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Abstract. An Hi,{H»}-factor of a graph G is a spanning subgraph
of G with exactly one component isomorphic to the graph H; and all
other components (if there are any) isomorphic to the graph H>. We
completely characterise the class of connected almost claw-free graphs
that have a Py, {P:}-factor, where P; and P> denote the paths on seven
and two vertices, respectively. We apply this result to parallel knock-out
schemes for almost claw-free graphs. These schemes proceed in rounds in
each of which each surviving vertex simultaneously eliminates one of its
surviving neighbours. A graph is reducible if such a scheme eliminates
every vertex in the graph. Using our characterisation we are able to
classify all reducible almost claw-free graphs, and we can show that every
reducible almost claw-free graph is reducible in at most two rounds. This
leads to a quadratic time algorithm for determining if an almost claw-free
graph is reducible (which is a generalisation and improvement upon the
previous strongest result that showed that there was a O(n®3"®) time
algorithm for claw-free graphs on n vertices).
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1 Introduction

We denote a graph by G = (V, E). An edge joining vertices u and v is denoted by
uv. If not stated otherwise a graph is assumed to be finite, undirected and simple.
The neighbourhood of u € V, that is, the set of vertices adjacent to u is denoted
by Ng(u) = {v|uv € E}, and the degree of u is denoted by degg(u) = |Ng(u)]|.
If no confusion is possible, we omit the subscripts. A set I C V is called an
independent set of G if no two vertices in I are adjacent to each other, and «
denotes the independence number of G, the number of vertices in a maximum
size independent set of G. See [3] for other basic graph-theoretic terminology.
A graph ({u,v1,v2,v3}, {uvy, uve,uvs}) is called a claw with claw centre u
and leaves vy, v2,v3. A graph is claw-free if it does not contain a claw as a induced
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subgraph. Claw-free graphs form a rich class containing, for example, the class of
line graphs and the class of complements of triangle-free graphs. It is a very well-
studied graph class, both within structural graph theory and within algorithmic
graph theory; see [10] for a survey. We study a generalisation of claw-free graphs,
namely almost claw-free graphs which were introduced by Ryjacek [22].

Definition 1. A graph G = (V, E) is almost claw-free if the following two con-
ditions hold:

1. The set of all vertices that are claw centres of induced claws in G is an
independent set in G.

2. For all u € V, either |[N(u)| = 1 or N(u) contains two vertices v1,vs such
that N (u)\{v1,v2} C N(v1) U N(v2).

Claw-free graphs trivially satisfy the first condition, and they also satisfy the sec-
ond since otherwise they would contain a vertex with three independent neigh-
bours yielding an induced claw. Hence, every claw-free graph is almost claw-free.
It is easy to see that there exist almost claw-free graphs that are not claw-free;
see, for example, the graph H in Figure 2.

Several papers have generalised results on claw-free graphs to almost claw-
free graphs: see [7,19, 25] for results on hamiltonicity, shortest walks and tough-
ness. A subgraph M = (V', E') of a graph G = (V, E) is called a matching of G
if every vertex in M has degree one. It is called a perfect matching if V' = V. We
call G even if |V| is even, and odd otherwise. Las Vergnas [18] and Sumner [23]
have independently proven that every even connected claw-free graph G = (V, E)
has a perfect matching. The following theorem by Ryjdcek [22] generalises this
result to almost claw-free graphs.

Theorem 1 ([22]). Every even connected almost claw-free graph has a perfect
matching.

For an odd graph G = (V, E), the natural analogue of a perfect matching is a
near-perfect matching: a matching M = (V\{v}, E') for some v € V. In this
paper we shall prove the following.

Theorem 2. FEvery odd connected almost clow-free graph has a near-perfect
matching.

Jiinger, Pulleyblank and Reinelt [14] have shown that odd claw-free graphs have
near-perfect matchings so Theorem 2 is an extension of this result to almost
claw-free graphs. In fact, our main result, Theorem 3, is much stronger and
more general, but we require some further preliminaries before we can state it.

To capture both even and odd graphs, the notion of a (near-)perfect matching
has been generalised in various ways. We consider two such generalisations for
almost claw-free graphs, namely path factors and parallel knock-out numbers,
which we relate to each other.

In Section 2, we completely characterise the class of connected almost claw-
free graphs that have a spanning subgraph with exactly one component isomor-
phic to a path on seven vertices while all other components form a matching.



In Section 4 we prove this result and present a polynomial algorithm for finding
such a subgraph, but first we apply this result in Section 3 to parallel knock-out
schemes for almost claw-free graphs.

These schemes proceed in rounds in each of which each surviving vertex
simultaneously eliminates one of its surviving neighbours. A graph is reducible if
such a scheme eliminates every vertex in the graph. Using our characterisation
we are able to classify all reducible almost claw-free graphs, and we can show that
every reducible almost claw-free graph is reducible in at most two rounds. This
leads to a quadratic time algorithm for determining if an almost claw-free graph
is reducible. This is a generalisation and improvement upon the O(n%-37¢) time
algorithm for n-vertex claw-free graphs given by Broersma et al. in [6]. Although,
in general, determining if a graph is reducible is an NP-complete problem, the
new technique that uses (path) factors for this problem might be promising for
other graph classes as well. We discuss this in Section 5.

2 Path factors

Let H = {H1,Ha2,...,} be a family of graphs. An #H-factor of a graph G is a
spanning subgraph of G with each component isomorphic to a graph in {H}. Let
P, denote the path on n vertices. A path factor of a graph G is a {Py, Pa,...}-
factor of G. Path factors generalise perfect matchings, which are {P,}-factors.
Path factors have been the subject of considerable study: see, for example, [24]
for a characterisation of bipartite graphs with a {Ps, Py, Ps}-factor and [15,
16] for a characterisation of general graphs with a {Ps, Py, Ps }-factor. A more
recent result [20] shows that the square of any graph on at least six vertices has
a {Ps, Py}-factor. Connected claw-free graphs with minimum degree d have a
{Pi+1, Piy2,-..}-factor [1]. In general, obtaining good characterisations of graph
classes with path factors might be difficult as it is shown in [11] that the problem
of deciding if a given graph has a H-factor is NP-complete for any fixed H with
|[Vi| > 3. For a more general survey on factors see [21].

We are interested in another class of path factors. Let Hy, Hy be graphs.
Then an Hy,{Hs}-factor of a graph G is a spanning subgraph of G with exactly
one component isomorphic to H; and all other components (if there are any) iso-
morphic to Hy. The components are called Hy-components and H,-components.
A Py, {Py}-factor of a graph corresponds to a perfect matching, and a Py, {P>}-
factor corresponds to a near-perfect matching.

In order to state our main result, we must define two families 7 and G
of connected almost claw-free graphs. For an integer k& > 0, let the graph Fj,
be obtained from the complete graph on k + 1 vertices g, ..., x; by adding a
vertex y; and an edge z;y; for i = 1,..., k (note there is no vertex yo). We say
that z¢ is the root of F},. Note that each graph Fj, is claw-free. In particular, Fy is
isomorphic to P, and F; is isomorphic to P;. For integers k, £ > 1, let F}, ¢ denote
the graph obtained from two vertex-disjoint copies of F, and F; after removing
their roots and adding a new vertex x* adjacent to precisely those vertices to
which the roots were adjacent in Fy, Fy. We call z* the root of F}, ;. Note that each



graph F}, ; is claw-free. In particular, F} ; is isomorphic to Ps. Finally, for integers
k. l>1,let F,;’Z denote the graph obtained from F} , with root z* after adding
two new vertices y and z with y adjacent to z and z also adjacent to all vertices
in Nf, ,(z*). We call z* the root of Fy ,. Since z is the (only) centre of an induced
claw, Fk ¢ is not claw-free. However it is easy to check that each Fy, o is almost
claw-free. Let F = {Fo, Fi, Fy ¢, F, k ¢ | k,£ > 1}. See Figure 1 for some examples
of graphs that belong to this fa,rmly Let C,, denote the cycle on n vertices. For
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Fig. 1. The graphs F», Fs, F> 3, and Fj 3.

k > 0, the graph G}, is obtained from Fj, by adding two new vertices a and b that
are adjacent to the root of Fj and to each other. Note that Gy is isomorphic to
Cs; see Figure 2 for some other examples. The family G contains the graphs Gy,
k > 0, and also all other connected graphs on five vertices that have a Cs, {Py}-
factor. There are eleven such graphs which are depicted in Figure 3 together with
the graph G;. Note that each graph in G is claw-free and contains a C3, {P;}-
factor. Let H = ({u1, u2, us, u4, us }, {uruz, urus, u1u4, ugtg, usug, usus }) be the
almost claw-free graph in Figure 2. Note that the only connected almost claw-free
graphs on five vertices not in G are F», F1,,,Cs, and H.

Theorem 3 below states that to check whether a graph G on n vertices
has a Pr, {Py}-factor can be done by checking whether or not G € FU G U
{Cs, H} (and this can clearly be done in time O(|V'|?)). The theorem also states
that finding such a factor takes O(|V[*>®) time. This is a major improvement
upon the trivial brute-force algorithm that checks for every 7-tuple of vertices
{v1,...,v7} whether the graph obtained after removing {v;,...v7;} contains a
perfect matching.

Theorem 3. LetG = (V, E) be an odd connected almost claw-free graph. If G ¢
FUGU{Cs, H} then G has a Pr, { Ps}-factor, which we can find in O(|V [*-®) time.

Note that Theorem 3 implies Theorem 2. We prove Theorem 3 in Section 4. There
we describe an algorithm that computes a P;, { P2 }-factor in O(|V|*%) time. The
running time of the algorithm on an input graph G = (V, E) depends on the
running time of a subalgorithm that is performed O(|V]) times and that finds a
perfect matching in at most two subgraphs of G and then attempts to transform
these perfect matchings into a Pr, { Py }-factor of G. As such a transformation
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Fig. 2. The graphs G2,G3s, H and Cs.
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Fig. 3. All connected 5-vertex graphs with a Cs, {P»}-factor.

already requires 2(|V|?) time for some almost claw-free graphs, we did not aim
to bring down the running time of the O(|V|°5|E|) = O(|V|*%) time algorithm
of Blum that computes a maximum matching for general graphs [2].

3 Parallel knock-out schemes

3.1 Definitions and Observations

In this section we continue the study on parallel knock-out schemes for finite
undirected simple graphs begun in [17] and continued in [4-6]. Such a scheme
proceeds in rounds. In the first round each vertex in the graph selects exactly one
of its neighbours, and then all the selected vertices are eliminated simultaneously.
In subsequent rounds this procedure is repeated in the subgraph induced by those
vertices not yet eliminated. The scheme continues until there are no vertices left,
or until an isolated vertex is obtained (since an isolated vertex will never be
eliminated).

More formally, for a graph G = (V, E), a KO-selection is a function f: V —
V with f(v) € N(v) for all v € V. If f(v) = u, we say that vertex v fires at



vertex u, or that vertex u is knocked out by vertex v. For a KO-selection f, we
define the corresponding KO-successor of G as the subgraph of G that is induced
by the vertices in V' \ f(V); if G' is the KO-successor of G we write G ~ G'.
Note that every graph without isolated vertices has at least one KO-successor.
A graph G is called KO-reducible, if there exists a KO-reduction scheme, that
is, a finite sequence

G~ G~ G~ s~ G

where G7 is the null graph (0, 0). A single step in this sequence is called a round,
and the parallel knock-out number of G, pko(G), is the smallest number of rounds
of any KO-reduction scheme. If G is not KO-reducible, then pko(G) = co.

Note that pko(P;) = pko(P3) = pko(Ps) = oo, as in each case there is at
least one isolated vertex after the first round of any parallel knock-out scheme,
and pko(Ps) = 1, for k > 1, and pko(Ck) = 1, for k > 3, as we can define a first
round firing along the perfect matching and cycle edges, respectively. Finally,
pko(Per+1) = 2 for k > 3. To see this, consider a KO-reduction scheme for a
path pipa - - - pag+1 such that in the first round po;—1 and ps; fire at each other
fori=1,...,k — 2, pag_s fires at pag_4, par—o fires at pag_3, por—1 fires at poy,
and poy and pag41 fire at each other. Then, after round one, pag—2 and par—1 are
the only two vertices left and they fire at each other in round two. This yields
the following observation which explains our interest in P7, { P;}-factors; note
that the reverse implication is not true.

Observation 4 Let G be a graph. If G has a perfect matching or a Cy,{Ps}-
factor for some k > 3, then pko(G) = 1. If G has a Pyyy1,{P2}-factor for some
k > 3, then pko(G) < 2.

The paper [6] shows that a KO-reducible n-vertex graph G has

1 / 7T 1 / 7
< 1 __ _ — _ — —
pko(G) < mln{ 5 +1/2n 1 3 +1/2a 4} ,

(recall that « is the independence number). This bound is asymptotically tight
due to the existence of a family of graphs in [4] whose knock-out numbers grow
proportionally to the square root of the number of vertices (and to the square
root of the independence number as these graphs are bipartite). KO-reducible
claw-free graphs, however, can be knocked out in at most two rounds [4]. Con-
nected claw-free graphs with minimum degree d > 5 have a { Ps, Pr, . . . }-factor [1]:
this implies they are KO-reducible in at most two rounds by Observation 4. Us-
ing Theorem 3 we can strengthen and generalise the result on parallel knock-out
numbers for claw-free graphs to almost claw-free graphs. First, note that every
graph F' € F is not KO-reducible as in the first round of any KO-reduction
scheme all neighbours of the root x of F must fire at their neighbour of degree
one, and vice versa. So, in the next round, z would be the only remaining vertex
which is not possible in a KO-reduction scheme. We find that pko(H) = 2 as u;
can fire at us, while us and ug fire at u4, and u4 and us fire at each other in



the first round, and then u; and us fire at each other in the second round. By
Observation 4, pko(G) = 1if G € GU {Cs}. If G is an even connected almost
claw-free graph, then G has a perfect matching by Theorem 1 and consequently
pko(G) = 1 by Observation 4. Hence we have the following result.

Corollary 1. Let G be a connected almost claw-free graph. Then G is KO-
reducible if and only if pko(G) < 2 if and only if G ¢ F.

Note that odd paths on at least seven vertices are examples of (almost) claw-
free graphs with parallel knock-out number two. We observe that Corollary 1
restricted to claw-free graphs states that a connected claw-free graph G is KO-
reducible if and only if pko(G) < 2 if and only if G is not isomorphic to some Fj,
or Fy ¢. This characterisation of claw-free graphs is new. A further implication
is the following corollary.

Corollary 2. Let G be a 2-connected almost claw-free graph. Then pko(G) < 2.

3.2 Running Times

In [4], a polynomial time algorithm is given that determines the parallel knock-
out number of any tree. For general bipartite graphs, however, the problem of
finding the parallel knock-out number is NP-hard [5]. In fact, even the problem
of deciding if pko(G) < 2 for a given bipartite graph G is NP-complete. On the
positive side, a polynomial time algorithm for finding a KO-reduction scheme
for general claw-free graphs was presented in [6]. Corollary 1 provides us with
an O(|V|?) algorithm for checking if an almost claw-free graph G = (V, E) is
KO-reducible as it takes O(|V'|?) time to verify that each component of G does
not belong to F. This is a considerable improvement upon the polynomial time
algorithm for claw-free graphs in [6] which we briefly describe now as its running
time was not previously analysed.

The algorithm first checks if pko(G) = 1 by determining if G has a [1,2/-factor
(a spanning subgraph in which every component is either a cycle or an edge).
The problem of deciding if G = (V, E) contains a [1,2]-factor is a folklore problem
appearing in many standard books on combinatorial optimisation. It is solved as
follows. Let V' = {v1,v2,...,v,}. Define the product graph of G as the bipartite
graph G' = (V' E') with vertex set V' = {uy,uz,...,upn, w1, Ws,...,wy} in
which w,w; € E' and uwjw; € E' if and only if v;u; € E. A [1,2]-factor in
G corresponds to a perfect matching in G'. The fastest known algorithms for
checking if a bipartite graph G = (V, E) has a perfect matching have running
time O(|V|®3|E|) [9,12] or O(|V'|?*76) [13].

If pko(G) # 1, the algorithm checks if pko(G) = 2 by using a result (also
proved in [6]) that any connected claw-free graph G with pko(G) = 2 allows a
KO-reduction scheme in which only two vertices z, y remain in the second round
such that

1. z knocks out a vertex w in the first round that is not knocked out by any
other vertex and that fires at a vertex that is knocked out by some other
vertex as well.



2. y knocks out a vertex in the first round that is knocked out by some other
vertex as well.

The algorithm simply checks all possibilities for z,y,w. After guessing these
three vertices, it checks if the remaining graph has parallel knock-out number
one. Thus the algorithm of [6] takes O(|V'[3-376) time if we use the algorithm
of [13] and O(|V|*3|E|) time if we use the algorithms in [9,12] for finding a
perfect matching in a bipartite graph. (We have not examined if the algorithms
in [9,12,13] can be improved if the bipartite graph under consideration is the
product graph of a claw-free graph.) Note that our new algorithm finds a KO-
reduction scheme for the class of almost claw-free graphs in O(|V[*-5) time.
This can be seen as follows. We first check in O(|V'|?) time if our input graph
G = (V,E) that is almost claw-free belongs to G U {C5, H}. If so, then we can
immediately deduce a KO-reduction scheme. We then check in O(|V|?) time if
G belongs to F. If so, then pko(G) = oo. If not then G contains a Py, {P»}-
factor which we can find in O(|V[>®) time by Theorem 3. This P;, {P;}-factor
immediately provides us with a KO-reduction scheme of G.
We summarise what we have proved:

Corollary 3. Let G = (V, E) be an almost claw-free graph. Deciding whether G
is KO-reducible or has pko(G) < 2, respectively, can be done in O(|V|?) time. The
problem of finding a KO-reduction scheme for G can be done in O(|V|*3) time.

4 Proof of Theorem 3

4.1 Definitions and Lemmas

In this section we prove Theorem 3 after first introducing some additional no-
tation and preliminary results. The subgraph of a graph G = (V, E) induced by
a set U C V is denoted by G[U]. A set U C V is a dominating set of G if each
vertex in V is in U or adjacent to a vertex in U. If U = {u} we call u a dominat-
ing vertex of G and if U = {uy,us} we call uy and uy a dominating pair. Note
that condition 2 of Definition 1 is equivalent to: “for all v € V, G[N(v)] must
contain a dominating vertex or dominating pair”. We denote the set of vertices
in a graph G that have degree ¢ by V; and all vertices that have degree at least
i by V>;. We denote by V., the subset of V>» containing vertices that do not
have neighbours of degree 1. For convenience, we sometimes use the notation |G|
to denote the number of vertices in G.

The following fact is a complicating factor in the proof of Theorem 3: re-
moving a vertex ¢ from an almost claw-free graph does not automatically result
in a new almost claw-free graph. Note that claw-free graphs do satisfy such a
property. An example is the almost claw-free graph H: if we remove u; from H
then we obtain a claw, which does not satisfy condition 2 of Definition 1. Hence,
one of the conditions in Lemma 5 below, namely that G[V'\{z}] is almost claw-
free, is not satisfied by every almost claw-free graph (if it were, then Lemma 5
alone would imply Theorem 3). The next lemma tells us about the structure of
a graph obtained by removing a single vertex from an almost claw-free graph.



Lemma 1. Let z be a vertex of an almost claw-free graph G = (V,E) such
that G[V\{z}] is not almost claw-free. Let Y be the subset of V\{z} such that
G[N(y)\{z}] does not contain a dominating pair. Then the following holds:

(i) Y is an independent set with |Y| € {1,2}.
(i) Fachy €Y is adjacent to x.
(iii) For eachy € Y there exist vertices a,b € N(z) and ¢ ¢ N(xz)U{z} such that
y is the centre of an induced clow with edges ya,yb, yc.

Proof. Let x be a vertex of an almost claw-free graph G = (V, E) and let
G' = G[V\{z}]. Suppose G' is not almost claw-free. If G' violates condition
1 of Definition 1, then G would violate this condition as well. Hence G' vi-
olates condition 2 of Definition 1. Then there exists a vertex y*, such that
G'[Ng: (y*)] = G[N(y*)\{z}] does not contain a dominating pair. As G is almost
claw-free, z is in any dominating pair of G[N(y*)]. Then y* € Y and zy* € E.
This proves |Y| > 1 and (ii).

Let z, ¢ be a dominating pair of G[N(y)] for some y € Y. Since G[N (y)\{z}]
does not contain a dominating pair,  has a neighbour a € N(y)\{z,c} not
adjacent to c¢. Because {a,c} is not a dominating pair of G[N(y)\{z}], z has
a neighbour b € N(y)\{a,z,c} neither adjacent to a nor to ¢. We note that y
is the centre of an induced claw in G with edges ya, yb, yc. Then, by condition
1 of Definition 1, z is not the centre of an induced claw. We then deduce that
zc ¢ E. This proves (iii).

Because each y € Y is the centre of an induced claw, Y is an independent set
of G due to condition 1 of Definition 1. To finish the proof of (i), suppose ¥ =
{y1,--.,yr} with r > 3. Because {y1,y2,y3} is an independent set in G[N(z)],
we then find that x is the centre of an induced claw with edges zy1, zys2, zys. We
already observed z is not the centre of an induced claw. Hence we conclude that
r < 2. This completes the proof of Lemma, 1. O

The following lemmas are used in the proof of Theorem 3. They are proved in
Section 4.3.

Lemma 2. If G = (V,E) is an odd connected almost claw-free graph not in
FUGU{Cs,H}, then |V| > 7, VL, # 0. Furthermore all vertices in V., have a
neighbour in V3. - a

Lemma 3. Let G = (V,E) ¢ G be a connected almost claw-free graph with
a Cs,{Py}-factor. Then G has a P;,{Py}-factor. Moreover, given a Cs,{Py}-
factor of G, there is an algorithm that finds a Pr,{Psy}-factor of G in O(|V|?)
time.

Lemma 4. Let G = (V, E) with |V| > 7 be a connected almost claw-free graph
that has a Cs,{Ps}-factor or an H,{Ps}-factor. Then G has a P;,{P2}-factor.
Moreover, given a Cy,{Pa2}-factor or H,{Ps}-factor of G, there is an algorithm
that finds a Py, {Ps}-factor of G in O(|V|?) time.



Lemma 5. Let G = (V,E) ¢ FUGU{Cs,H} be an odd connected almost
claw-free graph. If G[V\{z}] is almost claw-free for some © € V1, then G has

a Py, {P2}-factor. Moreover, given such a vertex x, there is an algorithm that
finds a Py, {Py}-factor of G in O(|V|?%) time.

Lemma 6. Let G = (V,E) be an odd connected almost claw-free graph not in
FUG such that G[V\{z}] is not almost claw-free for all x € VL,,. Then, for each
z € VL,, there exist two vertices {c,y} with y € N(z) and ¢ € N(y) N Vi such
that G* = G[V\{c,y}] is either in G U {Cs, H} or else G* is an odd connected
almost claw-free graph not in F such that G*[Vg«\{z}] is almost claw-free.

4.2 The Algorithm

We restate Theorem 3 before presenting the algorithm that provides a proof.

Theorem 3 Let G = (V,E) be an odd connected almost claw-free graph. If
G ¢ FUGU{Cs, H} then G has a P;, {P>}-factor, which we can find in O(|V|>-9)
time.

Outline of the algorithm. Let G = (V, E) be an odd connected almost claw-
free graph. Suppose G ¢ FUGU{Cj5, H}. We show how to find a P7, { P»}-factor
of G in O(|V[>®) time.

Step 1. Determine the set VZ,.

This takes time O(|V|?) time, and, by Lemma 2, the set is nonempty. (In fact
Lemma, 2 says more than this as it is used in the proofs of later lemmas.)

Step 2. For each vertex x € Vé2, run the algorithm of Lemma, 5.

If G[V\{z}] is almost claw-free, then, by Lemma 5, we will find a Py, { P»}-factor
of G. If, after trying all possible choices for z, we still have not found a Pr, {P>}-
factor of G, then we know that G[V\{z}] is not almost claw-free for all z € V{,.
Step 2 takes time |V, |O(|[V|*®) = O(|V|>5).

Step 3. Choose an arbitrary vertex x € V>». Find all edges cy where ¢ € Vi,
y € N(z) and N(y)\{c} is dominated by z.

After Step 3 we have obtained a set of p edges c1y1, ..., ¢pyp With ¢; € N(y)NW;
and y; € N(z) with N(y;)\{c;} C N(z) for each i =1,...,p. Note that p < |V].
Step 3 takes time O(|V]?).

Step 4. For each i, consider the graph G = G[V\{ci,yi}]. Check whether
G; €e GU{Cs,H}.

Step 4a. If G} € G, then find a Cs, {P>}-factor of G} (this is easy). Extend
this factor with the Ps-component c;y; to obtain a Cs, { P»}-factor of G. Use the
algorithm of Lemma 3 to obtain a Py, {P2}-factor of G.

We can use the algorithm of Lemma 3 since G ¢ G. Step 4a takes time O(|V[?).
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Step 4b. If G} is isomorphic to Cs or H, then find a C5, { P>}-factor or H, {P>}-
factor of G (by adding the edge c;y). Then use the algorithm of Lemma 4 to find
a P;, {P}-factor of G.

Step 4b takes time O(|V|?). If we have still not found a Py, { P, }-factor of G at
the end of Step 4, then we have taken p - O(|V|?) = O(|[V]®) time to find that
G; ¢ GU{Cs,H} for each i.

Step 5. Apply the algorithm of Lemma 5 to G} and x for each i.

By Lemma 6, there must exist an ¢ such that G ¢ F UG U {C5, H} and both
G7 and G}[Vg: \{z}] are almost claw-free. Hence we obtain a Py, { P, }-factor of
some G} in p- O(|V]*%) = O(|V[*?®) time. We extend this P, {P,}-factor to a
P;, {Py}-factor of G by adding the Py-component ¢;y;. O

4.3 Proofs

Proof of Lemma 2. Let G = (V, E) be an odd connected almost claw-free graph
not in F U G. We first prove the following claim.

Claim 1. Each vertex in V has at most one neighbour in V.

Let u € V have two neighbours v’ and v in V;. As G ¢ F, we know that G is
not isomorphic to F; = P;. Hence u has a neighbour v ¢ {u',u"}. Thus each
dominating set of G[N(u)] contains u',u" and at least one other vertex. This
violates condition 2 of Definition 1, and Claim 1 is proved.

If G has only one or three vertices, then, since it is connected, it is P; = Fy,
P; = F; or C3 = Gy, contradicting our assumption that G ¢ F U G. Thus
|[V| > 5 and, by the connectedness of G, V>2 # 0. Suppose |V| = 5. If G has
a Cs,{P2}-factor then G € G by definition. The only four remaining connected
almost claw-free graphs on five vertices are F3, Fi 1,Cs, and H. All these four
graphs are excluded. Hence |V| > 7. Suppose VI, = 0, that is, all vertices in
V5o are adjacent to a vertex in Vi. By Claim 1, each vertex in V>, has exactly
one neighbour in V. This means that G has a perfect matching and contradicts
the assumption that G is odd. Hence we find that VZ, # 0.

We now prove the second statement of the lemma by contradiction. Suppose
z is a vertex in V{, such that N(y)NV; # 0 for all y € N(z). We first show that
this implies that V = {z}UN (z)UN'(z), where N'(z) denotes the set of vertices
of degree one that are at distance two from z. If V' # {z} U N(z) U N'(z) then
there exists a vertex w € N () that has a neighbour w* not in {z}UN (z)UN'(z).
Let w’ be the neighbour of w in V; (so w' € N'(z)). Note that {w',w*,z} is an
independent set in G[N(w)]. Due to condition 2 in Definition 1, G[N (w)] must
have a dominating pair. Hence w* and x must have a common neighbour z in
G[N(w)]. Then z € V>2NN(z), and z must have a neighbour 2’ in V;. Thus w is
the centre of an induced claw in G with edges ww*, ww', wz, and z is the centre of
an induced claw in G with edges zw*, zx, z2'. This is in contradiction to condition
1 of Definition 1, as z and w are adjacent. Hence we may indeed conclude that
if there exists z € V, with no neighbour in VZ,, then V = {z} U N(z) U N'(z).

11



We need to distinguish two cases according to whether or not  has a neigh-
bour that dominates all others. When both cases lead to a contradiction, the
lemma is proved.

Case 1. x has a neighbour y that is adjacent to all vertices in N(z)\{y}.

Let y' be the neighbour of y in V4. As z € VI, C V5, we have |N(z)\{y}| >
1. Suppose G[N (z)\{y}] is connected. If G[N(x)\{y}] is not a complete graph,
then G[N(z)\{y}] contains two non-adjacent vertices s and t. Let P = ujua - - - u,
be a shortest (and consequently induced) path from s = w3 to t = wu, in
G[N(z)\{y}]- Then p > 3 and wjus ¢ E. By our assumption, up has a neigh-
bour ) in V4. Hence, y is the centre of an induced claw with edges yy', yu1, yus,
and us is the centre of an induced claw with edges usub, usus, usus. However, y
is adjacent to uo. This is not possible as condition 1 of Definition 1 is violated.
Hence we find that G[N(z)\{y}], and consequently, G[N(z)] is a complete graph.
Recall that V = {z}UN(z) UN'(z). By Claim 1 and our assumption on z, every
vertex in N(z) has exactly one neighbour in N'(z). This would mean that G
is isomorphic to F|y(,)|, which contradicts our assumption that G ¢ F. Hence,
G[N(z)\{y}] is not connected.

Let Dy,...D, be the ¢ > 2 components of G[N(z)\{y}]. Suppose ¢ > 3.
Then z is the centre of an induced claw in G with edges zd; for some d; € Vp,
fori = 1,2, 3. Also y is the centre of an induced claw with edges yd; for i = 1,2, 3.
As zy € E, condition 1 of Definition 1 is again violated. Hence ¢ = 2.

If D, is not a complete graph, then D; contains two vertices a and b with
ab ¢ E. Let ¢ € Dy. Then z and y are adjacent centres of induced claws with
edges za, zb, xc and ya, yb, yc respectively. By condition 1 of Definition 1, this is
not possible. Hence D;, and, by the same argument, D, is a complete graph.
Recall that V = {z} U N(z) U N'(z). Then G is isomorphic to F\IDll,IDzI‘ This
contradicts our assumption that G ¢ F. We conclude that Case 1 cannot occur.

Case 2. N(z) does not contain a vertex adjacent to all vertices in N(z).

By condition 2 of Definition 1, N(z) contains a dominating pair y; and ys.
First suppose y1y2 € E. By our assumption, y; is not adjacent to some vertex
z1 € N(z), and y, is not adjacent to some vertex zo € N(z). As y1,y2 form a
dominating pair, we deduce that y;22 and y2z; are edges of G. Let yi be the
neighbour of y; in V; and let y4 be the neighbour of y2 in V. Then y; is the
centre of an induced claw in G with edges y1y], y1y2, y122, and y» is the centre
of an induced claw in G with edges yay1, y2y%,y221. This violates condition 1 of
Definition 1, because y; and y, are adjacent. Hence we find that yiy» ¢ E.

Let Ds,...,D, denote the components of G[N (z)]. Suppose p > 3. We may
without loss of generality assume {y1,y2} C Vp, UVp,. Then {y1,y>} does not
dominate D; for i > 3. Hence p < 2. Suppose p =1 and let P = ujus---u, be a
shortest (and consequently induced) path from u; = y; to u, = y in G[N(z)].
Let u} be the neighbour of w; in V; for ¢ = 1,...,7. As y1y2 ¢ E and P is
an induced path, we find that r > 3. Suppose r > 4. Then us,us are adjacent
centres of induces claws in G with edges usu1, uguh, uguz and uguz, uguh, usuy
respectively. As this is not possible by condition 1 of Definition 1, we find that
r = 3. Because us cannot be a dominating vertex of G[N(z)] due to our Case 2
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assumption, there exists a vertex z € N(z) not adjacent to us. Since {u1,us} =
{y1,y2} is a dominating pair of G[N(z)], we have u1z or ugz in E. We may
without loss of generality assume u; 2z € E. Then u; and usy are adjacent centres of
induced claws in G with edges uju], u1ua, us z and usug, usuh, usus, respectively.
This is not possible due to condition 1 of Definition 1.

Hence p = 2. We assume without loss of generality that y; belongs to D; and
ya to Da (if y1, y2 are in the same component, say Dy, they will not dominate the
vertices in Ds). Suppose D; is not a complete graph. Then there exist vertices
a,b in D, with ab ¢ E. Let y; be the neighbour of y; in Vj. Then z and
y1 are adjacent centres of induced claws with edges za, b, zy2 and y1a,y1b, y1y]
respectively. By condition 1 of Definition 1, this is not possible. Hence D;, and by
the same arguments, D» are complete graphs. Recall that V = {2 }UN (z)UN' ().
Hence G is isomorphic to Fp, |, p,|- This contradicts our assumption that G' ¢ F.
We conclude that Case 2 does not occur. This completes the proof of Lemma 2.

O

Proof of Lemma 3. Let G = (V, E) be a connected almost claw-free graph not
in G that has a C3, {P;}-factor L. Let C' = abca be the Cs-component of L. We
shall show how we can combine C' with P,-components of L to obtain a P;, which
together with the remaining edges in L, forms a P;, { P, }-factor of G. As we only
need to check the P>-components in L this process takes O(|E|) = O(|V|?) time.

First note that V| is odd. If |V| = 3, then G is isomorphic to C3 € G,
which is not possible. Since by definition all connected 5-vertex graphs with a
Cs, { Py }-factor belong to G, |V| # 5 either. So, from now on we can suppose
vi>T.

We consider two cases according to the number of vertices in C' that have
neighbours not in C.

Case 1. At least two vertices of C' are adjacent to vertices not in C.

Let us assume that a and b are adjacent to vertices r and s respectively.
Suppose r # s. Let rr* € Er, and ss* € Er. If r* = s, (and so s* = r), then
acbsra is a cycle, and as |V| > 7, there exists an edge tt* € Er, with t adjacent to
a vertex on this cycle. Thus G[{a,b,c,s,r,t,t*}] has a P; as a subgraph, which
forms, together with the remaining edges in L, a Py, {P;}-factor of G. If r* # s
(so s* # r), then the path r*racbss*, together with the remaining edges in L,
forms a Py, {P,}-factor of G.

Now suppose r = s and r* = s*. Since |V| > 7 and G is connected, there
exists a Pp-component tt* € L with tt* # rr* such that at least one of the
vertices in tt*, say t, is adjacent to a vertex in {a,b,c,r,7*}. If ¢t is adjacent
to a vertex in {a,b,c,r*} then we immediately obtain a Py, {Ps}-factor of G.
Suppose {at,bt,ct,r*t} N E = §. Then rt € E. By symmetry, we may assume
{at*,bt*, ct*,r*t*}NE = () as well. If {ar*, br*, cr*}NE # () then we immediately
find a P7, {P}-factor of G. Suppose {ar*,br* cr*} N E = () Then {a,r*,t*} is
an independent set. By condition 2 of Definition 1, G[(N(r)] must contain a
dominating pair. Due to all the forbidden edges, this requires that there exist a
P,-component yu* in L with uu* ¢ {rr*,tt*} such that at least one of the vertices
in {u,u*}, say u, is adjacent to r and at least two vertices in {a,t,r*}, so to
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at least one vertex in {a,r*}. If u is adjacent to a we find the path u*uacbrr*,

and if v is adjacent to r* we find the path u*ur*rabc. Hence, both cases yield a
Py, {P}-factor of G.

Case 2. Exactly one vertex in C has a neighbour not in C.

Assume that a has a neighbour outside C, so N(b) = {a,c}, and N(c) =
{a,b}. Then G[N(a)\{b,c}] contains a dominating vertex d, due to condition 2
of Definition 1. Assume G[N (a)\{b, ¢, d}] is not a complete graph. Let v, w be two
nonadjacent vertices in N(a)\{b, ¢, d}. Let vv*,ww* € EL. Note that v, v*,w, w*
are four different vertices. First, suppose d = v* or d = w*, say d = v*. Then
the path w*wdvabe together with the remaining edges in L forms a Py, {P2}-
factor of G. Second, suppose d ¢ {v*,w*}. Then dd* € Ej, for some d* ¢ {v,w}.
Let vv* € Er. If d* is adjacent to v or w, then we obtain a path v*vd*dabc or
w*wd*dabc, respectively, and this immediately leads to a Py, { P2 }-factor of G. In
the remaining case, we find that a,d are adjacent centres of induced claws in G
with edges ab, av, aw and dd*, dv, dw, respectively. By condition 1 of Definition 1
this is not possible.

We now assume that G[N(a)\{b,c,d}], and consequently, G[N(a)\{b, c}] is
a complete graph. Suppose L has a P;-component vv* with v,v* € N(a)\{b, c}.
Since |V| > 7 and G is connected, L has a P;-component zz* # vv*, such that
one of the vertices in {z, z*}, say z, is adjacent to {a,v,v*}. If z is adjacent to
a then zv, zv* € E, since G[N(a)\{b, c}] is complete. Hence z is adjacent to at
least one of the vertices in {v,v*}, say to v. Then the path z*zvv*abc together
with the remaining edges in L form a Py, {P;}-factor of G.

Suppose G[N(a)\{b,c}] does not contain edges of L. Let N(a)\{b,c} =
{v1,...,vp} for some p > 1. Then each vertex v; € N(a)\{b,c} has a unique
neighbour v} ¢ N(a) such that v;v} is a Ps-component v;v} of L. Suppose
{vi,..., vy} is not an independent set, say vjv; € E. Then the path v;v]vjv;abe
together with the remaining edges in L form a Py, { P2 }-factor of G.

Suppose {vf,...,v;} is an independent set. Then G contains a subgraph
G' induced by N(a) U {a,v],...,v;} that is isomorphic to G, € G. By our
assumption that G ¢ G, we have G # G'. As G is connected, L then contains
a Py-component rr* with both »,7* not in Vg such that at least one of the
vertices in {r,r*}, say r, is adjacent to a vertex in V. If r is adjacent to a, then
r is adjacent to all vertices in N(a)\{b,c} as G[N(a)\{b,c}] is complete. Then
r € {v1,...,vp} C Vg, which is not possible. Hence ar ¢ E. If r is adjacent to
a vertex v}, then the path r*rvjv;abc together with the remaining edges in L
forms a Py, {P»}-component of G, and we are done. Suppose r is not adjacent
to a vertex in {v],...,vy}. Since N(b) = {a,c} and N(c) = {a,b} we then find
that r is adjacent to some vertex v;. As we already deduced that av} ¢ E, we
obtain that {a,r,v} is an independent set. We claim that v; is the only vertex
of G’ that is adjacent to r. In order to see this, suppose r is adjacent to some
other vertex in G'. By the same arguments as above, we find that this vertex
must be some v; with j # ¢ and that {a,r, v;‘} is an independent set. Then v;, v;
are adjacent centres of induced claws with edges v;a, v;r,v;v] and vja, v;r, v;v7,
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respectively. This contradicts condition 1 of Definition 1 and shows that v; is
indeed the only vertex of G' adjacent to .

We note that {a,r,v}} C N(v;) is an independent set. By condition 2 of
Definition 1, G[N(v;)] must contain a dominating pair. Hence there exists a
vertex s ¢ {a,r,v}} that is adjacent to v; and to at least two vertices in {a, 7, v}}.
If s is adjacent to a, then s = v; for some j # i. Since G’ is an induced subgraph
of G, we find that sv} ¢ E. As v; is the only vertex of G' adjacent to r, we find
that sr ¢ F either. Hence s cannot be adjacent to a, and consequently, s must be
adjacent to both r and v}. Because s # v; is adjacent to v}, we obtain s ¢ V.
Let ss* € Er. Then s* ¢ Vg, because s ¢ Vi and there are no edges in Ej,
with exactly one end vertex in G'. Hence, we obtain a P7, { P, }-factor by taking
the path s*sv}v;abc together with the remaining edges of L. This completes the
proof of Lemma 3. O

Proof of Lemma 4. Let G = (V, E) be a connected almost claw-free graph on at
least seven vertices. that has a C5, { P»}-factor or H, { P, }-factor L. Let C be the
Cs-component or H-component of L. Below we show how we can combine C with
one P-component of L to obtain a Py, which together with the remaining edges
in L, forms a Py, { P>}-factor of G. As we only need to check the P»-components
in L this process takes O(|E|) = O(|V|?) time.

First suppose L is a Cs, { P2 }-factor, so C is isomorphic to Cj. Since [V| > 7
and G is connected, L has a P,-component zy such that at least one of the
vertices x,y, say x, is adjacent to C. We use C and zy to obtain a P;. We
combine this P; with the remaining edges in L to obtain a Py, { P, }-factor of G.

Second suppose L is a H,{P,}-factor, so C' is isomorphic to H. Let C =
({a,d, z,y, 2z} U{zy, xz,yz, za,ya, zd}). Since G is connected and |V| > 7, there
exists a Py-component gg* € Ej, such that at least one of the vertices g, ¢*, say
g, has a neighbour in {a,d,z,y,2}. If ¢ is adjacent to a,d or = we find the path
q*qayzzd, q*qdzayzx, or q*qryazd, respectively. We take this P; together with
the remaining P>-components in L to form a P;,{P}-factor of G. Suppose ¢
and, similarly, ¢* are not adjacent to a vertex in {a,d,z}. If ¢ is adjacent to
1y, then y and z are adjacent centres of induced claws with edges ya,yq, yx and
za, zd, zx. This violates condition 1 of Definition 1. By the same argument we
find that ¢* is not adjacent to y. Hence at least one of the vertices q or ¢*, say
g again, is adjacent to z.

By condition 2 of Definition 1, G[N(z)] has a dominating pair s,t. Because
{d,g,z} is an independent set in G[N(z)], at least one of the vertices s and ¢,
say s, is adjacent to two vertices of {d, ¢, z}, and consequently to at least one
vertex of {d,z}. Then s ¢ V. Let ss* be the Py-component of L that contains
s. If sz € E we obtain the path s*szyazd and if sd € E we obtain the path
s*sdzayx. In both cases we find a P;, and we take this P; together with the
remaining edges of L to obtain a Py, {P2}-factor of G. This completes the proof
of Lemma 4. O

Proof of Lemma 5. Let G = (V, E) be an odd connected almost claw-free graph
that is not in F U G U {C5, H}. Assume that G[V\{z}] is almost claw-free for
some z € V{,. Denote the components of G[V\{z}] by Q1,...,@Q;. If I > 3, then
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G[N(z)] does not have a dominating pair. This is not possible by condition 2 of
Definition 1. Hence I < 2. We distinguish two subcases.

Case 1.1 =1, 0rl =2 and ()1 and Q- are both even.

We first compute a perfect matching M of G[V\{z}] as follows. Suppose
I = 1. Since |V is odd, @1 is even. Since @; is almost claw-free and connected, by
Theorem 1, ); has a perfect matching. We define M as the perfect matching that
we compute in O(|V'|°3|E|) = O(]V|?%) time by Blum’s algorithm [2]. Suppose
I = 2, and since @)1 and (), are even, almost claw-free and connected, both Q1
and @2 have a perfect matching, by Theorem 1. We can compute these perfect
matchings M7 and Ma, respectively, in O(|V|*) time by Blum’s algorithm and
define M := (‘/'1\41 @] ij\b,_E']u1 @] EMg)

We show how we can obtain a P7, { P }-factor of G from M in O(|V|?) time.

By Lemma 2, z has a neighbour y € VZ,. We can find y in O(]V]?) time.
Let ay € Ep. If ax € E, then G has a Cs, { P }-factor with components azya
and the remaining matching edges of M. Since G ¢ G, we use Lemma 3 to find
a Py, {P,}-factor of G in O(|V|?) extra time. Suppose az ¢ E. As £ € Vs, z is
adjacent to some vertex z # y. Since y does not have degree one neighbours, a
has at least two neighbours.

Suppose a has a neighbour b ¢ {y,z}. Since ax ¢ E, b # x. Let bc € Epy.
If ¢ = z, we obtain a Cjs,{P2}-factor L of G with components abzzya and the
remaining edges in M. By Lemma 2, |V| > 7, and we can find a P7, { P, }-factor
of G in O(|V|?) time, by Lemma 4. Hence ¢ # z. Note that ¢ ¢ {a, b, z,y} either.
Let zd € Ep. Then d ¢ {a,b,c,z,y, z}. Hence we have found a Py, { P»}-factor
of G with components dzzxyabc and the remaining edges in M. We can check
this case in O(|V'|?) time.

In the remaining case, a has exactly two neighbours, namely y and z. Again,
let dz € M. If dz € E, then again we find a Cs, {P2}-factor of G, and conse-
quently, we find a P;, {P;}-factor of G in O(|V|?) time, by Lemma 3. Suppose
dx ¢ E. Note that ad ¢ D since N(a) = {y, z}. Hence z is the centre of induced
claw with edges za, zd, zz. By condition 2 of Definition 1, there exists a vertex p
adjacent to z and at least two vertices in {a,z,d}, and so to at least one vertex
in {a,d}.

First assume that p = y (meaning that yz € E). If yd € E, then G contains
two adjacent centres, namely y, z, of induced claws with edges ya,yd,yz and
za, zd, zx, respectively. This is not possible due to condition 1 of Definition 1.
Hence yd ¢ E. However, then G[{a,d,z,y, z}] is isomorphic to H. Recall that
|V| > 7. Then, by Lemma 4, we find a P, {P}-factor of G in O(|V|?) time.

Now suppose p # y. Let pg € Epr. Note that ¢ ¢ {a,d,p,z,y,z}. Assume
that p is adjacent to a. We find a path gpayzzd on seven vertices in G. This path
together with the remaining edges in M forms a Pr, { P> }-factor of G. If ap ¢ E,
then dp € E and we find a path gpdzzya on seven vertices in G. So, also in this
case, which we can check in O(|V|?) time, we have found a P;, {P;}-factor of G.
This finishes Case 1.

Case 2.1 = 2 but either )1 or Q> is odd.
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As |V] is odd, we find that both |Q1| and |Q2| are odd, and consequently
G1 = G[Vg, U {z}] and G2 = G[Vg, U {z}] are even. Then G; and G, are
almost claw-free, as otherwise G would not be almost claw-free. Since G; and
G are almost claw-free and connected as well, they have a perfect matching
M, Ms, respectively, due to Theorem 1. By Using Blum’s algorithm [2], we can
find M; and M, in O(JV|°3|E|) = O(JV|?%) time. Let zu; be an edge in M;
and zuy an edge in M. Since « € VZ,, uy and uy are in V>5 by definition. Let
uf # z be a neighbour of u; (in Q1) and let u5 # = be a neighbour of uy (in
@2). Let wiuf € Ep for ¢ = 1,2. We note that |{u1,u], vz, us, w1, ws, 2} = 7.
Hence we found a P;, {P;}-factor of G with components w;uju;zusujws and
the remaining edges in M; and M5. This finishes Case 2 and completes the proof
of Lemma 5. ]

Proof of Lemma 6. Let G = (V, E) be an odd connected almost claw-free graph
not in F U G such that G[V\{z}] is not almost claw-free for all z € V{,. Let
z € V,. Let G' = G[V\{z}]. Let Y be the set of vertices such that G'[Ng:(y)]
does not contain a dominating pair for each y € Y.

Suppose there exists a vertex y € Y that has no neighbour of degree one in
G. Since y € V>3 by definition of Y, we then obtain y € V{,. By our assump-
tion, G[V'\{y}] is not almost claw-free. Then, by Lemma 1 (i), there exists a
vertex z' such that G[N(z')\{y}] does not contain a dominating pair. Then, by
Lemma 1 (ii) and (iii), 2’ is the centre of an induced claw adjacent to y. Since, by
Lemma 1 (iii), y is also a centre of an induced claw, we obtain a contradiction
with condition 1 of Definition 1. Hence, each vertex y; € Y has a neighbour
ci € Vh.

By Lemma 1 (i), 1 < |Y| < 2 holds. We will show by contradiction that
|Y| = 1. Suppose that ¥ = {y1,y=}. By Lemma 1 (iii) and by definition of
¢i, each y; is the centre of an induced claw with leaves y;a;, y;b;, y;c; for some
ai,b; € N(z). Since y; is the centre of an induced claw and y12 € E, we find
that x is not the centre of an induced claw by condition 1 of Definition 1. By
Lemma 1 (i), y1y2 ¢ E. Then at least one of the edges aiy2,biys, say aiys,
exists (as otherwise z is the centre of an induced claw with edges a1, zb1, Tys2).
Clearly, a; € V>3. If a; has a neighbour d of degree one, then a, is the centre
of an induced claw in G with edges a1d,a1y1,a1y2. As a; is adjacent to y; and
y1 is the centre of an induced claw, this is not possible due to condition 1 of
Definition 1. Hence a1 € VX,. Then, by our assumption, G[V'\{a1}] is not almost
claw-free. Then, by Lemma 1 (i), there exists a vertex b’ such that G[N (b')\{a1}]
does not contain a dominating pair. As G is almost claw-free, {z,¢;} forms a
dominating pair of G[N(y;)] for ¢ = 1,2. So, = is adjacent to all vertices in
N(yi)\{ci} for i = 1,2. This means that b’ ¢ {y1,y2}, as otherwise {z,c,} or
{z,c2} would be a dominating pair for G[N(b')\{a1}]. By Lemma 1 (iii), b’ is
the centre of an induced claw. Since we already deduced that z is not the centre
of an induced claw in G, we obtain b’ # x. By Lemma 1 (ii), a1b’ € E. Hence
b € N(a)\{z,y1,y2}. If ' ¢ N(y1) U N(y2) then a; and y; are two adjacent
centres of induced claws in G with edges a1b’,a19y1,a1y2 and yia1,y101,91¢1,
respectively. This violates condition 1 of Definition 1. Hence b’ € N (y1) U N (y2).
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Since z is adjacent to all vertices in N(y1) U N(y2)\{c1,c2}, we then obtain
zbl € E. As G is almost claw-free, a; is in any dominating pair {a;,w} of
G[N(b)]. Let b" € N(b') be adjacent to a1. Then, by using the same arguments
as above, b € N(y1) U N(y2), and consequently, b’ € N(z). Hence {z,w} is a
dominating pair of G[N(b')] (or z is a dominating vertex of G[N (V')] if z = w),
and consequently, of G[N (b')\{a; }]. This contradiction shows that |Y'| = 1 must
hold.

From now on we write y := y; and ¢ := ¢;. We define G* := G[V\{c,y}]
Suppose G* is not isomorphic to a graph in G U {C, H}. We first show by con-
tradiction that G* ¢ F. Suppose G* € F. Let r be the root of G*. Obviously,
G* is not isomorphic to Fy = P;.

Suppose G is isomorphic to Fj for some k > 1. If z has degree one in G*
then z has degree two in G. Hence G[V'\{z}] is almost claw-free, which is not
possible by our assumption. Suppose z is a neighbour of . Let z' be the degree
one neighbour of z in G*. If 'y ¢ E then z ¢ V{, as z' will then be in V;. If
z'y € E then ' € V and hence G[V'\{z'}] is not almost claw-free. As 2’ € V,
as well, this is not possible, again by our assumption on vertices in VZ,. In the
remaining case, + = r. As z dominates G[N(y)\{c}], v is not adjacent to a
vertex of degree one in G*. Then G[V'\{z}] is almost claw-free. Hence, G is not
isomorphic to Fy.

Suppose G is isomorphic to F . for some k,¢ > 1. By the same arguments
as in the previous case,  neither has degree one in G* nor is a neighbour of r.
Suppose z = r. Then y is not adjacent to a vertex of degree one in G*. Denote
the two components of G*[Ng« ()] by A and B. If y is adjacent to all vertices in
V4 UVpg, then G is isomorphic to F,; ,- This is not possible. Suppose y is adjacent
to no vertex of one set in {Va, Vg}, say V4. Then G[N\{z}] is almost claw-free,
which is not possible. Hence, we may without loss of generality assume that y
is adjacent to 21 € V4 and to z3 € V4 while y is not adjacent to 23 € V4. Let 2]
denote the neighbour of z; in G* that has degree one in G*. As 2] is not adjacent
to ¢ or y in G either, we obtain z; € V;. However, then y and z; are adjacent
centres of induced claws with edges yc,y21,y22 and 21y, 2121, 21 22- This violates
condition 1 of Definition 1. Hence, G* is not isomorphic to Fj ;.

Suppose G* is isomorphic to Fy , for some k,£ > 0. Let s be the (umque)
vertex in G* that is adjacent to r and all vertices in Ng«(r)\{s}. Let s’ be
the degree one neighbour of s in G*. By exactly the same arguments as in the
previous cases, x neither has degree one in G* nor is in Ng«(r) (so z # s is
not possible either). Suppose z = r. Then ys ¢ E as otherwise G[V'\{z}] is
almost claw-free. Let A and B denote the components of G*[Ng+ (z)\{s}]. As
G[V\{z}] is not almost claw-free, y is adjacent to a neighbour v € N(z)\{s},
say v € Va. Let v’ be the degree one neighbour of v in G*. Let w € Vg. Then v
and s are adjacent centres of induced claws with edges vv', vy, vs and sv, sw, ss’.
This violates condition 1 of Definition 1. Hence z is not the root of G*. So, we
have shown that G* ¢ F.

We now show that G* is almost claw-free. If it is not, then G* contains a
vertex t such that G*[Ng-(t)] does not contain a dominating pair. Since G is
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almost claw-free, y is then in any dominating pair of G[N(¢)]. Let {y,u} be
a dominating pair of G[N(t)]. Since z is adjacent to all vertices in N(y)\{c},
we may replace y by z in {y,u}. We then find a dominating pair {z,u} (or
dominating vertex z if = u) of G*[Ng-(t)]. Hence, G* is almost claw-free.
Finally, we show that G*[Vg«\{z}] = G[V\{¢, z,y}] is almost claw-free. If it
is not, then, by Lemma 1 (i), G* contains a vertex y* such that G*[Ng« (y*)\{z}]
does not have a dominating pair. By Lemma 1 (ii), y* is adjacent to x, and by
Lemma 1 (iii), y* is the centre of an induced claw in G*, and consequently in
G. Since y* ¢ Y, we obtain yy* € E. Then G contains two adjacent centres of
induced claws (namely y and y*). This violates condition 1 of Definition 1. Hence,
G*[Vg~\{z}] is indeed almost claw-free. This completes the proof of Lemma 6.
O

5 Conclusions

We completely characterised the class of connected almost claw-free graphs that
have a Py, {P,}-factor. Using this characterisation we were able to classify all
KO-reducible almost claw-free graphs, and we could show that every reducible al-
most claw-free graph is reducible in at most two rounds. This lead to a quadratic
time algorithm for determining if an almost claw-free graph is KO-reducible.

The following open questions are interesting. Can we characterise all (almost)
claw-free graphs that have a Pyjy1, { P2 }-factor for k > 4?7 Let K , denote the
star on r + 1 vertices, that is, the complete bipartite graph with partition classes
X and Y with |X| = 1 and |Y| = r. Can we characterise all KO-reducible
K -free graphs for r > 47 This already seems to be a difficult question for
r = 4, since there exist K 4-free graphs with parallel knock-out number equal
to three. In contrast with Corollary 2, there are 2-connected K 4-free graphs
that are not reducible; for example the graph obtained from Ky by subdividing
each edge with a single vertex. Hence, the family of forbidden subgraphs seems
considerably more difficult to characterise.
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