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Abstract

Let G be a triangle-free graph with δ(G) ≥ 2 and σ4(G) ≥ |V (G)|+
2. Let S ⊂ V (G) consist of less than σ4/4 + 1 vertices. We prove the
following. If all vertices of S have degree at least three, then there
exists a cycle C containing S. Both the upper bound on |S| and the
lower bound on σ4 are best possible.
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1. Introduction

Let G = (V (G), E(G)) be a graph, where V (G) is a finite set of vertices
and E(G) is a set of unordered pairs of two different vertices, called edges.
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All notation and terminology not explained is given in [6]. For simplicity,
the order of a graph is denoted by n and G− V (H) by G−H. Let

σk(G) = min
{ k∑

i=1

dG(xi) | x1, x2, . . . , xk are independent
}

,

where dG(xi) is the degree of a vertex xi. If the independence number of G
is less than k, then we define σk(G) = ∞.

Ore [11] showed that a graph G with σ2 ≥ n is hamiltonian and Bondy [3]
proved that if G is a 2-connected graph with σ3 ≥ n+2, then for any longest
cycle C, E(G− C) = ∅. Enomoto et al. [9] generalized this theorem as fol-
lows: if G is a 2-connected graph with σ3 ≥ n + 2, then p(G) − c(G) ≤ 1,
where p(G) and c(G) are the order of longest paths and the circumference,
respectively.

In this paper we study triangle-free graphs. For triangle-free graphs
with σ2 ≥ (n + 1)/2, all longest cycles are dominating [16]. This lower
bound is almost best possible by the examples due to Ash and Jackson [1].
Corresponding to the theorem by Enomoto et al., the following result has
been proven.

Theorem 1 ([13]). Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n+2,
then for any path P , there exists a cycle C such that |V (P − C)| ≤ 1 or G
is isomorphic to the graph in Figure 1.

Figure 1

In the literature the question has been studied whether for a given graph
G any subset S of vertices of restricted size has some cycle passing through
it. Many results on general graphs and graph classes are known (see, e.g.,
[2, 4, 5, 7, 8, 10, 12, 14, 15, 17]). For triangle-free graphs the following result
has been proven.
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Theorem 2 ([13]). Let G be a triangle-free graph with δ ≥ 2. If σ4 ≥ n+2,
then for any set S of at most δ vertices, there exists a cycle C containing S.

In this paper, we show the following related theorem.

Theorem 3. Let G be a triangle-free graph with δ ≥ 2 and σ4 ≥ n + 2. Let
S ⊂ V (G) consist of less than σ4/4 + 1 vertices. If all vertices of S have
degree at least three, then there exists a cycle C containing S.

The several bounds in these theorems are all tight. We show this by a
number of counter examples. For these counter examples we use the fol-
lowing notations. We denote the complement of graph G = (V, E) by
G = (V, (V × V )\E). For two graphs G1 = (V1, E1) and G2 = (V2, E2),
we denote their union by G1 ∪ G2 = (V1 ∪ V2, E1 ∪ E2) and their join by
G1 ∗G2 = (V1 ∪ V2, E1 ∪E2 ∪ (V1 × V2)). A complete graph is a graph with
an edge between every pair of vertices. The complete graph on n vertices is
denoted by Kn. The complete bipartite graph Kk ∗K` is denoted by Kk,`.

• Consider the graph Kk−1 ∗Kk ∗K1 ∗Kk ∗Kk−1 with δ = (n + 1)/4 and
σ4 = n + 1. If we choose two vertices from each Kk, obviously there is
no cycle containing the vertices. See Figure 2(i). Hence, in Theorem 2
and Theorem 3, the lower bound on σ4 is best possible.

(ii)

* * * * * * * *

(i)

Figure 2

• Consider the graph Kk−2 ∗Kk ∗K2 ∗Kk ∗Kk−2 with δ = (n + 2)/4 and
σ4 = n + 2. There is no cycle containing all k = (n + 2)/4 vertices of
the left Kk and a vertex in the right Kk,k−2. See Figure 2(ii). Hence, in
Theorem 2 and Theorem 3, the upper bound on |S| is best possible.
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We cannot relax the degree condition of vertices in S in Theorem 3 into
“all vertices of S have degree at least two”. For example in the graph in
Figure 1, σ4/4 + 1 = 10/4 + 1. So we can choose three vertices. However,
if we choose the three white vertices of degree two in the graph, obviously
there is no desired cycle. There is even a class of counter examples of large
order as follows. Consider the graph Kk,k for any k ≥ 3. Let x, x′ be two
vertices in the same partite set of this graph. Add two extra vertices w, w′

and add all edges between {x, x′} and {w,w′}. This way we obtain a graph
Gk with σ4 = 2k+4 = n+2 ≥ 10. Now let S ⊂ V (Gk) consist of the vertices
w, w′ and some vertex u not in {x, x′}. Then |S| = 3 < 10/4+1 ≤ σ4/4+1.
However, the only cycle in Gk that contains both w and w′ is the cycle on
the four vertices x, x′, w, w′. This means that Gk does not contain a cycle
passing through S. We note that S contains two vertices of degree two. The
following conjecture seems to hold.

Conjecture 4. Let G be a triangle-free graph with δ ≥ 2 and σ4 ≥ n + 2.
Let S ⊂ V (G) consist of less than σ4/4 + 1 vertices. If S contains at most
one vertex of degree 2, then there exists a cycle C containing S.

Finally, we give some additional definitions and notations. The set of all
the neighbours of a vertex x ∈ V (G) is denoted by NG(x) or simply N(x),
and its cardinality by dG(x) or d(x). For a subgraph H of G, we denote
NG(x) ∩ V (H) by NH(x) and its cardinality by dH(x). For simplicity, we
denote |V (H)| by |H| and “ui ∈ V (H)” by “ui ∈ H”. The set of neighbours⋃

v∈H NG(v) \ V (H) is written by NG(H) or N(H), and for a subgraph
F ⊂ G, NG(H) ∩ V (F ) is denoted by NF (H). Especially, for an edge
e = xy, we denote N(e) = (N(x) ∪N(y))\{x, y} and d(e) = |N(e)|.

Let C = v1v2 . . . vpv1 be a cycle with a fixed orientation. The segment
vivi+1 . . . vj is written by vi

−→
C vj where the subscripts are to be taken modulo

|C|. The converse segment vjvj−1 . . . vi is written by vj
←−
C vi. The successor

of ui is denoted by u+
i and the predecessor by u−i . For a subset A ⊆ V (C),

we write {u+
i | ui ∈ A} and {u−i | ui ∈ A} by A+ and A−, respectively.

2. The Proof of Theorem 3

In the proof we make use of the following lemma. A cycle C in a graph G
is called a swaying cycle of a subset S ⊆ V (G) if |C ∩ S| is maximum in all
cycles of G.
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Lemma 5. Let G be a connected graph such that for any path P , there
exists a cycle C such that |P −C| ≤ 1. Let S ⊂ V (G). Then for any longest
swaying cycle C of S, S ⊂ V (C) or N(x) ⊂ C for any x ∈ S − C.

Proof. Let S ⊂ V (G) and C a longest swaying cycle of S. Suppose S−C 6=
∅. For any vertex x ∈ S − C, there is a path Q joining x and C. Let P
be a longest path containing V (C ∪ Q). Then there exists a cycle D such
that |P −D| ≤ 1. If x has neighbours in G− C, then |P | ≥ |C|+ 2 and so
|D| ≥ |C| + 1. Because |D ∩ S| ≥ |C ∩ S|, this contradicts the assumption
that C is a longest swaying cycle. Hence NG−C(x) = ∅.
Now let G be a graph with δ ≥ 2 and σ4 ≥ n + 2. Let S ⊂ V (G) be a set of
less than σ4/4 + 1 vertices that all have degree at least three. Let C be the
set of all longest swaying cycles of S. Suppose a cycle in C does not contain
all vertices in S.

Claim 1. If there exists a swaying cycle D of S and v ∈ S −D such that
N(v) ⊂ V (D), then d(v) ≤ |D ∩ S|, and so d(v) < σ4/4.

Proof. If d(v) > |D ∩ S|, then there exist y, z ∈ N(v) such that y+ = z

or y+−→Dz− ∩ S = ∅ because N(v) ⊂ V (D). Then the cycle yvz
−→
Dy contains

|D∩S|+1 vertices in S. This contradicts the assumption that D is a swaying
cycle. Hence d(v) ≤ |D ∩ S| ≤ |S| − 1 < σ4/4.

Note that our statement holds if G is isomorphic to the graph in Figure 1.
Hence Claim 1 together with Theorem 1 and Lemma 5 implies that

d(v) < σ4/4 for any D ∈ C and v ∈ S −D.(1)

Let C = u1u2 · · ·u|C| ∈ C such that max{d(v) | v ∈ S−C} is maximum in C,
and let x ∈ S − C such that d(x) is maximum in S − C. Then d(x) < σ4/4
by (1). Let N(x) = {uτ(1), uτ(2), . . . , uτ(d(x))} which occur on C in the order
of their indices. Then clearly

(2) N(x)+ is an independent set;

otherwise there is a cycle containing |C ∩ S| + 1 vertices of S. As G is
triangle-free, a vertex u+

τ(l) ∈ N(x)+ is not adjacent to x. If u+
τ(l) is adjacent

to a vertex y ∈ G − (C ∪ x), then the order of the path yu+
τ(l)

−→
C uτ(l)x is
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|C|+ 2. By Theorem 1, there is a cycle D′ such that |D′ ∩ S| ≥ |C ∩ S| and
|D′| ≥ |C|+ 1. This is a contradiction. Therefore

(3) N(u+
τ(l)) ⊂ V (C) for u+

τ(l) ∈ N(x)+.

Let Il = u+
τ(l)

−→
C uτ(l+1) and Jl = u+

τ(l+1)

−→
C uτ(l), and

L = {u+
τ(i) | d(u+

τ(i)) is maximum in N(x)+}.

Because σ4/4 > d(x) ≥ 3 and N(x)+ ∪ x is an independent set, there is a
vertex in N(x)+ whose degree is at least σ4/4. Hence the degree of a vertex
in L is greater than σ4/4. If u++

τ(i) ∈ L+ is adjacent to u+
τ(j) ∈ (N(x)\uτ(i))+,

then the cycle u++
τ(i)u

+
τ(j)

−→
C uτ(i)xuτ(j)

←−
C u++

τ(i) and u+
τ(i) ∈ S contradict (1). If

u++
τ(i)x ∈ E(G), then the cycle uτ(i)xu++

τ(i)

−→
C uτ(i) and u+

τ(i) contradict (1).
Hence

(4) u++
τ(i) ∈ L+ is adjacent to none of (N(x) \ uτ(i))

+ ∪ x.

For each u+
τ(l) ∈ N(x)+, we denote the edge u+

τ(l)u
++
τ(l) by el.

Claim 2. For any u+
τ(i) ∈ L, it holds that:

1. NIi(ei)− ∩NIi(u
+
τ(i+1)) = ∅.

2. NJi(x)+ ∩NJi(ei) = ∅.
3. NJi(ei) ∩NJi(u

+
τ(i+1))

− = ∅.

Proof. Suppose there is a vertex ul ∈ NIi(ei)− ∩ NIi(u
+
τ(i+1)), and let

y ∈ V (ei) ∩N(u+
l ). Then the cycle

D = y
−→
C ulu

+
τ(i+1)

−→
C uτ(i)xuτ(i+1)

←−
C u+

l y

contains all vertices of V (C) ∪ x if y = u+
τ(i), i.e., |D| = |C ∩ S| + 1.

See Figure 3(i). This contradicts the assumption that C ∈ C. If y =
u++

τ(i), then D ∈ C and d(u+
τ(i)) ≥ σ4/4. This contradicts (1). Hence

NIi(ei)− ∩ NIi(u
+
τ(i+1)) = ∅. Similarly, we can show the other statements.

See Figure 3(ii)–(iii).
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Figure 3

Let αi = |NJi(x)+ ∩ NJi(u
+
τ(i+1))

−|. By this number, we will divide our
argument into three cases, and in each case, the following claim will be
used.

Claim 3. For any u+
τ(i) ∈ L, n ≥ d(u+

τ(i))+d(u++
τ(i))+d(u+

τ(i+1))+d(x)−2−αi.

Especially if the equality holds, then u++
τ(i+1) ∈ N(ei) and u+

τ(i+1) ∈ S, and

Ji = (NJi(x) \ uτ(i))
+ ∪NJi(ei) ∪NJi(u

+
τ(i+1))

−.

Proof. By the previous claim, we have:

|Ii| ≥ |NIi(ei)− ∪NIi(u
+
τ(i+1)) ∪ {u+

τ(i)}|
≥ |NIi(ei)−|+ |NIi(u

+
τ(i+1))|+ |{u+

τ(i)}|
= dIi(ei) + dIi(u

+
τ(i+1)) + 1,

|Ji| ≥ |(NJi(x) \ uτ(i))
+ ∪NJi(ei) ∪NJi(u

+
τ(i+1))

−|
≥ |(NJi(x) \ uτ(i))

+|+ |NJi(ei)|+ |NJi(u
+
τ(i+1))

−| − αi

= dJi(x)− 1 + dJi(ei) + dJi(u
+
τ(i+1))− αi.
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Therefore

n ≥ |C|+ dG−C(ei) + |{x}| = |Ii|+ |Ji|+ dG−C(ei) + 1

≥ (dIi(ei) + dIi(u
+
τ(i+1))) + (dJi(x) + dJi(ei) + dJi(u

+
τ(i+1))− αi)

+ dG−C(ei) + 1

= (dIi(ei) + dJi(ei) + dG−C(ei)) + (dIi(u
+
τ(i+1)) + dJi(u

+
τ(i+1)))

+ (dJi(x) + 1)− αi

= d(ei) + d(u+
τ(i+1)) + d(x)− αi

= d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)− 2− αi.

If equalities hold in the above inequalities, then

|Ji| = |(NJi(x) \ uτ(i))
+ ∪NJi(ei) ∪NJi(u

+
τ(i+1))

−|

also holds and so

Ji = (NJi(x) \ uτ(i))
+ ∪NJi(ei) ∪NJi(u

+
τ(i+1))

−.

Because G is triangle-free, u++
τ(i+1) /∈ N(u+

τ(i+1))
− and u++

τ(i+1) /∈ N(x)+, and
so u++

τ(i+1) ∈ N(ei).
Let y = V (ei) ∩N(u++

τ(i+1)) and

C ′ = y
−→
C uτ(i+1)xuτ(i)

←−
C u++

τ(i+1)y.

Suppose u+
τ(i+1) /∈ S. Because C ′ does not contain |C ∩ S|+ 1 vertices of S,

we have y 6= u+
τ(i) and u+

τ(i) ∈ S. Therefore N(u+
τ(i)) ⊂ V (C ′) by (2) and (3).

This contradicts Claim 1 as u+
τ(i) ∈ L. See Figure 3(iv). Hence u+

τ(i+1) ∈ S.

For u+
τ(i) ∈ L, if the vertex u+

τ(i+1) is adjacent to u++
τ(s) ∈ (NJi(x) \ uτ(i))++,

then the cycle

C ′ = u+
τ(i+1)u

++
τ(s)

−→
C uτ(i+1)xuτ(s)

←−
C u+

τ(i+1)
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is a longest swaying cycle of S. Hence u+
τ(s) ∈ S; otherwise |C ′ ∩ S| ≥

|C ∩ S|+ 1. Therefore from (1), it holds that

(5) u+
τ(s) ∈ S and d(u+

τ(s)) < σ4/4 for all u+
τ(s) ∈ NJi(x)+ ∩NJi(u

+
τ(i+1))

−.

If there are three vertices in NJi(x)+∩NJi(u
+
τ(i+1))

−, then the three vertices
and x are independent by (2), however, the sum of these degrees are less
than σ4. Therefore, αi ≤ 2. Now we divide our argument.

Case 1. There is u+
τ(i) ∈ L such that αi = 1.

Let {u+
τ(s)} = NJi(x)+ ∩NJi(u

+
τ(i+1))

−. By (5), d(u+
τ(s)) < σ4/4 ≤ d(u+

τ(i)),
and by (2) and (4), {u++

τ(i), u
+
τ(i+1), u

+
τ(s), x} is an independent set. Hence by

Claim 3, it holds that

n ≥ d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)− 2− 1

≥ d(u++
τ(i)) + d(u+

τ(i+1)) + d(u+
τ(s)) + d(x) + (d(u+

τ(i))− d(u+
τ(s)))− 3

≥ σ4 + (d(u+
τ(i))− d(u+

τ(s)))− 3

≥ (n + 2) + 1− 3 = n.

Therefore all equalities have to hold in the above inequalities, and so we
have

n = d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)− 3,(6)

d(u+
τ(i)) = d(u+

τ(s)) + 1.(7)

Because u+
τ(i+1)u

++
τ(s)

−→
C uτ(i+1)xuτ(s)

←−
C u+

τ(i+1) ∈ C, we have d(x) ≥ d(u+
τ(s))

by the maximality of d(x). Then d(x) + 1 ≥ d(u+
τ(s)) + 1 = d(u+

τ(i)) ≥ σ4/4
by (7). On the other hand, d(x) + 1 ≤ |C ∩ S| + 1 ≤ |S| < σ4/4 + 1 by
Claim 1. Thus

σ4

4
≤ d(x) + 1 ≤ |S| < σ4

4
+ 1,

i.e., |S| = d(x) + 1. Therefore |u+
τ(l)

−→
C u−τ(l+1) ∩ S| = 1 for all l ≤ d(x);

otherwise we can easily obtain a cycle containing |C ∩ S| + 1 vertices of S
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as in the proof of Claim 1. However, by (6) and Claim 3, u+
τ(i+1) ∈ S, and

by (5), u+
τ(s) ∈ S, and hence

u++
τ(i+1)

−→
C u−τ(i+2) ∩ S = u++

τ(s)

−→
C u−τ(s+1) ∩ S = ∅.

Then, the cycle u+
τ(i+1)u

++
τ(s)

←−
C uτ(i+2)xuτ(s+1)

−→
C u+

τ(i+1) contains |C ∩ S| + 1
vertices in S. See Figure 4. This contradicts the assumption that C is a
swaying cycle.

Figure 4

Case 2. There exists u+
τ(i) ∈ L such that αi = 2.

Let {u++
τ(s), u

++
τ(t)} = NJi(x)+ ∩NJi(u

+
τ(i+1))

−. By (2), {u+
τ(s), u

+
τ(t), x, u+

τ(i+1)}
is an independent set. By (5), both of the degrees of u+

τ(s) and u+
τ(t) are less

than σ4/4, and so d(u+
τ(i+1)) ≥ σ4/4. Thus, it holds that

d(u+
τ(s)) < σ4/4 ≤ d(u+

τ(i)) and d(u+
τ(t)) < σ4/4 ≤ d(u+

τ(i+1)).

Therefore by Claim 3,

n ≥ d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)− 2− 2

≥ d(u++
τ(i)) + d(u+

τ(s)) + d(u+
τ(t)) + d(x)

+(d(u+
τ(i))− d(u+

τ(s))) + (d(u+
τ(i+1))− d(u+

τ(t)))− 4
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≥ σ4 + (d(u+
τ(i))− d(u+

τ(s))) + (d(u+
τ(i+1))− d(u+

τ(t)))− 4

≥ (n + 2) + 1 + 1− 4 = n

because {u++
τ(i), u

+
τ(s), u

+
τ(t), x} is an independent set by (2) and (4). Thus all

equalities hold in the above inequalities, and we can use the same arguments
as in Case 1.

Case 3. αi = 0 for any uτ(i)+ ∈ L.
For any u+

τ(s) ∈ (N(x) \ {uτ(i), uτ(i+1)})+,

n ≥ d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)− 2

≥ d(u++
τ(i)) + d(u+

τ(i+1)) + d(u+
τ(s)) + d(x) + (d(u+

τ(i))− d(u+
τ(s)))− 2

≥ σ4 + (d(u+
τ(i))− d(u+

τ(s)))− 2

≥ (n + 2)− 2 = n

by Claim 3 because {u++
τ(i), u

+
τ(i+1), u

+
τ(s), x} is an independent set from (2)

and (4). Therefore all equalities hold in the above inequalities, and so we
have:

n = d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)− 2 = σ4 − 2,(8)

d(u+
τ(i)) = d(u+

τ(s)).(9)

From (9), we obtain u+
τ(s) ∈ L, and so, by symmetry, N(x)+ ⊂ L.

Claim 4. u++
τ(i) is adjacent to all of {u++

τ(s) | s 6= i}.

Proof. By (8) and Claim 3, u++
τ(i+1) ∈ N(ei). Because u+

τ(i+1) ∈ L, u++
τ(i+1)

is not adjacent to u+
τ(i) by (4). Hence u++

τ(i)u
++
τ(i+1) ∈ E(G).

Suppose the vertex u++
τ(i) is not adjacent to u++

τ(s) (s 6= i, i + 1). If
u+

τ(i+1)u
+++
τ(s) /∈ E(G), i.e., u++

τ(s) /∈ N(u+
τ(i+1))

−, then u++
τ(s) ∈ N(ei) by (8) and

Claim 3, and so u+
τ(i)u

++
τ(s) ∈ E(G). This contradicts (4) because u+

τ(s) ∈ L.
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Assume u+
τ(i+1)u

+++
τ(s) ∈ E(G). By (4), (8) and (9) we have

d(u++
τ(s)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)

≥ σ4

= d(u+
τ(i)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x)

= d(u+
τ(s)) + d(u++

τ(i)) + d(u+
τ(i+1)) + d(x).

Hence d(u++
τ(s)) ≥ d(u+

τ(s)) ≥ σ4/4.
Let

D = u+
τ(i+1)

−→
C uτ(s)xuτ(i+1)

←−
C u+++

τ(s) u+
τ(i+1).

By (3), N(u+
τ(s)) ⊂ V (C). As u+

τ(s) ∈ L, the vertex u++
τ(s) is not adjacent

to x. If u++
τ(s) is adjacent to the vertex y ∈ G − C, then the order of the

path yu++
τ(s)

←−
C u+

τ(i+1)u
+++
τ(s)

−→
C uτ(i+1)x is |C| + 2. As in the proof of (3), this

contradicts the assumption that C ∈ C by Theorem 1. Hence, we obtain
N(u++

τ(s)) ⊂ V (C). Thus N(es) ⊂ V (D). Because |D ∩ S| ≤ |C ∩ S| < σ4/4,

d(es) ≥ σ4/2− 2 ≥ σ4/4 > |S ∩D|.

Therefore, there exist vertices y, z ∈ D∩N(es) such that y+ = z or y+−→Dz−∩
S = ∅ and y+−→Dz−∩N(es) = ∅. If y and z are adjacent to distinct ends of es,
say yu+

τ(s), zu++
τ(s) ∈ E(G), then yu+

τ(s)u
++
τ(s)z

−→
Dy contains |C ∩ S|+ 1 vertices

of S. Hence, by symmetry, we may assume u+
τ(s) is adjacent to both y and z.

Then the cycle D′ = yu+
τ(s)z

−→
Dy is a swaying cycle and N(u++

τ(s)) ⊂ N(D′).
This contradicts Claim 1 because d(u++

τ(s)) ≥ σ4/4.

By symmetry, the vertex u++
τ(i+1) is adjacent to u++

τ(s), and so there is the
triangle u++

τ(i)u
++
τ(i+1)u

++
τ(s). This is a contradiction.
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