
Computing Sharp 2-factors in Claw-free Graphs? ??

Hajo Broersma and Daniël Paulusma

Department of Computer Science, Durham University, DH1 3LE Durham,
United Kingdom, {hajo.broersma,daniel.paulusma}@durham.ac.uk

Abstract. In a previous paper we obtained an upper bound for the minimum
number of components of a 2-factor in a claw-free graph. This bound is sharp in
the sense that there exist infinitely many claw-free graphs for which the bound is
tight. In this paper we extend these results by presenting a polynomial algorithm
that constructs a 2-factor of a claw-free graph with minimum degree at least four
whose number of components meets this bound. As a byproduct we show that
the problem of obtaining a minimum 2-factor (if it exists) is polynomially solv-
able for a subclass of claw-free graphs. As another byproduct we give a short
constructive proof for a result of Ryjáček, Saito & Schelp.

1 Introduction

In this paper we consider 2-factors of claw-free graphs. Graph factors are well-studied.
See [16] for a survey. Our motivation to study 2-factors goes back to the well-known
NP-complete decision problem H-CYCLE (cf. [9]) in which the problem is to decide
whether a given graph has a hamiltonian cycle, i.e., a connected 2-regular spanning sub-
graph. In the related problem 2-FACTOR the connectivity condition is dropped, hence
the problem is to decide whether a given graph admits a 2-factor, i.e., a 2-regular span-
ning subgraph. This makes the problem considerably easier in the algorithmic sense:
it is well-known that 2-FACTOR can be solved in polynomial time by matching tech-
niques, and a 2-factor can be constructed in polynomial time if the answer is YES
(cf [14]). Clearly, a hamiltonian cycle is a 2-factor consisting of one component, and
the minimum number of components of a 2-factor can be seen as a measure for how far
a graph is from being hamiltonian. So, from an algorithmic viewpoint a natural question
is to consider the problem of determining a 2-factor of a given graph with a minimum
number of components. Obviously, this is an NP-hard problem. Hence it makes sense
to search for 2-factors with a reasonably small number of components if we aim for
polynomial time algorithms. For this research we have restricted ourselves to the class
of claw-free graphs. This is a rich class containing, e.g., the class of line graphs and the
class of complements of triangle-free graphs. It is also a very well-studied graph class,
both within structural graph theory and within algorithmic graph theory; see [7] for
a survey. Furthermore, computing a 2-factor with a minimum number of components
remains NP-hard for the class of claw-free graphs.

? This work has been supported by EPSRC (EP/D053633/1).
?? A preliminary and shortened version of this paper appeared in the Proceedings of the 33rd

International Symposium on Mathematical Foundations of Computer Science (MFCS 2008).

In [1] we already obtained an upper bound for the minimum number of components
of a 2-factor in a claw-free graph. This bound is sharp in the sense that there exist
infinitely many claw-free graphs for which the bound is tight; we will specify this later.
When considering the related complexity problems, we soon realized that the proof
methods used in [1] need to be extended in order to obtain a polynomial algorithm that
constructs a corresponding 2-factor, e.g., a 2-factor whose number of components is at
most our upper bound. In the present paper we present this polynomial time algorithm.

2 Terminology and Background

We consider graphs that are finite, undirected and simple, i.e., without multiple edges
and loops. For notation and terminology not defined in this paper we refer to [4].

Let G = (V (G), E(G)) be a graph of order |G| = |V (G)| = n and of size e(G) =
|E(G)|. The neighbor set of a vertex x in G is denoted by NG(x) = {y ∈ V (G) | xy ∈
E(G)}, and its cardinality by dG(x). We denote the minimum (vertex) degree of G by
δG = min{dG(x) | x ∈ V (G)}. If no confusion can arise we often omit the subscripts.

Let Kn denote the complete graph on n vertices. A graph F is called a 2-factor
of a graph G if F is a 2-regular spanning subgraph of G, i.e., if F is a subgraph of
G with V (F) = V (G) and dF (x) = 2 for all x ∈ V (F). A claw-free graph is a
graph that does not contain an induced subgraph isomorphic to the four-vertex star
K1,3 = ({u, a, b, c}, {ua, ub, uc}).

2.1 Known Results

Several interesting problems are still open for claw-free graphs such as the conjecture
of Matthews and Sumner [15] that every 4-connected claw-free graph is hamiltonian.
However, there is quite a lot known on 2-factors in claw-free graphs, including some
very recent results. Results of both Choudum & Paulraj [3] and Egawa & Ota [5] imply
that every claw-free graph with δ ≥ 4 contains a 2-factor.

Theorem 1 ([3, 5]). A claw-free graph with δ ≥ 4 has a 2-factor.

We observe that every 4-connected claw-free graph has minimum degree at least four,
and hence has a 2-factor. A 2-connected claw-free graph already has a 2-factor if δ =
3 [20]. However, in general a claw-free graph with δ ≤ 3 does not have to contain a
2-factor. Examples are easily obtained.

Faudree et al. [6] showed that every claw-free graph with δ ≥ 4 has a 2-factor with
at most 6n/(δ + 2) − 1 components. Gould & Jacobson [11] proved that, for every
integer k ≥ 2, every claw-free graph of order n ≥ 16k3 with δ ≥ n/k has a 2-factor
with at most k components. Fronček, Ryjáček & Skupień [8] showed that, for every
integer k ≥ 4, every claw-free graph G of order n ≥ 3k2 − 3 with δ ≥ 3k − 4 and
σk > n+ k2 − 4k + 7 has a 2-factor with at most k − 1 components. Here σk denotes
the minimum degree sum of any k mutually nonadjacent vertices.

If a graph G is claw-free, 2-connected and has δ ≥ 4, then G has a 2-factor with at
most (n+1)/4 components [13]. If a graph G is claw-free, 3-connected and has δ ≥ 4,
then G has a 2-factor with at most 2n/15 components [13].

2

In [1] we considered claw-free graphs with δ ≥ 4. Our motivation for this is as
follows. We first note that the number of components of a 2-factor in any graph on
n vertices is obviously at most n/3. For claw-free graphs with δ = 2 that have a 2-
factor we cannot do better than this trivial upper bound. This is clear from considering
a disjoint set of triangles (cycles on three vertices). For claw-free graphs with δ = 3
that have a 2-factor, the upper bound n/3 on its number of components is also tight, as
shown in [1]. Hence, in order to get a nontrivial result it is natural to consider claw-free
graphs with δ ≥ 4.

Our two main results in [1] provide answers to two open questions posed in [20].

Theorem 2 ([1]). A claw-free graph G on n vertices with δ ≥ 5 has a 2-factor with at
most (n− 3)/(δ − 1) components unless G is isomorphic to Kn.

Theorem 3 ([1]). A claw-free graph G on n vertices with δ = 4 has a 2-factor with
at most (5n − 14)/18 components, unless G belongs to a finite class of exceptional
graphs.

Both results are tight in the following sense. Let f2(G) denote the minimum number
of components in a 2-factor of G. Then in [20], for every integer d ≥ 4, an infinite
family {F d

i } of claw-free graphs with δ(F d
i) ≥ d is given such that f2(F d

i) > |F d
i |/d ≥

|F d
i |/δ(F d

i). This shows we cannot replace δ − 1 by δ in Theorem 2. The bound in
Theorem 3 is tight in the following sense. There exists an infinite family {Hi} of claw-
free graphs with δ(Hi) = 4 such that

lim
|Hi|→∞

f2(Hi)
|Hi|

=
5
18
.

This family can be found in [20] as well.
The exceptional graphs of Theorem 3 have at most seventeen vertices. They are de-

scribed in [1], and we will not specify them here. In [1] we also explain that Theorem 2
and 3 together improve the previously mentioned result of Faudree et al. [6] and that
Theorem 2 also improves the previously mentioned result of Gould & Jacobson [11].

2.2 Results of This Paper

The proofs in [1] do not yield algorithms for constructing 2-factors that satisfy the upper
bounds in Theorems 2 and 3. In the remainder of this paper we will develop a new
approach to these problems in order to establish polynomial algorithms that construct
2-factors of claw-free graphs with minimum degree at least four. Using our results in [1]
we show that the number of components in these 2-factors are guaranteed to satisfy the
upper bounds of Theorems 2 and 3. We will illustrate our approach by concentrating on
Theorem 2. It will be immediately clear that the same approach works for Theorem 3 in
exactly the same way. As a byproduct we show that the problem of obtaining a minimum
2-factor (if it exists) is polynomially solvable for a subclass of claw-free graphs which
we describe later on. As another byproduct we give a short constructive proof for a
result of Ryjáček, Saito & Schelp [19].

3

3 The Algorithm for Constructing 2-factors of Claw-free Graphs

We split our polynomial time algorithm into six different parts. For the first two parts
we do not have to develop any new theory or algorithms, but can rely on the beautiful
existing machinery from the literature. The first part of this says that claw-free graphs
behave the same with respect to our problem as line graphs obtained from them by
performing some closure operation which will be explained shortly. The second part
then describes the known equivalence of our problem with an analogous problem based
on concepts and results in the preimage graphs of line graphs. Our new contributions
are described and explained in the third, fourth, fifth and sixth part. In the third part
we consider preimage graphs that are trees and in the fourth part we consider preimage
graphs that are triangle-free. Finally, in the fifth and sixth part we translate the results
back to the original domain of claw-free graphs and mention some special class for
which our algorithm finds a 2-factor with a minimum number of components.

Step 1: restrict to line graphs of triangle-free graphs

The line graph of a graph H with edges e1, . . . , ep is the graph L(H) with vertices
u1, . . . , up such that there is an edge between any two vertices ui and uj if and only if
i and ej share one end vertex in H . It is easy to verify and well-known (see e.g. [12])
that line graphs are claw-free graphs, but that the class of claw-free graphs is much
richer (in fact, line graphs have been characterized by a set of nine forbidden induced
subgraphs). We show that we can restrict ourselves to an even smaller subclass of claw-
free graphs, namely the class of line graphs of triangle-free graphs. For this purpose we
use the closure concept as defined in [18].

The closure of a claw-free graph is defined as follows. Let G be a claw-free graph.
Then, for each vertex x of G, the set of neighbors of x in G induces a subgraph with
at most two components. If this subgraph has two components, both of them must be
cliques. If the subgraph induced by N(x) is connected, we add edges joining all pairs
of nonadjacent vertices in N(x). This operation is called the local completion of G at
x. The closure cl(G) of G is a graph we can obtain by recursively repeating the local
completion operation, as long as this is possible. Ryjáček [18] showed that the closure
of G is uniquely determined, i.e., that the ordering in which one performs the local
completions does not matter. Ryjáček [18] also showed that G is hamiltonian if and
only if cl(G) is hamiltonian. This result was later extended to 2-factors [19].

Theorem 4 ([19]). Let G be a claw-free graph. Then G has a 2-factor with at most k
components if and only if cl(G) has a 2-factor with at most k components.

The following relationship between claw-free graphs and triangle-free graphs exists.

Theorem 5 ([18]). IfG is a claw-free graph, then there is a triangle-free graphH such
that L(H) = cl(G).

It is well-known that apart from K3 which is L(K3) and L(K1,3), every connected line
graph F has a unique H with F = L(H) (see e.g. [12]). We call H the preimage graph
of F . For K3 we let K1,3 be its preimage graph. For disconnected graphs we define the
preimage graphs according to their components.

4

Recall that f2(G) denotes the minimum number of components in a 2-factor of
a graph G. By Theorem 4 and Theorem 5, we deduce that for a claw-free graph G,
f2(G) = f2(cl(G)) = f2(L(H)), where H is the (triangle-free) preimage graph of
cl(G). Recall that the closure of a claw-free graph can be obtained in polynomial time.
Since it is known that the preimage graph of a line graph can be obtained in polynomial
(linear) time (see e.g. [17]) we can efficiently compute H .

Step 2: translate the problem into finding dominating systems

An even graph is a graph in which every vertex has a nonzero even degree. A connected
even graph is called a circuit. For q ≥ 2, a star K1,q is a complete bipartite graph with
sets A = {c} and B with |B| = q; the vertex c is called the center and the vertices in
B are called the leaves of K1,q .

Let H be a graph that contains a set S consisting of stars with at least three edges
and circuits, all (stars and circuits) mutually edge-disjoint. We call S a system that
dominates H or simply a dominating system if for every edge e of H the following
holds:

– e is contained in one of the stars of S, or
– e is contained in one of the circuits of S, or
– e shares an end vertex with an edge of at least one of the circuits in S.

Gould & Hynds [10] proved the following result.

Theorem 6 ([10]). The line graph L(H) of a graph H has a 2-factor with k compo-
nents if and only if H has a dominating system with k elements.

Combining Theorem 4 and Theorem 5 with Theorem 6 yields the following result.

Theorem 7. Let G be a claw-free graph. Then G has a 2-factor with k components
if and only if the (triangle-free) preimage graph of G has a dominating system with k
elements.

The edge degree of an edge xy in a graph H is defined as dH(x) + dH(y) − 2. We
denote the minimum edge degree of H by δe = δe(H). Due to the previous discussions
it is clear that Theorem 2 is equivalent to the following theorem.

Theorem 8. A triangle-free graph H with δe(H) ≥ 5 has a dominating system with at
most (e(H)− 3)/(δe(H)− 1) elements unless H is isomorphic to K1,e(H).

We will now concentrate on determining (in polynomial time) a sharp dominating sys-
tem, i.e., one that satisfies the upper bound of Theorem 8. We first deal with the case
that H is a tree. In this case we can even determine a minimum dominating system in
polynomial time.

5

Step 3: compute minimum dominating systems for trees

Here we present a polynomial time algorithm for computing the number of elements in a
minimum dominating system of any given tree. We use the following new terminology.
A minimum dominating system, or shortly, an m-system of a graph H is a dominating
system ofH with the smallest number of elements. We denote such a system byM(H),
and its number of elements bym(H). IfH does not allow a dominating system we write
m(H) =∞.

A vertex with degree 1 in a graph F is called an end vertex or leaf of F . An edge
which is incident with a leaf is called a pendant edge. We say that we add a pendant
edge to F if we add a new vertex to F and join it to precisely one of the vertices of F .
Two edges are called independent if they do not share any end vertices. A matching is
a set of mutually independent edges.

We write Hq(w) to denote a tree H that contains a vertex w to which we added
q new pendant edges. Note that H0(w) = H . Let H1, . . . ,Hp be a set of p mutually
vertex-disjoint trees, where each Hi contains a vertex wi. We say that we have joined
trees H1, . . . ,Hp in w1, . . . , wp by u if we add a new vertex u with edges uwi for
i = 1, . . . , p. If p = 0, then the resulting tree H(u) is the single vertex u, which has
a dominating system of 0 elements by definition. Before we present our algorithm we
first deduce a number of equations. Note that m(H1(w)) =∞ if H = ({w}, ∅).

Lemma 1. Let w1, . . . , wp be a set of p vertices belonging to mutually disjoint trees
H1, . . . ,Hp, respectively. Let H(u) be the tree obtained after joining H1, . . . ,Hp in
w1, . . . , wp by u. Then m(H(u)) =

0 if p = 0
p∑

i=1

m(H1(wi)) if p ∈ {1, 2}

min
{ p∑

i=1

m(H1(wi)),

1 + min
i1<i2<i3

{ 3∑
j=1

m(Hij
) +

∑
i/∈{i1,i2,i3}

min{m(Hi),m(H1(wi)}
}}

if p ≥ 3.

Proof. We prove each case separately.

• Let p = 0. Then H(u) = ({u}, ∅). So, m(H(u)) = 0 by definition of a dominating
system.

• Let 1 ≤ p ≤ 2. Then, in any dominating system of H(u), u is not a star center,
and consequently, each wi is the center of a star containing the edge uwi. Note that in
each tree H1(wi), wi is a star center (because the new pendant edge to wi needs to be
covered by a star). Hence, we can combine any m-systemsM1(wi) of each H1(wi) to
obtain an m-systemM(H(u)) with

∑p
i=1m(H1(wi)) elements.

• Let p ≥ 3. First consider the set of dominating systems of H(u) in which u is not a
star center. In all these dominating systems, each wi is the center of a star containing
the edge uwi. Similar to the previous case, we can combine any m-systems of each

6

H1(wi) to obtain a dominating system S of H(u) with
∑p

i=1m(H1(wi)) elements.
We note that S has the minimum number of elements over all dominating systems of
H(u) in which u is not a star center.

Secondly, consider the set of dominating systems ofH(u) in which u is a star center.
In all these dominating systems, the star with center u contains at least three edges, say
uwi1 , uwi2 , and uwi3 , by definition of a dominating system. For the remaining edges
uwi we act as follows. In each dominating system of H(u) that has a star with center
u, such an edge uwi either belongs to the star with center u, or else to the star with
center wi. We compute an m-system M(Hi) and an m-system M(H1(wi)). Then
we choose the one with the smallest number of elements, which we denote by M∗i .
So, |M∗i | = min{m(Hi),m(H1(w1)}. We now combine the m-systems of Hij for
j = 1, 2, 3, together with the dominating systemsM∗i and a star that contains the edges
uwij

for j = 1, 2, 3 plus possibly some more edges depending on our choice for each
M∗i . We try all possible triples (i1, i2, i3), and choose the combination with the smallest
total number of elements. This way we obtain a dominating system S ′ of H(u) that has

1 + min
i1<i2<i3

{ 3∑
j=1

m(Hij) +
∑

i/∈{i1,i2,i3}

min{m(Hi),m(H1(wi)}
}

elements. We note that S ′ has the minimum number of elements over all dominating
systems of H(u) in which u is a star center.

Finally, we compare the numbers of elements of S and S ′, and we choose (the) one
with the smallest number of elements. This yields an m-systemM(H(u)). ut

Using Lemma 1 we can prove the following theorem.

Theorem 9. The problem of finding a minimum dominating system is polynomially
solvable for the class of trees.

Proof. Let H be a tree with a designated vertex v0. We partition V (H) into L0 ∪ L1 ∪
. . . ∪ Lr such that for i = 0, . . . , r, Li is the set of vertices at distance i from v0.
Note that L0 = {v0}. For v ∈ V (H)\{v0}, we let v+ ∈ N(v) be the first vertex on
the (unique) path from v to v0 in H , and we let the subtree Hv be the component of
H − vv+ that contains v.

Now let v ∈ V (H). Suppose v has neighbors w1, . . . , wp in Hv . Then Hv is ob-
tained after joining the p mutually disjoint trees Hw1 , . . . ,Hwp

in w1, . . . , wp by v.
Suppose we have already computed the values m(Hwi) and m(H1

wi
(wi)). Then, using

Lemma 1, we can easily computem(Hv). We observe that the treeH1
v (v) is obtained af-

ter joining the treesHwi
, . . . ,Hwp

together with a new single vertex tree ({wp+1}, ∅) in
w1, . . . , wp+1 by v. Hence, we can use Lemma 1 to computem(H1

v (v)) as well. So, our
strategy is to recursively compute the values m(Hv) and m(H1

v (v)): for i = 1, . . . , r,
we first compute the values m(Hvi) and m(H1

vi(vi)) for all vi ∈ Li, and use them to
compute m(Hvi−1) and m(H1

vi−1(vi−1)) for all vi−1 ∈ Li−1 according to Lemma 1.
Clearly, computing m(H) this way can be done in polynomial time.

In order to find an m-systemM(H), we keep track of the stars as follows. Firstly,
for each v ∈ V (H), we remember whether v is a star center in an m-system of Hv

7

when we compute m(Hv). In case v is the center of a star Sv , we keep track of the
edges in Sv as well. Secondly, we check whether v becomes the center of a star Sv

(and which edges belong to Sv if Sv exists) both when we compute m(Hv+) and when
we compute m(H1

v+(v+)). Note that we can do this in polynomial time when we use
the formula in Lemma 1. With the above information we can efficiently compute an
m-systemM(H), as the following claim shows.

Claim. For all v in each Li we can compute in polynomial time whether v is the center
of a star Sv of an m-systemM(H) and, if so, which edges of H belong to Sv .

We prove this claim by induction on i. Let i = 0. When we computed the value for
m(Hv0) = m(H) by using Lemma 1, we checked whether v0 is the center of a star
in an m-system of H . In case v0 is the center of such a star Sv0 , we also remembered
which edges belong to Sv0 .

Now suppose i ≥ 1. Let v ∈ Li. By the induction hypothesis, we know whether v+

is the center of a star in an m-systemM(H) or not. First suppose v+ is not the center
of a star in an m-systemM(H). Then v is the center of a star Sv inM(H), and Sv is
a star in an m-systemM(H1

v (v)) as well. So, we kept track of Sv . Now suppose v+ is
the center of a star Sv+ in an m-systemM(H). By the induction hypothesis, we know
which edges Sv+ has. Then there are two cases: either vv+ belongs to Sv+ , or it does
not. If vv+ belongs to Sv+ , then v is the center of a star Sv inM(H) if and only if Sv

is a star inM(Hv). If vv+ does not belong to Sv+ , then v is the center of a star Sv in
M(H), and Sv is a star in an m-systemM(H1

v (v)). In both cases we kept track of all
the edges of Sv . ut

Step 4: compute sharp dominating systems for general triangle-free graphs

Suppose G is a claw-free graph. Let H be the preimage of cl(G), i.e., the triangle-free
graph with L(H) = cl(G). We now assume that H is not a tree. If H is a forest we
apply Theorem 9 on each of its components, which are trees. Below we discuss the case
in which H is not a forest but contains one or more circuits.

The key idea behind our approach in this case is to start with an even subgraph
X of H , then to “break” the circuits in X by removing a number of edges, such that
we obtain a new graph H∗ that is a forest. Then we can apply our approach from the
previous section to each component of H∗ if we first add sufficiently many pendant
edges to ensure that each component has minimum edge-degree at least δe(H). In this
procedure we have to add more edges than we remove. However, we will have the
following advantage. The added pendant edges have to be dominated by (extra) stars
in any dominating system of H∗, and these stars can be merged together into fewer
elements of a dominating system in the original graph H . In other words, the larger
number of stars we get by applying the upper bounds to H∗ will provide the necessary
compensation for the larger number of edges that we created. This way we are able to
establish our upper bound for H . In [1] we gave a nonconstructive proof to show that
this approach works. This proof in [1] was based on a number of assumptions on the
choice of the even subgraph X of H . Here we follow an alternative approach which
enables a constructive proof.

8

Let X be an even subgraph of H with set of components C. For each C ∈ C we
do as follows. First suppose C is isomorphic to a complete bipartite graph K2,2k for
some k ≥ 1. Let A(C) = {s, t} and B(C) = {s1, s2, . . . , s2k} be the partition classes
of C. If k = 1, we choose edges ss1 and ts2. If k ≥ 2, we choose the 2k edges
ssi (i = 1, . . . , 2k). If C is not isomorphic to some K2,2k, we choose at most one
(arbitrary) edge from C. We call the set of all chosen edges an X-set and denote it by
M . Let H∗ = (H − E(X)) ∪M . We call H∗ an X-graph of H .

Lemma 2. Let H be a triangle-free graph that is not a forest. We can compute in poly-
nomial time an X-graph of H that is a forest.

Proof. We present the following polynomial time algorithm that has H as input and
that outputs an X-graph of H that is a forest.

CREATE-A-FOREST

Phase 1. Construct an even subgraph X ′ of H by adding mutually edge-disjoint cycles
to X ′ until this is not possible anymore.
Phase 2. Choose an X ′-set M ′ and check whether its X ′-graph H ′ is a forest. If H ′ is
a forest, output H ′. If not go to Phase 3.
Phase 3. Let D be a cycle in H ′. Let C∗ be the set of circuits of X ′ that share an edge
with D. Consider each C ∈ C∗.
Case 1. C shares exactly one edge e with D.
Remove e from X ′ ∪D.
Case 2. C is isomorphic to some K2,2k and shares exactly two edges e, e′ with D.
Let A(C) = {s, t} and B(C) = {s1, s2, . . . , s2k} be the partition classes of C.

If k = 1, then we may without loss of generality assume e = ss1 and e′ = ts2.
Remove ss2 and ts1 from X ′ ∪D.

If k = 2, then we may without loss of generality assume e = ss1 and e′ = ss2.
Remove ss1 and ss2 from X ′ ∪D.
After dealing with all circuits in C∗, we have obtained a subgraph Y ′ of X ′ ∪D. Go to
Phase 2 with Y ′ instead of X ′.

In order to show that this algorithm is correct and runs in polynomial time, we start with
making four observations. First, a set C∗ in Phase 3 is nonempty, as otherwise X ′ ∪D
would be an even subgraph of H with more edges than X ′. Second, by definition of an
X-set, Case 1 and Case 2 are the only cases we have to consider in Phase 3. Third, by
the construction, a subgraph Y ′ obtained in Phase 3 is indeed an even subgraph of H ,
and fourth, |V (Y ′)| ≥ |V (X ′)| as we did not remove any vertices from X ′ ∪ D. We
claim that either Y ′ contains fewer components than X ′ or else |V (Y ′)| > |V (X ′)|.
As each phase is performed in polynomial time, the algorithm will then terminate in
polynomial time with as output some X-graph H∗ that is a forest.

The above claim can be verified as follows. Suppose Y ′ does not contain fewer
components. We observe that all vertices of D belong to the same circuit of Y ′. As
C∗ 6= ∅, we then find that Y ′ cannot contain more components than X ′. Hence Y ′ must
have the same number of components as X ′. This means that |C∗| = 1, say C∗ = {C}

9

and that there are no components of X ′ that only share vertices with D. If C shares
only one edge with D, then |V (Y ′)| > |V (X ′)| as |D| ≥ 4. In the other case, C is
isomorphic to some K2,2k and shares (exactly) two edges with D. Suppose k = 1. If
D contains exactly four edges, then D is a four-cycle on the same four vertices as C.
Then H contains an induced K4. As H is triangle-free, this is not possible. Hence, D
contains more than four edges. This implies that |V (Y ′)| > |V (X ′)|. Finally, suppose
k ≥ 2. In that case, C shares two vertices with D that have a common end-vertex.
Hence, also here we find that |V (Y ′)| > |V (X ′)| as |D| ≥ 4. ut

Note that the above result implicitly implies that we can not only compute the desired
X-graph H∗ of H in polynomial time but also the corresponding even subgraph X .

Theorem 10. Let H be a triangle-free graph not isomorphic to K1,e(H) such that
δe(H) ≥ 5. Then a dominating system of H with at most (e(H) − 3)/(δe(H) − 1)
elements can be found in polynomial time.

Proof. Let H be a triangle-free graph that is not isomorphic to K1,e(H) and that has
d = δe(H) ≥ 5. Recall that we can apply Theorem 9 on each component of H if H is
a forest. This way we even get a minimum dominating system of H , which satisfies the
desired upper bound due to Theorem 8.

Suppose H is not a forest. By Lemma 2, we compute in polynomial time an X-
graph H∗ of H that is a forest. It can happen that H∗ does not have minimum edge
degree at least d. In the proof of Theorem 8 of [1], we therefore modifiedH∗ into a new
forest H ′ by adding some new pendant edges and removing some vertices. This proof
can be rewritten in constructive form. In order to show the polynomial upper bound
on the running time we include this algorithm, called COMPUTE-A-DOMINATING-
SYSTEM, below. It has as input H together with X as computed by Lemma 2. From
its description it will be directly clear that it runs in polynomial time indeed. For its
correctness we refer to [1].

We first give some terminology. Let V1(H) be the degree one vertices ofH and C be
the set of circuits of X . For each C ∈ C we partition V (C) into two sets I(C) ∪ J(C),
where I(C) denotes the set of vertices in C that are only adjacent to vertices in V (C)∪
V1(H) and J(C) denotes the set V (C)\I(C). Note that J(C) = ∅ for some C ∈ C
implies that the component of H containing C consists of vertices of V (C) ∪ V1(H)
only. Our algorithm makes use of a subroutine called ADD-AND-REMOVE. The latter
algorithm considers each circuit in C and decides which vertices of C should be deleted
and to which vertices new pendant edges should be added. We give its description after
presenting the main algorithm.

COMPUTE-A-DOMINATING-SYSTEM

Let C′ = {C ∈ C | J(C) = ∅}. If C′ = C then output C. Otherwise, delete the
components that contain the circuits in C′ from H , and perform the algorithm ADD-
AND-REMOVE on each C ∈ C\C′. Denote the resulting forest by H ′.

Apply Theorem 9 on each component of H ′ in order to obtain a minimum dominating
system S ′ of H ′.

10

Let S ′(C) be the set of stars that dominate the remaining vertices of C in S ′. For each
C ∈ C replace the stars in S ′(C) by C. Keep all other elements of S ′. Add C′. Output
the resulting dominating system S.

Below we state the algorithm ADD-AND-REMOVE that has as input a circuit C ∈ C
with J(C) 6= ∅. For convenience, we write I = I(C) and J = J(C). Furthermore, let
d∗(u) denote the number of edges incident with a vertex u ∈ I in the subgraph of H
obtained from H[V (C) ∪ V1(H)] after removing E(C). Let J∗ be the subset of J that
consists of all vertices u with d∗(u) ≥ d.

ADD-AND-REMOVE

Case 1. J∗ 6= ∅.
Remove all edges of C and all vertices of I together with their possible neighbors
in V1(H). To each u ∈ J∗ add one new pendant edge, and to each u ∈ J\J∗ add
d− d∗(u) + 1 new pendant edges.
Case 2. J∗ = ∅ and |J | = 1.
Let J = {u}. Remove all vertices of C except u. Add d new pendant edges to u.
Case 3. J∗ = ∅ and |J | ≥ 2.
Let u1, u2 ∈ J . Let v1, v2 be two vertices inC such that u1v1 and u2v2 are independent.
Case 3a. C = u1v1u2v2u1.
Remove u1v2 and v1u2. For each u ∈ C, add d− d(u) + 2 new pendant edges.
Case 3b. |C| ≥ 5 and v1, v2 ∈ I .
Remove all edges of C and all vertices of I together with their possible neighbors in
V1(H). Add d− d∗(u) + 1 new pendant edges to each u ∈ J .
Case 3c. |C| ≥ 5 and v1 ∈ I, v2 ∈ J .
Remove all edges of C except u1v1. Remove all vertices of I together with their possi-
ble neighbors in V1(H). Add d−d∗(u)+1 new pendant edges to each u ∈ J\{u1, v1}.
Add d− d∗(u) new pendant edges to u ∈ {u1, v1}.
Case 3d. |C| ≥ 5 and v1 ∈ J, v2 ∈ I .
Act as in Case 3c with the roles of v1 and v2 reversed.
Case 3e. |C| ≥ 5 and v1, v2 ∈ J .
Case 3e-1. I 6= ∅.
Let y ∈ I be such that there exists a path P from u1 to y in C that besides y only uses
vertices from J . Let x be the neighbor of y on P . If x /∈ {u2, v2} return to Case 3c with
vertices x, y in the role of u1, v1, respectively. If x ∈ {u2, v2} return to Case 3c with
vertices x, y in the role of u2, v2, respectively.
Case 3e-2. I = ∅ and C has an edge u3v3 independent from u1v1 and u2v2.
If d = 5 add three and if d = 6 add four new pendant edges to each u ∈ C. If d ≥ 7
remove all edges of C except u1v1, add d − d∗(u) + 1 new pendant edges to each
u ∈ C\{u1, v1} and d− d∗(u) new pendant edges to u ∈ {u1, v1}.
Case 3e-3. I = ∅ and C is a five-cycle.
Write C = x1x2x3x4x5x1. Remove all edges from C except x1x2. Add d− d(xi) + 2
new pendant edges for i = 1, 2 and d− d(xi) + 3 new pendant edges for i = 3, 4, 5.

11

Case 3e-4. I = ∅ and C is isomorphic to K2,2k for some k ≥ 2.
Let A(C) = {s, t} and B(C) = {s1, . . . , s2k} be the partition classes of C. Remove
all edges tsi of E(C) for i = 1, . . . , 2k. Add d−d(t)+2k+1 new pendant edges to t.
Add d−d(si)+2 new pendant edges to each si for i = 1, . . . , 2k. To s add d−d(s)+1
new pendant edges if d(s) ≤ d or one new pendant edge if d(s) ≥ d+ 1.

ut

Step 5: translate the dominating systems back into 2-factors

Once we have obtained a dominating system S for the preimage graph H with cl(G) =
L(H), it is easy to translate this back into a 2-factor of cl(G) in polynomial time:

– the stars in S correspond to complete graphs in cl(G) on at least three vertices; a
hamiltonian cycle can clearly be constructed in polynomial time;

– the circuits in S and the edges they dominate correspond to hamiltonian subgraphs
in cl(G); one can construct a hamiltonian cycle by traversing the circuit, picking
up the edges (vertices in cl(G)) one by one and inserting dominated edges at the
first instance an end vertex of a dominated edge is encountered. For traversing
the circuits we use the polynomial algorithm that finds a eulerian tour in an even
connected graph (cf. [4]).

Step 6: translate 2-factors in cl(G) to 2-factors in G

We first introduce some notations. Let C = v1v2 . . . vpv1 be a cycle with a fixed orien-
tation. The successor vi+1 of vi is denoted by v+C

i = v+
i and its predecessor vi−1 by

v−C
i = v−i . The segment vivi+1 . . . vj is denoted by vi

−→
Cvj , where the subscripts are

to be taken modulo |C|. The converse segment vjvj−1 . . . vi is denoted by vj
←−
Cvi. We

use similar notations for paths.
We assume we are given a 2-factor F ′ of cl(G) of a claw-free graph G. Let k be

the number of components of F ′. Here, we show how to obtain in polynomial time
a 2-factor F of G such that F has at most k components. We base our translation of
the following new theorem, which generalizes a similar result for hamiltonicity [2] in
algorithmic sense.

Theorem 11. LetG be a graph and let {u, v, x, y} be a subset of four vertices of V (G)
such that uv 6∈ E(G) and {x, y} ⊆ N(u) ∩N(v). Let N(x) ⊆ N(u) ∪N(v) ∪ {u, v}
and let N(y) \ (N(x)∪ {x}) induce a complete graph (or be empty). Then we can find
a 2-factor of G with at most k components in polynomial time, if G+ uv has a 2-factor
with k components.

Proof. Suppose G + uv has a 2-factor F ′ with at most k components. Below we give
a number of polynomial time transformations of F ′ such that we obtain a 2-factor F
of G with at most k components. If uv /∈ E(F ′) then F ′ is a 2-factor of G. Suppose
uv ∈ E(D) for some (cycle) component D of F ′, say v = u−. Let P = u

−→
Dv. We

distinguish the following three cases.

12

First suppose x /∈ V (D). Let x ∈ V (D′) for some (cycle) component D′ of F . By
our assumptions, we may without loss of generality assume that x+D′u ∈ E(G). Then
we replace D and D′ by a new cycle ux+D′

−→
D′xv

←−
P u, and we are done.

Second suppose x ∈ V (D) but y /∈ V (D). Let y ∈ V (D∗) for some (cycle)
component D∗ of F . Let y′ = y+D∗ and y′′ = y−D∗ be the neighbors of y on D∗.
Suppose y′y′′ ∈ E(G). Then we replace D∗ by y′

−→
D∗y′′y′ and D by uyv

←−
P u, and we

are done. Suppose y′y′′ /∈ E(G). Since N(y)\(N(x)∪{x}) induces a complete graph,
we find that one of the edges xy′, xy′′, say xy′, must exist in G. By our assumptions,
we then find that y′u or y′v belongs to E(G), and we are done by the same argument
as in the previous case.

Third suppose {x, y} ⊂ V (D). Say x is on u
−→
P y. First suppose xy ∈ E(D). We

replace D by u
−→
P xv
←−
P yu, and we are done. Now suppose xy /∈ E(D). Then x+ 6= y.

By our assumptions, x+ ∈ N(u) ∪ N(v). Suppose ux+ ∈ E(G). We replace D by
ux+−→P vx

←−
P u. Hence we may assume vx+ ∈ E(G). Suppose y− = x+. Then we

replace D by uy
−→
P vy−

←−
P u. Hence we may assume y− 6= x+. Suppose y−x ∈ E(G).

Then we replace D by u
−→
P xy−

←−
P x+v

←−
P yu. Hence we may assume y−x /∈ E(G).

Suppose y+ = v. Then we replace D by u
−→
P xvx+−→P yu. Hence we may assume y+ 6=

v. Suppose y+x ∈ E(G). Then we replace D by u
−→
P xy+−→P vx+−→P yu. Hence we may

assume y+x /∈ E(G). As y−x /∈ E(G), we then find y−y+ ∈ E(G) due to our
assumptions. Then we replace D by u

−→
P y−y+−→P vyu. This proves Theorem 11. ut

Note that in Theorem 11, x and y can be nonadjacent, and G does not have to be claw-
free. However, the following observation is easy to see.

Observation 1 ([2]) If G is claw-free, then the conditions of Theorem 11 are satisfied
if x and y are adjacent.

Then, by the following observation, we can indeed transform a 2-factor of cl(G) that
has k components to a 2-factor ofG that has at most k components. This means we have
proven our main result. For convenience we include the proof of the next observation.

Observation 2 ([2]) Let x be a vertex of a claw-free graph G with G[N(x)] connected
and non-complete. Then the local completion of G at x can be obtained by iteratively
joining pairs {u, v} ⊆ N(x) that satisfy the conditions in Theorem 11 for some y ∈
N(u) ∩N(v).

Proof. Consider the subgraph Hx of G induced by N(x) ∪ {a ∈ V (G) | ab ∈ E(G)
for some b ∈ N(x)}. Note that x is a vertex of Hx and that Hx is claw-free. Hence,
by Observation 1, x and y satisfy the conditions of Theorem 11 (in Hx) for every
y ∈ N(x). Since we only join nonadjacent pairs in N(x), N(x) and N(y) will keep
these properties for all y ∈ N(x). ut

Note that the above approach gives a short constructive proof for Theorem 4 (the
result of Ryjáček, Saito & Schelp in [19]).

We note that Theorem 9 has the following consequence as a byproduct. We need a
few definitions before we can state the result. A cut vertex of a graphG is a vertex whose

13

removal increases the number of components. A block ofG is a maximal subgraph ofG
without cut vertices (of itself). Hence if G has no isolated vertices, its blocks are either
K2’s or (maximal) 2-connected subgraphs. For the purpose of our next result we call
a block B of a claw-free graph G a semiclique if B becomes a complete subgraph of
cl(G). Since a claw-free graph in which every block is a semiclique has a forest as its
preimage, we obtain the following consequence of Theorem 9.

Corollary 1. Let G be a claw-free graph in which all blocks are semicliques. If G has
a 2-factor, then we can construct a minimum 2-factor of G in polynomial time.

4 Conclusions

In [1] we obtained sharp upper bounds for the minimum number of components of a 2-
factor in a claw-free graph. Here we extended these results by presenting a polynomial
algorithm that constructs a 2-factor of a claw-free graph with minimum degree at least
four whose number of components meets this bound. As a byproduct we showed that
the problem of obtaining a minimum 2-factor (if it exists) is polynomially solvable for a
subclass of claw-free graphs in which all blocks are semicliques. As another byproduct
we gave a short constructive proof for a result of Ryjáček, Saito & Schelp.

Our polynomial time algorithm yields a 2-factor with a number of components be-
low a guaranteed upper bound. This upper bound is completely determined by an upper
bound we find for the number of elements of a dominating system of a certain tree (that
is obtained from he corresponding triangle-free graph in Theorem 8). As this upper
bound is sharp (cf. [20]), our next goal will be to determine the extremal tree cases and
try to exclude these from happening. This refined analysis may lead to a better upper
bound for claw-free graphs for which the current upper bound is not sharp. Another
way to improve our algorithm is trying to refine the algorithm that constructs the tree
H∗ in Lemma 2 such that we have more information on the number of circuits in the
even subgraph X of H .

Finally, Corollary 1 shows that our algorithm yields a 2-factor with a minimum
number of components for claw-free graphs with arbitrary minimum degree in which
all blocks are semicliques. In future research we aim to generalize this result, i.e, to find
a larger class of claw-free graphs for which our (possibly modified) algorithm solves
the problem of finding a minimum 2-factor. We will also analyze the class of claw-free
graphs with minimum degree 3 that have a 2-factor more carefully.

References

1. H.J. Broersma, D. Paulusma and K. Yoshimoto, Sharp upper bounds for the minimum number
of components of 2-factors in claw-free graphs, Graphs Combin., to appear.
see http://www.dur.ac.uk/daniel.paulusma/Papers/Submitted/claw.pdf

2. H.J. Broersma and H. Trommel, Closure concepts for claw-free graphs, Discrete Math. 185
(1998) 231–238.

3. S.A. Choudum and M.S. Paulraj, Regular factors in K1,3-free graphs, J. Graph Theory 15
(1991) 259–265.

14

4. R. Diestel, Graph Theory, Second edition, Graduate Texts in Mathematics 173, Springer
(2000).

5. Y. Egawa and K. Ota, Regular factors in K1,n-free graphs, J. Graph Theory 15 (1991) 337–
344.

6. R.J. Faudree, O. Favaron, E. Flandrin, H. Li, Z. Liu, On 2-factors in claw-free graphs, Discrete
Math. 206 (1999) 131–137.

7. R. Faudree, E. Flandrin, and Z. Ryjáček Claw-free graphs—a survey, Disc. Math. 164 (1997)
87–147.

8. D. Fronček, Z. Ryjáček, and Z. Skupień, On traceability and 2-factors in claw-free graphs,
Discussiones Mathematicae Graph Theory 24 (2004) 55–71.

9. M.R. Garey and D.S. Johnson, Computers and Intractability. W.H. Freeman and Co., New
York, 1979.

10. R. Gould and E. Hynds, A note on cycles in 2-factors of line graphs, Bull. of ICA. 26 (1999)
46–48.

11. R.J. Gould and M.S. Jacobson, Two-factors with few cycles in claw-free graphs, Discrete
Math. 231 (2001) 191–197.

12. F. Harary, Graph Theory, Addison-Wesley, Reading MA, 1969.
13. B. Jackson and K. Yoshimoto, Even subgraphs of bridgeless graphs and 2-factors of line

graphs, Discrete Math. 307 (2007) 2775–2785.
14. L. Lovasz and M.D. Plummer, Matching Theory, North-Holland Mathematics Studies 121,

North-Holland, Amsterdam.
15. M.M. Matthews and D.P. Sumner, Hamiltonian results in K1,3-free graphs, J. Graph Theory

8 (1984) 139–146.
16. M.D. Plummer, Graph factors and factorization: 1985-2003: A survey, Discrete Math. 307

(2007) 791–821.
17. N.D. Roussopoulos, A max{m, n} algorithm for determining the graph H from its line

graph G, Information Processing Letters 2 (1973) 108-112.
18. Z. Ryjáček, On a closure concept in claw-free graphs, J Combin Theory Ser B 70 (1997)

217–224.
19. Z. Ryjáček, A. Saito and R.H. Schelp, Closure, 2-factor, and cycle coverings in claw-free

graphs, J. Graph Theory 32 (1999) 109–117.
20. K. Yoshimoto, On the number of components in a 2-factor of a claw-free graph, Discrete

Math. 307 (2007) 2808–2819.

15

