
Journal of Artificial Intelligence Research 29 (2007) 221–267 Submitted 12/06; published 06/07

On the Formal Semantics of
Speech-Act Based Communication in an
Agent-Oriented Programming Language

Renata Vieira renatav@unisinos.br
Universidade do Vale do Rio dos Sinos
São Leopoldo, RS, 93022-000, Brazil

Álvaro Moreira Alvaro.Moreira@inf.ufrgs.br
Universidade Federal do Rio Grande do Sul
Porto Alegre, RS, 91501-970, Brazil

Michael Wooldridge mjw@csc.liv.ac.uk
University of Liverpool
Liverpool L69 3BX, United Kingdom

Rafael H. Bordini R.Bordini@durham.ac.uk

University of Durham
Durham DH1 3LE, United Kingdom

Abstract

Research on agent communication languages has typically taken the speech acts paradigm
as its starting point. Despite their manifest attractions, speech-act models of communi-
cation have several serious disadvantages as a foundation for communication in artificial
agent systems. In particular, it has proved to be extremely difficult to give a satisfactory
semantics to speech-act based agent communication languages. In part, the problem is
that speech-act semantics typically make reference to the “mental states” of agents (their
beliefs, desires, and intentions), and there is in general no way to attribute such attitudes
to arbitrary computational agents. In addition, agent programming languages have only
had their semantics formalised for abstract, stand-alone versions, neglecting aspects such
as communication primitives. With respect to communication, implemented agent pro-
gramming languages have tended to be rather ad hoc. This paper addresses both of these
problems, by giving semantics to speech-act based messages received by an AgentSpeak
agent. AgentSpeak is a logic-based agent programming language which incorporates the
main features of the PRS model of reactive planning systems. The paper builds upon a
structural operational semantics to AgentSpeak that we developed in previous work. The
main contributions of this paper are as follows: an extension of our earlier work on the
theoretical foundations of AgentSpeak interpreters; a computationally grounded semantics
for (the core) performatives used in speech-act based agent communication languages; and
a well-defined extension of AgentSpeak that supports agent communication.

1. Introduction

First introduced in 1987, the reactive planning model of Georgeff and Lansky’s PRS sys-
tem has subsequently proved to be one of the most influential and long-lived approaches to
programming multi-agent systems (Georgeff & Lansky, 1987). The AgentSpeak program-
ming language, introduced by Rao (1996), represents an attempt to distill the key features

c©2007 AI Access Foundation. All rights reserved.

Vieira, Moreira, Wooldridge, & Bordini

of the PRS approach into a simple, abstract, logic-based language. AgentSpeak is partic-
ularly interesting, in comparison to other agent-oriented languages, in that it retains the
most important aspects of the BDI-based reactive planning systems on which it was based,
and at the same time it has robust working interpreters (Bordini, Hübner, & Vieira, 2005;
Bordini & Hübner, 2007; Bordini, Bazzan, Jannone, Basso, Vicari, & Lesser, 2002), its for-
mal semantics and relation to BDI logics (Rao & Georgeff, 1998; Wooldridge, 2000b) have
been thoroughly studied (Bordini & Moreira, 2004; Moreira, Vieira, & Bordini, 2004; Mor-
eira & Bordini, 2002), and there is ongoing work on the use of model-checking techniques
for verification of AgentSpeak multi-agent systems (Bordini, Fisher, Visser, & Wooldridge,
2004; Bordini, Visser, Fisher, Pardavila, & Wooldridge, 2003; Bordini, Fisher, Pardavila, &
Wooldridge, 2003).

In the original formulation of AgentSpeak (Rao, 1996), the main emphasis was on the in-
ternal control structures and decision-making cycle of an agent: the issue of communication
between agents was not addressed. Accordingly, most attempts to give a formal semantics
to the language have focused on these internal aspects (Moreira & Bordini, 2002). Although
several extensions to AgentSpeak have been proposed in an attempt to make it a prac-
tically more useful language (Bordini et al., 2005, 2002), comparatively little research has
addressed the issue of a principled mechanism to support communication in AgentSpeak,
which is clearly essential for engineering multi -agent systems.

Most agent communication languages have taken speech-act theory (Austin, 1962; Searle,
1969) as their starting point. As is suggested by its name, speech-act theory is predicated
on the view that utterances are actions, performed by rational agents in the furtherance of
their personal desires and intentions. Thus, according to speech-act theory, utterances may
be considered as actions performed by an agent, typically with the intention of changing
the mental state of the hearer(s) of the utterance. Speech-act theory thus seems particu-
larly appropriate as a foundation for communication among intentional agents. Through
communication, an agent can share its internal state (beliefs, desires, intentions) with other
agents, and can attempt to influence the mental states of other agents.

Although an initial speech-act based communication model for AgentSpeak agents was
previously introduced (Bordini et al., 2003), no formal semantics of that model was given
in that paper. A preliminary formal account for communication of AgentSpeak agents
was first given by Moreira et al. (2004). The main contribution of the present paper is
to thoroughly extend the operational semantics of AgentSpeak accounting for speech-act
style communication. Our semantics precisely defines how to implement the processing of
messages received by an AgentSpeak agent; that is, how the computational representations
of mental states are changed when a message is received. Note that in implementations of
the BDI architecture, the concepts of plan and plan library is used to simplify aspects of
deliberation and means-ends reasoning. Therefore, an AgentSpeak agent sends a message
whenever there is a communicative action in the body of an intended plan that is being
executed; such plans are typically written by an agent programmer.

As pointed out by Singh (1998), well-known approaches to agent communication focus
largely on the sender’s perspective, ignoring how a message should be processed and under-
stood. This is the main aspect of agent communication that we consider in this paper. In
extending the operational semantics of AgentSpeak to account for inter-agent communica-
tion, we also touch upon another long-standing problem in the area of multi-agent systems:

222

Speech-Act Based Communication in Agent Programming

the semantics of communication languages based on speech acts. The difficulty here is that,
taking their inspiration from attempts to develop a semantics of human speech acts, most
semantics for agent communication languages have defined the meaning of messages be-
tween agents with respect to the mental states of communication participants. While this
arguably has the advantage of remaining neutral on the actual internal structure of agents,
a number of authors have observed that this makes it impossible in general to determine
whether or not some program that claims to be implementing the semantics really is im-
plementing it (Wooldridge, 1998; Singh, 1998). The problem is that if the semantics makes
reference to an agent believing (or intending a state satisfying) a certain proposition, there
is no way to ensure that any software using that communication language complies with
the underlying semantics of belief (or intention, or mental attitudes in general).

This is related to the fact that previous approaches attempt to give a programming
language independent semantics of agent communication. Our semantics, while developed
for one specific language, have the advantage of not relying on mechanisms — such as
abstractly defined mental states — that cannot be verified for real programs. We note that,
to the best of our knowledge, our work represents the first semantics given for a speech-act
style, “knowledge level” communication language that is used in a real system.

Since a precise notion of Belief-Desire-Intention has been given previously for
AgentSpeak agents (Bordini & Moreira, 2004), we can provide such a computationally
grounded (Wooldridge, 2000a) semantics of speech-act based communication for this lan-
guage, making it possible to determine how an AgentSpeak agent interprets a particular
message when it is received. Note, however, that whether and how an agent acts upon
received communication depends on its plan library and its other circumstances at the time
the message is processed. Also, although our approach is tied to a particular language, it
can be usefully employed as a reference model for developing communication semantics and
implementing communication in other agent programming languages.

The remainder of this paper is organised as follows. Section 2 provides the general
background on PRS-style BDI architectures and speech-act based agent communication.
Section 3 presents AgentSpeak syntax and semantics — a much revised version of the syntax
and semantics of AgentSpeak presented by Moreira and Bordini (2002, 2004). Section 4
presents the speech-act based communication model for AgentSpeak agents, an extension
of the preliminary formal account given by Moreira et al. (2004). Section 5 illustrates
the semantics with an example of the semantic rules applied in a typical reasoning cycle.
In Section 6, we show how programmers can use our basic communication constructs to
develop some of the more elaborate forms of communication required by some multi-agent
applications (for example, ensuring that a belief is shared between two agents and keeping
track of the progress in the achievement of a delegated goal), and in Section 7 we give a
simple example of the use of our framework for proving properties of communicating agents.
Section 8 presents a discussion on applications and further developments for the language
presented in this paper. Conclusions and planned future work are given in the final section.

2. Background

The ability to plan seems to be one of the key components of rational action in humans.
Planning is the ability to take a goal, and from this goal generate a “recipe” (i.e., plan) for

223

Vieira, Moreira, Wooldridge, & Bordini

action such that, if this recipe is followed (under favourable conditions), the goal will be
achieved. Accordingly, a great deal of research in artificial intelligence has addressed the
issue of automatic planning : the synthesis of plans by agents from first principles (Allen,
Hendler, & Tate, 1990). Unfortunately, planning is, like so many other problems in artificial
intelligence, prohibitively expensive in computational terms. While great strides have been
made in developing efficient automatic planning systems (Ghallab, Nau, & Traverso, 2004),
the inherent complexity of the process inevitably casts some doubt on whether it will be
possible to use plan-synthesis algorithms to develop plans at run-time in systems that
must operate under tight real-time constraints. Many researchers have instead considered
approaches that make use of pre-compiled plans, i.e., plans developed off-line, at design time.
The Procedural Reasoning System (PRS) of Georgeff and Lansky is a common ancestor of
many such approaches (Georgeff & Lansky, 1987).

2.1 The PRS and AgentSpeak

On one level, the PRS can be understood simply as an architecture for executing pre-
compiled plans. However, the control structures in the architecture incorporate a number
of features which together provide a sophisticated environment for run-time practical rea-
soning. First, plans may be invoked by their effect, rather than simply by name (as is the
case in conventional programming languages). Second, plans are associated with a context,
which must match the agent’s current situation in order for the plan to be considered a
viable option. These two features mean that an agent may have multiple potential plans for
the same end, and can dynamically select between these at run-time, depending on current
circumstances. In addition, plans are associated with triggering events, the idea being that
a plan is made “active” by the occurrence of such an event, which may be external or inter-
nal to the agent. External events are changes in the environment as perceived by the agent;
an example of an internal event might be the creation of a new sub-goal, or the failure of
a plan to achieve its desired effect. Thus, overall, plans may be invoked in a goal-driven
manner (to satisfy a sub-goal that has been created) or in an event-driven manner. The
PRS architecture is illustrated in Figure 1. The AgentSpeak language, introduced by Rao
(1996), represents an attempt to distill the “essential” features of the PRS into a simple,
unified programming language1; we provide a detailed introduction to AgentSpeak below,
after we discuss speech-act theory and agent communication.

2.2 Speech Acts

The PRS model, and the AgentSpeak language in turn, are primarily concerned with the
internal structure of decision making, and in particular the interplay between the creation
of (sub-)goals and the execution of plans to achieve these (sub-)goals. The twin issues of
communication and multi-agent interaction are not addressed within the basic architecture.
This raises the question of how such issues might be dealt with within the architecture.
While BDI theory is based on the philosophical literature on practical reasoning (Bratman,

1. The name of the language originally introduced by Rao (1996) was AgentSpeak(L). In this paper, we
adopt the simpler form AgentSpeak instead, and we use it to refer both to the original language and the
variants that appeared in the literature.

224

Speech-Act Based Communication in Agent Programming

Beliefs

Goals

Plan
Library

Interpreter

Intentions

Sensor Input Action Output

Figure 1: The PRS architecture.

1987), agent communication in multi-agent systems is typically based on the speech-act
theory, in particular the work of Austin (1962) and Searle (1969).

Speech-act theory starts from the principle that language is action: a rational agent
makes an utterance in an attempt to change the state of the world, in the same way that
an agent performs “physical” actions to change the state of the world. What distinguishes
speech acts from other (“non-speech”) actions is that the domain of a speech act — the
part of the world that the agent wishes to modify through the performance of the act — is
mostly the mental state(s) of the hearer(s) of the utterance.

Speech acts are generally classified according to their illocutionary force — the “type”
of the utterance. In natural language, illocutionary forces are associated to utterances (or
locutionary acts). The utterance “the door is open”, for example, is generally an “inform” or
“tell” type of action. The perlocutionary force represents what the speaker of the utterance
is attempting to achieve by performing the act. In making a statement such as “open
the door”, the perlocutionary force will generally be the state of affairs that the speaker
hopes to bring about by making the utterance; of course, the actual effect of an utterance
will be beyond the control of the speaker. Whether I choose to believe you when you
inform me that the door is open depends upon how I am disposed towards you. In natural
language, the illocutionary force and perlocutionary force will be implicit within the speech
act and its context. When the theory is adapted to agent communication, however, the

225

Vieira, Moreira, Wooldridge, & Bordini

illocutionary forces are made explicit to facilitate processing the communication act. The
various types of speech acts are generally referred to as “performatives” in the context of
agent communication.

Other pragmatic factors related to communication such as social roles and conven-
tions have been discussed in the literature (Levinson, 1981; Ballmer & Brennenstuhl, 1981;
Singh, 1994). Illocutionary forces may require the existence of certain relationships be-
tween speaker and hearer for them to be felicitous. A command, for instance, requires
a subordination relation between the individuals involved in the communication, whereas
such subordination is not required in a request.

Apart from illocutionary forces and social roles, other classifications of the relations
among speech acts have been proposed (Levinson, 1981); for example, a reply follows a
question, and threatening is stronger than warning. Such categories place messages in the
larger context of a multi-agent dialogue. In multi-agent systems, communicative interac-
tions can be seen as communication protocols, which in turn are normally related to a
specific coordination/cooperation mechanism. The Contract Net (Smith, 1980), for exam-
ple, is a protocol for task allocation, which is defined in terms of a number of constituent
performatives (such as announcing and bidding).

2.3 Agent Communication Languages: KQML & FIPA

The Knowledge Query and Manipulation Language (KQML), developed in the context of the
“Knowledge Sharing Effort” project (Genesereth & Ketchpel, 1994), was the first attempt to
define a practical agent communication language that included high level (speech-act based)
communication as considered in the distributed artificial intelligence literature. KQML is
essentially a knowledge-level messaging language (Labrou & Finin, 1994; Mayfield, Labrou,
& Finin, 1996). KQML defines a number of performatives, which make explicit an agent’s
intentions in sending a message. For example, the KQML performative tell is used with
the intention of changing the receiver’s beliefs, whereas achieve is used with the intention
of changing the receiver’s goals. Thus the performative label of a KQML message explicitly
identifies the intent of the message sender.

The FIPA standard for agent communication2 was released in 2002. This standard is
closely based on KQML, being almost identical conceptually and syntactically, while differ-
ing in the performative set and certain details of the semantic framework (Labrou, Finin, &
Peng, 1999). These differences are not important for the purposes of this paper; when we
refer to traditional approaches to semantics of speech-act based inter-agent communication,
the reference applies to both equally. However, for historical reasons, we refer mainly to
KQML and the richer literature that can be found on its semantics.

2.4 The Semantics of Agent Communication Languages

Perhaps the first serious attempt to define the semantics of KQML was made by Labrou and
Finin (1994). Their work built on the pioneering work of Cohen and Perrault on an action-
theoretic semantics of natural language speech acts (Cohen & Perrault, 1979). The key
insight in Cohen and Perrault’s work was that, if we take seriously the idea of utterances as

2. http://www.fipa.org/specs/fipa00037/SC00037J.html

226

Speech-Act Based Communication in Agent Programming

action, then we should be able to apply a formalism for reasoning about action to reasoning
about utterances. They used a STRIPS-style pre- and post-condition formalism to define
the semantics of “inform” and “request” speech acts (perhaps the canonical examples of
speech acts), where these pre- and post-conditions were framed in terms of the beliefs,
desires, and abilities of conversation participants. When applied by Labrou and Finin to
the KQML language (1994), the pre- and post-conditions defined the mental states of the
sender and receiver of a KQML message before and after sending such message. For the
description of mental states, most of the work in the area is based on Cohen and Levesque’s
theory of intention (1990a, 1990b). Agent states are described through mental attitudes
such as belief (bel), knowledge (know), desire (want), and intention (intend). These mental
attitudes normally have propositions (i.e., symbolic representations of states of the world)
as arguments. Figures 2 and 3 give semantics for the KQML performatives tell(S, R,X) (S
tells R that S believes that X is true), and ask if(S, R,X) (S asks R if R believes that X
is true), in the style introduced by Labrou and Finin (1994).

• Pre-conditions on the states of S and R:

– Pre(S): bel(S, X) ∧ know(S, want(R, know(R, bel(S, X))))

– Pre(R): intend(R, know(R, bel(S, X)))

• Post-conditions on S and R:

– Pos(S): know(S, know(R, bel(S, X)))

– Pos(R): know(R, bel(S, X))

• Action completion:

– know(R, bel(S, X))

Figure 2: Semantics for tell (Labrou & Finin, 1994).

• Pre-conditions on the states of S and R:

– Pre(S): want(S, know(S, Y)) ∧ know(S, intend(R, process(R,M))) where Y is
either bel(R,X) or ¬bel(R,X) and M is ask-if (S, R,X)

– Pre(R): intend(R, process(R,M))

• Post-conditions about R and S:

– Pos(S): intend(S, know(S, Y))

– Pos(R) : know(R,want(S, know(S, Y)))

• Action completion:

– know(S, Y)

Figure 3: Semantics for ask-if (Labrou & Finin, 1994).

227

Vieira, Moreira, Wooldridge, & Bordini

As noted above, one of the key problems with this (widely used) approach to giving
semantics to agent communication languages is that there is no way to determine whether
or not any software component that uses such a communication language complies with the
semantics. This is because the semantics makes reference to mental states, and we have in
general no principled way to attribute such mental states to arbitrary pieces of software.
This is true of the semantic approaches to both KQML and FIPA, as discussed by both
Wooldridge (1998) and Singh (1998). As an example, consider a legacy software component
wrapped in an agent that uses KQML or FIPA to interoperate with other agents. One
cannot prove communication properties of such system, as there is no precise definition of
when the legacy system believes that (or intends to achieve a state of the world where)
some proposition is true. Our approach builds on the work of Bordini and Moreira (2004),
which presented a precise definition of what it means for an AgentSpeak agent to believe,
desire, or intend a certain formula; that approach is also adopted in our work on model-
checking for AgentSpeak (Bordini et al., 2004). As a consequence, we are able to successfully
and meaningfully apply speech act-style semantics to communication in AgentSpeak. The
drawback, of course, is that the approach is, formally, limited to AgentSpeak agents, even
though the same ideas can be used in work on semantics for other agent languages.

3. Syntax and Semantics of AgentSpeak

The AgentSpeak programming language was introduced by Rao (1996). It can be under-
stood as a natural extension of logic programming for the BDI agent architecture, and
provides an elegant abstract framework for programming BDI agents. The BDI architec-
ture is, in turn, perhaps one of the major approaches to the implementation of rational
practical reasoning agents (Wooldridge, 2000b).

An AgentSpeak agent is created by the specification of a set of beliefs forming the initial
belief base and a set of plans forming the plan library. An agent’s belief base is a set of
ground first-order predicates, which will change over time to represent the current state of
the environment as perceived by the agent.

AgentSpeak distinguishes two types of goals: achievement goals and test goals. Achieve-
ment and test goals are predicates (as with beliefs), prefixed with one of the operators ‘!’
and ‘?’, respectively. Achievement goals state that the agent wants to achieve a state of
the world where the associated predicate is true; in practice, as we will see, this is done
by the execution of a plan. A test goal returns a unification for the associated predicate
with one of the agent’s beliefs; it fails if no such unification is possible. A triggering event
defines which events may initiate the execution of a plan. An event can be internal (when a
subgoal needs to be achieved), or external (when generated from belief updates as a result
of perceiving the environment). Additionally, with respect to the model of communication
in this paper, external events can be related to messages received from other agents. There
are two types of triggering events: those related to the addition (‘+’) and deletion (‘-’) of
mental attitudes (beliefs or goals).

Plans refer to the basic actions that an agent is able to perform on its environment. A
plan is formed by a triggering event, denoting the events for which that plan is relevant.
The triggering event is followed by a conjunction of belief literals representing a context for
the plan. The context must be a logical consequence of the agent’s current beliefs for the

228

Speech-Act Based Communication in Agent Programming

+concert(A,V) : likes(A)
← !book tickets(A,V).

+!book tickets(A,V) : ¬busy(phone)
← ?phone number(V,N);

call(N);
. . .;
!choose seats(A,V).

Figure 4: Examples of AgentSpeak plans.

plan to be applicable — one of the plans that are both relevant and applicable is chosen for
execution so as to handle a particular event. The remainder of the plan is a sequence of
basic actions or (sub-)goals that the agent has to achieve (or test) when the plan is executed.

Figure 4 shows some examples of AgentSpeak plans. The first plan tells us that, when
a concert is announced for artist A at venue V (so that, from perceiving the environment, a
belief concert(A,V) is added to the belief base), provided that the agent happens to like
artist A, it will have the new achievement goal of booking tickets for that concert. The
second plan tells us that whenever this agent adopts the goal of booking tickets for A’s
performance at V, provided it is the case that the telephone is not busy, it can execute a
plan consisting of retrieving from its belief base the telephone number of venue V (with
the test goal ?phone number(V,N)), performing the basic action call(N) (assuming that
making a phone call is one of the actions that the agent is able to perform), followed by
a certain protocol for booking tickets (indicated by ‘. . .’), which in this case ends with the
execution of a plan for choosing the seats for such performance at that particular venue.

Next, we formally present the syntax and semantics of AgentSpeak. Note that we do
not yet consider communication; we extend the semantics to deal with communication in
Section 4.

3.1 Abstract Syntax

The syntax of an AgentSpeak agent program ag is defined by the grammar below. In
AgentSpeak, an agent program is simply given by a set bs of beliefs and a set ps of plans.
The beliefs bs define the initial state of the agent’s belief base (i.e., the state of the belief base
when the agent starts running), and the plans ps form the agent’s plan library. The atomic
formulæ at of the language are predicates, where P is a predicate symbol and t1, . . . , tn are
standard terms of first order logic. A belief is an atomic formula at with no variables; we
use b as a meta-variable for beliefs.

229

Vieira, Moreira, Wooldridge, & Bordini

ag ::= bs ps
bs ::= b1 . . . bn (n ≥ 0)
ps ::= p1 . . . pn (n ≥ 1)
p ::= te : ct ← h
te ::= +at | −at | +g | −g
ct ::= ct1 | T
ct1 ::= at | ¬at | ct1 ∧ ct1 |
h ::= h1;T | T
h1 ::= a | g | u | h1;h1

at ::= P(t1, . . . , tn) (n ≥ 0)
| P(t1, . . . , tn)[s1, . . . , sm] (n ≥ 0,m > 0)

s ::= percept | self | id
a ::= A(t1, . . . , tn) (n ≥ 0)
g ::= !at | ?at
u ::= +b | −at

The grammar above gives an alternative definition for at, extending the conventional
syntactic form of predicates. The extension allows “annotations” to be associated with a
predicate; this is an extension of AgentSpeak’s original syntax motivated by our work on
communication, which is discussed below in Section 3.2. For the time being, suffice it to say
that the idea is to annotate each atomic formula with its source: either a term id identifying
which agent previously communicated that information, self to denote beliefs created by
the agent itself (through belief update operations within a plan, as described below), or
percept to indicate that the belief was acquired through perception of the environment.
So, for example, if agent i has a belief concert(a, v)[j] in its belief base, this would mean
that agent j had previously informed agent i of concert(a, v) — in other words, that j
wanted i to believe that there will be a concert by a at v. Similarly, concert(a, v)[percept, j]
would mean that a’s concert at v is believed not only because j has informed agent i of
this, but because i itself also perceived this fact (e.g., by seeing a poster when walking past
the theatre).

A plan in AgentSpeak is given by p above, where te is the triggering event, ct is the plan’s
context, and h is sequence of actions, goals, or belief updates (which should be thought of
as “mental notes” created by the agent itself). We refer to te : ct as the head of the plan,
and h is its body. The set of plans of an agent is given by ps. Each plan has as part of
its head a formula ct that specifies the conditions under which the plan can be chosen for
execution.

A triggering event te can then be the addition or the deletion of a belief from an agent’s
belief base (denoted +at and −at, respectively), or the addition or the deletion of a goal
(+g and −g, respectively3). For plan bodies, we assume the agent has at its disposal a set of
actions and we use a as a meta-variable ranging over them. We are largely unconcerned here
with respect to exactly what such actions are. Actions are written using the same notation

3. Triggering events of the form −g, in our approach, are used in practice for handling plan failure. Although
we have left this construct in the grammar, we have omitted the discussion and formalisation of plan
failure for clarity, as the focus in this paper is on the semantics of communication.

230

Speech-Act Based Communication in Agent Programming

as predicates, except that an action symbol A is used instead of a predicate symbol. Goals
g can be either achievement goals (!at) or test goals (?at). Finally, +b and −at (in the body
of a plan) represent operations for updating (u) the belief base by, respectively, adding or
removing beliefs; recall that an atomic formula must be ground if it is to be added to the
belief base.

3.2 Semantics

We define the semantics of AgentSpeak using operational semantics, a widely used method
for giving semantics to programming languages (Plotkin, 1981). The operational seman-
tics is given by a set of rules that define a transition relation between configurations
〈ag , C, M, T, s〉 where:

• An agent program ag is, as defined above, a set of beliefs bs and a set of plans ps.

• An agent’s circumstance C is a tuple 〈I, E, A〉 where:

– I is a set of intentions {i, i′, . . .}. Each intention i is a stack of partially instan-
tiated plans.

– E is a set of events {(te, i), (te ′, i′), . . .}. Each event is a pair (te, i), where te is
a triggering event and i is an intention — a stack of plans in case of an internal
event, or the empty intention T in case of an external event. When the belief
revision function (which is not part of the AgentSpeak interpreter but rather of
the agent’s overall architecture), updates the belief base, the associated events
— i.e., additions and deletions of beliefs — are included in this set. These are
called external events; internal events are generated by additions or deletions of
goals from plans currently executing.

– A is a set of actions to be performed in the environment.

• M is a tuple 〈In, Out, SI〉 whose components characterise the following aspects of
communicating agents (note that communication is asynchronous):

– In is the mail inbox: the system includes all messages addressed to this agent
in this set. Elements of this set have the form 〈mid , id , ilf , cnt〉, where mid is a
message identifier, id identifies the sender of the message, ilf is the illocutionary
force of the message, and cnt its content: a (possibly singleton) set of AgentSpeak
predicates or plans, depending on the illocutionary force of the message.

– Out is where the agent posts messages it wishes to send; it is assumed that some
underlying communication infrastructure handles the delivery of such messages.
(We are not concerned with this infrastructure here.) Messages in this set have
exactly the same format as above, except that here id refers to the agent to
which the message is to be sent.

– SI is used to keep track of intentions that were suspended due to the processing
of communication messages; this is explained in more detail in the next section,
but the intuition is as follows: intentions associated with illocutionary forces that

231

Vieira, Moreira, Wooldridge, & Bordini

require a reply from the interlocutor are suspended, and they are only resumed
when such reply has been received.

• It is useful to have a structure which keeps track of temporary information that may
be subsequently required within a reasoning cycle. T is a tuple 〈R,Ap, ι, ε, ρ〉 with
such temporary information; these components are as follows:

– R is the set of relevant plans (for the event being handled).

– Ap is the set of applicable plans (the relevant plans whose contexts are true).

– ι, ε, and ρ record a particular intention, event, and applicable plan (respectively)
being considered along the execution of one reasoning cycle.

• The current step within an agent’s reasoning cycle is symbolically annotated by
s ∈ {ProcMsg,SelEv,RelPl,ApplPl,SelAppl,AddIM,SelInt, ExecInt,ClrInt}. These la-
bels stand for, respectively: processing a message from the agent’s mail inbox, select-
ing an event from the set of events, retrieving all relevant plans, checking which of
those are applicable, selecting one particular applicable plan (the intended means),
adding the new intended means to the set of intentions, selecting an intention, exe-
cuting the selected intention, and clearing an intention or intended means that may
have finished in the previous step.

In the interests of readability, we adopt the following notational conventions in our
semantic rules:

• If C is an AgentSpeak agent circumstance, we write CE to make reference to the E
component of C, and similarly for other components of a configuration.

• We write Tι = (the underscore symbol) to indicate that there is no intention presently
being considered in that reasoning cycle. Similarly for Tρ and Tε.

• We write i[p] to denote the intention that has plan p on top of intention i.

The AgentSpeak interpreter makes use of three selection functions that are defined by
the agent programmer. The selection function SE selects an event from the set of events CE ;
the selection function SAp selects one applicable plan given a set of applicable plans; and
SI selects an intention from the set of intentions CI (the chosen intention is then executed).
Formally, all the selection functions an agent uses are also part of its configuration (as is the
social acceptance function that we mention later when we formalise agent communication).
However, as they are defined by the agent programmer at design time and do not (in
principle) change at run time, we avoid including them in the configuration for the sake of
readability.

We define some functions which help simplify the semantics. If p is a plan of the form
te : ct ← h, we define TrEv(p) = te and Ctxt(p) = ct . That is, these projection functions
return the triggering event and the context of the plan, respectively. The TrEv function can
also be applied to the head of a plan rather than the whole plan, but works similarly in
that case.

232

Speech-Act Based Communication in Agent Programming

Next, we need to define the specific (limited) notion of logical consequence used here.
We assume a procedure that computes the most general unifier of two literals (as usual in
logic programming), and with this, define the logical consequence relation |= that is used
in the definitions of the functions for checking for relevant and applicable plans, as well as
executing test goals. Given that we have extended the syntax of atomic formulæ so as to
include annotations of the sources for the information symbolically represented by it, we
also need to define |= in our particular context, as follows.

Definition 1 We say that an atomic formula at1 with annotations s11, . . . , s1n is a logical
consequence of a set of ground atomic formulæ bs, written bs |= at1[s11, . . . , s1n] if, and
only if, there exists at2[s21, . . . , s2m] ∈ bs such that (i) at1θ = at2, for some most general
unifier θ, and (ii) {s11, . . . , s1n} ⊆ {s21, . . . , s2m}.

The intuition is that, not only should predicate at unify with some belief in bs (i), but
also that all specified sources of information for at should be corroborated in bs (ii). Thus,
for example, p(X)[ag1] follows from {p(t)[ag1,ag2]}, but p(X)[ag1,ag2] does not follow
from {p(t)[ag1]}. More concretely, if, in order to be applicable, a plan requires that
a drowning person was explicitly perceived rather than communicated by another agent
(which can be represented by drowning(Person)[percept]), this follows from a belief
drowning(man)[percept,passerby] (i.e., that this was both perceived and communicated
by a passerby). On the other hand, if the required context was that two independent sources
provided the information, say cheating(Person)[witness1,witness2], this cannot be
inferred from a belief cheating(husband)[witness1].

In order to make some semantic rules more readable, we use two operations on a belief
base (i.e., a set of annotated ground atomic formulæ). We use bs ′ = bs + b to say that bs ′ is
as bs except that bs ′ |= b. Similarly bs ′ = bs− b means that bs ′ is as bs except that bs ′ 6|= b.

A plan is considered relevant in relation to a triggering event if it has been written to
deal with that event. In practice, this is checked by trying to unify the triggering event part
of the plan with the triggering event within the event that has been selected for treatment
in that reasoning cycle. In the definition below, we use the logical consequence relation
defined above to check if a plan’s triggering event unifies with the event that has occurred.
To do this, we need to extend the |= relation so that it also applies to triggering events
instead of predicates. In fact, for the purposes here, we can consider that any operators in
a triggering event (such as ‘+’ or ‘!’) are part of the predicate symbol or, more precisely, let
at1 be the predicate (with annotation) within triggering event te1 and at2 the one within
te2, then {te2} |= te1 if, and only if, {at2} |= at1 and, of course, the operators prefixing te1

and te2 are exactly the same. Because of the requirement of inclusion of annotations, the
converse might not be true.

Definition 2 Given plans ps of an agent and a triggering event te, the set RelPlans(ps, te)
of relevant plans for te is defined as follows:

RelPlans(ps, te) = {(p, θ) | p ∈ ps and θ is s.t. {te} |= TrEv(p)θ}.

The intuition regarding annotations is as follows. The programmer should include in
the annotations of a plan’s triggering event all the sources that must have generated the

233

Vieira, Moreira, Wooldridge, & Bordini

event for that plan to be relevant (or include no annotation if the source of information
is not important for the plan to be considered relevant). For the plan to be relevant, it
therefore suffices for the annotations in the plan’s triggering event to be a subset of those
in the event that occurred. A plan with triggering event +!p(X)[s] is relevant for an event
〈+!p(t)[s, t],T〉 since RelPlans requires that {p(t)[s, t]} |= p(X)[s]θ (for some most general
unifier θ), which in turn requires that {s} ⊆ {s, t}. As a consequence, for a plan with a
triggering event that has no annotations (e.g., +!p(X)) to be relevant for a particular event
(say, 〈+!p(t)[ag1], i〉) it only requires that the predicates unify in the usual sense since
{} ⊆ S, for any set S.

A plan is applicable if it is relevant and its context is a logical consequence of the agent’s
beliefs. Again we need to extend slightly the definition of |= given above. A plan’s context
is a conjunction of literals (l is either at or ¬at). We can say that bs |= l1 ∧ . . . ∧ ln if, and
only if, bs |= li if li is of the form at, and bs 6|= li of li is of the form ¬at, for 1 ≤ i ≤ n.
The function for determining the applicable plans in a set of relevant plans is formalised as
follows.

Definition 3 Given a set of relevant plans R and the beliefs bs of an agent, the set of
applicable plans AppPlans(bs, R) is defined as follows:

AppPlans(bs, R) = {(p, θ′ ◦ θ) | (p, θ) ∈ R and θ′ is s.t. bs |= Ctxt(p)θθ′}.

We need another function to be used in the semantic rule for when the agent is to
execute a test goal. The evaluation of a test goal ?at consists in testing if the formula at
is a logical consequence of the agent’s beliefs. The function returns a set of most general
unifiers all of which make the formula at a logical consequence of a set of formulæ bs, as
follows.

Definition 4 Given a set of formulæ bs and a formula at, the set of substitutions
Test(bs, at) produced by testing at against bs is defined as follows:

Test(bs, at) = {θ | bs |= atθ}.

Next, we present the reasoning cycle of AgentSpeak agents and the rules which define
the operational semantics.

3.3 Reasoning Cycle

Figure 5 shows the possible transitions between the various steps in an agent’s reasoning
cycle as determined by an AgentSpeak interpreter. The labels in the nodes identify each step
of the cycle, which are: processing received messages (ProcMsg); selecting an event from
the set of events (SelEv); retrieving all relevant plans (RelPl); checking which of those are
applicable (ApplPl); selecting one particular applicable plan (the intended means) (SelAppl);
adding the new intended means to the set of intentions (AddIM); selecting an intention
(SelInt); executing the selected intention (ExecInt), and clearing an intention or intended
means that may have finished in the previous step (ClrInt).

In the general case, an agent’s initial configuration is 〈ag , C, M, T, ProcMsg〉, where ag
is as given by the agent program, and all components of C, M , and T are empty. Note that

234

Speech-Act Based Communication in Agent Programming

RelPl SelAppl

AddIMSelIntClrInt ExecInt

SelEv ApplPlProcMsg

Figure 5: The AgentSpeak agent reasoning cycle.

a reasoning cycle starts with processing received messages (ProcMsg) — the semantics for
this part of the reasoning cycle are given in the main section of this paper. After that, the
original AgentSpeak reasoning cycle takes place. An event selection (SelEv) is made, which
is followed by determining relevant and applicable plans (RelPl and ApplPl, respectively).
One of the relevant plans is then selected (SelAppl); note that when there are no events to
be treated or when there are no applicable plans to deal with an event the agent turns its
attention to the selection of an intended means (SelInt) to be executed next. After one of
the relevant plans is selected (SelAppl) and an instance of that plan becomes an “intended
means” and is therefore included in the set of intentions (AddIM). When there are more
than one intention (which is normally the case except for extremely simple agents), one of
those intentions is selected (SelInt) and executed (ExecInt).

These are the most important transitions; the others will be made clearer when the
semantics is presented. The rules which define the transition systems giving operational
semantics to AgentSpeak (without communication) are presented next.

3.4 Semantic Rules

In this section, we present an operational semantics for AgentSpeak that formalises the
transitions between possible steps of the interpretation of AgentSpeak agents as shown in
Figure 5. In the general case, an agent’s initial configuration is 〈ag , C, M, T, ProcMsg〉,
where ag is as given by the agent program, and all components of C, M , and T are empty.
Note that a reasoning cycle starts with processing received messages (ProcMsg), according
to the most recent extension of the semantics to be presented in Section 4. An event
selection (SelEv) is then made, starting the reasoning cycle as originally defined for the
language, which is the part of the semantics presented below.

Event Selection: The rule below assumes the existence of a selection function SE that
selects events from a set of events E. The selected event is removed from E and it is
assigned to the ε component of the temporary information. Rule SelEv2 skips to the
intention execution part of the cycle, in case there are no events to handle.

235

Vieira, Moreira, Wooldridge, & Bordini

SE(CE) = 〈te, i〉
〈ag , C, M, T, SelEv〉 −→ 〈ag , C ′,M, T ′,RelPl〉

where: C ′
E = CE \ {〈te, i〉}

T ′
ε = 〈te, i〉

(SelEv1)

CE = {}
〈ag , C, M, T, SelEv〉 −→ 〈ag , C, M, T, SelInt〉

(SelEv2)

Relevant Plans: Rule Rel1 assigns the set of relevant plans to component TR. Rule Rel2
deals with the possibility that there are no relevant plans for an event, in which case the
event is simply discarded. In fact, an intention associated with the event might also be
discarded: if there are no relevant plans to handle an event generated by that intention,
it cannot be further executed. In practice, instead of simply discarding the event (and
possibly an intention with it), this leads to the activation of the plan failure mechanism,
which we do not discuss here for clarity of presentation, as discussed earlier.

Tε = 〈te, i〉 RelPlans(agps, te) 6= {}
〈ag , C, M, T, RelPl〉 −→ 〈ag , C, M, T ′,ApplPl〉

where: T ′
R = RelPlans(agps, te)

(Rel1)

RelPlans(agps, te) = {}
〈ag , C, M, T, RelPl〉 −→ 〈ag , C, M, T, SelEv〉

(Rel2)

An alternative approach for situations where there are no relevant plans for an event
was introduced by Ancona, Mascardi, Hübner, and Bordini (2004). It assumes that in some
cases, explicitly specified by the programmer, the agent will want to ask other agents what
are the recipes they use for handling such events. The mechanism for plan exchange between
AgentSpeak agents they proposed allows the programmer to specify which triggering events
should generate attempts to retrieve external plans, which plans an agent agrees to share
with others, what to do once the plan has been used for handling that particular event
instance, and so forth.

Applicable Plans: The rule Appl1 assigns the set of applicable plans to the TAp compo-
nent; rule Appl2 applies when there are no applicable plans for an event, in which case the
event is simply discarded. Again, in practice, this normally leads to the plan failure mech-
anism being activated, rather than simply discarding the event (and the whole intention
with it).

AppPlans(agbs, TR) 6= {}
〈ag , C, M, T, ApplPl〉 −→ 〈ag , C, M, T ′,SelAppl〉

where: T ′
Ap = AppPlans(agbs, TR)

(Appl1)

AppPlans(agbs, TR) = {}
〈ag , C, M, T, ApplPl〉 −→ 〈ag , C, M, T, SelInt〉

(Appl2)

236

Speech-Act Based Communication in Agent Programming

Selection of an Applicable Plan: This rule assumes the existence of a selection function
SAp that selects one plan from a set of applicable plans TAp. The selected plan is then
assigned to the Tρ component of the configuration.

SAp(TAp) = (p, θ)
〈ag , C, M, T, SelAppl〉 −→ 〈ag , C, M, T ′,AddIM〉

where: T ′
ρ = (p, θ)

(SelAppl)

Adding an Intended Means to the Set of Intentions: Events can be classified as
external or internal (depending on whether they were generated from the agent’s perception,
or whether they were generated by the previous execution of other plans, respectively). Rule
ExtEv determines that, if the event ε is external (which is indicated by T in the intention
associated to ε), a new intention is created and the only intended means in that new
intention is the plan p assigned to the ρ component. If the event is internal, rule IntEv
determines that the plan in ρ should be put on top of the intention associated with the
event.

Tε = 〈te,T〉 Tρ = (p, θ)
〈ag , C, M, T, AddIM〉 −→ 〈ag , C ′,M, T, SelInt〉

where: C ′
I = CI ∪ { [pθ] }

(ExtEv)

Tε = 〈te, i〉 Tρ = (p, θ)
〈ag , C, M, T, AddIM〉 −→ 〈ag , C ′,M, T, SelInt〉

where: C ′
I = CI ∪ { i[(pθ)] }

(IntEv)

Note that, in rule IntEv, the whole intention i that generated the internal event needs
to be inserted back in CI , with p pushed onto the top of that intention. This is related
to resuming suspended intentions; the suspending of intentions appears in rule AchvGl
below.

Intention Selection: Rule SelInt1 assumes the existence of a function SI that selects an
intention for processing next, while rule SelInt2 takes care of the situation where the set
of intentions is empty (in which case the reasoning cycle simply starts again).

CI 6= {} SI(CI) = i

〈ag , C, M, T, SelInt〉 −→ 〈ag , C, M, T ′,ExecInt〉

where: T ′
ι = i

(SelInt1)

CI = {}
〈ag , C, M, T, SelInt〉 −→ 〈ag , C, M, T, ProcMsg〉

(SelInt2)

Executing an Intention: The group of rules below express the effects of executing a
formula in the body of the plan. Each rule deals with one type of formula that can appear

237

Vieira, Moreira, Wooldridge, & Bordini

in a plan body. Recall from Section 3.2 that an intention is a stack of (partially instantiated)
plan instances; a plan instance is a copy of a plan from the agent’s plan library). The plan
instance to be executed is always the one at the top of the intention that was selected in the
previous step (rule SelInt1); the specific formula to be executed is the one at the beginning
of the body of that plan.
Actions: When the formula to be executed is an action, the action a in the body of the plan
is added to the set of actions A (which, recall, denotes that the action is to be executed using
the agent’s effectors). The action is removed from the body of the plan and the intention
is updated to reflect this removal.

Tι = i[head← a;h]
〈ag , C, M, T, ExecInt〉 −→ 〈ag , C ′,M, T, ClrInt〉

where: C ′
A = CA ∪ {a}

C ′
I = (CI \ {Tι}) ∪ {i[head← h]}

(Action)

Achievement Goals: This rule registers a new internal event in the set of events E. This
event can then be selected for handling in a future reasoning cycle (see rule SelEv1). When
the formula being executed is a goal, the formula is not removed from the body of the plan,
as in the other cases. This only happens when the plan used for achieving that goal finishes
successfully; see rule ClrInt2. The reasons for this are related to further instantiation of
the plan variables as well as handling plan failure.

Tι = i[head← !at;h]
〈ag , C, M, T, ExecInt〉 −→ 〈ag , C ′,M, T, ProcMsg〉

where: C ′
E = CE ∪ {〈+!at, Tι〉}

C ′
I = CI \ {Tι}

(AchvGl)

Note how the intention that generated the internal event is removed from the set of
intentions CI , capturing the idea of suspended intentions. In a plan body, if we have ‘!g; f ’
(where f is any formula that can appear in plan bodies), this means that, before f can
be executed, the state of affairs represented by goal g needs to be achieved (through the
execution of some relevant, applicable plan). The goal included in the new event created by
rule AchvGl above is treated as any other event, which means it will go the set of events
until it is eventually selected in a later reasoning cycle, according to the agent’s specific
priorities for selecting events (rule SelEv1). Meanwhile, that plan (with formula f to be
executed next) can no longer be executed, hence the whole intention is suspended by being
placed, within the newly created event, in the set of events and removed from the set of
intentions. When the event created by the rule above is selected and an applicable plan
for achieving g has been chosen, that intended means is pushed on top of the suspended
intention, which can then be resumed (i.e., moved back to the set of intentions), according
to rule IntEv. The next time that intention is selected, its execution will then proceed with
a plan for achieving g at the top, and only when that plan is finished will f be executed (as
that plan, now without the achieved goal, will be at the top of the intention again); further
details on suspended intentions can be found in the AgentSpeak literature (e.g., see Bordini
& Moreira, 2004).

238

Speech-Act Based Communication in Agent Programming

Test Goals: These rules are used when a test goal formula ?at is to be executed. Rule
TestGl1 is used when there is a set of substitutions that can make at a logical consequence
of the agent’s beliefs, which means that the test goal succeeded. If the test goal succeeds,
the substitution is applied to the whole intended means, and the reasoning cycle can be
continued. If that is not the case, it might turn out that the test goal is used as a triggering
event of a plan, which is used by programmers to formulate more sophisticated queries.
Rule TestGl2 is used in such case: it generates an internal event, which may trigger the
execution of a plan, as for achievement goals. If to carry out a plan an agent is required
to obtain information (at the time of actual execution of the plan) which is not directly
available in its belief base, a plan for a test goal can be written which, for example, sends
messages to other agents, or processes available data, so that the particular test goal can be
concluded (producing an appropriate instantiation of logical variables). If an internal event
is generated for the test goal being executed, the process is very similar to achievement goals,
where the intention is suspended until a plan is selected to achieve the goal, as explained
above.

Tι = i[head← ?at;h] Test(agbs, at) 6= {}
〈ag , C, M, T, ExecInt〉 −→ 〈ag , C ′,M, T, ClrInt〉

where: C ′
I = (CI \ {Tι}) ∪ {i[(head← h)θ]}

θ ∈ Test(agbs, at)

(TestGl1)

Tι = i[head← ?at;h] Test(agbs, at) = {}
〈ag , C, M, T, ExecInt〉 −→ 〈ag , C ′,M, T, ClrInt〉

where: C ′
E = CE ∪ {〈+?at, Tι〉}

C ′
I = CI \ {Tι}

(TestGl2)

Updating Beliefs: In the rules below, the set of beliefs of the agent is modified in a way
that either an atomic formula (with annotation self) is included in the new set of beliefs
(rule AddBel) or it is removed from there (rule DelBel). Both rules add a new event to
the set of events E, and update the intention by removing from it the +b or −at formula
just executed. Note that belief deletions can have variables (at), whilst only ground atoms
(b) can be added to the belief base.

Tι = i[head← +b;h]
〈ag , C, M, T, ExecInt〉 −→ 〈ag ′, C ′,M, T, ClrInt〉

where: ag ′bs = agbs + b[self]
C ′

E = CE ∪ {〈+b[self],T〉}
C ′

I = (CI \ {Tι}) ∪ {i[head← h]}

(AddBel)

Tι = i[head← −at;h]
〈ag , C, M, T, ExecInt〉 −→ 〈ag ′, C ′,M, T, ClrInt〉

where: ag ′bs = agbs − at[self]
C ′

E = CE ∪ {〈−at[self],T〉}
C ′

I = (CI \ {Tι}) ∪ {i[head← h]}

(DelBel)

239

Vieira, Moreira, Wooldridge, & Bordini

Clearing Intentions: Finally, the following rules remove empty intended means or inten-
tions from the set of intentions. Rule ClrInt1 simply removes a whole intention when there
is nothing else to be executed in that intention. Rule ClrInt2 clears the remainder of the
plan with an empty body currently at the top of a (non empty) intention. In this case, it
is necessary to further instantiate the plan below the finished plan (currently at the top of
that intention), and remove the goal that was left at the beginning of the body of the plan
below (see rules AchvGl and TestGl). Note that, in this case, further “clearing” might be
necessary, hence the next step is still ClrInt. Rule ClrInt3 takes care of the situation where
no (further) clearing is required, so a new reasoning cycle can start (at step ProcMsg).

j = [head← T], for some j ∈ CI

〈ag , C, M, T, ClrInt〉 −→ 〈ag , C ′,M, T, ProcMsg〉

where: C ′
I = CI \ {j}

(ClrInt1)

j = i[head← T], for some j ∈ CI

〈ag , C, M, T, ClrInt〉 −→ 〈ag , C ′,M, T, ClrInt〉

where: C ′
I = (CI \ {j}) ∪ {k[(head′ ← h)θ]}

if i = k[head′ ← g;h] and θ is s.t. gθ = TrEv(head)

(ClrInt2)

j 6= [head← T] ∧ j 6= i[head← T], for any j ∈ CI

〈ag , C, M, T, ClrInt〉 −→ 〈ag , C, M, T, ProcMsg〉
(ClrInt3)

4. Semantics of Communicating AgentSpeak Agents

The rules in the previous section give semantics to the key internal decision making and
control aspects of AgentSpeak. Furthermore, the overall agent architecture will have sensors
(with an associated belief revision function) and effectors, in addition to an AgentSpeak
interpreter. The relation of these components to the AgentSpeak interpreter is not essential
for giving a semantics to the language itself. It suffices to note that belief revision from
perception of the environment adds (external) events to the set CE (which is then used in
the AgentSpeak interpretation cycle), while the effectors simply execute every action that
is included by the reasoner in the set CA.

Similarly, the mechanism that allows messages to be exchanged is part of the overall
agent architecture — it is not part of its practical reasoning component, which is specif-
ically what we program with AgentSpeak. The notion of internal actions in AgentSpeak
(Bordini et al., 2002) is appropriate here: sending a message corresponds to executing the
(predefined) internal action .send that appears in a plan body. The underlying agent ar-
chitecture ensures that the necessary technical means is used for the message to reach the
agent to which the message is addressed. However, as we will be referring to a special type
of communication action that involves suspending intentions, we now need to include such
details in the semantics.4

4. Some aspects of the whole framework are still not included in the formalisation given in this paper. We
extend the semantics only to the point required for accounting for the semantics of speech-act based
messages received by an agent.

240

Speech-Act Based Communication in Agent Programming

The format of messages is 〈mid , id , ilf , cnt〉, where mid uniquely identifies the message,
id identifies the agent to which the message is addressed (when the message is being sent)
or the agent that has sent the message (when the message is being received), ilf is the
illocutionary force (i.e., the performative) associated with the message, and cnt is the
message content. Depending on the illocutionary force of the message, its content can be:
an atomic formula (at); a set of formulæ (ATs); a ground atomic formula (b); a set of
ground atomic formulæ (Bs); or a set of plans (PLs).

A mechanism for receiving and sending messages asynchronously is then defined. Mes-
sages are stored in a mail box and one of them is processed by the agent at the beginning of
a reasoning cycle. Recall that, in a configuration of the transition system, MIn is the set of
messages that the agent has received but has not processed yet, MOut is the set of messages
to be sent to other agents, and MSI is a set of suspended intentions awaiting replies for
(information request) messages previously sent. More specifically, MSI is a set of pairs of
the form (mid , i), where mid is a message identifier that uniquely identifies the previously
sent message that caused intention i to be suspended.

When sending messages with illocutionary forces related to information requests, we
have chosen a semantics in which the intention is suspended until a reply is received from
the interlocutor, very much in the way that intentions get suspended when they are waiting
for an internal event to be handled. With this particular semantics for “ask” messages, the
programmer knows with certainty that any subsequent action in the body of a plan is only
executed after the requested information has already been received. However, note that the
information received as a reply is stored directly in the agent’s belief base, so a test goal is
required if the information is to be used in the remainder of the plan.

We now give two rules for executing the (internal) action of sending a message to another
agent: the first is for the “ask” messages which require suspending intentions and the second
is for other types of messages. These rules have priority over Action; although Action
could also be applied on the same configurations, we assume the rules below are used if the
formula to be executed is specifically a .send action. (We did not include this as a proviso
in rule Action to improve readability.)

Tι = i[head← .send(id , ilf , cnt);h]
ilf ∈ {AskIf ,AskAll ,AskHow}

〈ag , C, M, T, ExecInt〉 −→ 〈ag , C ′,M ′, T, ProcMsg〉

where: M ′
Out = MOut ∪ {〈mid , id , ilf , cnt〉}

M ′
SI = MSI ∪ {(mid , i[head← h])},

with mid a new message identifier;
C ′

I = (CI \ {Tι})

(ExecActSndAsk)

The semantics of sending other types of illocutionary forces is then simply to add a
well-formed message to the agent’s mail outbox (rule ExecActSnd). Note that in the rule
above, as the intention is suspended, the next step in the reasoning cycle is ProcMsg(i.e.,
a new cycle is started), whereas in the rule below it is ClrInt, as the updated intention —
with the sending action removed from the plan body — might require “clearing”, as with
any of the intention execution rules seen in the previous section.

241

Vieira, Moreira, Wooldridge, & Bordini

Tι = i[head← .send(id , ilf , cnt);h]
ilf 6∈ {AskIf ,AskAll ,AskHow}

〈ag , C, M, T, ExecInt〉 −→ 〈ag , C ′,M ′, T, ClrInt〉

where: M ′
Out = MOut ∪ {〈mid , id , ilf , cnt〉},

with mid a new message identifier;
C ′

I = (CI \ {Tι}) ∪ {i[head← h]}

(ExecActSnd)

Whenever new messages are sent, we assume the system creates unique message iden-
tifiers (mid). Later, we shall see that, when replying to a message, the same message
identifier is kept in the message, similar to the way that reply-with is used in KQML.
Thus, the receiving agent is aware that a particular message is a reply to a previous one by
checking the message identifiers in the set of intentions that were suspended waiting for a
reply. This feature will be used when we give semantics to receiving Tell messages, which
can be sent by an agent when it spontaneously wants the receiver to believe something (or
at least to believe something about the sender’s beliefs), but can also be used when the
agent receives an “ask” type of message and chooses to reply to it.

As mentioned earlier, it is not our aim to formalise every aspect of a system of mul-
tiple AgentSpeak agents. We extend the previous semantics only to the extent required
to formalise speech-act based communication for such agents. It is relevant, therefore, to
consider a rule that defines message exchange as accomplished by the underlying message
exchange mechanism available in an overall agent architecture. This is abstracted away in
the semantics by means of the following rule, where each AGidk

, k = 1 . . . n, is an agent
configuration 〈ag idk

, Cidk
,Midk

, Tidk
, sidk

〉:

〈mid , id j , ilf , cnt〉 ∈MidiOut

{AGid1 , . . . AGidi
, AGidj

, . . . AGidn , env} −→
{AGid1 , . . . AG′

idi
, AG′

idj
, . . . AGidn , env}

where: M ′
idiOut

= MidiOut \ {〈mid , id j , ilf , cnt〉}
M ′

idj In
= Midj In

∪ {〈mid , id i, ilf , cnt〉}

(MsgExchg)

In the rule above, there are n agents, and env denotes the environment in which the
agents are situated; typically, this is not an AgentSpeak agent, it is simply represented as a
set of properties currently true in the environment and how they are changed by an agent’s
actions. Note how, in a message that is to be sent, the second component identifies the
addressee (the agent to which the message is being sent), whereas in a received message
that same component identifies the sender of the message.

4.1 Speech-act Based Communication for AgentSpeak

In this section we discuss the performatives that are most relevant for communication
in AgentSpeak. These are largely inspired by corresponding KQML performatives. We
also consider some new performatives, related to plan exchange rather than communication
about propositions as usual. The performatives that we consider are briefly described below,
where s denotes the agent that sends the message, and r denotes the agent that receives

242

Speech-Act Based Communication in Agent Programming

the message. Note that tell and untell can be used either for an agent to pro-actively
send information to another agent, or as replies to previous ask messages.

tell: s intends r to believe (that s believes) the sentence in the message’s content to be
true;

untell: s intends r not to believe (that s believes) the sentence in the message’s content
to be true;

achieve: s requests that r to intend to achieve a state of the world where the message
content is true;

unachieve: s requests r to drop the intention of achieving a state of the world where the
message content is true;

tell-how: s informs r of a plan (i.e., some know-how of s);

untell-how: s requests r to disregard a certain plan (i.e., to delete that plan from its plan
library);

ask-if: s wants to know if the content of the message is true for r;

ask-all: s wants all of r’s answers to a question (i.e., all the beliefs that unify with the
message content);

ask-how: s wants all of r’s plans for a particular triggering event (in the message content).

For processing messages, a new selection function is necessary, which operates in much
the same way as the other selection functions described in the previous section. The new
selection function is called SM , and selects a message from MIn ; intuitively, it represents
the priority assigned to each type of message by the programmer. We also need another
“given” function, but its purpose is different from selection functions. The Boolean function
SocAcc(id , ilf , at), where ilf is the illocutionary force of the message from agent id , with
propositional content at, determines when a message is socially acceptable in a given context.
For example, for a message of the form 〈mid , id ,Tell , at〉, the receiving agent may want to
consider whether id is a relevant source of information, as even remembering that id believes
at might not be appropriate. For a message with illocutionary force Achieve, an agent would
normally check, for example, whether id has sufficient social power over itself, or whether
it wishes to act altruistically towards id , before actually committing to do whatever it is
being asked.

We should mention that the role of SocAcc() in our framework is analogous, on the
receiver’s side, to that of the “cause to want” and “cause to believe” predicates in Cohen
and Perrault’s plan-based theory of speech acts (1979). That is, it provides a bridge from
the illocutionary force of a message to its perlocutionary force. The idea of having user-
defined functions determining relations such as “trust” and “power” has already been used
in practice by Bordini et al. (2003). Similar interpretations for the use of SocAcc when
applied to other types of messages (e.g., AskIf) can easily be derived.

There is considerable work on elaborate conceptions of trust in the context of multi-agent
systems, for example in the work of Castelfranchi and Falcone (1998). In our framework,

243

Vieira, Moreira, Wooldridge, & Bordini

more sophisticated notions of trust and power can be implemented by considering the
annotation of the sources of information during the agent’s practical reasoning rather than
the simple use of SocAcc. The annotation construct facilitates determining, in a plan
context, the source of a belief before that plan becomes an intended means.

Before we start the presentation of the semantic rules for communication, it is worth
noting that, in this paper in particular, we do not consider nested annotations. Nested
annotations allow the representation of beliefs about other agents’ beliefs, or more generally
situations in which an agent i was told ϕ by j, which in turn was told ϕ by k, and so forth.

4.2 Semantic Rules for Interpreting Received Messages

Receiving a Tell Message: A Tell message might be sent to an agent either as a reply or
as an “inform” action. When receiving a Tell message as an inform (as opposed to a reply to
a previous request), the AgentSpeak agent will include the content of the received message
in its knowledge base and will annotate the sender as a source for that belief. Note that this
corresponds, in a way, to what is specified as the “action completion” condition by Labrou
and Finin (1994): the receiver will know about the sender’s attitude regarding that belief.
To account for the social aspects of multi-agent systems, we consider that social relations
will regulate which messages the receiver will process or discard; this is referred to in the
semantics by the SocAcc function, which is assumed to be given by the agent designer. The
rule shows that the annotated belief is added to the belief base, and the appropriate event
is generated.

SM (MIn) = 〈mid , id ,Tell ,Bs〉
(mid , i) 6∈MSI (for any intention i)

SocAcc(id ,Tell ,Bs)
〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,Tell ,Bs〉}

and for each b ∈ Bs :
ag ′bs = agbs + b[id]
C ′

E = CE ∪ {〈+b[id],T〉}

(Tell)

Receiving a Tell Message as a Reply: This rule is similar to the one above, except
that now the suspended intention associated with that particular message — given that it
is a reply to a previous “ask” message sent by this agent — needs to be resumed. Recall
that to resume an intention we just need to place it back in the set of intentions (C ′

I).

244

Speech-Act Based Communication in Agent Programming

SM (MIn) = 〈mid , id ,Tell ,Bs〉
(mid , i) ∈MSI (for some intention i)

SocAcc(id ,Tell ,Bs)
〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,Tell ,Bs〉}

M ′
SI = MSI \ {(mid , i)}

C ′
I = CI ∪ {i}

and for each b ∈ Bs :
ag ′bs = agbs + b[id]
C ′

E = CE ∪ {〈+b[id],T〉}

(TellRepl)

Receiving an Untell Message: When receiving an Untell message, the sender of the
message is removed from the set of sources giving accreditation to the atomic formula in
the content of the message. In case the sender was the only source for that information,
the belief itself is removed from the receiver’s belief base. Note that, as the atomic formula
in the content of an Untell message can have uninstantiated variables, each belief in the
agent’s belief base that can be unified with that formula needs to be considered in turn,
and the appropriate events generated.

SM (MIn) = 〈mid , id ,Untell , ATs〉
(mid , i) 6∈MSI (for some intention i)

SocAcc(id ,Untell , ATs)
〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,Untell , ATs〉}

and for each b ∈ {atθ |
θ ∈ Test(agbs, at) ∧ at ∈ ATs}

ag ′bs = agbs − b[id]
C ′

E = CE ∪ {〈−b[id],T〉}

(Untell)

Receiving an Untell Message as a Reply: As above, the sender as source for the
belief, or the belief itself, is excluded from the belief base of the receiver, except that now
a suspended intention needs to be resumed (similarly to a Tell as a reply).

245

Vieira, Moreira, Wooldridge, & Bordini

SM (MIn) = 〈mid , id ,Untell , ATs〉
(mid , i) ∈MSI (for some intention i)

SocAcc(id ,Untell , ATs)
〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,Untell , ATs〉}

M ′
SI = MSI \ {(mid , i)}

C ′
I = CI ∪ {i}

and for each b ∈ {atθ |
θ ∈ Test(agbs, at) ∧ at ∈ ATs}

ag ′bs = agbs − b[id]
C ′

E = CE ∪ {〈−b[id],T〉}

(UntellRepl)

Receiving an Achieve Message: In an appropriate social context (e.g., if the sender has
“power” over the receiver), the receiver will try to execute a plan whose triggering event is
+!at; that is, it will try to achieve the goal associated with the propositional content of the
message. An external event is thus included in the set of events (recall that external events
have the triggering event associated with the empty intention T).

Note that it is now possible to have a new focus of attention (a stack of plans in the set
of intentions I) being initiated by the addition (or deletion, see below) of an achievement
goal. Originally, only a belief change arising from perception of the environment initiated
a new focus of attention; the plan chosen for that event could, in turn, have achievement
goals in its body, thus pushing new plans onto the stack.

SM (MIn) = 〈mid , id ,Achieve, at〉
SocAcc(id ,Achieve, at)

〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,Achieve, at〉}

C ′
E = CE ∪ {〈+!at,T〉}

(Achieve)

We shall later discuss in more detail the issue of autonomy. While this gives the im-
pression that simply accepting orders removes the agent’s autonomy (and similarly with
regards to acquired beliefs), the way the agent will behave once aware that another agent
is attempting to delegate a goal completely depends on the particular plans that happen
to be in the agent’s plan library. If a suitable plan exists, the agent could simply drop the
goal, or could tell the interlocutor that the goal delegation was noted but the goal could
not be adopted as expected, etc.

Receiving an Unachieve Message: This rule is similar to the preceding one, except
that now the deletion (rather than addition) of an achievement goal is included in the set
of events. The assumption here is that, if the agent has a plan with such a triggering
event, then that plan should handle all aspects of dropping an intention. However, doing
so in practice may require the alteration of the set of intentions, thus requiring special
mechanisms which have not been included in any formalisation of AgentSpeak as yet, even
though it is already available in practice, for example in the Jason interpreter (Bordini &
Hübner, 2007).

246

Speech-Act Based Communication in Agent Programming

SM (MIn) = 〈mid , id ,Unachieve, at〉
SocAcc(id ,Unachieve, at)

〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,Unachieve, at〉}

C ′
E = CE ∪ {〈−!at,T〉}

(Unachieve)

Receiving a Tell-How Message: The AgentSpeak notion of plan is related to Singh’s
concept of know-how (1994). Accordingly, we use the TellHow performative when agents
wish to exchange know-how rather than communicate beliefs or delegate goals. That is,
a TellHow message is used by the sender (an agent or external source more generally) to
inform an AgentSpeak agent of a plan that can be used for handling certain types of events
(as expressed in the plan’s triggering event). If the source is trusted, the plans in the
message content are simply added to the receiver’s plan library.

SM (MIn) = 〈mid , id ,TellHow , PLs〉
(mid , i) 6∈MSI (for any intention i)

SocAcc(id ,TellHow , PLs)
〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C, M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,TellHow , PLs〉}

ag ′ps = agps ∪ PLs

(TellHow)

Note that we do not include any annotation to identify the source of a plan, and so,
with this semantics, it is not possible to take into account the identity of the agent that
provided a plan when deciding whether to use it. In practice, this feature is implemented
in the Jason interpreter, as the language is extended with the use of annotated predicates
as plan labels. This also allows programmers to annotate plans with information that can
be used for meta-level reasoning (e.g., choosing which plan to use in case various applicable
plans are available, or which intention to execute next); examples of such information would
be the expected payoff of a specific plan and its expected chance of success, thus allowing
the use of decision-theoretic techniques in making those choices.

Receiving a Tell-How Message as a Reply: The TellHow performative as a reply
will also cause the suspended intention — the one associated with the respective AskHow
message previously sent — to be resumed.

SM (MIn) = 〈mid , id ,TellHow , PLs〉
(mid , i) ∈MSI (for some intention i)

SocAcc(id ,TellHow , PLs)
〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C ′,M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,TellHow , PLs〉}

M ′
SI = MSI \ {(mid , i)}

C ′
I = CI ∪ {i}

ag ′ps = agps ∪ PLs

(TellHowRepl)

247

Vieira, Moreira, Wooldridge, & Bordini

Receiving an Untell-How Message: This is similar to the rule above, except that plans
are now removed from the receiver’s plan library. An external source may find that a plan is
no longer appropriate for handling the events it was supposed to handle; it may then want
to inform another agent about that. Thus, when receiving a socially acceptable UntellHow
message, the agent removes the associated plans (i.e., those in the message content) from
its plan library.

SM (MIn) = 〈mid , id ,UntellHow , PLs〉
SocAcc(id ,UntellHow , PLs)

〈ag , C, M, T, ProcMsg〉 −→ 〈ag ′, C, M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id ,UntellHow , PLs〉}

ag ′ps = agps \ PLs

(UntellHow)

Receiving an Ask-If Message: The receiver will respond to this request for information
if certain conditions imposed by the social settings (the SocAcc function) hold between
sender and receiver.

Note that ask-if and ask-all differ in the kind of request made to the receiver. With
the former, the receiver should just confirm whether the predicate in the message content
is in its belief base or not; with the latter, the agent replies with all the predicates in its
belief base that unify with the formula in the message content. The receiver processing an
AskIf message responds with the action of sending either a Tell (to reply positively) or
Untell message (to reply negatively); the reply message has the same content as the AskIf
message. Note that a reply is only sent if the social context is such that the receiver wishes
to consider the sender’s request.

SM (MIn) = 〈mid , id ,AskIf , {b}〉
SocAcc(id ,AskIf , b)

〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C, M ′, T, SelEv〉

where:
M ′

In = MIn \ {〈mid , id ,AskIf , {b}〉}

M ′
Out =

{
MOut ∪ {〈mid , id ,Tell , {b}〉} if agbs |= b
MOut ∪ {〈mid , id ,Untell , {b}〉} if agbs 6|= b

(AskIf)

The role that SM plays in the agent’s reasoning cycle is slightly more important here
than originally conceived (Moreira et al., 2004). An agent considers whether to accept a
message or not, but the reply message is automatically assembled when the agent selects
(and accepts) any of the “ask” messages. However, providing such a reply may require
considerable computational resources (e.g., the whole plan library may need to be scanned
and a considerable number of plans retrieved from it in order to produce a reply message).
Therefore, SM should normally be defined so that the agent only selects an AskIf , AskAll ,
or AskHow message if it determines the agent is not currently too busy to provide a reply.

Receiving an AskAll: As for AskIf , the receiver processing an AskAll has to respond
either with Tell or Untell , provided the social context is such that the receiver will choose

248

Speech-Act Based Communication in Agent Programming

to respond. As noted above, here the agent replies with all the predicates in the belief base
that unify with the formula in the message content.

SM (MIn) = 〈mid , id ,AskAll , {at}〉
SocAcc(id ,AskAll , at)

〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C, M ′, T, SelEv〉
(AskAll)

where:
M ′

In = MIn \ {〈mid , id ,AskAll , {at}〉}

M ′
Out =


MOut ∪ {〈mid , id ,Tell , ATs〉},

ATs = {atθ | θ ∈ Test(agbs, at)} if Test(agbs, at) 6= {}
MOut ∪ {〈mid , id ,Untell , {at}〉} otherwise

Receiving an AskHow: The receiver of an AskHow has to respond with the action of
sending a TellHow message, provided the social configuration is such that the receiver will
consider the sender’s request. In contrast to the use of Untell in AskAll , the response when
the receiver knows no relevant plan (for the triggering event in the message content) is a
reply with an empty set of plans.

SM (MIn) = 〈mid , id ,AskHow , te〉
SocAcc(id ,AskHow , te)

〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C, M ′, T, SelEv〉

where:
M ′

In = MIn \ {〈mid , id ,AskHow , te〉}
M ′

Out = MOut ∪ {〈mid , id ,TellHow , PLs〉}
and PLs = {p | (p, θ) ∈ RelPlans(agps, te)}

(AskHow)

When SocAcc Fails: All the rules above consider that the social relations between sender
and receiver are favourable for the particular communicative act (i.e, they require SocAcc
to be true). If the required social relation does not hold, the message is simply discarded
— it is removed from the set of messages and ignored. The rule below is used for receiving
a message from an untrusted source, regardless of the performative.

SM (MIn) = 〈mid , id , ilf ,Bs〉
¬SocAcc(id , ilf ,Bs)

(with ilf ∈ {Tell ,Untell ,TellHow ,UntellHow ,
Achieve,Unachieve,AskIf ,AskAll ,AskHow})
〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C, M ′, T, SelEv〉

where: M ′
In = MIn \ {〈mid , id , ilf ,Bs〉}

(NotSocAcc)

When MIn is empty: This last semantic rule states that, when the mail inbox is empty,
the agent simply goes to the next step of the reasoning cycle (SelEv).

MIn = {}
〈ag , C, M, T, ProcMsg〉 −→ 〈ag , C, M, T, SelEv〉

(NoMsg)

249

Vieira, Moreira, Wooldridge, & Bordini

4.3 Comments on Fault Detection and Recovery

As in any other distributed system, multi-agent systems can (and do) fail in the real world.
Possibly even more so than typical distributed systems, given that multi-agent systems
are normally used in dynamic, unpredictable environments. In such contexts, failures are
expected to happen quite often, so agents need to recover from them in the best possible
way. In the specific case of systems composed of AgentSpeak agents, failures can occur
when, for instance, the agent for which a message has been sent has left the multi-agent
system, cannot be contacted, or has ceased to exist (e.g., because of a machine or network
crash). Equally, an intention that was suspended waiting for a reply may never be resumed
again due to a failure in the agent that was supposed to provide a reply. (However, note
that AgentSpeak agents typically have various concurrent foci of attention — i.e., multiple
intentions currently in the set of intentions — so even if one particular intention can never
progress because another agent never replies, the agent will simply carry on working on the
other foci of attention.)

In the context of AgentSpeak agents, both fault detection and recovery start at the
level of the infrastructure that supports the agent execution. This infrastructure can adopt
techniques available in traditional distributed systems but with a fundamental difference:
it is responsible for adding appropriate events signaling failures in the set CE of external
events, or possibly resuming suspended intentions and immediately making them fail if for
example a message reply has timed out. Such events, when treated by the agent in its
normal reasoning cycle, using the plan failure mechanism not formalised here but available
in practical interpreters, will trigger a plan specifically written by the agent programmer
which defines a strategy for failure recovery. Therefore, from the point of view of the formal
semantics for AgentSpeak, failure recovery reduces to event handling and plan execution,
and is partly the responsibility of the underlying execution infrastructure and partly the
responsibility of programmers. We should note that various approaches for failure detec-
tion and recovery within multi-agent systems in particular appear in the literature (e.g.,
Jennings, 1995; Kumar & Cohen, 2000). They typically involve the use of special agents or
plans defined to deal with failure.

A natural concern when we have a set of agents executing concurrently is that shared
resources should always be left in a consistent state. This is, of course, a classical problem in
concurrency, and is typically solved by atomically executing the parts of the code that access
the shared resources. Many programming language have constructs that enable a program-
mer to guarantee the atomic execution of critical sections. In a multi-agent system written
in AgentSpeak, atomicity is not immediately an issue since there are no critical sections,
given that different AgentSpeak agents do not directly share memory. However, AgentSpeak
agents do exchange information in the form of messages, but the responsibility for the man-
agement of such exchanges lies with the underlying message passing infrastructure. On the
other hand, agents in a multi-agent systems typically share an environment, and if a partic-
ular application requires environment resources to be shared by agents, clearly programmers
need to ensure that suitable agent interaction protocols are used to avoid dead-/live-locks
or starvation.

Another possible source of concern regarding atomicity is the concurrent execution of an
agent’s intentions. Agents can have several intentions ready to be executed and each one of

250

Speech-Act Based Communication in Agent Programming

them can read/write data that is shared with other intentions (as they all access the same
belief base). It is not in the scope of this paper to formalise mechanisms to control such
concurrency, but it is worth mentioning that the Jason interpreter provides programmers
with the possibility of annotating plans as being “atomic”, so that when one of them is
selected for execution (see the SelInt semantic rule), it is guaranteed by the runtime agent
platform that the plan execution will not be suspended/interrupted (i.e., that no other
intention will be selected for execution in the following reasoning cycles) before the whole
plan finishes executing.

Next, we give an example intended to illustrate how the semantic rules are applied during
a reasoning cycle. The example includes agents exchanging messages using the semantic
framework for agent communication formalised earlier in this section.

5. Example of Reasoning Cycles of Communicating Agents

Consider the following scenario. Firefighting robots are in action trying to control a rapidly
spreading fire in a building, under the supervision of a commander robot. Another robot
is piloting a helicopter to observe in which direction the fire is spreading most rapidly. Let
the robot in the helicopter be r1, let r2 be the ground commander, and let r3 be one of
the firefighting robots.

One of the plans in r1’s plan library, which we shall refer to as ps1, is as shown in
Figure 6. This plan says that as soon as r1 perceives fire spreading in direction D, it tells R
that fire is spreading towards D, where R is the agent it believes to be the ground commander.
Plan ps2 is one of the plans that robot r2 (the commander) has in its plan library, which is
also shown in Figure 6. Plan ps2 says that, when r2 gets to believe5 that fire is spreading
in direction D, it will request the robot believed to be closest to that part of the building to
achieve a state of the world in which D is the fighting post of that robot (in other words,
that the robot should relocate to the part of the building in direction D).

We now proceed to show how the rules of the operational semantics apply, by using
one reasoning cycle of the AgentSpeak agent that controls r1 as an example; the rules for
communication will be exemplified afterwards. For simplicity, we assume r1 is currently
defined by a configuration 〈ag1, C1,M1, T1, s1〉, with s1 = ProcMsg and the ag1 component
having:

ag1bs = {commander(r2)}, and

ag1ps = {ps1}.

Suppose r1 has just perceived fire spreading towards the south. After the belief re-
vision function (see Section 3.2) has operated, r1’s beliefs will be updated to ag1bs =
{commander(r2), spreading(south)} and the C1E component of r1’s configuration (i.e.,
its set of events) will be as follows:

C1E = {〈+spreading(south),T〉}.

5. Note that, because the plan’s triggering event does not require a particular source for that informa-
tion (as in, e.g., +spreading(D)[percept]), this plan can be used when such belief is acquired from
communication as well as perception of the environment.

251

Vieira, Moreira, Wooldridge, & Bordini

r1’s plan ps1

+spreading(D)
: commander(R);

<- .send(R,tell,spreading(D)).

r2’s plan ps2

+spreading(D)
: closest(D,A);

<-.send(A,achieve,fight post(A,D)).

Figure 6: Plans used in the firefighting robots example.

At this point, we can show the sequence of rules that will be applied to complete one
reasoning cycle: see Table 1, where the left column shows the rule being applied and
the right column shows only the components of the configuration which have changed as
a consequence of that rule having been applied. Note that the “next step” component s1

changes in an obvious way (given the rules being applied), so we only show its change for
the very first step, when there are no messages to be processed and the cycle goes straight
on to selecting an event to be handled in that reasoning cycle.

Table 1: Example sequence of rules applied in one reasoning cycle.
Rule Changed Configuration Components

NoMsg s1 = SelEv

SelEv1 C1E = {}
T1ε = 〈+spreading(south),T〉

Rel1 T1R = {(ps1, θR)}, where θR = {D 7→ south}
Appl1 T1Ap = {(ps1, θA)}, where θA = {D 7→ south, R 7→ r2}
SelApp T1ρ = (ps1, θA)
ExtEv C1I = {[ps1θA]}
SelInt1 T1ι = [ps1θA]

ExecActSnd M1Out = {〈mid1, r2,Tell , {spreading(south)〉}}
C1I = {[+spreading(south) : commander(r2) <- T]}

ClrInt1 C1I = {}

After r1’s reasoning cycle shown in the table, rule MsgExchg applies and, assuming
〈ag2, C2,M2, T2, s2〉 is r2’s configuration, which for simplicity we assume is the initial (i.e.,
empty) configuration hence s2 = ProcMsg, we shall have that:

252

Speech-Act Based Communication in Agent Programming

M2In = {〈mid1, r1,Tell , {spreading(south)}〉},

which then leads to rule Tell being applied, thus starting a reasoning cycle (similar to the
one in Table 1) in r2 from a configuration that will have had the following components
changed (see Rule Tell):

M2In = {}

ag2bs = {spreading(south)[r1]}

C2E = {〈+spreading(south)[r1],T〉}.

After a reasoning cycle in r2, we would have for r3 that:

M3In = {〈mid2, r2,Achieve, fight post(r3,south)〉},

where M3In is r3’s mail inbox (and assuming M3In was previously empty). Note that r3’s
SocAcc function used by rule Achieve (leading to mid2 being included in M3In as stated
above) would probably consider the hierarchy determined by the firefighters’ ranks. Robot
r3 would then consider the events generated by this received message in its subsequent
reasoning cycles, and would act in accordance to the plans in its plan library, which we do
not show here, for simplicity.

6. Developing More Elaborate Communication Structures

We sometimes require more elaborate communication structures than performatives such
as those discussed in Section 4. On the other hand, it is of course important to keep any
communication scheme and its semantic basis as simple as possible. We emphasise that, in
our approach, more sophisticated communication structures can be programmed, on top of
the basic communication features formalised here, through the use of plans that implement
interaction protocols. In practical AgentSpeak interpreters, such communication features
(built by composing of the atomic performatives) can be provided to programmers either as
extra pre-defined performatives or as plan templates in plan libraries made publicly available
— in Jason (Bordini & Hübner, 2007), the former approach has been used, but the latter
is also possible. In this section, we give, as examples of more advanced communication
features, plans that allow agents to reach shared beliefs and ensure that agents are kept
informed of the adoption of their goals by other agents. Note however that the examples
make use of a simple practical feature (available, e.g., in Jason) which does not appear in
the abstract syntax we used earlier in the formal presentation: a variable instantiated with
a first order term can be used, within certain constructs (such as belief or goal additions),
in place of an atomic formula, as usual also in Prolog implementations.

Example 1 (Shared Beliefs) If a network infrastructure is reliable, it is easy to ensure
that agents reach shared beliefs. By reaching a shared belief, we mean two agents believing
b as well as believing that the other agent also believes b. More explicitly, we can say agents
ag1 and ag2 share belief b if ag1 believes both b[self] and b[ag2], at the same time that ag2

253

Vieira, Moreira, Wooldridge, & Bordini

believes both b[self] and b[ag1]. In order to allow agents ag1 and ag2 to reach such shared
beliefs, it suffices6 to provide both agents with copies of the following plans:

rsb1
+!reachSharedBel(P,A) : not P[self]

<- +P;
!reachSharedBel(P,A).

rsb2
+!reachSharedBel(P,A) : P[self] & not P[A]

<- .send(A,tell,P);
.send(A,achieve,reachSharedBel(P,me)).

rsb3
+!reachSharedBel(P,A) : P[self] & P[A]

<- true.

In the plans above, me stands for the agent’s own name. (Recall that, as in Prolog, an
uppercase initial denotes a logical variable.) Assume agent ag1 has the above plans and
some other plan, an instance of which is currently in its set of intentions, which requires
itself and ag2 to share belief p(X). Such a plan would have the following goal in its body:
!reachSharedBel(p(X),ag2). This would eventually lead to the execution of the plans in
the example above, which can now be explained. The plan labelled rsb1 says that if ag1
has a (new) goal of reaching a shared belief P with agent A, in case ag1 does not yet believe
P itself, it should first make sure itself believes P — note that ‘+P;’ in the body of that
plan will add the ground predicate bound to P with source self as a new belief to agent
ag1 — then it should again have the goal of reaching such shared belief (note that this is a
recursive plan). This time, plan rsb1 will no longer be applicable, so rsb2 will be chosen
for execution. Plan rsb2 says that, provided ag1 believes P but does not yet believe that
agent A believes P, it should tell agent A that itself (ag1) believes P, then finally ask A to
also achieve such shared belief with ag1.

Agent ag2, which also has copies of the plans in the example above, would then, given
the appropriate SocAcc function, have an instance of plan rsb1 in its own set of intentions,
and will eventually execute rsb2 as well, or directly rsb2 as the case may be. Note that the
last line of plan rsb2, when executed by the agent that was asked to reach a shared believe,
rather than the one who took the initiative, is redundant and will lead the other agent
to using rsb3, which only says that no further action is required, given that the shared
belief has already been obtained. Clearly, there are more efficient ways of implementing
a protocol for reaching shared belief, but we present this because the same plans can be
used regardless of whether the agent takes the initiative to reach a shared belief or not.
The version we give here is therefore arguably more elegant, and its symmetry facilitates
reasoning about the protocol.

6. Even if both agents do not have such plans in advance, but are willing to be told how to reach shared
beliefs (by accepting TellHow messages from agents who have such know-how), they can become capable
of reaching shared beliefs too.

254

Speech-Act Based Communication in Agent Programming

We now give another example, which shows how agents can have further information
about requests for goal adoption (i.e., when they ask another agent to achieve some state
of affairs on their behalf).

Example 2 (Feedback on Goal Adoption) It is often the case that, if one agent asks
another agent to do something, it may want to have at least some reassurance from the
other agent that it has agreed to do whatever it has been asked. Furthermore, it may want
to know when the other agent believes it has accomplished the task. The following plans can
be used for ag1 to delegate tasks to ag2 in such a way.

ag1 plans:

nsd1
+needDoneBy(G,A) : not delegatedTo(G,A)

<- +delegatedTo(G,A);
.send(A,achieve,doAndFeedbackTo(G,me)).

nsd2
+needDoneBy(G,A)

: agreedToDo(G)[A] & not finishedDoing(G)[A]
<- .send(A,tell,shouldHaveFinished(G));

...

nsd3
+needDoneBy(G,A) : finishedDoing(G)[A]

<- ...

...

fd
+finishedDoing(G)[A] : true

<- -delegatedTo(G,A);
-agreedToDo(G)[A].

ag2 plans:

dft1
+!doAndFeedbackTo(G,A) : cntxt1
<- .send(A,tell,agreedToDo(G));

+!G;
.send(A,tell,finishedDoing(G)).

dft2
+!doAndFeedbackTo(G,A) : cntxt2
<- .send(A,tell,cannotDo(G)).

255

Vieira, Moreira, Wooldridge, & Bordini

In the example above, we assume that something perceived in the environment leads
the agent to believe that it needs some goal G to be achieved by agent A, and that such
perception recurs at certain intervals, when the need that motivated the request still exists
and the result of A’s achieving G has not been observed. Plan nsd1 is used when such a need
occurs but no request has been as yet sent to A. The plan ensures that ag1 will remember
that it already asked A (say, ag2) to do G and then that agent to achieve a goal associated
with a special plan: see plan dft1 in ag2. Such plan makes sure that the requesting agent
is informed both that ag2 has adopted the goal as requested (before it attempts to achieve
it) as well as when the agent believes to have achieved G. The programmer should define the
SocAcc function so that ag2 accepts such requests from ag1, but the programmer can still
determine how autonomous ag2 will be by using appropriate plan contexts. In plan dft1,
context cntxt1 would determine the circumstances under which agent ag2 believes it will be
able to adopt the goal, and context cntxt2, in plan dft2, can be used for the circumstances
in which ag2 should simply inform it will not adopt the goal as requested by ag1 (a more
elaborate plan could explain why the agent cannot adopt the goal, for example in case there
are more than one situation in which the goal cannot be adopted).

Going back to plans nsd2 and nsd3 in agent ag1, the former is used to “put pressure”
on the agent that has adopted ag1’s goal G, as the need for that has been perceived again
and A has already agreed to do that, so presumably it is not doing it fast enough. Clearly,
the “shouldHaveFinished” belief should trigger some plan in ag2 for it to have the desired
effect. Plan nsd3 is just a template for one of various alternative courses of actions to be
taken by ag1 when the need that motivated a request for ag2 to adopt a goal still exists but
ag2 believes the goal has already been achieved: that might be an old belief which needs to
be revised and a new request made, or ag1 could try asking another agent, or inform ag2
that its belief about achieving G might be wrong, etc. Plan fd is used simply to remove
unnecessary beliefs used in previous stages of the interaction aimed at a goal adoption.

It is not difficult to see that plans for other important multi-agent issues, such as ensuring
agents are jointly committed to some course of action, can be developed by elaborating on
the combinations of communication performatives along the lines of the examples above.
On the other hand, many other complications related to agent interaction might need to be
accounted for which could not be addressed in the simple examples provided here, such as
shared beliefs becoming inaccurate with the passage of time. Further plans to go with the
ones shown here would be required for coping with such complications, when necessary in
particular applications.

7. Proving Communication Properties of AgentSpeak Agents

Bordini and Moreira (2004) introduced a framework for proving BDI properties of
AgentSpeak agents based on its operational semantics. The framework included precise
definitions of how the BDI modalities are interpreted in terms of configurations of the tran-
sition system that gives semantics to AgentSpeak. Those same definitions are used in the
work on model checking for AgentSpeak (Bordini et al., 2004), which allows the use of
automated techniques for verification of AgentSpeak programs. Below, we give an example
of a proof using the operational semantics for a simple property that involves only the belief
modality. As the belief modality is very clear with respect to an AgentSpeak agent, given

256

Speech-Act Based Communication in Agent Programming

that its architecture includes a belief base explicitly, we avoid the need to discuss in this
paper our previous work on the interpretation of the modalities (Bordini & Moreira, 2004).

Proposition 1 (Reachability of Shared Beliefs) If any two AgentSpeak agents ag1

and ag2 have in their plan libraries the rsb1, rsb2, and rsb3 plans shown in Exam-
ple 1, and they also have an appropriate SocAcc function as well as the usual implemen-
tation of selection functions (or others for which fairness is also guaranteed, in the sense
that all events and intentions are eventually selected), if at some moment in time ag1

has reachSharedBel(b,ag2) as a goal in its set of events (i.e., it has an event such as
〈+!reachSharedBel(b,ag2), i〉, with i an intention), then eventually both agents will be-
lieve b and believe that the other agent also believes b — note that this can be formulated
using a BDI-like logic on top of LTL as

3((Bel ag1 b[self]) ∧ (Bel ag2 b[ag1]) ∧ (Bel ag2 b[self]) ∧ (Bel ag1 b[ag2])).

Proof. It is assumed that ag1 has 〈+!reachSharedBel(b, ag2), i〉 in its set of events.
Assume further that this is precisely the event selected when rule SelEv1 is applied. Then
rule Rel1 would select plans rsb1, rsb2, and rsb3 as relevant for the chosen event. Rule
Appl1 would narrow this down to rsb1 only as, presumably, ag1 does not yet believe b
itself. Rule SelAppl would necessarily select rsb1 as intended means, given that it is the
only applicable plan, and rule IntEv would include i[rsb1] in the set of intentions (i.e.,
the chosen intended means would be pushed on top of the intention that generated the
event above). Consider now that in this same reasoning cycle (for simplicity), rule SelInt1
would choose precisely that intention for execution within this reasoning cycle. Then rule
AddBel would add b[self] to ag1’s belief base, hence (Bel ag1 b[self]).

In subsequent reasoning cycles, when ag1’s intention selection function selects the
above intention for further execution, rule AchvGl would generate again an internal event
〈+!reachSharedBel(b, ag2), i〉. The process is then as above expect that plan rsb1 is no
longer applicable, but rsb2 is, and is therefore chosen as intended means. When that
plan is executed (similarly as described above), rule ExecActSnd would add message
〈mid1, ag2,Tell , b〉 to ag1’s MOut component. Rule MsgExchg then ensures that mes-
sage 〈mid, ag1,Tell , b〉 is added to ag2’s MIn component, which in the beginning of the
next reasoning cycle would lead to rule Tell adding b[ag1] to ag2’s belief base, hence
(Bel ag2 b[ag1]). When the intention is selected for execution in a third reasoning cy-
cle, the final formula in the body of plan rsb1 would be executed. By the use of sim-
ilar rules for sending and receiving messages, we would have ag2 receiving a message
〈mid2, ag1,Achieve, reachSharedBel(b, ag1)〉, so now rule Achieve is used for interpreting
the illocutionary force in that message, thus adding an event 〈+!reachSharedBel(b, ag1), i〉
to ag2’s set of events. Note that this is precisely how the process started in ag1

so the same sequence of rules will apply to ag2, which will, symmetrically, lead to
(Bel ag2 b[self]) and (Bel ag1 b[ag2]) being true, eventually. At that point in time we
will have ((Bel ag1 b[self]) ∧ (Bel ag2 b[ag1]) ∧ (Bel ag2 b[self]) ∧ (Bel ag1 b[ag2])).

As discussed earlier, because ag2 is using exact copies of the plans used by ag1, ag2 will
also ask ag1 to reach b as a shared belief, even though ag1 has already executed its part of

257

Vieira, Moreira, Wooldridge, & Bordini

the joint plan. This is why plan rsb3 is important. It ensures that the agent will act no
further when its own part of the joint plan for reaching a shared belief has already been
achieved.

Note, however, that it is only possible to guarantee that a shared belief is reached in
all possible runs if neither agent has plans that can interfere negatively with the execution
of the plans given in Example 1, for example by forcing the deletion of any instance of
belief b before such shared belief is reached. This is a verification exercise different from
the proposition we wanted to prove, showing that shared beliefs can be reached (under the
given assumptions).

8. Applications of AgentSpeak and Ongoing Work

We mention here some of the applications written in AgentSpeak. The AgentSpeak pro-
gramming language has also been used in academia for student projects in various courses.
It should be noted, however, that the language is clearly suited to a large range of applica-
tions for which it is known that BDI systems are appropriate; various applications of PRS
(Georgeff & Lansky, 1987) and dMARS (Kinny, 1993), for example, have appeared in the
literature (Wooldridge, 2002, Chapter 11).

One particular area of application in which we have great interest is Social Simulation
(Doran & Gilbert, 1994). In fact, AgentSpeak is being used as part of a project to produce a
platform tailored particularly for social simulation. The platform is called MAS-SOC is be-
ing developed by Bordini, da Rocha Costa, Hübner, Moreira, Okuyama, and Vieira (2005);
it includes a high-level language called ELMS (Okuyama, Bordini, & da Rocha Costa,
2005) for describing environments to be shared by multiple agents. This approach was
used to develop, for example, a social simulation on social aspects of urban growth (Krafta,
de Oliveira, & Bordini, 2003). Another area of application that has been initially explored
is the use of AgentSpeak for defining the behaviour of animated characters for computer
animation or virtual reality environments (Torres, Nedel, & Bordini, 2004).

More recently, AgentSpeak has been used in the implementation of a team of “gold
miners” as an entry to an agent programming competition (Bordini, Hübner, & Tralamazza,
2006). In this scenario7, teams of agents must coordinate their actions in order to collect as
much gold as they can and to deliver the gold to a trading agent located in a depot where
the gold is safely stored. The AgentSpeak team, composed of four mining agents and one
leader that helped coordinate the team of miners, won the competition in 2006. It is worth
noting that the language support for high-level communication (formalised in this paper)
proved to be an important feature for designing and implementing the system.

The AgentSpeak interpreter and multi-agent platform Jason is being constantly im-
proved, with the long term goal of supporting various multi-agent systems technologies.
An important aspect of Jason is precisely that of having formal semantics for most of its
essential features. Various projects are currently looking at extending Jason in various
ways, for example to combine it with an organisational model such as the one propose by
Hübner, Sichman, and Boissier (2004). This is particularly important given that social
structure is a fundamental notion for developing complex multi-agent systems. Another
area of development is to incorporate ontologies into an AgentSpeak belief base (Moreira,

7. See http://cig.in.tu-clausthal.de/CLIMAContest/ for details.

258

Speech-Act Based Communication in Agent Programming

Vieira, Bordini, & Hübner, 2006; Vieira, Moreira, Bordini, & Hübner, 2006), facilitating the
use of Jason for Semantic Web applications. Recent work has also considered automated
belief revision (Alechina, Bordini, Hübner, Jago, & Logan, 2006) and plan exchange mech-
anisms (Ancona et al., 2004). A more detailed description of the language and comparison
with other agent-oriented programming languages was given by Bordini et al. (2005).

9. Conclusions

As pointed out by Singh (1998), there are various perspectives for the semantics of agent
communication. Whereas the sender’s perspective is the most common one in the literature,
our approach uses primarily that of the receiver. We have given a formal semantics to the
processing of speech-act based messages by an AgentSpeak agent. Previous attempts to
define the semantics of agent communication languages (e.g., Labrou & Finin, 1994) were
based on the “pre-condition – action – post-condition” approach, referring to agent men-
tal states in modal languages typically based on Cohen and Levesque’s work on intention
(1990a). Our semantics for communication, besides being more closely linked to imple-
mentation (as it serves as the specification for an interpreter for an agent programming
language), can also be used in the proof of communication properties (Wooldridge, 2000c).

Our work is somewhat related to that of de Boer, van Eijk, Van Der Hoek, and Meyer
(2000) and van Eijk, de Boer, Van Der Hoek, and Meyer (2003), which also provide an
operational semantics for an agent communication language. However, their work does not
consider the effects of communication in terms of BDI-like agents (such as those written
in AgentSpeak). The idea of giving semantics to speech-act based communication within
a BDI programming language was first introduced by Moreira et al. (2004). Subsequently,
Dastani, van der Ham, and Dignum (2003) also published some initial work on the seman-
tics of communication for 3APL agents, although with the emphasis being on formalising
the message exchange mechanisms for synchronous and asynchronous communication. In
contrast, we largely abstract away from the specific message exchange mechanism (this is
formalised at a very high level in our semantics), and we are interested only in asynchronous
communication (which is the usual communication model for cognitive agents). In order to
illustrate their message exchange mechanism, Dastani et al. gave semantics to the effects
of receiving and treating “request” and “inform” messages — that is, they only consider
information exchange. Our work uses a much more comprehensive selection of illocutionary
forces, and the main contribution is precisely in giving detailed semantics to the ways in
which the various illocutionary forces affect the mental states of agents implemented in a
programming language which actually has precise definitions for the notions of the BDI
architecture. A denotational semantics for agent communication languages was proposed
by Guerin and Pitt (2001), but the semantics is given for an abstract version of an ACL
and does not address the issues of interaction between an ACL and other components of an
agent architecture.

In this paper we provided new semantic rules for all the illocutionary forces used in
a communication language for AgentSpeak agents. In giving semantics to communicating
AgentSpeak agents, we have provided the means for the implementation of AgentSpeak
interpreters with such functionality, as well as given a more computationally grounded
semantics of speech-act based agent communication. In fact, the operational semantics

259

Vieira, Moreira, Wooldridge, & Bordini

presented in this paper proved useful in the implementation of AgentSpeak interpreters
such as Jason (Bordini & Hübner, 2007). While Singh’s proposal for a social-agency based
semantics (1998) may be appropriate for general purpose agent communication languages
such as FIPA or KQML, within the context of a BDI agent programming language, our
approach can be used without any of the drawbacks pointed out by Singh.

The fact that we have to deal with the intentional states of other agents when giving se-
mantics of communication leads us to a number of related pragmatic questions. First, many
treatments of speech-act style communication make use of mutual mental states — mutual
belief, common knowledge, and similar. We do not make use of mutual mental states in our
formalisation. There are good reasons for this. First, although mutual mental states are a
useful and elegant tool for analysis, it is known that they represent theoretical idealisations
only, which cannot be achieved in systems which admit the possibility of message delivery
failure (Halpern, 1990). Thus, although mutual mental states are a useful abstraction for
understanding how communication works, they cannot, realistically, be implemented, as
there will always be a mismatch between the implementation (which excludes the possibil-
ity of mutual mental states being faithfully implemented) and the theory. This is primarily
why mutual mental states form no part of our language or semantics, but are built on top
of the fundamental communication primitives that we formalised in this paper, as shown in
Section 6. Note that it is also known that mutual mental states can be simulated, to any
desired degree of nesting, by an appropriate message acknowledgement scheme (Halpern &
Zuck, 1992), therefore in our approach this problem can be solved by mechanisms such as
processed messages triggering the action of sending a message that acknowledges receipt. It
is also worth adding that the belief annotation scheme used in our language permits agents
to have a simple mechanism for nested beliefs: the annotation of source in a belief is an
indication that the agent who sent the message believed in its propositional content at the
time the message was sent (but note that this is an indication only, unless agent veracity
is guaranteed). Annotation of information source at the time a message is received is done
automatically according to the semantics we have given. However, programmers can also
use the belief base to register sent messages, possibly using annotations in the same manner
as for received messages. These would function as an indication of other agents’ states of
mind, but from the point of view of the sender. We plan to deal with these questions which
lie in the gray area between semantics and pragmatics in more detail in future work.

While discussing models of mutual mental states, we should also mention in passing
that joint intentions do not form part of our semantics, although they are widely used in
the implementation of coordination schemes for multi-agent systems, following the seminal
work of Levesque, Cohen, and Nunes (1990). The fact that such constructs are not built
into the language (or the language semantics) as primitives does not preclude them being
implemented using the language constructs, provided the usual practical considerations and
assumptions, such as limiting the number of required acknowledgement messages for the
achievement of shared beliefs, are in place. Indeed, this is exactly the approach taken by
Tambe, in his STEAM system (1997), and Jennings, in his GRATE* system (1995). The
examples in Section 6 help indicate how this can be achieved by further elaboration of
those plans, making use of the communication primitives for which we gave semantics in
this paper.

260

Speech-Act Based Communication in Agent Programming

We anticipate that readers will ponder whether our semantics limits the autonomy
of agents that use our approach to communication. We provide the SocAcc() function
which works as an initial “filter”, but this may give the impression that beliefs are just
acquired/trusted and goals adopted after such simple filter. It is very important to em-
phasise that the actual behaviour of the agent ensuing from communication received from
other agents completely depends on the particular plans the agent happens to have in its
plan library; in the current semantics, only the “ask” variants, TellHow , and UntellHow
performatives are dependent solely on the SocAcc filter. In Example 2, we mentioned that
some plan contexts should be used to determine whether the agent would actually act to-
wards achieving a goal as requested by another agent, or choose not to commit to achieving
the goal. This is the general rule: the agent autonomy depends on the plans given by the
agent programmer or obtained by communication with other agents (the plans currently
in the agent’s plan library). It would be typically the programmer’s responsibility to write
plans that ensure that an agent will be “sufficiently autonomous” for its purpose in a given
application or, to use a more interesting notion, to program agents with adjustable au-
tonomy. Similarly, how benevolent or self-interested an agent will be, and to what extent
beliefs acquired from other agents are to be trusted, are all issues that programmers have
to be careful about: the semantics of communication itself does not ensure one case or the
other. Needless to say, it will be a much more difficult task to program agents to take
part in open systems where other agents are self-interested and cannot be trusted. While
an agent programming language combined with a suitable agent communication language
gives much support for such task, it surely does not automatically solve all those problems;
it still remains a complex programming task.

It is also worth commenting on how our semantics can be used by other researchers,
particularly those using agent programming languages other than AgentSpeak. The main
point here is that our semantics provides a reference to the semantics of the communication
language used in the context of agent-oriented programming. That is, using our seman-
tics, it is possible to predict exactly how a particular AgentSpeak agent would interpret
a particular message in a given situation. Using this as a reference model, it should in
principle be possible to implement communication for other agent programming languages.
Of course, our semantics is not language independent: it was developed specifically for
AgentSpeak, so language specifics ought to be considered. However, attempts at giving
semantics of agent communication that are language independent have their own problems,
most notably the computational grounding problem referred to above. Our semantics, while
developed specifically for a practical agent programming language, have the advantage of
not relying on mechanisms (such as abstractly defined mental states) that cannot be checked
for real programs. We note that, to the best of our knowledge, our work represents the first
semantics given for a speech-act style, “knowledge level” communication language that is
used in a real system.

Our current work does not consider commissive and declarative speech acts. These are
surely relevant topics for future work, since commissive acts and declarations are relevant
for various forms of agent interaction, such as negotiation. Nevertheless, in the proposed
framework it is possible for the programmer or multi-agent system designer to incorporate
such more elaborate forms of interactions by writing appropriate plans.

261

Vieira, Moreira, Wooldridge, & Bordini

In this work, we assume that communication occurs among agents written in the same
programming language, and cannot be adopted directly in heterogeneous multi-agent sys-
tems. (Consider, for example, the issues arising in processing an AskHow performative,
which involves sending a plan to another agent.) However, for a variety of other agent
languages, it should not be difficult to write “wrappers” for translating message contents.

Other relevant areas for future investigation are those regarding role definitions and
social structures or agent organisations. We consider that these would be interesting devel-
opments of the proposed SocAcc() function and libraries of plans or plan patterns. Deontic
relationships and social norms are also closely related to such extensions. In the case of
e-business, for instance, a contract usually creates a number of obligations for the contrac-
tors.

Future work should also consider giving a better formal treatment of information sources,
in particular for the case of plans being exchanged between agents. Further communica-
tion aspects such as ontological agreement among AgentSpeak agents, and reasoning about
information sources (e.g., in executing test goals or choosing plans based on annotations)
will also be considered in future work. We further expect sophisticated multi-agent system
applications to be developed with AgentSpeak interpreters implemented according to our
semantics.

Acknowledgements

Many thanks to Jomi F. Hübner for his comments and suggestions on an earlier version of
this paper, and to Berndt Farwer and Louise Dennis who carefully proofread it. The first
and second authors acknowledge the support of CNPq.

References

Alechina, N., Bordini, R. H., Hübner, J. F., Jago, M., & Logan, B. (2006). Automating
belief revision for agentspeak. In Baldoni, M., & Endriss, U. (Eds.), Proceedings of
the Fourth International Workshop on Declarative Agent Languages and Technologies
(DALT 2006), held with AAMAS 2006, 8th May, Hakodate, Japan, pp. 1–16.

Allen, J. F., Hendler, J., & Tate, A. (Eds.). (1990). Readings in Planning. Morgan Kauf-
mann.

Ancona, D., Mascardi, V., Hübner, J. F., & Bordini, R. H. (2004). Coo-AgentSpeak:
Cooperation in AgentSpeak through plan exchange. In Jennings, N. R., Sierra, C.,
Sonenberg, L., & Tambe, M. (Eds.), Proceedings of the Third International Joint
Conference on Autonomous Agents and Multi-Agent Systems (AAMAS-2004), New
York, NY, 19–23 July, pp. 698–705 New York, NY. ACM Press.

Austin, J. L. (1962). How to Do Things with Words. Oxford University Press, London.

Ballmer, T. T., & Brennenstuhl, W. (1981). Speech Act Classification: A Study in the
Lexical Analysis of English Speech Activity Verbs. Springer-Verlag, Berlin.

262

Speech-Act Based Communication in Agent Programming

Bordini, R. H., Bazzan, A. L. C., Jannone, R. O., Basso, D. M., Vicari, R. M., & Lesser,
V. R. (2002). AgentSpeak(XL): Efficient intention selection in BDI agents via decision-
theoretic task scheduling. In Castelfranchi, C., & Johnson, W. L. (Eds.), Proceedings
of the First International Joint Conference on Autonomous Agents and Multi-Agent
Systems (AAMAS-2002), 15–19 July, Bologna, Italy, pp. 1294–1302 New York, NY.
ACM Press.

Bordini, R. H., da Rocha Costa, A. C., Hübner, J. F., Moreira, Á. F., Okuyama, F. Y., &
Vieira, R. (2005). MAS-SOC: a social simulation platform based on agent-oriented
programming. Journal of Artificial Societies and Social Simulation, 8 (3). JASSS
Forum, <http://jasss.soc.surrey.ac.uk/8/3/7.html>.

Bordini, R. H., Fisher, M., Pardavila, C., & Wooldridge, M. (2003). Model checking
AgentSpeak. In Rosenschein, J. S., Sandholm, T., Wooldridge, M., & Yokoo, M.
(Eds.), Proceedings of the Second International Joint Conference on Autonomous
Agents and Multi-Agent Systems (AAMAS-2003), Melbourne, Australia, 14–18 July,
pp. 409–416 New York, NY. ACM Press.

Bordini, R. H., Fisher, M., Visser, W., & Wooldridge, M. (2004). Model checking rational
agents. IEEE Intelligent Systems, 19 (5), 46–52.

Bordini, R. H., & Hübner, J. F. (2007). Jason: A Java-based Inter-
preter for an Extended version of AgentSpeak (Manual, version 0.9 edition).
http://jason.sourceforge.net/.

Bordini, R. H., Hübner, J. F., & Tralamazza, D. M. (2006). Using Jason to implement
a team of gold miners (a preliminary design). In Inoue, K., Satoh, K., & Toni, F.
(Eds.), Proceedings of the Seventh Workshop on Computational Logic in Multi-Agent
Systems (CLIMA VII), held with AAMAS 2006, 8–9th May, Hakodate, Japan, pp.
233–237. (Clima Contest paper).

Bordini, R. H., Hübner, J. F., & Vieira, R. (2005). Jason and the Golden Fleece of
agent-oriented programming. In Bordini, R. H., Dastani, M., Dix, J., & El Fal-
lah Seghrouchni, A. (Eds.), Multi-Agent Programming: Languages, Platforms, and
Applications, chap. 1. Springer-Verlag.

Bordini, R. H., & Moreira, Á. F. (2004). Proving BDI properties of agent-oriented pro-
gramming languages: The asymmetry thesis principles in AgentSpeak(L). Annals of
Mathematics and Artificial Intelligence, 42 (1–3), 197–226. Special Issue on Compu-
tational Logic in Multi-Agent Systems.

Bordini, R. H., Visser, W., Fisher, M., Pardavila, C., & Wooldridge, M. (2003). Model
checking multi-agent programs with CASP. In Hunt Jr., W. A., & Somenzi, F. (Eds.),
Proceedgins of the Fifteenth Conference on Computer-Aided Verification (CAV-2003),
Boulder, CO, 8–12 July, No. 2725 in LNCS, pp. 110–113 Berlin. Springer-Verlag. Tool
description.

Bratman, M. E. (1987). Intentions, Plans and Practical Reason. Harvard University Press,
Cambridge, MA.

263

Vieira, Moreira, Wooldridge, & Bordini

Castelfranchi, C., & Falcone, R. (1998). Principles of trust for MAS: Cognitive anatomy,
social importance, and quantification. In Demazeau, Y. (Ed.), Proceedings of the Third
International Conference on Multi-Agent Systems (ICMAS’98), 4–7 July, Paris, pp.
72–79 Washington. IEEE Computer Society Press.

Cohen, P., & Perrault, R. (1979). Elements of a plan based theory of speech acts. Cognitive
Science, 3, 177–212.

Cohen, P. R., & Levesque, H. J. (1990a). Intention is choice with commitment. Artificial
Intelligence, 42 (3), 213–261.

Cohen, P. R., & Levesque, H. J. (1990b). Rational interaction as the basis for communica-
tion. In Cohen, P. R., Morgan, J., & Pollack, M. E. (Eds.), Intentions in Communi-
cation, chap. 12, pp. 221–255. MIT Press, Cambridge, MA.

Dastani, M., van der Ham, J., & Dignum, F. (2003). Communication for goal directed
agents. In Huget, M.-P. (Ed.), Communication in Multiagent Systems, Vol. 2650 of
LNCS, pp. 239–252. Springer-Verlag.

de Boer, F. S., van Eijk, R. M., Van Der Hoek, W., & Meyer, J.-J. C. (2000). Failure
semantics for the exchange of information in multi-agent systems. In Palamidessi, C.
(Ed.), Eleventh International Conference on Concurrency Theory (CONCUR 2000),
University Park, PA, 22–25 August, No. 1877 in LNCS, pp. 214–228. Springer-Verlag.

Doran, J., & Gilbert, N. (1994). Simulating societies: An introduction. In Gilbert, N., &
Doran, J. (Eds.), Simulating Society: The Computer Simulation ofSocial Phenomena,
chap. 1, pp. 1–18. UCL Press, London.

Genesereth, M. R., & Ketchpel, S. P. (1994). Software agents. Communications of the
ACM, 37 (7), 48–53.

Georgeff, M. P., & Lansky, A. L. (1987). Reactive reasoning and planning. In Proceedings of
the Sixth National Conference on Artificial Intelligence (AAAI’87), 13–17 July,1987,
Seattle, WA, pp. 677–682 Manlo Park, CA. AAAI Press / MIT Press.

Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning: Theory and Practice.
Morgan Kaufmann.

Guerin, F., & Pitt, J. (2001). Denotational semantics for agent communication language.
In Proceedings of the fifth international conference on Autonomous Agents (Agents
2001), 28th May – 1st June, Montreal Canada, pp. 497–504. ACM Press.

Halpern, J. Y. (1990). Knowledge and common knowledge in a distributed environment.
Journal of the ACM, 37 (3).

Halpern, J. Y., & Zuck, L. D. (1992). A little knowledge goes a long way: knowledge-based
derivations and correctness proofs for a family of protocols. Journal of the ACM,
39 (3), 449–478.

264

Speech-Act Based Communication in Agent Programming

Hübner, J. F., Sichman, J. S., & Boissier, O. (2004). Using the Moise+ for a cooperative
framework of MAS reorganisation.. In Bazzan, A. L. C., & Labidi, S. (Eds.), Advances
in Artificial Intelligence - SBIA 2004, 17th Brazilian Symposium on Artificial Intelli-
gence, São Luis, Maranhão, Brazil, September 29 - October 1, 2004, Proceedings, Vol.
3171 of LNCS, pp. 506–515. Springer-Verlag.

Jennings, N. R. (1995). Controlling cooperative problem solving in industrial multi-agent
systems using joint intentions. Artificial Intelligence, 75 (2), 195–240.

Kinny, D. (1993). The distributed multi-agent reasoning system architecture and language
specification. Tech. rep., Australian Artificial Intelligence Institute, Melbourne, Aus-
tralia.

Krafta, R., de Oliveira, D., & Bordini, R. H. (2003). The city as object of human agency.
In Fourth International Space Syntax Symposium (SSS4), London, 17–19 June, pp.
33.1–33.18.

Kumar, S., & Cohen, P. R. (2000). Towards a fault-tolerant multi-agent system architecture.
In Proceedings of the Fourth International Conference on Autonomous Agents (Agents
2000), 3–7 June, Barcelona, Spain, pp. 459–466. ACM Press.

Labrou, Y., & Finin, T. (1994). A semantics approach for KQML—a general purpose
communication language for software agents. In Proceedings of the Third International
Conference on Information and Knowledge Management (CIKM’94), 29th November
– 2nd December, Gaithersburg, MD. ACM Press.

Labrou, Y., Finin, T., & Peng, Y. (1999). The current landscape of agent communication
languages. Intelligent Systems, 14 (2), 45–52.

Levesque, H. J., Cohen, P. R., & Nunes, J. H. T. (1990). On acting together. In Proceedings
of the Eighth National Conference on Artificial Intelligence (AAAI-1990), 29th July
– 3rd August, Boston, MA, pp. 94–99. AAAI Press.

Levinson, S. C. (1981). The essential inadequacies of speech act models of dialogue. In Par-
ret, H., Sbisa, M., & Verschuren, J. (Eds.), Possibilities and limitations of pragmatics:
Proceedings of the Conference on Pragmatics at Urbino, July, 1979, pp. 473–492. Ben-
jamins, Amsterdam.

Mayfield, J., Labrou, Y., & Finin, T. (1996). Evaluation of KQML as an agent communi-
cation language. In Wooldridge, M., Müller, J. P., & Tambe, M. (Eds.), Intelligent
Agents II—Proceedings of the Second International Workshop on Agent Theories, Ar-
chitectures, and Languages (ATAL’95), held as part of IJCAI’95, Montréal, Canada,
August1995, No. 1037 in LNAI, pp. 347–360 Berlin. Springer-Verlag.

Moreira, Á. F., & Bordini, R. H. (2002). An operational semantics for a BDI agent-oriented
programming language. In Meyer, J.-J. C., & Wooldridge, M. J. (Eds.), Proceedings
of the Workshop on Logics for Agent-Based Systems (LABS-02), held in conjunction
with the Eighth International Conference on Principles of Knowledge Representation
and Reasoning (KR2002), April 22–25, Toulouse, France, pp. 45–59.

265

Vieira, Moreira, Wooldridge, & Bordini

Moreira, Á. F., Vieira, R., & Bordini, R. H. (2004). Extending the operational semantics of
a BDI agent-oriented programming language for introducing speech-act based com-
munication. In Leite, J., Omicini, A., Sterling, L., & Torroni, P. (Eds.), Declarative
Agent Languages and Technologies, Proceedings of the First International Workshop
(DALT-03), held with AAMAS-03, 15 July, 2003, Melbourne, Australia (Revised Se-
lected and Invited Papers), No. 2990 in LNAI, pp. 135–154 Berlin. Springer-Verlag.

Moreira, Á. F., Vieira, R., Bordini, R. H., & Hübner, J. F. (2006). Agent-oriented program-
ming with underlying ontological reasoning. In Baldoni, M., Endriss, U., Omicini, A.,
& Torroni, P. (Eds.), Proceedings of the Third International Workshop on Declarative
Agent Languages and Technologies (DALT-05), held with AAMAS-05, 25th of July,
Utrecht, Netherlands, No. 3904 in LNCS, pp. 155–170. Springer-Verlag.

Okuyama, F. Y., Bordini, R. H., & da Rocha Costa, A. C. (2005). ELMS: an environment
description language for multi-agent simulations. In Weyns, D., van Dyke Parunak,
H., Michel, F., Holvoet, T., & Ferber, J. (Eds.), Environments for Multiagent Sys-
tems, State-of-the-art and Research Challenges. Proceedings of the First International
Workshop on Environments for Multiagent Systems (E4MAS), held with AAMAS-04,
19th of July, No. 3374 in LNAI, pp. 91–108 Berlin. Springer-Verlag.

Plotkin, G. (1981). A structural approach to operational semantics.. Technical Report,
Department of Computer Science, Aarhus University.

Rao, A. S. (1996). AgentSpeak(L): BDI agents speak out in a logical computable language.
In van de Velde, W., & Perram, J. (Eds.), Proceedings of the 7th Workshop on Mod-
elling Autonomous Agents in a Multi-Agent World (MAAMAW’96), 22–25 January,
Eindhoven, The Netherlands, No. 1038 in LNAI, pp. 42–55 London. Springer-Verlag.

Rao, A. S., & Georgeff, M. P. (1998). Decision procedures for BDI logics. Journal of Logic
and Computation, 8 (3), 293–343.

Searle, J. R. (1969). Speech Acts: An Essay in the Philosophy of Language. Cambridge
University Press, Cambridge.

Singh, M. P. (1994). Multiagent Systems—A Theoretic Framework for Intentions, Know-
How, and Communications. No. 799 in LNAI. Springer-Verlag, Berlin.

Singh, M. P. (1998). Agent communication languages: Rethinking the principles. IEEE
Computer, 31 (12), 40–47.

Smith, R. G. (1980). The contract net protocol: High-level communication and control in a
distributed problem solver. IEEE Transactions on Computers, c-29 (12), 1104–1113.

Tambe, M. (1997). Towards flexible teamwork. Journal of Artificial Intelligence Research,
7, 83–124.

Torres, J. A., Nedel, L. P., & Bordini, R. H. (2004). Autonomous agents with multiple foci
of attention in virtual environments. In Proceedings of 17th International Conference
on Computer Animation and Social Agents (CASA 2004), Geneva, Switzerland, 7–9
July, pp. 189–196.

266

Speech-Act Based Communication in Agent Programming

van Eijk, R. M., de Boer, F. S., Van Der Hoek, W., & Meyer, J.-J. C. (2003). A verification
framework for agent communication. Autonomous Agents and Multi-Agent Systems,
6 (2), 185–219.

Vieira, R., Moreira, Á. F., Bordini, R. H., & Hübner, J. (2006). An agent-oriented pro-
gramming language for computing in context. In Debenham, J. (Ed.), Proceedings of
Second IFIP Symposium on Professional Practice in Artificial Intelligence, held with
the 19th IFIP World Computer Congress, TC-12 Professional Practice Stream, 21–24
August, Santiago, Chile, No. 218 in IFIP, pp. 61–70 Berlin. Springer-Verlag.

Wooldridge, M. (1998). Verifiable semantics for agent communication languages. In Pro-
ceedings of the Third International Conference on Multi-Agent Systems (ICMAS’98),
4–7 July, Paris, pp. 349–365. IEEE Computer Society Press.

Wooldridge, M. (2000a). Computationally grounded theories of agency. In Durfee, E. (Ed.),
Proceedings of the Fourth International Conference on Multi-Agent Systems (ICMAS-
2000),10–12 July, Boston, pp. 13–20 Los Alamitos, CA. IEEE Computer Society.
Paper for an Invited Talk.

Wooldridge, M. (2000b). Reasoning about Rational Agents. The MIT Press, Cambridge,
MA.

Wooldridge, M. (2000c). Semantic issues in the verification of agent communication lan-
guages. Autonomous Agents and Multi-Agent Systems, 3 (1), 9–31.

Wooldridge, M. (2002). An Introduction to MultiAgent Systems. John Wiley & Sons.

267

