 580 

manipulation given that A has already done so.  When using inter-individual proximity levels 581 

(outside of testing sessions) as an indicator of the social network, for both groups, neither the 582 

social and asocial learning model nor the pure asocial learning model is favoured over the 583 

other (see supplementary information). 584 

 585 

 586 

DISCUSSION 587 

We have applied the option-bias method and NBDA method to data from wild animals for 588 

the first time, as well as compared their outcomes with those of standard inferential statistical 589 

tests.  To our knowledge, we present the first evidence consistent with social learning in 590 

prosimian primates, in particular lemurs (Lemur catta).  591 

 592 

Social Learning in Ring-Tailed Lemurs? 593 

We find a significant level of homogeneity of behavior, indicative of social learning, in the 594 

option-bias analysis of sub-group’s use of options within flip.  We believe this finding to be 595 

robust as it is supported by a particularly low Type I error rate of <0.0001.  In addition, as 596 

detailed below, there are many methodological and biological reasons as to why social 597 

learning was not identified using the alternative methods applied to the data.  Although this 598 

finding contrasts with that of no predictive relationship between the number of ottf, uuf and ff 599 

manipulations observed upon their subsequent use, the latter result is based on an analysis of 600 

limited power, due to small sample size.  In addition, task monopolization may obscure such 601 

a relationship. In line with the theory of Coussi-Korbel and Fragaszy (1995) that tolerance of 602 

proximity may be required for the transmission of social information, our only evidence for 603 

social learning is within sub-groups, which are defined by time spent in proximity in general 604 

and tolerance of each other at proximity to the task.  In a result akin to that found in fish and 605 

primates (Swaney, Kendal, Capon, Brown & Laland, 2001; Bonnie & de Waal 2006; 606 



Nahallage & Huffman 2007 & this issue) we thus provide support for the prediction that 607 

directed social learning, “can support within group differentiations of behavior” mediated by 608 

the learning opportunities afforded by “spatial and temporal behavioral coordination,” 609 

(Coussi-Korbel & Fragaszy, 1995, pp 1444) or tolerance of proximity within sub-groups, 610 

whether mediated by age, sex, relatedness or familiarity.  In addition, this finding indicates 611 

that the social learning process(es) involved in acquiring these three specific methods of 612 

using the task flap may require close observation.  Such close observation was reported in the 613 

‘drinking from tails’ documented in captive Lemur catta although the authors were able only 614 

to suggest that the behavior pattern may have spread through social learning (Hosey et al., 615 

1997).  We are unable to do more than speculate about the likely social learning processes 616 

involved.  However, as there were three flip actions all directed at the flap of the task we may 617 

rule out local or stimulus enhancement effects (sensu Hoppitt & Laland 2008) alone and 618 

suggest response facilitation (Byrne 1994) 619 

 620 

In contrast, according to the option-bias analysis, we may be confident that homogeneity in 621 

use of either the flip or swivel option, in all manipulations or for successful manipulations 622 

only, in each group, or sub-group, was not due to social learning.  Although, visually, it 623 

appears that there was homogeneity of option use, towards flip versus swivel, in both groups 624 

(see figure 2) the option-bias analysis indicates that this apparent bias may be accounted for 625 

by chance and/or asocial learning alone.  The fact that the three asocial learning controls and 626 

innovator in the unseeded open diffusion (OD) group, all solved it several times within the 627 

first 10 minutes of exposure (exhibiting only 3, 10, 0 and 1 (OD) unsuccessful manipulations 628 

prior to first success, which occurred at an average of 71 seconds), implies that the task was 629 

quite easy and may not, according to the ‘costly information hypothesis’ (Boyd & Richerson, 630 

1985), have necessitated the use of social learning for many of the individuals in the open 631 

diffusion groups.  Caution is, however, required as all controls were captive, rather than wild, 632 

adult males and the OD innovator a sub-adult female.  Wherever possible it is advisable to 633 

acquire asocial learning controls from within the test population. The hypothesis that social 634 

learning was not required in the use of flip versus swivel is however, supported when 635 

considering the performance of callitrichids exposed to tasks of varying difficulty, where 636 

asocial learning was deemed sufficient for the ‘easy’ task and social learning for the more 637 

‘difficult’ tasks using option-bias analysis (Kendal et al., 2009).   Similarly, the finding of no 638 

evidence for social learning, at the level of two options, according to option bias analysis 639 

mirrors that of Dean, Kendal, Hoppitt and Laland (in prep.) with the presentation of three, 640 



two-option, extractive foraging tasks to groups of captive ruffed lemurs (Varecia variegata 641 

ssp.). 642 

 643 

In support of the above argument, that social learning was not required for learning of flip or 644 

swivel, the lack of a predictive relationship between what was observed prior to first success 645 

and what manipulations were produced is indicative of a lack of role for social learning.  646 

Likewise the positive relationship between the ‘learning time’ (and the absolute latency until 647 

first success), and the number of successful manipulations observed prior to first success is 648 

contrary to evidence for social learning.  This is because a negative correlation would be 649 

expected under social learning as the more successful manipulations one observes the less 650 

time one should need to be present at the task (allowing for trial and error/asocial learning) to 651 

solve it. There was also a lack of relationship between the total time at the task prior to 652 

success and the proportion of successful manipulations produced. Were the time at the task to 653 

be used for trial and error learning one would expect those with a low proportion of successes 654 

to have had a long total time at the task prior to success. Thus, the total time at the task prior 655 

to success does not appear to be a reliable proxy measure of ‘learning time’ in this case.   656 

 657 

The hierarchical nature of the lemur groups would appear to be responsible for the pattern of 658 

time at the task being unrelated to the time taken to learn the task.  Within Lemur catta “high-659 

ranking individuals frequently and aggressively reassert their domination over the 660 

subordinate cohort” even in the absence of an overt challenge (Sapolsky, 2005 p. 648).  661 

During data collection it was apparent that the alpha females would readily interrupt their 662 

own foraging with task A in order to displace others from tasks B or C, before resuming 663 

foraging at task A.  This observation is reflected in the role of rank, females above males, on 664 

success order. Although all of the rank related results are interpreted with caution, 665 

subordinate individuals, relative to dominants, tended to solve the task later in the diffusion. 666 

This corresponds to reports, of female feeding priority in lemurs, achieved by both female 667 

aggression towards males, and male deference to females (Overdorff, Erhart, & Mutschler, 668 

2005;White et al., 2007).  In our study, of the 6 individuals (3 per group) that did not interact 669 

with the task, all but one (an adult female) were low ranking adult, often peripheral, males. 670 

This corresponds to the report of Kappeler (1987), in an early open diffusion study with 671 

Lemur catta, that the lowest ranking individuals (peripheral males) did not acquire the novel 672 

foraging trait.  Despite their later position in the diffusion subordinates exhibit significantly 673 

less observation of the prior successes of others (likely out of a lack of opportunity to remain 674 



within 3m of the task when a conspecific was manipulating it: Anderson et al., 1992) 675 

compared to dominants.  This does not however impede their success with the task as they 676 

exhibit a significantly reduced total time at the task prior to first success than dominants.  677 

This tentative finding cannot, however, be taken as conflicting with the hypothesis that 678 

cognitive ability (here ‘learning time’) is positively correlated with social dominance (see 679 

Boogert, Reader, & Laland, 2006) because (i) the total time to success, as discussed above, 680 

may not be indicative of learning time but rather of resource monopolization by dominants, 681 

and (ii) learning time was not tested in individuals removed from social constraints.  682 

 683 

The lack of evidence for social learning according to the NBDA/TADA analysis is 684 

unsurprising, despite the apparent influential role of rank and sub-groups in the lemur groups’ 685 

response to the extractive foraging task. Although the option-bias analysis found evidence for 686 

social learning, this was at the sub-group level and for option use, whereas the NBDA 687 

analysis uses as inputs learning of the task in general at the group level. Thus the 688 

transmission of information along social network pathways specified by rank or proximity is 689 

unlikely to be picked up by the NBDA analysis in this case.  In accordance with the finding 690 

regarding rank, Kappeler (1987) in his open diffusion study with Lemur catta, reported that a 691 

direction of information propagation with respect to rank was not discernible.  However, with 692 

the proximity matrix analyses, neither the asocial- nor social and asocial- learning model was 693 

favoured over the other.  Thus, it remains possible that there is an effect of directed social 694 

learning, along pathways specified by proximity, within these lemur groups which the NBDA 695 

method has not detected due to the low power caused by small group sizes (Franz & Nunn, 696 

this issue; Hoppitt et al. 2010).   697 

 698 

Methodological Considerations 699 

Our analyses have highlighted several methodological considerations for the use of 700 

inferential statistical methods, option-bias analysis and network based diffusion analysis, in 701 

capturing social learning in natural contexts.   702 

 703 

Primarily, the study has indicated the importance of taking the social system of the species in 704 

question into account when applying methods for the analysis of social learning.  As 705 

highlighted by Kendal et al. (2009a), the researcher, using option-bias analysis must 706 

independently identify the populations for which homogeneity of behavior is expected. In this 707 

study it is apparent that the choice of an appropriate level of population analysis (here group 708 



or sub-group) is key.  Similarly, a new method (Matthews, 2008) developed for the study of 709 

social transmission in intermediately despotic wild capuchins, uses a randomization method 710 

to indicate that ‘cliques’ within groups showed more evidence of social learning than groups 711 

as a whole. Likewise, with network based diffusion analysis (NBDA) the researcher should 712 

use a social network of relevance to the transmission of social information.  Possibly of 713 

utmost relevance to this study, involving transmission of information regarding a novel 714 

foraging device, would have been a matrix that was indicative of tolerance of proximity 715 

between individuals during routine foraging (co-feeding network: Franz & Nunn, this issue). 716 

Unfortunately, however, these data were unavailable. Finally, although theoretically the 717 

method has utility with species that do not exhibit strong social hierarchies or variation within 718 

the social network (Franz & Nunn, this issue) this remains to be explored using real data.  719 

 720 

We had originally planned to apply the Kendal, Kendal & Laland (2007) method of modeling 721 

social learning processes to the lemur data.  However, this method was developed for use 722 

with the more egalitarian callitrichid monkeys and it was apparent that the movement and 723 

observation parameters, as developed, would be unduly affected by the social hierarchy of the 724 

lemur subjects, negating any meaningful ability to detect social learning.  Similarly, as 725 

emphasized by Hoppitt et al. (this issue), the displacement of individuals from tasks by 726 

conspecifics has implications for the interpretation of network based diffusion analysis as 727 

well as diffusion curve analysis.  Also, as detailed in the methods section, we a priori adapted 728 

the use of a negative correlation between contact latency and ‘learning time’ (success 729 

latency-contact latency) as an indicator of social learning (Day, 2003, developed for 730 

callitrichids).  The measure of ‘learning time’ (total time at the task prior to first success) was 731 

adapted to take account of inhibited access to the task in subordinates.  Also, the despotic 732 

nature of the lemur groups called for a more direct measure of observation opportunities (than 733 

latency to contact the task), such as number of task manipulations observed.  However, in 734 

analyzing the results it became apparent that even using total time at the task prior to first 735 

success as an indicator of cognitive ‘learning time’ was flawed as the time at the task in 736 

dominant individuals may have nothing to do with learning but more to do with resource 737 

monopolization (White et al., 2007).  This is not to say, however, that such methods cannot 738 

be used at all with more despotic species.  Boogert et al. (2008), for example, did find a 739 

significant negative correlation between contact latency and ‘learning time’ in social contexts 740 

(and not individual learning contexts), in a gregarious bird with pronounced dominance 741 

hierarchies.   742 



In addition to being the first application of the option-bias method to data from the wild, this 743 

study has also extended its use to cases where there are more than two behavioral variants for 744 

a task’s solution and underlying biases in the use of each. The finding of social learning in 745 

sub-group biases for options used within flip, but not for flip versus swivel, highlights that a 746 

researcher must, to some extent, allow the study subjects to identify or define the options 747 

available to them.  Our task was designed to have two options (flip versus swivel) but the 748 

lemurs themselves invented three different ways of flipping necessitating analysis at this level 749 

also. The finding also reminds us that social learning involves asocial components and social 750 

and asocial learning may variously predominate in the acquisition of different aspects of a 751 

behavior pattern (as also suggested for New Caledonian Crows’, manufacture of ‘wide’ 752 

Pandanus leaf tools: Holzhaider et al., this issue) and that the approach should be suitable 753 

where there is only one action (or motor pattern) required to solve the task but variation in the 754 

‘option’ choice within it (Horner & Whiten, 2005).   755 

 756 

When considering application of the method to data in which there is an underlying bias for 757 

option use, we have used a slightly different code for the chi-square randomization method to 758 

that used previously (Kendal, et al., 2009a).  Here, the chi-square method uses expected 759 

values calculated from the contingency table, rather than assuming an equal distribution of 760 

option use.  This aids considerably in the interpretation of a significant option-bias result.  In 761 

the analysis of options used within flip, there was a considerable bias for one option over the 762 

others, yet as the method incorporates bias, we may still be confident in evidence for social 763 

learning.  Thus the method may be used to overcome the issue faced by many studies where 764 

groups are seeded with differing techniques for task solution, one of which is considered 765 

more salient or easy than the other (see Flynn & Whiten this issue; Hopper et al., 2007 and 766 

references therein).  For example, Hopper et al. were forced to be cautious in their 767 

interpretation of social learning being responsible for the clear divergence in option use 768 

(lift/poke) in two demonstrator-seeded chimpanzee groups.  This was because ‘poke’ was 769 

considered more likely than ‘lift’ and the possibility that the bias for poke in the poke-seeded 770 

group was asocially learnt could not be ruled out. 771 

 772 

CONCLUSION 773 

Contrary to common thought that lemurs are cognitively lacking compared to haplorhine 774 

primates (e.g. Jolly, 1966), we find evidence consistent with social learning in the despotic 775 

Lemur catta which supports the theory of directed social learning (Coussi-Korbel & 776 



Fragaszy, 1995).  To validate this finding we would look to directly examine social learning 777 

processes as regards this task in captive Lemur catta. In addition, to further substantiate the 778 

evidence for directed social learning, it would be fruitful, to investigate social learning, in an 779 

open diffusion scenario, with a more egalitarian lemur species such as the Red-Fronted 780 

Brown Lemur, (Eulemur rufifrons).  We may predict that we will find greater evidence for 781 

socially learnt traditions in more egalitarian than despotic species which, in turn, has 782 

implications for the evolution of our own unique cultural capacities. Also, to tease apart the 783 

role of rank on learning, future studies could simultaneously conduct open diffusion studies 784 

and individual learning tests with the same subjects (eg. Boogert et al., 2006, 2008; Hoppitt et 785 

al. 2010).  Finally, as the tool-box of statistical techniques for capturing social learning in 786 

natural contexts grows, care is required in ensuring that the methods employed are 787 

appropriate for the study in question, in particular the social dynamics of the subjects.  The 788 

onus is thus on the creators of methods to clearly state their assumptions and constraints 789 

whilst the researcher is responsible for ensuring deployment of the appropriate method to 790 

examine putative cases of social learning. 791 
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FIGURE LEGENDS, TABLES & FIGURES 1012 
 1013 
Figure 1 1014 
Kin relations and dominance ranks of (a) Group 1 and (b) Group 2. Females are indicated by 1015 
circles, males by rectangles and unweaned infants by triangles. Dominance ranks indicated by 1016 
numbers preceded by #. Juveniles (1-2 years of age) are represented with lower case lettering. 1017 
 1018 
Figure 2 1019 
A lemur (a) flipping the flap and holding it open with the top of her head and (b) swivelling 1020 

the disc to the left using her nose; and (c) the layout of the testing sites (as used with each 1021 
group) with the positions of the tubes and cameras indicated. 1022 
 1023 
Figure 3 1024 
In the above socigrams, the frequency data from focal samples were converted to percentages 1025 
of total proximity across (a) group 1 and (b) group 2. For example, in group 1 AL and TA 1026 
were within one metre of each other for 8.97% of the total number of proximity counts for the 1027 

whole group. (no line 0-3%; dashed line >3-6%; bold line >6-9%; thick line >9%). 1028 
 1029 
Figure 4 1030 
The proportion of all task manipulations (unsuccessful & successful), per individual 1031 
represented in order of first successful manipulation, that involved each option of swivel, 1032 

forward-flip, over the top-flip and up and under-flip for (A) group 1, and (B) group 2. Values 1033 
at the top of the bars give the total number of manipulations produced by individuals who are 1034 

represented on the x axis by their initials with parentheses indicating the sex (male/female) 1035 
and age category (adult, sub-adult or juvenile). The values, 1-4, beneath individuals indicate 1036 
sub-group membership. 1037 
 1038 
Figure 5 1039 
Significant relationships of (A) success order (with ceiling values of non-solvers set at group 1040 

size of 11 and 13, for group 1 and 2 respectively) and (B) total time at the task prior to first 1041 

successful manipulation, as a function of rank order. 1042 

 1043 

Figure 6 1044 
The significant predictive relationship of the number of successful manipulations observed 1045 
prior to first success and the total time at the task prior to first success.  Values next to data 1046 

points (to the left for group 2 and right for group 1) indicate the rank of the individual, in 1047 
order to highlight the significant interaction effect of successful manipulations observed and 1048 

rank upon the cumulative time to solve the task.  The relationship is, interpreted with caution 1049 
as it is only in group 1 that the top ranking individuals feature in the data, the three top 1050 
rankers in group 2 being trained demonstrators.   1051 

 1052 
Figure 7 1053 
Results of the significant option bias analysis (chi-square method only) of flip manipulations 1054 

broken down into their component options, across the four sub-groups. Part (A) shows that 1055 

the observed chi-square metric value (bold vertical line) falls in the upper tail of the null 1056 
distribution of chi-square values created by the randomized simulation. Part (B) depicts the 1057 
observed proportion of flip options used for sub-groups 1 to 4 and the global mean proportion 1058 
of options used (which includes both task constraint and social learning biases on the options 1059 
used).  This indicates that for the observed data, there is a significant interaction between 1060 
group and option bias that is not reflected in the global option proportions from which the 1061 
simulated (randomized) data are sampled.   1062 



 1063 
 1064 
Table 1 1065 
 1066 
Task Actions 
 

Definition 
 

 

Flip (F) 

 

Flap lifted sufficiently to allow feeding 

 

Partial flip (PF) Flap lifted but not sufficiently to allow feeding 

 

Swivel (S) Disc swivelled sufficiently to allow feeding 

 

Partial swivel (PS) Disc swivelled but not sufficiently to allow feeding 

 

Forward (F) Lemur approaches the tube from the front and manipulates the flap 

or disc (e.g. FF = forward flip) 

 

Over the top (OTT) Lemur climbs up behind the tube and leans over the top of it to 

manipulate the disc or flap (e.g. OTTPF = over the top partial flip) 

 

Up and under (UU) Lemur approaches from behind the tube, lies on the ground and 

reaches up to manipulate the task (e.g. UUF = up  and under flip) 

 
Definitions of actions performed upon the extractive foraging apparatus. 1067 
 1068 
  1069 



 1070 
Table 2 1071 
 

 

Contact Unsuccessful Manipulation Successful Manipulation 

Subject 

 

Latency Action Latency Action Latency 

1 

 

22 Flip (nose) 31 Flip (nose) 110 

2 

 

20 Flip (nose) 148 Swivel (nose) 171 

3 

 

15 Flip (hand) 149 Swivel (nose) 22* 

4 (OD) 

 

41 Flip (hand) 63 Flip (nose) 81 

The actions (including body part used) and latency (in seconds) of the first contact, unsuccessful and successful 1072 
task manipulation by each of the four control individuals, including the innovator in the unseeded open diffusion 1073 
(OD) group. *this individual produced a successful manipulation prior to the first unsuccessful one.  1074 
 1075 
  1076 
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