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AN ANALOGUE
OF THE FIELD-OF-NORMS FUNCTOR AND
OF THE GROTHENDIECK CONJECTURE

VICTOR ABRASHKIN

Abstract

The paper contains a construction of an analogue of the Fontaine-
Wintenberger field-of-norms functor for higher-dimensional local fields.
This construction is done completely in terms of the ramification theory
of such fields. It is applied to deduce the mixed characteristic case of
a local analogue of the Grothendieck conjecture for these fields from its
characteristic p case, which was proved earlier by the author.

0. Introduction

Throughout this paper, p is a fixed prime number.
The field-of-norms functor [FW1], [FW2] allows us to identify the Galois

groups of some infinite extensions of Qp with those of complete discrete val-
uation fields of characteristic p. This functor is an essential component of
Fontaine’s theory of ϕ-Γ-modules—one of most powerful tools in the modern
study of p-adic representations. Other areas of very impressive applications
are the Galois cohomology of local fields [He], arithmetic aspects of dynamical
systems [LMS], explicit reciprocity formulae [Ab2], [Ab3], [Ben], a description
of the structure of ramification filtration [Ab7], the proof of an analogue of
the Grothendieck conjecture for 1-dimensional local fields [Ab4].

A local analogue of the Grothendieck conjecture establishes an opportunity
to recover the structure of a local field from the structure of its absolute Galois
group provided with the filtration by ramification subgroups. The study of
this situation in the context of higher-dimensional local fields became actual
due to a recent development of the ramification theory for such fields [Zh2],
[Ab5]. The case of fields, of characteristic p > 2, has been already considered
in [Ab6]. (Notice that the restriction to 2-dimensional fields is not essential in
[Ab6]—the method works for any dimension N � 2.) This could lead to the
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proof of the mixed characteristic case of the Grothendieck conjecture if there
were a suitable analogue of the field-of-norms functor for higher-dimensional
local fields.

The construction of such a functor is suggested in the present paper. In our
setting, we replace the appropriate category of infinite arithmetically profinite
extensions of Qp from [FW1], [FW2] by the category Ba(N) of infinite increas-
ing field towers K0 ⊂ K1 ⊂ · · · ⊂ Kn ⊂ . . . with restrictions on the upper
ramification numbers of the intermediate extensions Kn+1/Kn for n � 0. In
order to introduce the set of elements of the corresponding field-of-norms, one
cannot use the sequences of norm compatible elements in such towers, but it
is still possible to work with the sequences of elements an ∈ OKn

such that
an ≡ ap

n+1 mod pc, where 0 < c � 1 is independent on n.
The main difficulty in the realization of this idea comes from the fact that

the construction of ramification theory for an N -dimensional local field L

depends on the choice of its F -structure, i.e. on the choice of the subfields
L(i) of i-dimensional constants, where 1 � i � N . On the other hand, in order
to be able to work with elements of L, one should use one or another choice
of its local parameters. This choice can be made compatible with a given F -
structure only after passing to some finite “semistable” extension of L. This
explains why we have a precise analogue of the Fontaine-Wintenberger functor
only for a subcategory of “special” towers Bfa(N) in Ba(N). Nevertheless, the
construction of our functor can be extended to the whole category Ba(N) and
can be applied to deduce the mixed characteristic case of the Grothendieck
conjecture from its characteristic p > 2 case. Notice that another approach
to the problem of generalisation of the field-of-norms functor can be found in
the papers [And] and [Sch].

We now briefly explain the content of this article.
Section 1 contains preliminaries: definitions and simplest properties of N -

dimensional local fields L. We pay special attention to the concept of the
P -topology — this is a topology on L, which accumulates properties of N val-
uation topologies which can be attached to L. Then the Witt-Artin-Schreier
duality and the Kummer theory allow us to transfer the P -topological struc-
ture to the group Γab

L (p), where ΓL(p) is the Galois group of the maximal
p-extension of L. This structure gives an opportunity to work with ΓL(p) in
terms of generators (cf. [Ab6]).

Section 2 contains a “co-analogue” of Epp’s elimination wild ramification.
This statement deals with a subfield of (N − 1)-dimensional constants in an
N -dimensional local field. (The most widely known interpretation of Epp’s
procedure deals with a subfield of 1-dimensional constants.) Our proof estab-
lishes an elimination procedure which is similar to the procedure developed
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in [ZhK], where it was shown that an essential part of such elimination can
be done inside a given deeply ramified extension in the sense of [CG]. This
elimination procedure is required to justify the main starting point in the con-
struction of the ramification theory for higher-dimensional local fields from
[Ab5]. (The original arguments from [Ab5] were not complete (cf. remark in
section 2.1).)

Section 3 contains a brief introduction into the ramification theory and
contains a version of Krasner’s Lemma in the context of higher-dimensional
local fields. In Section 4 we introduce and study the categories of special
towers Ba(N) and Bfa(N). These towers play a role of strict arithmetic
profinite extensions from the Fontaine-Wintenberger construction of the field-
of-norms functor.

In section 5 we explain the construction of the family X(K�) of local fields
of characteristic p, where K� ∈ Bfa(N). We prove that all such fields can
be identified after (roughly speaking) taking inseparable extensions of con-
stant subfields of lower dimension. These fields will play the role of the field-
of-norms attached to a given tower K� ∈ Bfa(N). In section 6 we apply
Krasner’s Lemma from section 3 to establish all expected properties of the
correspondence K� �→ K ∈ X(K�), where K� ∈ Bfa(N). In section 7 we
use these properties to define the analogue XK� , K� ∈ Bfa(N), of the field-
of-norms functor. In addition, we use the operation of the radical closure
to extend this construction to the whole category Ba(N). In section 8 it is
proved that the corresponding identification of the Galois groups Γ

K̃
(where

K̃ is the p-adic closure of the composite of all fields from the tower K�) and
ΓK becomes P -continuous when being restricted to their maximal abelian p-
quotients. The proof is based on a higher-dimensional version of the relation
between the Witt-Artin-Schreier theory for K and the Kummer theory for K̃

from [Ab2]. This relation and the proof of compatibility of the proposed field-
of-norms functor with the class field theories for K and K̃, leads to another
proof of the explicit reciprocity formula from [Vo] (cf. also [Ka]) — the details
will appear later elsewhere.

Finally, the P -continuity result from section 8 allows us to prove in sec-
tion 9 the mixed characteristic case of the Grothendieck conjecture under the
restriction p > 2. Notice that the construction of the higher-dimensional ver-
sion of the field-of-norms functor from this paper is especially adjusted to the
proof of this conjecture and was motivated by Deligne’s paper [De]. It should
also be mentioned that there are definite ideological links with methods of
the paper [Fu], where the construction of Coleman power series was devel-
oped in the context of 2-dimensional local fields with further applications to
the construction of p-adic L-functions.
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1. Preliminaries

1.1. The concept of higher-dimensional local field. Let K be an
N -dimensional local field, where N ∈ Z�0. In other words, if N = 0, then K

is a finite field and for N � 1, K is a complete discrete valuation field with
the residue field K(1), which is an (N −1)-dimensional local field. We use the
notation K(N) for the last residue field of K. (This field is 0-dimensional by
its definition and, therefore, is finite.)

Let O
(1)
K be the valuation ring of K with respect to first valuation and let

α : O
(1)
K −→ K(1) be a natural projection. Define the valuation ring OK of

K by setting for N = 0, OK = K and for N � 1, OK = α−1(OK(1)). Recall
that a system t1, . . . , tN ∈ OK is a system of local parameters in K if t1
is a uniformiser in O

(1)
K and α(t2), . . . , α(tN ) is a system of local parameters

in K(1).
In terms of such a system of local parameters, any element ξ ∈ K can be

uniquely presented as a power series of the following form:

ξ =
∑

ā=(a1,...,aN )

αāta1
1 . . . taN

N .

Here, all coefficients αā are either elements of K(N) if char K = p > 0, or
the Teichmüller representatives of those if char K = 0. All indices ai ∈ Z and
there are integers (which depend on ξ) A1, A2(a1), . . . , AN (a1, . . . , aN−1) such
that αā = 0 if either a1 < A1, or a2 < A2(a1),. . . , or aN < AN (a1, . . . , aN−1).

There is an important concept of the P -topology on K which brings into
correlation all N valuation topologies related to K. The P -topological struc-
ture provides us with a reasonable treatment of morphisms of higher-dimen-
sional local fields. We discuss this structure briefly in section 1.2 below.
Notice that if f : K −→ L is a sequentially P -continuous morphism of higher-
dimensional local fields, then E = f(K) is a closed subfield in L (i.e. O

(1)
E is

closed in O
(1)
L with respect to first valuation and E(1) is closed in L(1)), for

any system t1, . . . , tN of local parameters in K, their images f(t1), . . . , f(tN )
are local parameters in E and their knowledge determines the morphism f

uniquely.
Our considerations will be limited with local fields K such that char K(1) =

p where p is a fixed prime number (such fields possess the most interesting
arithmetic structure). Under this assumption there is the following classifica-
tion of N -dimensional local fields:

— If char K = p, then K = k((tN )) . . . ((t1)) where k = K(N) is the last
residue field of K. As a matter of fact, this result is equivalent to the existence
of a system of local parameters t1, . . . , tN in K.
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— If char K = 0, then K ⊃ Qp and we can introduce a canonical subfield
K(1) of 1-dimensional constants in K; this is the algebraic closure of Qp in
K. Suppose a uniformising element t1 of K(1) can be included in a system
of local parameters t1, t2, . . . , tN of K. Then K = K(1){{tN}} . . . {{t2}} and
such K is called standard. Otherwise, there is a finite extension E of K(1)
such that the composite KE is standard.

The above result concerning the characteristic 0 fields is implied by the
following version of Epp’s theorem [Epp], which holds for all (not necessarily
characteristic 0) higher-dimensional local fields K:

— Suppose K is an N-dimensional field and K(1) is its subfield of 1-
dimensional constants; then there is a finite extension E of K(1) such that
the fields KE and E have a common uniformising element (with respect to
the first valuation in K).

1.2. Concept of P -topology. Let K be an N -dimensional local field.
Its P -topology can be described explicitly by induction on N in terms of any
chosen system t1, . . . , tN of local parameters of K by constructing a basis of
open 0-neighborhoods Ub(K) (cf. [Zh1]). We shall consider the following three
cases:

(a) char K = p;
(b) char K = 0, char K(1) = p and t1 is a local parameter in K(1);
(c) K is a finite extension of a field K0, which satisfies the above assump-

tions from (b).
The case (a).
Here K = k((tN )) . . . ((t1)), where k is a finite field of characteristic p. If

N = 0, then Ub(K) contains by definition only one set {0}. Then the family of
all open sets in K consists of all subsets of K. Suppose N � 1. Let t̄N ,. . . ,t̄2
be the images of tN ,. . . , t2 in K(1). Then K(1) = k((t̄N )) . . . ((t̄2)) and we
can use the correspondences t̄N �→ tN , . . . , t̄2 �→ t2 and α �→ α for α ∈ k,
to define the embedding h : K(1) −→ K. Then Ub(K) consists of the sets∑

a∈Z
ta1h(Ua), where either Ua ∈ Ub(K(1)) or Ua = K(1) for a � 0.

The case (b).
Here again the images t̄2,. . . , t̄N give a system of local parameters of K(1)

and the family of all open subsets of K(1) is already defined by induction. So,
we again use the map h : K(1) −→ K, which is determined by the correspon-
dences t̄i �→ ti, i = 2, . . . , N , and α �→ α for α ∈ k, and proceed along the
lines in case (a).

The case (c).
If [K : K0] = n, then the P -topological structure on K comes from any

isomorphism of K0-vector spaces K � Kn
0 and the P -topological structure

on K0.
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It is well known that K is an additive P -topological group, but the multi-
plication in K has very bad P -topological properties. Fortunately, the mul-
tiplicative structure on K is sequentially P -continuous. We will need this
property later when studying the P -continuity of maps between objects ob-
tained from K-spaces by duality. For this reason we shall use the following
description of sequentially compact subsets in K. Introduce a basis Cb(K) of
sequentially compact subsets in K. In other words, if Cb(K) is such a family,
then any sequentially compact subset D in K will appear as a closed subset
of some C ∈ Cb(K). Proceed again by induction on the dimension N of K

according to the above assumptions (a)–(c) about K.
In case (a), Cb(K) will consist of only one set {K} if N = 0. If N � 1, then

in cases (a) and (b) we can use the map h : K(1) −→ K to define Cb(K) as
the family of subsets

∑
a∈Z

ta1h(Ca), where Ca ∈ Cb(K(1)) and Ca = {0} for
a 	 0. In case (c), we just set Cb(K) = {Cn | C ∈ Cb(K0)}.

Proposition 1.1. The above-defined family Cb(K) is a basis of sequentially
compact subsets in K.

Proof. Proceed by induction on N when K satisfies the assumptions from
cases (a) and (b). The case N = 0 is clear.

Let N � 1. Prove first that Cb(K) consists of sequentially compact subsets
in K. Suppose C =

∑
ta1h(Ca) ∈ Cb(K). Notice first, that each h(Ca) is

sequentially P -compact in K, because h is P -continuous. For any b ∈ Z, set
C�b =

∑
a�b ta1h(Ca). Then C�b is P -homeomorphic to the product of finitely

many sequentially compact sets h(Ca), a � b. Therefore, C�b is sequentially
P -compact. Finally,

C = lim←−
b

C�b

as P -topological sets. So, C is sequentially compact.
Suppose D is a sequentially P -compact subset in K. Take a0 ∈ Z such that

D ⊂
∑

a�a0
ta1h(K(1)) (a0 exists because D is sequentially compact). From the

definition of the P -topology, it follows that all projections pra : D −→ K(1)

(where, for any d ∈ D, d =
∑

ta1h(pra(d))) are P -continuous maps. Therefore,
all pra(D) are sequentially compact subsets in K(1). By induction there are
Ca ∈ Cb(K(1)) such that pra(D) are closed subsets in Ca. Notice that we
can assume Ca = {0} for a 	 0. So, D is a subset in the P -compact set∑

ta1h(Ca) ∈ Cb(K).
Finally, the case (c) follows from the definition of the P -topology as the

product topology associated with the P -topology on K0. The proposition is
proved. �
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2. Higher-dimensional elimination of wild ramification

2.1. Introduce the category LC of higher-dimensional local fields with a
given subfield of constants of codimension 1. The objects in LC are couples
(K, E) where K is a local field of dimension N � 1 and E is a topologically
closed subfield of dimension N − 1 which is algebraically closed in K. If
N = 1 and char K = 0, we shall agree by definition to take as E the maximal
unramified extension of Qp in K, i.e. in this case a 1-dimensional field will play
a role of a subfield of 0-dimensional constants. Morphisms (K, E) −→ (K ′, E′)
in the category LC are given by sequentially P -continuous morphisms of local
fields f : K −→ K ′ such that f(E) ⊂ E′.

We shall use the notation LC(N) for the full subcategory in LC consisting
of (K, E), where K is an N -dimensional field. Notice that LC(1) is equivalent
to the usual category of complete discrete valuation fields with finite residue
field of characteristic p.

Remark. Suppose (K, E) ∈ LC. Then there is a natural embedding of
the first residue fields E(1) ⊂ K(1) but (K(1), E(1)) is not generally an object
of the category LC(N − 1), because E(1) is not generally algebraically closed
in K(1). Notice that it is separably closed in K(1); otherwise, E will possess
a non-trivial unramified extension in K.

Definition. (K, E) ∈ LC(N) is standard if there is a system of local pa-
rameters t1, . . . , tN in K such that t1, . . . , tN−1 is a system of local parameters
in E. In other words, if (K, E) is standard, then there is a tN ∈ K which
extends any system of local parameters in E to a system of local parameters
in K. Such an element tN of K will be called an Nth local parameter in K

(with respect to a given subfield of (N − 1)-dimensional constants E).

One of reasons to introduce the concept of a standard object is that the
situation from the above remark will never take place if (K, E) ∈ LC(N) is
standard. In other words, E(1) is algebraically closed in K(1) if (K, E) is
standard.

We mention the following simple properties:
(a) For any (K, E) ∈ LC, there is always a closed subfield K0 in K con-

taining E such that (K0, E) ∈ LC is standard; this field K0 appears in the
form E{{t}} with a suitably chosen element t of OK .

(b) If (K̃, E) ∈ LC(N) is standard and K is a closed subfield in K̃ such
that K ⊃ E and (K, E) ∈ LC(N), then (K, E) is also standard. (One can
see easily, that [K̃ : K] < ∞ and if t̃N is an Nth local parameter for K̃, then
N

K̃/K
t̃N is an Nth local parameter for K.)
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(c) If (K, E) ∈ LC is standard, then for any finite extension E′ of E,
(KE′, E′) ∈ LC is standard. (Any Nth local parameter in K is still an Nth
local parameter in KE′.)

(d) Any (K, E) ∈ LC(1) is standard.
(e) For any (K, E) ∈ LC(2), there is a finite extension E′ of E such that

(KE′, E′) ∈ LC(2) is standard. (This follows from Epp’s Theorem.)
The following property plays a very important role in the construction of

ramification theory for higher-dimensional fields.
Proposition 2.1. Suppose (K, E), (L, E) ∈ LC(N), L ⊃ K and (L, E) is

standard. Then OL = OK [tN ], where tN is an N th local parameter in L.

Proof. Clearly, OK [tN ] ⊂ OL.
Let t1, . . . , tN−1 be local parameters in E. It will be sufficient to prove that

ta1
1 . . . t

aN−1
N−1 taN

N ∈ OK [tN ]

if (a1, . . . , aN−1, aN ) � 0̄N .
We can assume that aN < 0 (otherwise, there is nothing to prove).
Notice that t̃N = NL/KtN is an Nth local parameter for K and t̃N t−1

N ∈
OK [tN ]. Therefore,

ta1
1 . . . t

aN−1
N−1 taN

N = ta1
1 . . . t

aN−1
N−1 t̃aN

N (t̃N t−1
N )−aN ∈ OK [tN ]

because ta1
1 . . . t

aN−1
N−1 t̃aN

N ∈ OK . The proposition is proved. �
Definition. If K is an N -dimensional local field, then F (T ) = Tn +

a1T
n−1 + · · · + an ∈ OK [T ] is an Nth Eisenstein polynomial if a1, . . . , an

belong to the maximal ideal mK of OK and an can be taken as Nth local pa-
rameter in K. Equivalently, the image of F (T ) in K(N−1)[T ], where K(N−1)

is the prelast residue field of K, is a usual Eisenstein polynomial.
Notice the following simple properties:
(1) If (K, E), (L, E) ∈ LC(N), L ⊃ K and (L, E) is standard, then L =

K(θ), where θ is a root of Nth Eisenstein polynomial.
(2) If (K, E) ∈ LC(N) is standard and L = K(θ), where θ is a root of an

Nth Eisenstein polynomial from OK [T ], then (L, E) ∈ LC(N) is standard.
(3) In both of the above situations (1) and (2), the element θ can be taken

as Nth local parameter in L.
2.2. The following theorem, in our setting, plays a role of a higher-dimen-

sional version of Epp’s Theorem.
Theorem 1. If (K, E) ∈ LC(N), then there is a finite separable extension

E′ of E such that (KE′, E′) ∈ LC(N) is standard.

Proof of Theorem 1. Use induction on N . �
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2.3. If N = 1, there is nothing to prove. Notice that the case N = 2
follows from Epp’s Theorem.

Suppose N > 1 and the theorem holds for all local fields of dimension < N .
Choose a standard (K0, E) ∈ LC(N) such that K0 ⊂ K, and denote by

t1, . . . , tN a system of local parameters in K0 such that the first N − 1 of
them give a system of local parameters in E. It will be sufficient to prove
our theorem for extensions K/K0 satisfying one of the following conditions
(because any finite extension of K0 can be embedded into a bigger extension
obtained as a sequence of such subextensions):

(a0) There is a finite extension Ẽ of E such that K̃ := KẼ is unramified
over K̃0 := K0Ẽ, i.e. such that both fields K̃ and K̃0 have the same first
uniformiser and K̃(1) is separable over K̃

(1)
0 .

(a1) K/K0 is a cyclic extension of a prime to p degree m.
(b) K/K0 is a cyclic extension of degree p such that after arbitrary finite

extension of E, the corresponding extension of first residue fields is either
trivial or purely inseparable. When considering this case below, we shall treat
the subcases separately:

(b1) char K = 0;
(b2) char K = p;
(c) K/K0 is a purely non-separable extension of degree p.

Following the terminology from [Zh2] we can call (K, E) an almost constant
extension of (K0, E) in the case (a0) and an infernal elementary extension in
the case (b).

2.4. The case (a0). This case follows from the following observation.
Consider the natural field embedding Ẽ(1) ⊂ K̃

(1)
0 . Clearly, (K̃(1)

0 , Ẽ(1)) ∈
LC(N − 1) is standard. On the other hand, Ẽ(1) is separably closed in K̃(1)

(otherwise, Ẽ will have a non-trivial unramified extension in K̃). This implies
that any finite extension E′ of Ẽ(1) in K̃(1) is either purely inseparable or
trivial. Therefore, E′ ⊂ K̃

(1)
0 (because K̃(1)/K̃

(1)
0 is separable) and E′ = Ẽ(1)

(because Ẽ(1) is algebraically closed in K̃
(1)
0 ). So, (K̃(1), Ẽ(1)) ∈ LC(N − 1).

Therefore, by the inductive assumption there is a finite separable extension
E1 of Ẽ(1) such that (K1, E1) is standard, where K1 = K̃(1)E1. Denote by
t̄2, . . . , t̄N a system of local parameters in K1 such that t̄2, . . . , t̄N−1 is a system
of local parameters of E1. Let E′ be an unramified extension of Ẽ such that
E′(1) = E1. Notice that if K ′ = KE′, then K ′(1) = K1. Let t2, . . . , tN−1 be
liftings of t̄2, . . . , t̄N−1 to O

(1)
E′ and let tN be a lifting of t̄N to O

(1)
K′ . If t1 is

a common first uniformiser of K̃ and Ẽ, then t1, . . . , tN is a system of local
parameters in K ′ and t1, . . . , tN−1 is a system of local parameters in E′. In
other words, (K ′, E′) ∈ LC(N) is standard.
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2.5. The case (a1). Via the above case a0) we can assume that the last
residue field of E is large enough. This implies that K = K0( m

√
ta1
1 . . . taN

N ),
where a1, . . . , aN ∈ Z�0. Let E′ = E( m

√
t1, . . . , m

√
tN−1), then E′ has local

parameters m
√

t1, . . . , m
√

tN−1 and this system can be extended to a system of
local parameters in K ′ = KE′ by adding m′√

tN , where m′ = m/ gcd(m, aN ).
So, (K ′, E′) is standard.

2.6. Special extensions. For our future targets we need to keep control
on the choice of the extension E′ of E in Theorem 1. This idea goes back to the
paper [ZhK] where it was proved that Epp’s elimination of wild ramification
for an infernal extension can be done by the use of subextensions of a given
deeply ramified extension.

Set N ′ = N − 1 and consider an increasing sequence of finite extensions of
N ′-dimensional local fields

E ⊂ Ẽ1 ⊂ E1 ⊂ Ẽ2 ⊂ E2 ⊂ · · · ⊂ Ẽn ⊂ En ⊂ . . .

such that each Ẽn and En have a system of local parameters t̃1n, . . . , t̃N ′n

and, respectively, t1n, . . . , tN ′n, satisfying the following condition:
Condition C. There is a c > 0 such that for all 1 � i � N ′ and n � 1,

v1

(
tpin
t̃in

− 1
)

� c,

where v1 is a t1-adic (1-dimensional) valuation on Ē normalised by the con-
dition v1(t1) = 1, where t1 is a first local parameter in E.

Theorem 1 will be implied in cases (b) and (c) by the following statement.
Proposition 2.2. Suppose K, K0 and E satisfy the assumptions from cases

(b) or (c). Then there is an n∗ ∈ N (depending only on the extension K/K0

and the c from the above condition C) such that Theorem 1 holds with E′ =
En∗ .

Proof of Proposition 2.2. �
2.7. The case (b2). In the case (b2) we have K = K0(θ), θp − θ = ξ,

where ξ ∈ K0. Applying the Artin-Schreier equivalence we can replace ξ by
an equivalent element ξE ∈ K0 such that its power series

ξE =
∑

ā

αāta1
1 . . . taN

N

contains only non-zero terms with ā � 0̄N and ā 
≡ 0 mod p if ā 
= 0̄N .
Let ξE = ξ′E + ξ′′E , where

ξ′E =
∑

aN=0

αāta1
1 . . . t

aN−1
N−1 , ξ′′E =

∑
aN �=0

αāta1
1 . . . t

aN−1
N−1 taN

N .
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Let

A = v1(ξ′E) = min{a1 | αā 
= 0, aN = 0},
B = v1(ξ′′E) = min{a1 | αā 
= 0, aN 
= 0},

where v1 is the t1-adic valuation from the above condition C.
Notice that the first set can be empty. In this case we set by definition

A = 0. The second set is never empty; otherwise, K is a composite of an
algebraic extension of E and K0, i.e. E is not algebraically closed in K. For
any s ∈ Z�0, let

ξ′′E,s =
∑

vp(aN )=s

αāta1
1 . . . t

aN−1
N−1 taN

N

and set B(s) = v1(ξ′′E,s) = min{a1 | αā 
= 0, vp(aN ) = s}. (We set B(s) = 0 if
the corresponding subset of indices is empty.) Clearly, B = min{B(s) | s � 0}.

Lemma 2.3. B < 0.

Proof. Suppose that B = 0. Consider the extension L′ = E(θ′), where
θ′p − θ′ = ξ′E ; then KL′ = K0L

′(θ′′), where θ′′p − θ′′ = ξ′′E. Clearly, the
condition B = 0 implies that the first residue field of KL′ is a separable
extension of the first residue field of K0L

′ of degree p. (It is generated by θ̄1

such that θ̄p
1 − θ̄1 = ξ′′E mod t1.) Therefore, we are not in the situation of the

case (b2). The lemma is proved. �
Notice that if we pass from E to its finite extension Ẽ1 (cf. condition C),

then t̃11, . . . , t̃N−1,1, tN is a system of local parameters for K0Ẽ1. Rewrite
ξ in terms of these local parameters and apply to this expression the Artin-
Schreier equivalence to get rid of all pth powers and terms from the maximal
ideal of OK0Ẽ1

. This procedure gives an analogue ξẼ1
of ξE for the extension

KẼ1/K0Ẽ1. As earlier, use the t1-adic valuation v1 to define the analogues
Ã1, B̃1, B̃

(s)
1 of, respectively, A, B and B(s), s � 0.

Lemma 2.4. (a) Ã1 � A;
(b) for all s � 0, B̃

(s)
1 � min

{
1

pu B(s+u) | u � 0
}
.

Proof. It is just an exercise on the Artin-Schreier equivalence. �
Apply the similar procedure to the extensions E1, Ẽ2, E2, . . . to get the

elements ξE1 , ξẼ2
, ξE2 , . . . and the corresponding invariants A1, B1, B

(s)
1 , Ã2,

B̃2, B̃
(s)
2 , A2, B2, B

(s)
2 ,. . . .

Similarly, we have the following property.
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Lemma 2.5. For all i ∈ N and s � 0,
(a) Ãi+1 � Ai;
(b) B̃

(s)
i+1 � min

{
1

pu B
(s+u)
i | u � 0

}
.

When passing through the special extensions Ei/Ẽi, i � 1, we have the
following better estimates.

Lemma 2.6. For all i � 1 and s � 1,
(a) Ai � min

{
1
p Ãi, Ãi + c

}
;

(b) B
(0)
i � min

{
B̃

(0)
i ; 1

p B̃
(1)
i ; 1

pu (B̃(u)
i + c), u � 0

}
;

(c) B
(s)
i � min

{
1
p B̃

(s+1)
i ; 1

pu

(
B̃

(s+u)
i + c

)
, u � 0

}
.

The above estimates easily imply the following lemma.

Lemma 2.7. (a) limi→∞ Ai = 0;
(b) if i ∈ N and γi = min{B(s)

i | s � 1}, then limi→∞ γi = 0.

In order to study the sequence B
(0)
i , i ∈ N, introduce the invariant h(ξ) ∈

QN as follows. Denote by v0 the N -valuation on K0 uniquely determined
by the conditions v0(t1) = (1, 0, . . . , 0), v0(t2) = (0, 1, 0, . . . , 0), . . . , v0(tN ) =
(0, . . . , 0, 1). Denote by the same symbol a unique extension of v0 to the
field K0Ē, where Ē is an algebraic closure of E. For any finite extension L′

of E in Ē and any system of its local parameters t′1, . . . , t
′
N−1 use the local

parameters t′1, . . . , t
′
N−1, tN in K0L

′ to define an analogue ξL′t′1...t′N−1
of the

above elements ξE, ξẼ1
, . . . . Then

v0(ξL′t′1...t′N−1
) := v0(ξ, L′)

does not depend on the choice of local parameters t′1, . . . , t
′
N−1. Clearly, if L′′

is a finite extension of L′ in Ē, then v0(ξ, L′) � v0(ξ, L′′).
Set

h(ξ) = sup
{
v0(ξ, L′) | L′ ⊂ Ē, [L′ : E] < ∞

}
.

Lemma 2.8. h(ξ) = min
{
p−sv0(ξ′′E,s) | s ∈ N

}
.

Proof. Clearly, for any s ∈ N, v0(ξ′′E,s) � v0(ξE) � v0(ξ).
Therefore, the right-hand side in the statement of our lemma is well defined.

Denote its value by h̄(ξ).

Let M ∈ N be such that for any s � M ,
1
ps

v0(ξ′′E,s) > h̄(ξ). Then

h̄(ξ) = min{p−sv0(ξ′′E,s) | 0 � s < M}.
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Take L′ = E(t′1, . . . , t
′
N−1), where t′p

M′

1 = t1, . . . , t
′pM′

N−1 = tN−1 and M ′ �
M is such that p−M ′

v0(ξ′E) > h̄(ξ). Then

ξL′t′1...t′N−1
=

∑
b̄�0̄N

βb̄t
′
1
b1 . . . t

′bN−1
N−1 tbN

N ,

where:

(1) v0(ξ, L′) = v0

(
t′1

b01 . . . t
′b0N−1
N−1 t

b0N
N

)
, p does not divide b0

N , but all b0
1, . . . ,

b0
N−1 are divisible by p;

(2) v0(ξ, L′) = h̄(ξ).
Notice that the above property (1) implies that for any finite extension L′′

of L′ we have v0(ξ, L′) = v0(ξ, L′′). The second property implies, clearly, that
h(ξ) � h̄(ξ).

Suppose that h(ξ) > h̄(ξ). Then there is a finite extension L̃′ of E such
that

v0(ξ, L̃′) > v0(ξ, L′) = v0(ξ, L̃′L′) � v0(ξ, L̃′).

So, h(ξ) = h̄(ξ) and the lemma is proved. �
Corollary 2.9. For any i ∈ N,

pr1(h(ξ)) = min{p−sB(s) | s � 0} = min{p−sB
(s)
i | s � 0}.

Finally we have the following lemma.
Lemma 2.10. There is an index n∗ such that An∗ > Bn∗ .

Proof. Let i ∈ N and βi = min
{

1
ps B

(s)
i | s � 0

}
. By the above corol-

lary, for all i ∈ N, βi = β = pr1(h(ξ)) < 0 does not depend on i. Then
Lemma 2.7(b) implies the existence of an index i∗ such that if i � i∗, then
β = B

(0)
i and B

(0)
i < B

(s)
i for all s � 1. Therefore, for all i � i∗, Bi = β. So,

the lemma follows from Lemma 2.7(a). �
If n � n∗, set Kn = KEn and K0n = K0En. Then Kn = K0n(θn), where

θp
n − θn =

∑
b̄ �=0̄N

βb̄t
b1
1n . . . t

bN−1
N−1,ntbN

N ,

where min{(b1, . . . , bN−1, bN ) | βb̄ 
= 0} = (b0
1, . . . , b

0
N−1, b

0
N ) < 0̄N is such

that b0
1, . . . , b

0
N−1 are all divisible by p and b0

N is not divisible by p. This
easily implies that the system of local parameters t1n, . . . , tN−1,n of En can
be extended to a system of local parameters of Kn by the element

(t−b01/p
1n . . . t

−b0N−1/p

N−1,n θn)AtBN

where A, B ∈ Z are such that Ab0
N + pB = 1.

So, Theorem 1 is proved in the case (b2).
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2.8. The case (c). In this case we have K = K0(θ), θp = ξE , where
ξE ∈ K0 is the power series

ξE =
∑

ā

αāta1
1 . . . taN

N

containing non-zero terms only with ā 
≡ 0 mod p.
Set ξE = ξ′E + ξ′′E , where

ξ′E =
∑

aN≡0 mod p

αāta1
1 . . . t

aN−1
N−1 taN

N , ξ′′E =
∑

aN �≡0 mod p

αāta1
1 . . . t

aN−1
N−1 taN

N .

Let

A = v1(ξ′E) = min{a1 | αā 
= 0, aN ≡ 0 mod p},
B = v1(ξ′′E) = min{a1 | αā 
= 0, aN 
≡ 0 mod p},

where v1 is the t1-adic valuation from the above condition C.
Notice that the first set can be empty. In this case we set by definition

A = +∞. The second set is never empty; otherwise, θ ∈ E( p
√

t1, . . . , p
√

tN−1)
and E is not algebraically closed in K.

If we pass from E to its finite extension Ẽi, i ∈ N (cf. condition C), then
t̃1i, . . . , t̃N−1,i, tN is a system of local parameters for K0Ẽi. Rewrite ξE in
terms of these local parameters and take away all pth power terms. This
procedure gives an analogue ξ̃Ẽi

of ξE for the extension KẼi/K0Ẽi. As earlier,
use the t1-adic valuation v1 to define the analogues Ãi and B̃i of A and,
respectively, B. Similarly, introduce the invariants Ai and Bi, i ∈ N, when
passing in the above procedure from E to Ei.

We have the following estimates.
Lemma 2.11. (a) Ã1 � A and B̃1 = B.
(b) For all i ∈ N, Ãi+1 � Ai and B̃i+1 = Bi.
(c) For all i ∈ N, Ai � Ãi + c and Bi = B̃i.
This implies that for n � 0, it holds that An > Bn = B. Therefore, there

is an index n∗ such that if n � n∗, Kn = KEn and K0n = K0En; then
Kn = K0n(θn) with

θp
n =

∑
b̄�=0̄N

βb̄t
b1
1n . . . t

bN−1
N−1,ntbN

N ,

where min{(b1, . . . , bN−1, bN ) | βb̄ 
= 0} = (b0
1, . . . , b

0
N−1, b

0
N ) is such that

b0
1, . . . , b

0
N−1 are all divisible by p and b0

N is not divisible by p. Similarly,
to the above case (b2), this implies that the system of local parameters
t1n, . . . , tN−1,n of En can be extended to a system of local parameters of
Kn.

The case (c) is also considered.
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2.9. Characteristic 0 analogue of the Artin-Schreier theory. The
characteristic 0 case (b1) can be treated similarly to the characteristic p case
(b2) due to the characteristic 0 analogue of the Artin-Schreier theory from
[Ab1]. This construction can be briefly reviewed as follows.

Suppose L0 is a complete discreet valuation field of characteristic 0 with
the maximal ideal mL0 and the residue field k of characteristic p. Assume
that ζp ∈ L0 (where ζp is a primitive pth root of unity) and let π1 ∈ L0 be
such that πp−1

1 = −p.
Proposition 2.12.
(a) L = L0( p

√
v) with v ∈ 1 + π1 mL0 if and only if L = L0(θ), where

θp − θ = w with w ∈ p−1 mL0 .
(b) With the above notation and assumptions, L admits another presenta-

tion L = L0(θ1), where θp
1 − θ1 = w1 ∈ p−1 mL0 , if w1 = w + ηp − η with

η ∈ L0 such that ηp ∈ p−1 mL0 .
Proof. We only sketch the idea of proof.
Let E(X) = exp

(
X + Xp/p + · · · + Xpn

/pn + . . .
)
∈ Zp[[X]] be the Artin-

Hasse exponential. Then v = E(π1V ) with V ∈ mL0 and if up = v, u ∈ L,
then u = E(U) with U ∈ mL. Then the equivalence

E(X)p = E(Xp) exp(pX) ≡ E(Xp + pX) mod(p2X, pXp, Xp2
)

implies that Up + pU ≡ π1V mod(π1p mL) (notice that Up ∈ π1 mL).
Divide both sides of the above equivalence by πp

1 and deduce that L =
L0(θ), where θp − θ = w ∈ p−1 mL0 with θ ≡ π−1

1 U mod mL and w ≡
−p−1V mod mL0 . �

2.10. The case (b1).
2.10.1. Assume first that ζp ∈ E.
For n ∈ N, set K̃n = KẼn, Kn = KEn, K̃0n = K0Ẽn and K0n = K0En.

Then for a suitable ṽn ∈ K̃0n and vn ∈ K0n we have K̃n = K̃0n( p
√

ṽn) and
Kn = K0n( p

√
vn).

First reduction: We can assume that all vn are principal units.
Indeed, suppose

ṽn = t̃c1
1n . . . t̃

cN−1
N−1,ntcN

N (1 + ãn),

where ãn ∈ m
K̃0n

and c1, . . . , cN are either zeroes or prime to p natural
numbers. Then the condition C from section 2.6 implies that

ṽn = tpc1
1n . . . t

pcN−1
N−1,ntcN

N (1 + an),

where an ∈ mK0n
. This implies that we can take vn = ṽn(tc1

1n . . . t
cN−1
N−1,n)−p

= tcN

N (1 + an).
Suppose cN is a prime to p natural number. Then we can assume that

cN = 1. It is easy to see then that p
√

vn extends a system of local parameters
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of En to a system of local parameters of Kn. So, Proposition 2.2 is proved in
this case. Therefore, we can assume that cN = 0 and vn is a principal unit.

Second reduction: For any n ∈ N, we cannot choose vn ∈ 1 + p mK0n
.

Indeed, otherwise there is an n0 ∈ N such that for all n � n0, all vn and
ṽn can be chosen from 1 + p mK0n

and, resp., 1 + p m
K̃0n

. In particular, all

extensions K̃n/K̃0n and Kn/K0n can be treated via the analogue of the Artin-
Schreier theory from section 2.9. Thus we can apply arguments from section
2.7 to prove Proposition 2.2 in this case.

We can now assume that all vn cannot be chosen in 1+p mK0n
. Therefore,

all ṽn also cannot be chosen in 1 + p m
K̃0n

.
For n ∈ N, set ṽn ≡ 1 + ξ̃n mod p m

K̃0n
and vn ≡ 1 + ξn mod p mK0n

with

ξ̃n =
∑

ā

αāt̃a1
1n . . . t̃

aN−1
N−1,ntaN

N , ξn =
∑

ā

αāta1
1n . . . t

aN−1
N−1,ntaN

N ,

where αā 
= 0 implies that ā > 0̄N , ā 
≡ 0 mod p and the corresponding
monomial does not belong to p m

K̃0n
or, resp., p mK0n

. Clearly, such elements
ξ̃n and ξn are determined by ṽn and, respectively, vn uniquely.

Let ξn = ξ′n + ξ
′′

n and ξ̃n = ξ̃′n + ξ̃
′′

n , where ξ′n, resp. ξ̃′n, contains only the
monomials with aN ≡ 0 mod p and ξ′′n, resp. ξ̃′′n, contains the monomials with
aN 
≡ 0 mod p.

Set Ãn = v1(ξ̃′n), An = v1(ξ′n), B̃n = v1(ξ̃′′n) and Bn = v1(ξ′′n). Then
these numbers Ãn, An, B̃n and Bn behave exactly in the same way as the
corresponding numbers from case (c). Therefore, they satisfy the properties
(a)–(c) from Lemma 2.11 above. This implies that for n � 0, An > Bn = B1

(even more: for all n � 0, all An = 0 because the terms ξ̃′n and ξ′n will
disappear) and

vn ≡ 1 +
∑
ā�ā0

αāta1
1n . . . t

aN−1
N−1,ntaN

N mod p,

where αā0 
= 0 and ā0 = (a0
1, . . . , a

0
N−1, a

0
N ) is such that a0

1, . . . , a
0
N−1 are

divisible by p, but a0
N is not. Then

p
√

vn = 1 + α
1/p
ā0 t

a0
1/p

1n . . . t
a0

N−1/p

N−1,n θn,

where θn ∈ Kn. Let vK0n
be the N -valuation on algebraic closure of K0n

uniquely determined by the conditions vK0n
(t1n) = (1, 0, . . . , 0), . . . ,

vK0n
(tN−1,n) = (0, . . . , 0, 1, 0) and vK0n

(tN ) = (0, . . . , 0, 1). Then vK0n
(θn) =

1
p
vK0n

(ta
0
N

N ) = (0, . . . , 0, a0
N/p). Therefore, tANθB

n , where A, B ∈ Z are such

that Ap+Ba0
N = 1, can be taken as the Nth parameter for Kn and (Kn, En) ∈

LC(N) is standard.
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2.10.2. Consider the case ζp /∈ E.
Let K ′ = K(ζp), K ′

0 = K0(ζp), E′ = E(ζp) and Ẽ′
n = Ẽn(ζp), E′

n = En(ζp)
for all n ∈ N. Then the tower

E′ ⊂ Ẽ′
1 ⊂ E′

1 ⊂ · · · ⊂ Ẽ′
n ⊂ E′

n ⊂ . . .

satisfies condition C from section 2.6 with a suitably chosen parameter c′ > 0.
Therefore, there is an n such that if K ′

n = KE′
n and K ′

0n = K0E
′
n, then

(K ′
n, E′

n) is standard. For such n, let Γ = Gal(E′
n/En). Then |Γ| divides

p− 1 (therefore, it is prime to p) and Γ can be identified with Gal(K ′
n/Kn) =

Gal(K ′
0n/K0n).

Choose the Nth local parameter t′nN in K ′
n with respect to its subfield of

(N−1)-dimensional constants E′
n. Because the action of Γ on mK′

n
is semisim-

ple, we can assume that for any τ ∈ Γ, τ (t′nN ) = χ(τ )t′nN , where χ is a char-
acter of Γ with values in F∗

p. Notice that this character does not depend on
the choice of t′nN .

This implies that (Kn, En) = (K ′
n

Γ
, E′

n
Γ) is standard if and only if the

character χ is trivial. Indeed, if (Kn, En) is standard, then its Nth parameter
can be taken as Nth parameter for K ′

n and χ = id. Inversely, if χ = id,
then t′nN ∈ Kn and Kn = K ′Γ

n = E′
n{{t′nN}}Γ = En{{t′nN}}, i.e. (Kn, En) is

standard.
Now notice that the norm of t′nN in the extension K ′

n/K ′
0n is an Nth

parameter tnN for K ′
0n such that Γ acts on it via the character χp = χ. But

(K0n, E0n) = (K ′Γ
0n, E′Γ

0n) is standard. As we have noticed above, this implies
that χ is trivial. Therefore, (Kn, En) is also standard.

The Proposition 2.2 together with Theorem 1 are completely proved.

3. Ramification theory and Krasner’s lemma

3.1. Category of local fields with F -structure. This category LF(N)
appears as the disjoint union of its two full subcategories LF0(N) and LFp(N).

The category LF0(N).
Choose a simplest N -dimensional local field of characteristic 0 with residue

fields of characteristic p, L0 = Qp{{tN}} . . . {{t2}}. Define its F -structure
as an increasing sequence of closed subfields {L0(i) | 1 � i � N} with the
system of local parameters p = t1, t2, . . . , tN . Choose an algebraic closure
L̄0 of L0. Denote by C(N)p the completion of L̄0 with respect to its first
(p-adic) valuation. For 1 � i � N , denote by C(i)p the completion of the
algebraic closure of L0(i) in C(N)p. It will be convenient to have a special
agreement for i = 0. By definition, C(0)p is the completion of the maximal
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unramified extension of Qp in C(N)p and L0(0) = L0 ∩ C(0)p = Qp. Notice
that C(1)p = Cp is the usual p-adic completion of an algebraic closure of Qp.

Clearly, the P -topological structure of finite extensions of L0 induces the
P -topological structures on the fields C(0)p ⊂ C(1)p ⊂ · · · ⊂ C(N)p.

The objects of the category LF0(N) are finite extensions K of L0 in C(N)p

with the induced F -structure. This structure is given by the sequence of
algebraically closed and P -closed subfields {K(i) | 0 � i � N}, where K(i) =
K ∩ C(i)p. Notice that K(0) is the maximal unramified extension of Qp in
K. We agree to use the notation K̄ for the algebraic closure of K in C(N)p.
Notice that ΓK = Aut(K̄/K) consists of all sequentially P -continuous field
automorphisms τ of C(N)p such that τ |K = id and for all 0 � i � N ,
τ (C(i)p) = C(i)p. It is well known [Hy], that C(N)ΓK

p = K and, therefore,
for all 0 � i � N , C(i)ΓK

p = K(i).
Suppose K, L ∈ LF0(N). Then the corresponding set of morphisms

HomLF0(N)(K, L) consists of all sequentially P -continuous field morphisms
ϕ : C(N)p → C(N)p such that for 0 � i � N ,

(a) ϕ(C(i)p) = C(i)p;
(b) ϕ(K) ⊂ L.
Notice that any ϕ ∈ HomLF0(N)(K, L) transforms the F -structure of K to

the F -structure of L.

The category LFp(N).
This category consists of fields of characteristic p and can be defined sim-

ilarly to the above characteristic 0 case. Choose a basic N -dimensional local
field Lp = Fp((tN )) . . . ((t1)) and define its F -structure by a sequence of sub-
fields {Lp(i) | 0 � i � N} such that Lp(0) = Fp and for 1 � i � N , Lp(i) has
local parameters t1, . . . , ti. Choose an algebraic closure L̄p of Lp. Denote by
C(N)p the completion of L̄p with respect to its first valuation. For 0 � i � N ,
denote by C(i)p the completion of the algebraic closure of Lp(i) in C(N)p.
As earlier, the P -topological structure of finite extensions of Lp induces the
P -topological structures on the fields F̄p = C(0)p ⊂ C(1)p ⊂ · · · ⊂ C(N)p.

The objects of the category LFp(N) are finite extensions K of Lp in C(N)p

with the induced F -structure {K(i) | 0 � i � N}, where K(i) = K ∩ C(i)p.
Notice that C(N)ΓK

p = R(K) — the radical closure (= the completion of
the maximal purely non-separable extension) of K in C(N)p. Similarly for
0 � i < N , it holds that C(i)ΓK

p = R(K(i)). The morphisms in LFp(N) are
defined also along lines in the above charactersitic 0 case.

3.2. Standard F -structure. We say that the F -structure on L ∈ LF(N)
is standard if there is a system of local parameters t1, . . . , tN in L such that
for all 1 � r � N , t1, . . . , tr is a system of local parameters for L(r). Clearly,
L ∈ LF(N) has a standard F -structure if and only if (L, L(N − 1)) ∈ LC(N)
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is standard (cf. section 2.1) and L(N − 1) ∈ LF(N − 1) has a standard F -
structure. Applying Theorem 1 we obtain the following:

Proposition 3.1. For any E ∈ LF(N), there is a finite separable extension
E′ of E(N − 1) such that EE′ has a standard F -structure.

Remark. The above proposition played a fundamental role in the con-
struction of the higher-dimensional ramification theory in [Ab5], but its proof
in [Ab5] was not complete, due to reasons mentioned in the Remark from
section 2.1. Notice that the construction of ramification theory (cf. section
3.3 below), needs only the result of Theorem 1.

Note that F -structure allows us to treat higher-dimensional local fields in
a very similar way to classical complete discrete valuation fields with finite
residue fields. For example, for any finite extension of local fields with F -
structure we can introduce:

(a) a vector ramification index ē(L/K) = (e1, . . . , eN ).
Any finite extension of K in K̄ appears with a natural F -structure and a

natural P -topology. In particular, if L ⊂ M are such subfields in K̄, then its
vector ramification index equals ē(M/L) = (e1, . . . , eN ), where for 1 � r � N ,

er = [M(r) : L(r)]/[M(r − 1) : L(r − 1)] = [M(r) : L(r)M(r − 1)].

This index plays a role of the usual ramification index in the theory of 1-
dimensional local fields. Notice that eN = 1 if and only if M coincides with
the composite of L and M(N − 1).

(b) a canonical N-valuation vL : L −→ QN ∪ {∞}.
If L has a standard F -structure and t1, . . . , tN is a corresponding system

of local parameters, then vL is uniquely defined by the conditions vL(t1) =
(1, 0, . . . , 0), vL(t2) = (0, 1, 0, . . . , 0), . . . , vL(tN ) = (0, 0, . . . , 0, 1). Otherwise,
one should use a finite extension L1 of L with standard F -structure and
set vL = ē(L1/L)−1vL1 . One can easily verify that vL does not depend on
the choice of L1. Notice that, as usual, vL can be extended uniquely to
any algebraic extension L′ of L. (We shall use the same notation vL for
such extension.) Also notice that if L′ is a finite extension of L, then vL′ =
ē(L′/L)vL.

3.3. Review of ramification theory (cf. [Ab5]). Suppose K ∈ LF(N).
Then ΓK = Aut(K̄/K) has a canonical decreasing filtration by ramification
subgroups {Γ(j)

K | j ∈ J(N)} with the set of indices J(N) =
∐

1�r�N

Jr. Here

Jr = {j ∈ Qr | j � 0̄r} with respect to the lexicographic ordering on Qr,
where 0̄r = (0, . . . , 0) ∈ Qr. By definition, if r1 > r2, then any element from
Jr1 is bigger than any element from Jr2 .

The definition of the ramification filtration can be given as follows.
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Let E/K be a finite extension in K̄ (this is a subfield in C(N)p or C(N)p).
Consider the finite set IE/K of all sequentially P -continuous embeddings of
E into K̄ which are equal to the identity on K. There is a natural filtration
of this set

IE/K ⊃ IE/K,0 ⊃ IE/K,(0,0) ⊃ · · · ⊃ IE/K,0̄N

where for 1 � r � N , IE/K,0̄r
are embeddings which are equal to the identity

on the subfield of (r − 1)-dimensional constants E(r − 1).
For 1 � r � N and j ∈ Jr, define the set IE/K,j ⊂ IE/K,0̄r

as follows.
Take a suitable finite extension E′ of E(r − 1) in K̄ such that if Ẽ(r) =

E′E(r) and K̃(r) = K(r)E′, then (Ẽ(r), E′) ∈ LC(r) is standard (cf. section
2.1). Then for an rth local parameter θ in Ẽ(r), we have OẼ(r) = O

K̃(r)
[θ].

(Recall, if L ∈ LF(r), then OL = {l ∈ L | vL(l) � 0̄r} and also notice that
vE(r)(θ) = vẼ(r)(θ) = (0, . . . , 0, 1) ∈ Qr.) Then use the natural identification
IE/K,0̄r

= I
Ẽ(r)/K̃(r)

to define the ramification filtration of IE/K in lower
numbering by setting for every j ∈ Jr,

IE/K,j = {τ ∈ I
Ẽ(r)/K̃(r)

| vE(r)(τ (θ) − θ) � vE(r)(θ) + j}.

The subsets IE/K,j , where j ∈ Jr, do not depend on the above choices of
the finite extension E′ of E(r− 1) and the corresponding rth local parameter
θ ∈ Ẽ(r). The resulting filtration {IE/K,j | j ∈ J(N)} does depend on the
F -structures on E and K.

We now introduce an analogue of the Herbrand function ϕE/K : J(N) −→
J(N) by setting for 1 � r � N and j ∈ Jr,

ϕE/K(j) = ē(E(r)/K(r))−1

∫ j

0̄r

|IE/K,j |dj ∈ Jr.

This gives the upper numbering such that for any j ∈ J(N), I
(j)
E/K =

IE/K,j′ , where j′ ∈ J(N) is such that ϕE/K(j′) = j. As in the classical
situation, if E2 ⊃ E1 ⊃ K, then the natural projection IE2/K −→ IE1/K

induces for any j ∈ J(N), an epimorphic map from I
(j)
E2/K onto I

(j)
E1/K and

lim←−
E

I
(j)
E/K = Γ(j)

K is the ramification subgroup of ΓK with the upper number j.

As an example, consider the case of an extension E/K in LF(N) such that
[E : K] = pN and ē(E/K) = (p, . . . , p) ∈ QN . Then for 1 � r � N , there are
αr ∈ Jr, αr > 0̄r such that for all j ∈ Jr,

ϕE/K(j) =

{
j, if j < αr;

αr + j−αr

p , if j � αr.

Similarly to the classical case for any finite extension E/K, the Herbrand
function ϕE/K : J(N) −→ J(N) is a piecewise linear function with finitely
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many edge points. Define i(E/K) ∈ J(N) and j(E/K) ∈ J(N) as the first
and the second coordinates of the last edge point of the graph of ϕE/K . Notice
that if 1 � r � N and j ∈ Jr, then j is an edge point iff ϕ′

−(j) 
= ϕ′
+(j), where

ϕ′
−(j) and ϕ′

+(j) are slopes of ϕE/K in the left and right neighbourhoods of
j, respectively. (By definition, ϕ′

−(0̄r) = gr0ē(E(r)/K(r))−1, where gr0 =
[E(r) : K(r)E(r − 1)].)

If 1 � r � N and j ∈ Jr, then ϕ′
−(j) = g−(j)ē(E(r)/K(r))−1 and

ϕ′
+(j) = g+(j)ē(E(r)/K(r))−1, where g−(j) and g+(j) ∈ N. We shall call

g−(j)/g+(j) := multE/K(j) — the multiplicity of ϕE/K in j ∈ Jr. We have:
— multE/K(j) = 1 if and only if j is not an edge point;
— multE/K(j) is prime to p if and only if j = 0̄r, 1 � r � N ;
— if j 
= 0̄r, 1 � r � N , then multE/K(j) is a power of p;
—

∏
j∈J(N)

multE/K(j) = [E : KE(0)].

3.4. Krasner’s Lemma. Suppose L, K ∈ LF(N), L ⊃ K, L(N − 1) =
K(N −1) and E is a finite extension of L(N −1) such that (LE, E) ∈ LC(N)
is standard. Then OL̃ = O

K̃
[θ] where L̃ = LE, K̃ = KE and θ is an Nth

local parameter in L̃.
Let F (T ) = T d + a1T

d−1 + · · · + ad ∈ O
K̃

[T ] be the minimal unitary
polynomial for θ over K̃. Note that F (T ) is an Nth Eisenstein polynomial
(cf. section 2.1). Denote by θ1 = θ, θ2, . . . , θd ∈ K̄ all roots of F (T ). Notice
that vL̃(θ) = vL(θ1) = · · · = vL(θd) = (0, . . . , 0, 1). As usual, ϕL/K is the
Herbrand function for L/K.

In this situation the Krasner Lemma can be given by the following propo-
sition.

Proposition 3.2. If α ∈ K̄ is such that vK(F (α)) = A+(0, . . . , 0, 1) with
A > 0̄N , then

(1) there is an index 1 � l0 � d such that vL(α − θl0) = a + (0, . . . , 0, 1),
where ϕL/K(a) = A;

(2) if A > j(L/K), then the above index l0 is unique.
Proof. Choose an index l0, 1 � l0 � d, such that

vL(α − θl0) = max{vL(α − θl) | 1 � l � d}.

Let a ∈ JN be such that vL(α − θl0) = a + (0, . . . , 0, 1).
Lemma 3.3. vK(F (α)) = ϕL/K(a) + (0, . . . , 0, 1).
Proof of lemma. Let i1 < i2 < · · · < is be the lower indices which corre-

spond to all jumps of the ramification filtration on IL/K . Notice that due to
the assumption L(N − 1) = K(N − 1), all ramification jumps i1, . . . , is ∈ JN .
Then, for some integers, d = g0 > g1 > · · · > gs−1 > gs = 1 and all 2 � i � d,
vL(θ − θi) takes g0 − g1 times the value i1 + vL(θ), . . . , gs−1 − gs times the
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value is + vL(θ). Notice that is = i(L/K), ē(L/K) = ē(L̃/K̃) = (1, . . . , 1, d)
and if it � a < it+1 for some 0 � t � s (with the agreements i0 = 0̄N and
is+1 = ∞), then

ϕL/K(a) = ē(L/K)−1 (g0i1 + · · · + gt−1(it − it−1) + gt(a − it)) .

Clearly, for all 1 � l � d, vL(α− θl) = min{vL(α− θl0), vL(θl0 − θl)}. This
implies

vL(F (α)) =
∑

1�l�d

vL(α − θl)

= (g0 − g1)(i1 + vL(θl0)) + · · · + (gt−1 − gt)(it + vL(θl0)) + gt(a + vL(θl0))

g0vL(θl0) + g0i1 + g1(i2 − i1) + · · · + gt−1(it − it−1) + gt(a − it)

= ē(L/K)
(
vL(θl0) + ϕL/K(a)

)
.

The lemma is proved, because vK = ē(L/K)−1vL. �
It remains to prove part (2) of our proposition.
Suppose θl1 is a root of F with the same property vL(α − θl1) = a +

(0, . . . , 0, 1). Then vL(θl1 − θl0) � a + (0, . . . , 0, 1). But if A > j(L/K), then
a > i(L/K) and θl1 = θl2 .

The proposition is proved. �
Corollary 3.4. With the above assumption and notation

vL(δ(F )) = (1, . . . , 1, d)j(L/K) − i(L/K) + (0, . . . , 0, d − 1)

where δ(F ) is the different ideal of F .
Proof. We have δ(F ) = F ′(θ) = (θ − θ2) . . . (θ − θd). Then

vL(δ(F )) =
∑

2�i�d

vL(θ − θi)

= (g0 − g1)(i1 + vL(θ)) + · · · + (gs−1 − gs)(is + vL(θ))

= ē(L/K)ϕL/K(is) − is + (d − 1)vL(θ).

It remains to note that ē(L/K) = (1, . . . , 1, d), is = i(L/K), ϕL/K(is) =
j(L/K) and vL(θ) = (0, . . . , 0, 1). �

Corollary 3.5. j(L/K) � 2vK(δ(F )).
Proof. Notice that

i(L/K) = max{vL(θ1 − θi) | 2 � i � d} − (0, . . . , 0, 1) < vL(δ(F )).

Then Corollary 3.4 implies that

(1, . . . , 1, d)j(L/K) � 2vL(δ(F )) = 2(1, . . . , 1, d)vK(δ(F ))

and we can cancel by (1, . . . , 1, d). �
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4. Families of increasing towers

In this section we work with local fields of characteristic 0 from LF0(N).
4.1. The category B(N). The objects of B(N) are increasing sequences

K� = {Kn | n � 0} of Kn ∈ LF0(N). If K�, L� ∈ B(N), then HomB(N)(K�, L�)
consists of field automorphisms f : C(N)p −→ C(N)p such that

— f is sequentially P -continuous;
— f is compatible with F -structure;
— f(Kn) ⊂ Ln for all n � 0.
Clearly, if K� = {Kn | n � 0} ∈ B(N), then for any 1 � r � N , the

subfields of constants of dimension r {Kn(r) | n � 0}, give an object of the
category B(r). This object will be usually denoted by K�(r).

Notice that two towers K� and L� can be naturally identified if Kn = Ln

for all n � 0 (all sufficiently large n). Such towers will be called almost equal.
Let K�, L� ∈ B(N). Then by definition K� ⊂ L� or L� is an extension

of K� if for all m � 0, Km ⊂ Lm. L� is a finite extension of K� of degree
d = d(L�/K�) if for all m � 0, [Lm : Km] = d. Clearly, if L�/K� and M�/L� are
finite extensions, then M�/K� is also finite and d(M�/K�) = d(L�/K�)d(M�/L�).

An extension L�/K� will be called separable if there is an index m0 and
an algebraic extension E of Km0 such that L� is almost equal to EK� :=
{EKm | m � 0}. Clearly, if L�/K� and M�/L� are separable, then M�/K�
is also separable. Notice also, that the composite of finitely many separable
extensions of K� is again separable over K�. Therefore, any finite extension
L�/K� contains a “unique” maximal separable over K� subextension L

(s)
� (i.e.

any another maximal separable subextension is almost equal to L
(s)
� ).

An extension L�/K� will be called purely inseparable if for any n � 0, there
is an m = m(n) � 0 such that Ln ⊂ Km. The simplest example of a purely
inseparable extension of K� is K ′

� such that for all m, K ′
m = Km+1.

Suppose L� ⊃ K� is a finite extension in B(N) of degree d = d(L�/K�).
Let L̃ and K̃ be the p-adic completions of the

⋃
m�0

Lm and, resp.,⋃
m�0

Km. Suppose that [L̃ : K̃] = d̃. Then there are the following simple

properties:
(1) d̃ � d;
(2) d̃ = d iff L� is separable over K�;
(3) d̃ = 1 iff L� is purely inseparable over K�;
(4) if m0 � 0 is such that Lm0K̃ = L̃, then L

(s)
� = Lm0K� and L� is purely

inseparable over L
(s)
� ;

(5) if L
(i)
� := {Lm∩K̃ | m � 0}, then L

(i)
� is the maximal purely inseparable

extension of K� in L� and L� is separable over L
(i)
� .
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Remark. The above property (2) implies also that a separable L�/K�
can be decomposed into a sequence of separable extensions K� ⊂ K�L�(0) ⊂
· · · ⊂ K�L�(r) ⊂ · · · ⊂ K�L�(N − 1) ⊂ L�, and for any 1 � r < N , L�(r) is
separable over K�(r). In addition, the vector index ē(Lm/Km) becomes stable
for m � 0. We shall denote it as ē(L�/K�) below.

4.2. The category Ba(N), N ∈ Z�0.

Definition. Ba(N) is a full subcategory in B(N) consisting of K� ∈ B(N)
such that there is an index n∗ = n∗(K�) and a positive real number c∗ =
c∗(n∗, K�) > 0 such that for all n � n∗,

(a) [Kn+1 : Kn] = pN and ē(Kn+1/Kn) = (p, . . . , p) ∈ ZN ;
(b) if 1 � r � N , then jrn := j(Kn+1(r)/Kn(r)) ∈ Jr and pr1(jrn) � pnc∗.

(As usual, pr1(j) denotes the first coordinate of j ∈ Jr ⊂ Qr.)

Remarks. (1) If K� ∈ Ba(N), then for n � n∗(K�), all Kn have the same
last residue field.

(2) With the above notation, K� ∈ Ba(N) will be called a tower with
the index parameter n∗ and the ramification parameter c∗; notice that any
n′∗ � n∗ and 0 < c′ � c∗ can also be taken as such parameters for K�.

(3) For n � n∗(K�), the condition (a) implies the equality of valuations
pvKn

and vKn+1 . We shall use this to define the N -valuation vK� :=
limn→∞ p−nvKn

below. Due to the above remark (2), we shall also be able to
assume that the parameter c∗ = c∗(n∗, K�) satisfies the restriction pr1 vK�(p) �
c∗/p. The number c∗/p will be denoted below as c∗1(n

∗, K�).
(4) From condition (b) it follows that if m � n∗(K�), 1 � r � N and

j ∈ Jr is such that pr1(j) < pmc∗, then ϕKm+1/Km
(j) = j. Therefore, the

composition property of the Herbrand function implies that for such j and
all n � m, ϕKn/K0(j) = ϕKm/K0(j). Therefore, there is a limit function
ϕK� := limm→∞ ϕKm/K0 .

Proposition 4.1. Suppose K�, L� ∈ B(N) and L� is a separable extension
of K�. If K� ∈ Ba(N), then L� ∈ Ba(N).

Proof. Suppose K� has parameters n∗ = n∗(K�) and c∗ = c∗(n∗, K�).
If L� = {Lm | m � 0}, then we can assume that there is an m0 � n∗

such that for all m � m0 and 1 � r � N , Lm+1(r) = Lm(r)Km+1(r) and
[Lm(r) : Km(r)] = d(L�(r)/K�(r)) is independent on m. This implies that for
m � m0, [Lm+1 : Lm] = pN and ē(Lm+1/Lm) = (p, . . . , p). In other words,
L� satisfies the requirement (a) of the above definition of objects in Ba(N).

Prove that L� satisfies condition (b) from the definition of objects from
Ba(N).

First, consider the case K�(N − 1) = L�(N − 1).
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We must prove that if j′m = j(Lm+1/Lm) and m0 � 0, then there is a
c′∗ > 0 such that for all m � m0, pr1(j′m) � pmc′∗.

Let αm = j(Lm/Km) and jm = j(Km+1/Km). Notice that αm, jm ∈ JN .
Lemma 4.2. Suppose m � m0. Then
(1) αm+1 � max{pαm − (p − 1)jm, αm};
(2) if αm < jm, then αm = αm+1.
Proof. By the composition property of Herbrand’s function we have

(1) ϕLm+1/Km
(j) = ϕKm+1/Km

(
ϕLm+1/Km+1(j)

)
for any j ∈ J(N). Looking at the last edge point we obtain

j(Lm+1/Km) = max
{
ϕKm+1/Km

(αm+1), jm

}
.

On the other hand, Lm+1 = LmKm+1 implies that j(Lm+1/Km) =
max{αm, jm}.

Therefore,
— if αm � jm, then ϕKm+1/Km

(αm+1) � αm;
— if αm < jm, then αm and ϕKm+1/Km

(αm+1) coincide because they both
appear as second coordinates of the pre-last edge point of ϕLm+1/Km

.
It remains only to notice that for j ∈ JN (cf. example in section 3.3),

ϕKm+1/Km
(j) =

{
j, if j � jm;

jm + 1
p (j − jm), if j � jm.

The lemma is proved. �
Lemma 4.3. If m � m0 and αm < jm, then ϕLm/Km

= ϕLm+1/Km+1 .
Proof. Notice first that j(Lm+1/Km) = max{αm, jm} = jm and αm+1 =

αm < jm.
Then (1) implies that the largest edge point of ϕLm+1/Km

comes from
the edge point of ϕKm+1/Km

and they both have the same multiplicity p.
Therefore, all edge points of ϕLm+1/Km

, apart from the largest one, coincide
with the edge points of ϕLm+1/Km+1 counting multiplicities.

Let j′m = j(Lm+1/Lm). Then for all j ∈ J(N),

(2) ϕLm+1/Km
(j) = ϕLm/Km

(ϕLm+1/Lm
(j))

implies that

jm = j(Lm+1/Km) = max{αm, ϕLm/Km
(j′m)} = ϕLm/Km

(j′m).

Again, the largest edge point of ϕLm+1/Km
comes from the edge point of

ϕLm/Km
. So, all edge points of ϕLm+1/Km

, apart from the largest one, coincide
with the edge points of ϕLm/Km

counting multiplicities.
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So, ϕLm/Km
= ϕLm+1/Km+1 because they have the same edge points count-

ing multiplicities.
The lemma is proved. �
We continue the proof of our proposition.
If m � m0, then pr1(jm/pm) � c∗. By taking, if necessary, a bigger m0 we

can assume that for all m � m0, αm < jm. Indeed, Lemma 4.2 implies that

αm+1

pm+1
� max

{
αm

pm
−

(
1 − 1

p

)
(c∗, 0, . . . , 0),

αm

pm+1

}
,

therefore, αm/pm tends to 0. Hence for a sufficiently large m0 we have that
pr1(αm/pm) < c∗ and αm < jm if m � m0. Then by Lemma 4.3 the Herbrand
functions of the extensions Lm/Km with m � m0 coincide. Denote this func-
tion by ϕL�/K� and notice that ϕL�/K�(j

′
m) = jm, where j′m = j(Lm+1/Lm)

(cf. the proof of Lemma 4.3).
It remains to notice that ϕL�/K� is a piecewise linear function and from its

definition it follows that for any j ∈ JN , the number pr1(ϕL�/K�)(j) depends
only on pr1(j). This gives a piecewise convex linear function α �→ ϕ1(α) =
pr1 ϕL�/K�((α, 0, . . . , 0)) on R�0 with the last slope 1/e1 = 1/d(L�/K�) if
N = 1 and e1 = 1 if N > 1. (Note that we are considering the case where
L�(N −1) = K�(N −1).) So, for any given 0 < γ < 1, there is an m0 such that
for all m � m0, the conditions pr1(jm) � pmc∗ and ϕ1(pr1(j′m)) = pr1(jm)
imply that pr1(j′m) � pme1c∗γ. Taking γ = 1/2 we obtain that for a suffi-
ciently large index parameter n∗ = n∗(L�), L� has the ramification parameter
c∗(n∗, L�) = e1c∗/2.

Consider the case of a general separable extension L�/K�, where K� ∈
Ba(N) with parameters n∗ = n∗(K�) and c∗ = c∗(n∗, K�). Then our proposi-
tion is implied by the following lemma.

Lemma 4.4. If e1 = pr1(ē(L�/K�)), then for a sufficiently large parameter
m∗ = n∗(L�), one can take for L� the ramification parameter c∗(m∗, L�) =
e1c∗/2N .

Proof. Apply induction on N � 1.
The case N = 1 follows from the above considerations.
Let N � 2. Then we have two separable extensions K� ⊂ E� ⊂ L�, where

for any m � 0, Em = KmLm(N − 1).
Prove that for n � 0, one can take c∗(n, E�) = e1c∗/2N−1.
Indeed, if 1 � r < N , then

pr1 j(Em+1(r)/Em(r)) = pr1 j(Lm+1(r)/Lm(r)) � e1c∗/2r � e1c∗/2N−1
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by the inductive assumption. Compare the values of the Herbrand functions
of Em+1/Em and Km+1/Km for j ∈ JN . In both cases the definition of the
Herbrand function uses two ingredients:

— the canonical valuations vEm+1 and vKm+1 , which differ by the factor
(e1, . . . , eN−1, 1), where ē(L�/K�) = (e1, . . . , eN−1, eN ).

— the ramification indices ē(Em+1/Em) and ē(Km+1/Km), which are both
equal to (p, . . . , p) for m � 0.

This implies that for any j ∈ JN ,

ϕEm+1/Em
(j) = (e1, . . . , eN−1, 1)ϕKm+1/Km

((e1, . . . , eN−1, 1)−1j).

Therefore, j(Em+1/Em)=(e1, . . . , eN−1, 1)j(Km+1/Km) and pr1 j(Em+1/Em)
� pme1c∗.

So, for n � 0, c∗(n, E�) = min{e1c∗, e1c∗/2N−1} = e1c∗/2N−1. Finally,
because E�(N−1) = L�(N−1) we have L� ∈ Ba(N) and for n � 0, c∗(n, L�) =
pr1(1, . . . , 1, eN )c∗(n, E�)/2 = e1c∗/2N .

The lemma is proved. �
Remark. Suppose K�, L� ∈ Ba(N) and L� is separable over K�. Then

the above arguments give the equality of the Herbrand functions ϕLm/Km
for

m � 0. This function will be denoted below as ϕL�/K� .
4.3. The category Bfa(N).
4.3.1. Suppose K� ∈ Ba(N) with an index parameter n∗ = n∗(K�) and a

ramification parameter c∗(n∗, K�).
Definition. If indices u1, . . . , uN are such that n∗ � uN � uN−1 � · · · �

u1, then Ku1...uN
:= Ku1(1) . . .KuN−1(N − 1)KuN

. We shall denote this field
with its natural F -structure below also as Kū, where ū = (u1, . . . , uN ).

Definition. Bfa(N) is the full subcategory of all K� ∈ Ba(N) such that for
some vector index parameter ū0 = ū0(K�), Kū0 has a standard F -structure.

Remark. If ū0 = ū0(K�) is the above vector index parameter, then we
always assume that the corresponding index parameter n∗(K�) equals u0

N .
K� will be called a tower with the vector index parameter ū0 = ū0(K�) and
the ramification parameter c∗ = c∗(ū0, K�). Note that we use the notation
c∗1 = c∗1(ū0, K�) := c∗/p and assume that pr1(vK�(p)) � c∗1.

A tower extension L� ⊃ K� will be called finite Galois if it is finite separable
and there is an index m0 such that for all m � m0, all Lm ⊃ Km are Galois.
Equivalently, there is a finite Galois field extension L of Km0 such that for all
m � m0, Lm = LKm.

Proposition 4.5. Suppose L� ⊃ K� is a separable extension in Ba(N).
Then there is a finite Galois extension L̃� of K� such that L̃� ⊃ L� and L̃� ∈
Bfa(N).
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Proof. Let n∗ = n∗(L�) = n∗(K�). Choose a finite Galois extension E of
Kn∗ such that E� = EK� ⊃ L�. Then E� ∈ Ba(N) (cf. section 4.2) and we can
assume that n∗ = n∗(E�). Take a finite extension F of En∗(N − 1) such that
(En∗F, F ) is standard in the category LC(N).

Let F� = FK�(N−1). We can assume that m∗ := n∗(F�) = n∗(K�(N−1)) �
n∗. By induction there is a finite Galois extension H of Km∗(N −1) such that
H� = HK�(N − 1) ⊃ F� and H� ∈ Bfa(N − 1). Then (En∗H, H) ∈ LC(N)
is still standard and, therefore, HE� ∈ Bfa(N). At the same time, HE� is
Galois over K� as a composite of Galois extensions.

The proposition is proved. �
Remark. The above proposition shows that for a given K� ∈ Ba(N), the

family of all its Galois extensions in Bfa(N) is cofinal in the family of all its
separable extensions in Ba(N).

4.3.2. The following proposition (or more precisely, its applications below)
plays an important role in the construction of an analogue of the field-of-norms
functor.

Proposition 4.6. Suppose K� ∈ Bfa(N). Then for any u � u0
N (K�), there

is a v = v(u) � u such that (KuKv(N − 1), Kv(N − 1)) ∈ LC(N) is standard.
In sections 4.3.3–4.3.6 below we assume that this proposition is proved

and consider its applications. We need these applications later on in our
construction of the field-of-norms functor. We also need them in dimension
< N , when proving the above Proposition 4.6 by induction on N in section 4.4.

Notice, if Proposition 4.6 holds with a function v(u), then this proposition
also holds with any function v1(u) such that v1(u) � v(u) for all u � u0

N (K�).
4.3.3. Structural functions mr, 1 � r < N .
Proposition 4.7. Suppose K� ∈ Bfa(N) with the index parameter ū0(K�)

= (u0
1, . . . , u

0
N ). Then for 1 � r < N , there are non-decreasing functions

mr : Z�u0
r+1

−→ Z�u0
r

such that for any u � u0
r+1, mr(u) � u and for any

u1, . . . , uN , uN−1 � mN−1(uN ), . . . , u1 � m1(u2), Ku1u2...uN
has a standard

F -structure.
Proof. Use induction on N .
If N = 1, there is nothing to prove.
Assume that N > 1. Then K�(N −1) ∈ Bfa(N −1) and there are functions

mr : Z�u0
r+1

−→ Z�u0
r
, where 1 � r � N − 2, such that if uN−1 � u0

N−1,
uN−2 � mN−2(uN−1), . . . , u1 � m1(u2), then K(N − 1)u1...uN−1 has a stan-
dard F -structure.

If u � u0
N , take v = v(u) � u0

N−1 from Proposition 4.6. Then define
mN−1 : Z�u0

N
−→ Z�u0

N−1
by the relation

mN−1(u) = max{v(u′) | u0
N � u′ � u}.



FIELD-OF-NORMS FUNCTOR AND THE GROTHENDIECK CONJECTURE 699

Then this collection of functions mr, 1 � r < N , satisfies the requirements of
our proposition. �

Remark. With the above notation, suppose the indices (v0
1 , . . . , v

0
N ) are

such that v0
1 � · · · � v0

N and the functions nr : Z�v0
r+1

−→ Z�v0
r
, 1 �

r < N , are such that v0
r+1 � u0

r+1 and nr(u) � mr(u) for all u � v0
r+1.

Then the proposition holds also with the new indices v0
1 , . . . , v0

N and the new
functions nN−1, . . . , n1. In particular, we can assume (if necessary) that the
functions mr from our proposition are strictly increasing. For a similar reason,
if L�, K� ∈ Bfa(N), then we can always choose a common vector parameter
ū0(L�) = ū0(K�) and common corresponding functions m1, . . . , mN−1 such
that Proposition 4.7 holds for both K� and L�.

4.3.4. Local parameters. Suppose K� ∈ Bfa(N) and for 1 � r < N ,
mr : Z�u0

r+1
−→ Z�u0

r
are corresponding functions from Proposition 4.7. We

always assume in this situation that n∗(K�) = u0
N and mr(u0

r+1) = u0
r for all

1 � r < N .
For 1 � r � N and vr � u0

r, fix a choice of an rth local parameter t
(r)
vr in

the field Kv1(1) . . .Kvr
(r), where vr−1 = mr−1(vr), . . . , v1 = m1(v2).

Proposition 4.8. For any indices u1,. . . , uN such that uN � u0
N , uN−1 �

mN−1(uN ), . . . , u1 � m1(u2), the above introduced elements t
(1)
u1 , . . . , t

(N)
uN give

a system of local parameters in the field Kū = Ku1(1) . . .KuN−1(N − 1)KuN
.

Proof. If N = 1, there is nothing to prove.
If N > 1 we can assume by induction that t

(1)
u1 , . . . , t

(N−1)
uN−1 is a system of

local parameters in E = Ku1(1) . . .KuN−1(N − 1).
Let vN−1 = mN−1(uN ), vN−2 = mN−2(vN−1),. . . , v1 = m1(v2). Let E′ =

Kv1(1) . . .KvN−1(N − 1), then Kv̄ = E′KuN
with v̄ = (v1, . . . , vN−1, uN ).

Clearly, E′ ⊂ E and (Kv̄, E
′) ∈ LC(N) is standard. Therefore, (Kv̄E, E) is

also standard and t
(N)
uN extends the system of local parameters t

(1)
u1 , . . . , t

(N−1)
uN−1

of E to a system of local parameters of Kū = Kv̄E.
The proposition is proved. �

4.3.5. Construction of special extensions. Assume that K� ∈ Bfa(N)
is given via the above notation. Assume, in addition, that the functions mr,
1 � r < N , are strictly increasing. Under these assumptions, for any n ∈ N,
set vn

N = u0
N + n− 1 and define the vector v̄n = (vn

1 , . . . , vn
N ) by the relations

vn
N−1 = mN−1(vn

N + 1), . . . , vn
1 = m1(vn

2 + 1). Notice that for any indices
w1, . . . , wN such that vn

r � wr � vn
r +1 with 1 � r � N , the field Kw1...wN

has
a standard F -structure. Indeed, for any 1 � r < N , we have the inequalities
mr(wr+1) � mr(vn

r+1 + 1) = vn
r � wr.
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Set for all n ∈ N, ūn = (vn
1 +1, . . . , vn

N +1), Ov̄n = OKv̄n and Oūn = OKūn .
Notice that we have natural embeddings

Oū0 ⊂ Ov̄1 ⊂ Oū1 ⊂ · · · ⊂ Ov̄n ⊂ Oūn ⊂ . . . .

Indeed, the embedding Oū0 ⊂ Ov̄1 exists because v1
N = u0

N and for 1 � r < N ,
v1

r+1 � u0
r+1 implies that v1

r = mr(v1
r+1 + 1) > mr(u0

r+1) = u0
r. The existence

of the embeddings Ov̄n ⊂ Oūn for n ∈ N is obvious, because for any 1 � r �
N , vn

r < un
r = vn

r + 1. In order to prove the existence of the embeddings
Oūn ⊂ Ov̄n+1 for n ∈ N, compare ūn and v̄n+1. Clearly, u0

N = v1
N and for

n � 1, un
N = vn

N + 1 = u0
N + n = vn+1

N . Suppose 1 � r < N and un
r+1 � vn+1

r+1 .
Then un

r = vn
r + 1 = mr(vn

r+1 + 1) + 1 = mr(un
r+1) + 1 � mr(vn+1

r+1 ) + 1 �
mr(vn+1

r+1 + 1) = vn+1
r .

For any u � u0
N , let vKu

be the canonical N -valuation associated with Ku

(cf. section 3.2(b)). Then vK� := vKu
/pu does not depend on the choice of

u (cf. Remark (3) in section 4.2). Introduce the 1-valuations v1
Ku

:= pr1 vKu

and v1
K� = pr1 vK� . For any c > 0, set

m1
K�(c) = {o ∈ OC(N)p

| v1
K�(o) � c}.

For any subring O in OC(N)p
, agree to denote by O mod m1

K�(c) the image of
O in OC(N)p

mod m1
K�(c). Then for any n � 0, there are natural inclusions

Oūn mod m1
K�(c) ⊂ Ov̄n+1 mod m1

K�(c) ⊂ Oūn+1 mod m1
K�(c).

Proposition 4.9. Let c∗1 = c∗(u0
N , K�)/p. If c∗1 � v1

K�(p) (cf. Remark
(3) in section 4.2), then for all n ∈ N, the pth power map induces a ring
epimorphism

Oūn mod m1
K�(c

∗
1) −→ Ov̄n mod m1

K�(c
∗
1).

Proof. Note that for n ∈ N, ūn = (un
1 , . . . , un

N ) = (vn
1 + 1, . . . , vn

N + 1). Let
1 � r � N and let t

(r)
un

r
be the rth local parameter for Kūn(r) from section

4.3.4. It will be sufficient to prove that its pth power is congruent modulo
m1

K�(c
∗
1) to some rth local parameter of the field Kv̄n(r). By induction we can

assume that r = N .
Let E = Kv̄n , E′ = Kv̄n(t(N)

un
N

) ⊂ Kūn . Then [E′ : E] = p and both these
fields have a standard F -structure. If τ ∈ IE′/E and τ 
= id, then

v1
Kun

N

(
τt

(N)
un

N
− t

(N)
un

N

)
� pvn

N c∗

(cf. the definition of objects of Ba(N) in section 4.2 and use the Herbrand
function from section 3.3). This implies that all conjugates to t

(N)
un

N
over E are

congruent modulo m1
K�(c

∗/p) = m1
K�(c

∗
1). Therefore, the pth power of t

(N)
un

N
is
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congruent modulo m1
K�(c

∗
1) to the norm NE′/E

(
t
(N)
un

N

)
, which is an Nth local

parameter in Kv̄n .
The proposition is proved. �
Corollary 4.10. With the above notation and assumptions the field tower

Kū0 ⊂ Kv̄1 ⊂ Kū1 ⊂ Kv̄2 ⊂ · · · ⊂ Kv̄n ⊂ Kūn ⊂ . . .

satisfies condition C from section 2.6 with the parameter c = c∗1(ū
0, K�) =

c∗(ū0, K�)/p.
4.3.6. A modified system of local parameters. As earlier, we have

K� ∈ Bfa(N) together with the corresponding strictly increasing functions
mr : Z�u0

r+1
−→ Z�u0

r
for 1 � r < N .

For 1 � r < N , define U(m1, . . . , mr)⊂Zr+1 as the set of ū=(u1, . . . , ur+1)
such that ur+1 � u0

r+1 + 1, ur � mr(ur+1) + 1,. . . , u1 � m1(u2) + 1.
Notice that ū = (u1, . . . , uN ) ∈ U(m1, . . . , mN−1) if and only if v̄ =

(v1, . . . , vN ) := (u1−1, . . . , uN −1) satisfies the restrictions vN � u0
N , vN−1 �

mN−1(vN + 1), . . . , v1 � m1(v2 + 1). In other words, the vectors ū ∈
U(m1, . . . , mN−1) can be taken as the vectors ūn, where n ∈ N, in the tow-
ers from Corollary 4.10. In particular, the pth power map induces a ring
epimorphism

OKū
mod m1

K�(c
∗
1) −→ OKv̄

mod m1
K�(c

∗
1).

Proposition 4.11. For all 1 � r � N and u � u0
r, there are τ

(r)
u ∈ C(r)p

such that:
(a) τ

(1)

u0
1

, . . . , τ
(N)

u0
N

is a given system of local parameters in Kū0 ;

(b) τ
(r)p
u+1 ≡ τ

(r)
u mod m1

K�(c
∗
1);

(c) if ū = (u1, . . . , ur) ∈ U(m1, . . . , mr−1), then τ
(1)
u1 , . . . , τ

(r)
ur is a system

of local parameters in Kū(r).
Proof. Use induction on 0 � r � N . If r = 0, there is nothing to prove.

So, it will be sufficient to define τ
(N)
u with u � u0

N .
Set τ

(N)

u0
N

= t
(N)

u0
N

(cf. section 4.3.4).
Then use induction on n � 0, where u = u0

N + n. We can assume that
τ

(N)

u0
N+n−1

= τ
(N)
vn

N
∈ Ov̄n has already been constructed. By Proposition 4.9 we

can take τ
(N)

u0
N+n

= τ
(N)
un

N
∈ Oūn such that

τ
(N)p
un

N
≡ τ

(N)
vn

N
mod m1

K�(c
∗
1).

Clearly, this is an Nth local parameter in Kūn .
It remains to prove the property (c) for r = N . We must prove that if

ū = (u1, . . . , uN ) ∈ U(m1, . . . , mN−1) and ūn = (un
1 , . . . , un

N ) is such that
un

N = uN , then ur � un
r for all 1 � r � N .
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Indeed, it holds with r = N . Suppose 1 � r < N and ur+1 � un
r+1. Then

ur � mr(ur+1) + 1 � mr(un
r+1) + 1 = mr(vn

r+1 + 1) + 1 = vn
r + 1 = un

r .

The proposition is proved. �
4.4. Proof of Proposition 4.6. Notice that there is nothing to prove

if N = 1 and use induction on N by assuming that the proposition holds in
dimensions < N .

Therefore, we can use the result of Corollary 4.10 in dimensions < N . It
remains to note that if Kv̄n is F -standard, then Kvn

N+1Kv̄n is elementary in-
fernal over Kv̄n , due to the condition on the upper ramification numbers from
the definition of objects of the category Ba from section 4.2. So, Proposition
4.6 follows from case (b) of the procedure of elimination of wild ramification
from section 2.3 via an analogue of the tower from Corollary 4.10 constructed
for K�(N − 1).

5. Family of fields X(K�), K� ∈ Bfa(N)

5.1. Fontaine’s field R0(N). Recall that objects K ∈ LF0(N) are
realised as subfields in C(N)p. They are closed subfields with induced F -
structure and P -topology. Any K ∈ LF0(N) has a canonical valuation vK of
rank N .

Notice that if K ′ ∈ LF0(N), then vK′ = ᾱvK with some ᾱ ∈ QN
>0, and

therefore, all such valuations belong to the same class of equivalent valuations.
If K ∈ LF0(N) and vK is the extension of its canonical valuation of rank N to
C(N)p, then OC(N)p

= {o ∈ C(N)p | vK(o) � 0̄N}. For any c > 0, m1
K(c) :=

{o ∈ C(N)p | v1
K(o) � c} is an ideal in OC(N)p

(as earlier, v1
K := pr1(vK)).

Set R(N) = lim←−
n

(OC(N)p
mod p)n where the connecting morphisms are in-

duced by the pth power map. Then R(N) is an integral domain and its
fraction field R0(N) is a perfect field of characteristic p. The F -structure on
C(N)p induces the F -structure on R0(N) given by the decreasing sequence of
the subfields

R0(N) ⊃ R0(N − 1) ⊃ · · · ⊃ R0(1) ⊃ R0(0).

In addition, the field R0(0) consists of the sequences {αp−n}n�0, where α ∈ F̄p.
The map {αp−n}n�0 �→ α identifies R0(0) with F̄p, in particular, any finite
field of characteristic p can be embedded naturally into R0(N).

Notice that R = R(1) and Frac R = R0(1) is the original notation intro-
duced for the corresponding 1-dimensional objects by J.-M. Fontaine.
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Let K� ∈ Ba(N). It determines the N -valuation on C(N)p given by the
formula vK� = lim

n→∞
(vKn

/pn). Define the N -valuation vR,K� on R0(N). If

r̄ = (rn)n�0 ∈ R(N), then

vR,K�(r̄) = lim
n→∞

pnvK�(r̂n) = lim
n→∞

vKn
(r̂n)

where r̂n ∈ OC(N)p
is such that r̂n mod p = rn. (For n � 0, vKn

(r̂n) < vKn
(p)

and then vKn+1(r̂n+1) = p−1vKn+1(r̂
p
n+1) = vKn

(r̂n).)
If L� ∈ Ba(N), then vR,L� = ᾱvR,K� with ᾱ ∈ QN

>0. Therefore, the equiva-
lence class of valuations vR,K� does not depend on the choice of K�.

For c > 0, set m1
R,K�(c) = {o ∈ R(N) | v1

R,K�(o) � c}, where v1
R,K� =

pr1 vR,K� .
The following proposition is just an easy consequence of the above defini-

tions.
Proposition 5.1. Suppose c > 0 is such that p ∈ m1

K�(c) (or, equivalently,
v1

K�(p) � p). Then:
(a) R(N) = lim←−

n

(OC(N)p
mod m1

K�(c))n, where all connecting morphisms are

induced by the pth power map;
(b) for any u � 0, the uth projection pru : R(N) −→ OC(N)p

mod m1
K�(c)

induces a ring isomorphism of R(N) modm1
R,K�(p

uc) and OC(N)p
mod m1

K�(c).
Proof. Let r̄ = (rn mod p). Take n0 � 0 such that pn0c � v1

K�(p). Consider
the map ι : R(N) −→ lim←−

n

(OC(N)p
mod m1

K�(c))n given by the correspondence

r �→ (rn modm1
K�(c))n�0. Then:

— ι is injective.
Indeed, suppose for all n � 0, rn ∈ m1

K�(c). Then for n � 0, rn ≡ rpn0

n+n0
≡

0 mod p.
— ι is surjective.
Indeed, suppose u = (un mod m1

K�(c)) ∈ lim←−
n

(OC(N)p
mod m1

K�(c))n. Then

r = (upn0

n+n0
mod p)n ∈ R(N) and ι(r) = u. �

Remark. OC(N)p
is equipped with the P -topology induced by the induc-

tive limit of the P -topologies on all fields K ∈ LF0(N). This topology induces
the P -topology on R(N) and R0(N). With respect to this topology the arith-
metic operations in R0(N) are sequentially P -continuous.

5.2. The family of fields X(K�). Suppose K� ∈ Bfa(N) with the vec-
tor index parameter ū0(K�) = (u0

1, . . . , u
0
N ) and the ramification parameter

c∗ = c∗(u0
N , K�). As earlier in section 4.3.3, choose for all 1 � r < N , the

corresponding strictly increasing functions mr : Z�u0
r+1

−→ Z�u0
r

and ele-

ments τ
(r)
u , where u � u0

r, such that τ
(r)
ur is the rth local parameter in Kū(r)

if ū = (u1, . . . , ur) ∈ U(m1, . . . , mr−1).



704 VICTOR ABRASHKIN

For c∗1 = c∗/p, set

τ (r) = (τ (r)
u mod m1

K�(c
∗
1))u�u0

r
∈ lim←−

u

(OC(N)p
mod m1

K�(c
∗
1))u = R(N).

Let k = k(K�) be the last residue field of Ku0
N

(this is also the residue field
for all Ku with u � u0

N ). As mentioned in section 5.1, k can be naturally
identified with a subfield in R0(0) ⊂ R0(N).

Proposition 5.2. The correspondences T1 �→ τ (1),. . . , TN �→ τ (N) deter-
mine a unique P -continuous identification ι of the N-dimensional local field
K = k((TN )) . . . ((T1)) and the N-dimensional local subfield in R0(N) with
the system of local parameters τ (1), . . . , τ (N) and the residue field k.

Proof. We need the following obvious lemma.
Lemma 5.3. Suppose L ∈ LF0(N) has a standard F -structure, which

is compatible with given local parameters t1, . . . , tN . If c > 0 is such that
p ∈ m1

L(c), then any o ∈ OL can be uniquely presented modulo m1
L(c) in the

form ∑
a1<c

αāta1
1 . . . taN

N .

Remark. The coefficients [αā] are the Teichmüller representatives of the
elements of the last residue field of L and satisfy the standard restrictions
from the beginning of section 1.1.

Continue the proof of Proposition 5.2.
We first prove that the power series

(3)
∑

ā�0̄N

αāτ (1)a1 . . . τ (N)aN

converges in R(N) if its coefficients αā satisfy the restrictions described in
section 1.1. This is equivalent to the fact that for all u > u0

N , the series

(4)
∑

ā�0̄N

αp−u

ā τ (1)a1
u . . . τ (N)aN

u

converge to elements fu ∈ OC(N)p
such that fp

u+1 ≡ fu mod m1
K�(c

∗
1).

Let v̄(u) = (u1, . . . uN−1, uN ) ∈ U(m1, . . . , mN−1) be such that uN = u.
Then for 1 � r � N , it holds u � ur and

τ (r)
u ≡ τ (r)pur−u

ur
mod m1

K�(c
∗
1).

This means that the above series (4) can be expressed in terms of local pa-
rameters of the field Kv̄(u), its coefficients [αā]p

−u

satisfy the restrictions from
section 1.1 and, therefore, this series converges in Ov̄(u) ⊂ OC(N)p

. Denote
this limit by fv̄(u). Clearly, the elements fv̄(u) do not depend modulo m1

K�(c
∗
1)

on the choice of v̄(u).
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For u > u0
N , prove the congruences fp

u+1 ≡ fu mod m1
K�(c

∗
1).

Choose v̄(u + 1) ∈ U(m1, . . . , mN−1). Then we can take v̄(u) :=
v̄(u + 1)− (1, . . . , 1) ∈ U(m1, . . . , mN−1). Then the congruences from 4.10(a)
imply that

fp
u+1 ≡ fp

v̄(u+1) ≡ fv̄(u) ≡ fu mod m1
K�(c

∗
1).

So, the map ι|OK : OK −→ R(N) is well defined.
Then the uniqueness property from Lemma 5.3 implies that any element

from R(N) can be presented in at most one way as a sum of the series (3).
Indeed, suppose ∑

ā�0̄N

αāτ (1)a1 . . . τ (N)aN = 0

in R(N). Then for all u � 0 and v̄(u) = (u1, . . . , uN−1, u)∈U(m1, . . . , mN−1),∑
ā�0̄N

αp−u

ā τ (1)pu1−ua1
u1

. . . τ (N−1)puN−1−uaN−1
uN−1

τ (N)aN
u ∈ m1

K�(c
∗
1).

In other words, if ᾱ = (a1, . . . , aN−1, aN ) is such that αā 
= 0, then τ
(1)pu1−ua1
u1

∈ m1
K�(c

∗
1) and a1p

−uv1
K�(τ

(1)pu1

u1 ) � c∗1. But this is impossible because
v1

K�(τ
(1)pu1

u1 ) = v1
Ku1

(τ (1)
u1 ) = 1 does not depend on u.

So, all αā = 0 and the image ι(K) is an N -dimensional local field with the
set of local parameters τ (1), . . . , τ (N).

The proposition is proved. �
Notice that the above fields ι(K) ⊂ R0(N) are not uniquely determined

by a given K� ∈ Bfa(N). They do depend on the choice of the structural
functions m1, . . . , mN−1 and on the next choice of the modified system of lo-
cal parameters {τ (r)

u }u�u0
r
, 1 � r � N . Denote by X(K�; m1, . . . , mN−1) the

family of all fields K which can be constructed for a given tower K� by the
use of a given vector-index ū0(K�) and the ramification invariant c∗(ū0, K�)
together with an appropriate choice of strictly increasing structural functions
m1, . . . , mN−1. Notice that taking a bigger vector-index, and a smaller rami-
fication invariant together with the contraction of the domain of definition
of functions m1, . . . , mN−1 doesn’t affect this family. For a fixed K�, all
X(K�, m1, . . . , mN−1) form an inductive system. Its limit we shall denote
by X(K�).

5.3. The categories LFR(N) and ˜LFR(N). Consider the category
LFR(N) of all N -dimensional closed subfields K in R0(N) together with
the induced F -structure given by the subfields of r-dimensional constants
K(r) = R0(r) ∩ K, 0 � r � N . If K,L ∈ LFR(N), then HomLFR(N)(K,L)
consists of sequentially P -continuous morphisms f : R0(N) −→ R0(N), which
are compatible with F -structure and such that f(K) ⊂ L.
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Suppose that v1 is a 1-dimensional valuation coinciding with one of equiv-
alent valuations pr1 vR,K� , where K� ∈ Bfa(N). For a subfield L in R0(N)
denote by R(L) the v1-adic closure of the maximal inseparable extension of
L in R0(N).

Definition. If K,L ∈ LFR(N), then K ∼ L if for 1 � r � N ,
K(r)R(K(r − 1)) = L(r)R(L(r − 1)), where the composite is taken in the
category of v1-adic closed subfields of R0(N).

Clearly, the above-defined relation ∼ is an equivalence relation. Denote by
L̃FR(N) the category whose objects are the equivalence classes cl(K) of all
K ∈ LFR(N) and for any cl(K), cl(L) ∈ L̃FR(N), Hom

L̃FR(N)
(cl(K), cl(L))

consists of sequentially P -continuous field morphisms f : R0(N) −→ R0(N)
which are compatible with F -structure and such that for any 1 � r � N ,
f(K(r)) ⊂ L(r)R(L(r − 1)).

We shall need below the following property, which is an easy consequence
of the (usual 1-dimensional) Krasner Lemma.

Proposition 5.4. Suppose L1,L ∈ LFR(N), L1 ⊃ L is a separable ex-
tension of degree m ∈ N. If L′ ∈ LFR(N), L′ ∼ L, then there is a unique
L′

1 ∈ LFR(N) such that L′
1 is a separable extension of L′ of degree m and

L′
1 ∼ L1.

Remark. By this proposition we can use below the concept of a finite
separable extension in the category L̃FR(N).

Proof. We can proceed by induction on N and, therefore, can assume that
L1(N − 1) = L(N − 1). Then L′ ∼ L implies that L ⊂ LR(L(N − 1)) =
L′R(L′(N − 1)).

Suppose L1 = L(α), where α is a root of a separable polynomial G(T ) ∈
L[T ], deg G = m. By Krasner’s Lemma there is a finite extension E′ of
L′(N − 1) in R(L′(N − 1)) and G̃(T ) ∈ L′E′[T ] such that deg G̃ = m and
L1L′R(L′(N − 1)) = L′R(L′(N − 1))(β), where β is a root of G̃(T ). (G̃ is
a sufficiently nice v1-adic approximation of G.) Notice that E′ is a purely
inseparable extension of L′(N − 1).

Let L̃1 = L′E′(β). Then L̃1 is a separable extension of L′E′ of degree m.
Let L′

1 be a separable closure of L′ in L̃1. Then
(α) L′

1 is a separable extension of L′ of degree m;
(β) L′

1(N − 1) = L′(N − 1), because L′
1(N − 1) is a separable extension of

L′(N − 1) inside E′;
(γ) L′

1E
′ = L̃1 and this implies that L′

1R(L′
1(N − 1)) = L̃1R(L̃1(N − 1)).

Finally, notice that (β) and (γ) imply that L′
1 ∼ L̃1 ∼ L1.

The proposition is proved. �
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5.4. The class cl(K�) ∈ L̃FR(N), K� ∈ Bfa(N).
Proposition 5.5. Suppose K� ∈ Bfa(N). Then all fields from X(K�) are

equivalent in L̃FR(N).
Proof. Let ū0(K�) = (u0

1, . . . , u
0
N ) and c∗1 = c∗(ū0(K�), K�)/p be parameters

of K�.
Suppose K ∈ X(K�, m1, . . . , mN−1) is obtained via a choice of strictly

increasing functions mr : Z�u0
r+1

−→ Z�u0
r
, and a special system of local

parameters τ
(r)
u , where 1 � r � N and u � u0

r, from Proposition 4.11.
Take some u > u0

N and choose ū = (u1, . . . , uN−1, u) ∈ U(m1, . . . , mN−1).
Set Kū = K (σu−uN−1K(N − 1)) . . . (σu−u1K(1)), where σ is, as usual, the

pth power map. Then

σu−u1(τ (1)), . . . , σu−uN−1(τ (N−1)), τ (N)

is a system of local parameters in Kū which is compatible with a given stan-
dard F -structure of Kū. In particular, this will imply the equality vK =
(pu−u1 , . . . , pu−uN−1 , 1)vKū

.
For 1 � r � N , the correspondences σu−urτ (r) �→ τ

(r)
ur give the ring identi-

fication
ψū : OKū

mod m1
R,K�(p

uc∗1) � OKū
mod m1

K�(c
∗
1).

Notice that this identification transforms vKū
to vKū

. Therefore, ψū trans-
forms vK to vKu

= puvK� for u > u0
N .

If ū′ = (u′
1, . . . , u

′
N−1, u) ∈ U(m1, . . . , mN−1) is such that u′

r � ur for
all 1 � r < N , then ψū and ψū′ are compatible via the natural inclusions
Kū ⊂ Kū′ and OKū

⊂ OKū′ . Therefore, the uth projection pru : R(N) −→
OC(N)p

mod m1
K�(c

∗
1) induces the identification

ψu : OKR(K(N−1)) mod m1
R,K�(p

uc∗1) −→ O(u) mod m1
K�(c

∗
1)

where O(u) is the valuation ring of the composite of all Kū with ū running over
the set of all ū = (u1, . . . , uN−1, uN ) ∈ U(m1, . . . , mN−1) such that uN = u.

In order to understand the relation between different ψu, notice that if
v̄(u + 1) = (u1, . . . , uN−1, u + 1) ∈ U(m1, . . . , mN−1), then v̄(u) =
(u1 − 1, . . . , uN−1 − 1, u) ∈ U(m1, . . . , mN−1) and Kv̄(u) = Kv̄(u+1). This
implies that ψv̄(u) and ψv̄(u+1) fit into a commutative diagram via the natural
projection

OKv̄(u+1) mod m1
R,K�(p

u+1c∗1) −→ OKv̄(u) modm1
R,K�(p

uc∗1)

and the restriction of the transition morphism of the projective system
OC(N)p

mod m1
K�(c

∗
1) from the definition of R(N). Therefore, lim←−

u

ψu iden-

tifies OKR(K(N−1)) with lim←−
u

(O(u) mod m1
K�(c

∗
1))u ⊂ R(N). In particular,
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KR(K(N −1)) does not depend on the choice of functions m1, . . . , mN−1 and
the corresponding system of modified local parameters. For similar reasons
we also have the similar property for all K(r)R(K(r − 1)) with 1 � r < N .

The proposition is proved. �
If K� ∈ Bfa(N), then set cl(K�) := cl(K) ∈ L̃FR(N), where K ∈ X(K�).

So, cl(K�) denotes the class of equivalence of fields K ∈ X(K�) in the category
LFR(N). Notice that if K ∈ cl(K�), then vK = vR,K� . Indeed, ψū transforms
vK to puvK� (cf. the proof of the above proposition) and, therefore, can be
recovered as lim←−

u

(puvK�)u = vR,K� .

For future references point out the following corollary of the above consid-
erations.

Corollary 5.6. If u > u0
N and v̄(u) ∈ U(m1, . . . , mN−1) has N th coordi-

nate u, then the uth projection pru from R(N) = lim←−
u

(OC(N)p
mod m1

K�(c
∗
1))u

to OC(N)p
mod m1

K�(c
∗
1) induces the identification

ψv̄(u) : OKv̄(u) modm1
K(puc∗1) −→ OKv̄(u) mod m1

Ku
(puc∗1)

and this identification transforms vK to vKu
.

5.5. If K�, L� ∈ Bfa(N) denote by K̃ and, resp., L̃ the p-adic completions
of the fields

⋃
m�0 Km and, resp.,

⋃
m�0 Lm.

Proposition 5.7. With the above notation, if K̃ = L̃, K ∈ cl(K�) and
L ∈ cl(L�), then R(K) = R(L).

Proof. Suppose K�, L� ∈ Bfa(N) are such that K̃ = L̃. By induction on N

we can assume that for K′ ∈ cl(K�(N − 1)) and L′ ∈ cl(L�(N − 1)), it holds
that R(K′) = R(L′). We can assume also that ū0(K�) = ū0(L�) := ū0 and
the ramification parameters c∗(ū0, K�) and c∗(ū0, L�) are such that m1

K�(c
∗
1) =

m1
L�(d

∗
1) := m1

0, where c∗1 = c∗(ū0, K�)/p and d∗1 = c∗(ū0, L�)/p. We can also
assume that K ∈ X(K�, m1, . . . , mN−1) and L ∈ X(L�, m1, . . . , mN−1) with
the same strictly increasing functions mr : Z�u0

r+1
−→ Z�u0

r
, 1 � r < N .

For any u > u0
N , choose a vector v̄(u) ∈ U(m1, . . . , mN−1) with Nth coor-

dinate u. Then there is a w̄(u) ∈ U(m1, . . . , mN−1) and an embedding

OKv̄(u) mod m1
0 ⊂ OLw̄(u) mod m1

0

induced by the embeddings Kv̄(u) ⊂ K̃, Lw̄(u) ⊂ L̃ and the identification
K̃ = L̃.

If u′ is an Nth coordinate of w̄(u), then by Corollary 5.6 we obtain the
embeddings

δu : OKv̄(u) mod m1
K(puc∗1) −→ σu−u′OLw̄(u) mod m1

K(puc∗1)
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(notice that m1
K(puc∗1) = m1

L(pud∗1)). The embedding δu, u > u0
N , is induced

by the identity morphism of R(N) modm1
K(puc∗1) and natural embeddings

of K and L into R0(N). Therefore, the projective limit of all δu induces
the embedding of OK into OR(L) and this embedding is compatible with the
natural embeddings of K and L into R0(N).

This proves that R(K) ⊂ R(L). By symmetry, we also have the opposite
embedding. The proposition is proved. �

6. Separable extensions in Bfa(N) and L̃FR(N)

6.1. In this subsection we prove that the correspondence K� �→ cl(K�),
transforms finite separable extensions in Bfa(N) to finite separable extensions
of the same degree in L̃FR(N) (cf. section 5.3).

Proposition 6.1. Suppose L�, K� ∈ Bfa(N) and L� ⊃ K� is separable of
degree d(L�/K�) = d. If K ∈ cl(K�) and L ∈ cl(L�), then cl(L) is a separable
extension of cl(K) of degree d.

Proof. We can assume that:
— ū0(K�)= ū0(L�)=(u0

1, . . . , u
0
N ), L� =Lu0

N
K� and d(L�/K�)=[Lu0

N
: Ku0

N
];

— K� and L� have common strictly increasing structural functions mr :
Z�u0

r+1
−→ Z�u0

r
, where 1 � r < N , such that mr(u0

r+1) = u0
r;

— c∗1(ū
0, L�) = e1c∗1(ū

0, K�), where e1 = pr1(ē(L�/K�)); in other words,
m1

K�(c
∗
1(ū

0, K�)) = m1
L�(c

∗
1(ū

0, L�)) (this ideal will be denoted below by m1
0);

— for all u � u0
N , the Herbrand functions of extensions Lu/Ku coincide

and are equal to ϕL�/K� and pr1(i(Lu/Ku)) + δ1N < puc∗1(ū0, L�).
We must prove that if L∈X(K�, m1, . . . , mN−1), K∈X(K�, m1, . . . , mN−1),

then L is equivalent in the category LFR(N) to a separable extension of K of
degree d.

Notice that K(N − 1) ∈ X(K�(N − 1), m1, . . . , mN−2) and L(N − 1) ∈
X(L�(N − 1), m1, . . . , mN−2). Therefore, by induction on N we can assume
that L�(N − 1) = K�(N − 1) and K(N − 1) = L(N − 1).

Consider the corresponding sequence of multi-indices ū0, v̄1, ū1, . . . , v̄n,

ūn, . . . from section 4.3.5 and the corresponding field towers:

Lū0 ⊂ Lv̄1 ⊂ Lū1 ⊂ Lv̄2 ⊂ · · · ⊂ Lv̄n ⊂ Lūn ⊂ . . .

Kū0 ⊂ Kv̄1 ⊂ Kū1 ⊂ Kv̄2 ⊂ · · · ⊂ Kv̄n ⊂ Kūn ⊂ . . .

For any u � u0
N , set n = n(u) = u − u0

N . So, if u > uN
0 , then ūn =

(un
1 , . . . , un

N−1, u) ∈ U(m1, . . . , mN−1).
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For 1 � r � N and u � u0
r, let τ

(r)
u ∈ C(r)p be the modified local parame-

ters from section 4.3.6 used to construct the field L ∈ X(L�, m1, . . . , mN−1).
They satisfy the conditions of Proposition 4.11 with K� replaced by L�.

If lim←−
u

τ
(r)
u = τr ∈ R(N) and k is the last residue field of L (and of K, as

well), then L = k((τN )) . . . ((τ1)). For u � u0
N , let τ ′

u be the norm of τ
(N)
u in

the extension Lūn/Kūn . This gives a system of Nth local parameters τ ′
u for

Kūn such that lim←−
u

τ ′
u = τ ′ ∈ R(N) and K ∼ K1 = k((τ ′))((τN−1)) . . . ((τ1)) ∈

X(K�, m1, . . . , mN−1).
For any u � u0

N , ηu := τ
(N)
u belongs to OLūn and is a root of an Nth

Eisenstein polynomial Fu(T ) = T d + a1uTN−1 + · · · + aid ∈ OKūn [T ].
Notice that for any n � 0, Lūn = Lu0

N
Kūn and we have a natural identifi-

cation of the sets ILūn /Kūn of all isomorphic embeddings of Lūn into C(N)p,
which are the identity on Kūn , with the set IL

u0
N

/K
u0

N

. Then, for any u � u0
N ,

another root of Fu appears in the form g(ηu), where g ∈ IL
u0

N
/K

u0
N

, g 
= id.

Therefore, the conditions ηp
u+1 ≡ ηu mod m1

0, imply that for all 1 � i � d,
ap

i,u+1 ≡ aiu mod m1
0. It then follows from Corollary 5.6 that for all 1 � i � d,

lim←−
u

(aiu mod m1
0)u := αi ∈ OK̃, where K̃ = KR(K(N −1)) = K1R(K1(N −1)).

Therefore, F (T ) := Tn +α1T
N−1 + · · ·+αd ∈ OK̃[T ] is the Nth Eisenstein

polynomial and η := τN ∈ L is its root. Clearly, L̃ = K̃(η), where L̃ =
LR(L(N − 1)).

Prove that L̃ is separable over K̃. Notice that for any g ∈ IL
u0

N
/K

u0
N

,

lim←−
u

g(ηu) is a root of F (T ) in R(N). It remains to prove that these roots are

different for different elements g ∈ IL
u0

N
/K

u0
N

.

Suppose g1, g2 ∈ IL
u0

N
/K

u0
N

and lim←−
u

g1(ηu) = lim←−
u

g2(ηu). Then for any

u � u0
N , g1(ηu) = g2(ηu) modm1

0. Because m1
0 = m1

Lu
(puc∗1(ū

0, L�)) this
implies for g = g−1

2 g1,

vLu
(g(ηu) − ηu) > i(Lu/Ku) + vLu

(ηu).

So, by the definition of the biggest lower ramification number i(Lu/Ku), we
have g = id, i.e. g1 = g2.

Therefore, F (T ) has d distinct roots in R(N) and L̃ is separable over K̃.
Finally, applying arguments from the proof of Proposition 5.4 we obtain

the existence of L1 ∼ L in the category LFR(N), which is separable of degree
d over K. �
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Corollary 6.2. In addition to the assumptions of the above proposition
assume that L1 ∈ cl(L) is a separable extension of K of degree d. Then:

(a) there is a natural identification of the set IL�/K� of all isomorphic em-
beddings ι of L� into C(N)p such that ι|K� = id and the set IL1/K of all
isomorphic embeddings ι : L1 −→ R0(N) such that ι|K = id;

(b) ϕL�/K� = ϕL1/K.

Proof. We can assume that K�(N − 1) = L�(N − 1). From the proof of
the above proposition we obtain a natural identification of the set IL�/K� and
the set IL̃/K̃ of all field embeddings of L̃ into R0(N) which are identical on

K̃ (notice that K(N − 1) = L1(N − 1)). Then Proposition 5.4 gives the
identification of the sets IL̃/K̃ and IL1/K.

So, for large u, we have a natural identification of the sets IL1/K and ILu/Ku

and this identification transforms vL1 to vLu
. This implies that the identifi-

cation of sets from section (a) is compatible with the ramification filtration
in lower numbering and, as a result, we obtain the equality of the Herbrand
functions ϕL�/K� = ϕLu/Ku

= ϕL1/K. �
6.2. With the above notation we are going to now prove that for a suffi-

ciently large separable extension E� of K�, the appropriate E ∈ cl(E�) contains
any given separable extension of K in R0(N). By induction on N this will be
implied by the following proposition.

Proposition 6.3. Suppose K� ∈ Bfa(N), K ∈ X(K�) and L is a finite
separable extension of K of degree d > 1 with a standard F -structure such
that K(N − 1) = L(N − 1). Then there is an L� ∈ Bfa(N) and a field
embedding ι : L −→ R0(N) such that:

(a) L� is a separable extension of K� of degree d;
(b) ι(L) ∈ cl(L�).

Proof. We can assume that:
— there are parameters ū0(K�) = (u0

1, . . . , u
0
N ), c∗1(u0

N , K�) = c∗1 and strictly
increasing structural functions mr : Z�u0

r+1
�→ Z�u0

r
, where 1 � r < N , such

that K ∈ X(K�; m1, . . . , mN−1);
— OL = OK[θ] where θ is a root of the Nth Eisenstein polynomial F(T ) =

T d + α1T
d−1 + · · · + αd ∈ OK[T ];

— if v1
K(D(F)) = D1 and u � u0

N , where D(F) is the discriminant of F ,
then 2D1 < puc∗1 − 2(d − 1)δ1N .

Consider the sequence ū0 = ū0(K�), ū1, . . . , ūn, . . . and set u = n+u0
N ; this

is the Nth coordinate of ūn. For u � u0
N , introduce the polynomials

Fu(T ) = T d + a1uT d−1 + · · · + adu ∈ OKūn [T ]
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where for 1 � u � d, aiu ∈ OKūn are such that aiu mod m1
K�(c

∗
1) = pru(αi).

Recall that the projection pru : R(N) −→ OC(N)p
mod m1

K�(c
∗
1) induces identi-

fication of OKūn mod m1
K(puc∗1) and OKūn mod m1

Ku
(puc∗1). This identification

transfers the valuation vK to the valuation vKu
(cf. Corollary 5.6). So, for all

u � u0
N , Fu are Nth Eisenstein polynomials and their discriminants D(Fu)

satisfy the following congruences

D(Fu) ≡ D(Fu+1)p mod m1
K�(c

∗
1)

and
D(Fu) modm1

Ku
(puc∗1) = D(F) modm1

K(puc∗1).

From the above restriction on D1 = v1
K(D(F)) it follows that for all u � u0

N ,
D1 < puc∗1. Therefore, D(F) /∈ m1

K(puc∗1) and vKu
(D(Fu)) = vK(D(F)).

Choose a root ηu0
N
∈ OC(N)p

of FuN
0

and set Lu0
N

= Ku0
N

(ηu0
N

). Then ηu0
N

is Nth local parameter in Lu0
N

, [Lu0
N

: Ku0
N

] = d, Lu0
N

(N − 1) = Ku0
N

(N − 1)
and ē := ē(Lu0

N
/Ku0

N
) = (1, . . . , 1, d). Notice that e1 = pr1(ē) is 1 if N 
= 1

and is d if N = 1.
For u � u0

N , we want to prove the existence of roots ηu ∈ OC(N)p
of Fu(T )

such that ηu0
N

is the above chosen root of Fu0
N

, and if Mu = Kūn(ηu), then:
(1) ηu is the Nth local parameter in Mu;
(2) Mu = Lu0

N
Kūn ;

(3) ηu − ηp
u+1 ∈ m1

Mu
(e1e1upuc∗1/2), where e1u = pr1(ē(Kūn/Ku)).

Notice that Mu0
N

= Lu0
N

and the above properties (1)–(3) imply that
m1

Mu
(e1e1upuc∗1/2) = m1

Ku
(puc∗1/2) = m1

K�(c
∗
1/2) does not depend on u � u0

N .
Suppose u � u0

N and such roots ηu0
N

, . . . , ηu have already been constructed.
Let θu+1 ∈ OC(N)p

be a root of Fu+1(T ). Then

Fu(θp
u+1) ∈ m1

Ku
(puc∗1) = m1

Kūn (e1upuc∗1)

and, therefore, vKūn (Fu(θp
u+1)) = ju + (0, . . . , 0, 1) with pr1(ju) + δ1N �

e1upuc∗1.
Lemma 6.4. ju > j(Mu/Kūn).
Proof of lemma. From Corollary 3.5 we have

pr1(j(Mu/Kūn)) � 2v1
Kūn (δ(Fu)) =

2
d
v1

Kūn (D(Fu)) =
2e1u

d
D1

� 2e1uD1 < e1upuc∗1 − 2(d − 1)δ1N � e1upuc∗1 − δ1N � pr1(ju).

The lemma is proved. �
Continue the proof of our proposition.
The above lemma together with Krasner’s Lemma from section 3.4 imply

the existence of a unique root θu of Fu such that

vMu
(θp

u+1 − θu) = iu + (0, . . . , 0, 1)
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where ϕMu/Kūn (iu) = ju. From Lemma 6.4 and the definition of the Herbrand
function it follows

ju − j(Mu/Kūn)
iu − i(Mu/Kūn)

= ē−1(Mu/Kūn)

where ē(Mu/Kūn) = (1, . . . , 1, d). This formula together with the formula
from Corollary 3.4 gives

iu = (1, . . . , 1, d)ju − vMu
(δ(Fu)) + (0, . . . , 0, d − 1).

Notice that

v1
Mu

(δ(Fu)) =
e1

d
e1uD1 <

e1

2
e1upuc∗1 − e1u(d − 1)δ1N

(use our assumption about D1).
Therefore,

pr1(iu) + δ1N = e1pr1(ju) − v1
Mu

(δ(Fu)) + dδ1N

� e1(e1upuc∗1 − δ1N ) − e1

2
e1upuc∗1 + e1u(d − 1)δ1N + dδ1N

=
e1

2
e1upuc∗1 + e1u(d − 1)δ1N � 1

2
e1e1upuc∗1.

In other words, for any root θu+1 of Fu+1, there is a unique root θu of Fu

such that θu − θp
u+1 ∈ m1

Mu
(e1e1upuc∗1/2).

Suppose two different roots θu+1 and θ′u+1 of Fu+1 satisfy this condition
with the same root θu of Fu. Then θp

u+1 is congruent to θ′pu+1 modulo the
ideal

m1
Mu

(e1e1upuc∗1/2) = m1
K�(c

∗
1/2) = m1

Ku+1
(pu+1c∗1/2).

Therefore, θu+1 − θ′u+1 ∈ m1
Ku+1

(puc∗1/2).
But

v1
Ku+1

(θu+1 − θ′u+1) � v1
Ku+1

(D(Fu+1)) = D1 < puc∗1/2.

Contradiction.
So, the above correspondence θu+1 �→ θu is a one-to-one correspondence

between roots of Fu+1(T ) and Fu(T ). This correspondence is stable under
the action of any sequentially P -continuous automorphism of C(N)p, which
is the identity on Kūn+1 . So, if ηu+1 is the root of Fu+1, which corresponds
to ηu, then Kūn+1(ηu) = Kūn+1(ηu+1). In other words, Mu+1 = MuKūn+1 =
Lu0

N
Kūn+1 .

The existence of the sequence ηu, u � u0
N , which satisfies the above re-

quirements (1)–(3), is proved.



714 VICTOR ABRASHKIN

Consider the tower L� = Lu0
N

K�. Then one can easily verify the following:
— L� ∈ Bfa(N) and has the parameters ū0(K�) and e1c∗(u0

N , K�)/2;
— for suitable structural functions m′

1, . . . , m
′
N−1, Kū0(η) belongs to the

family X(L�; m′
1, . . . , m

′
N−1), where η = lim←− ηu is a root of F(T ) in R0(N);

— the choice of this root η of F(T ) determines a field isomorphism ι of L
and K(η), which induces the identity on K.

The proposition is proved. �
Corollary 6.5. Suppose K� ∈ Bfa(N) with the parameters ū0(K�) and

c∗(ū0, K�). Suppose that K ∈ X(K�) and L/K is a finite separable extension
in R0(N) with standard F -structure. Then there is an L� ∈ Bfa(N) such that

(a) L� is a separable extension of K�;
(b) L ∈ X(L�);
(c) for m � 0, c∗(m, L�) = e1c∗(u0

N , K�)/2N , where e1 = pr1(ē(L/K)).
Proof. Apply the construction from the proof of the above proposition to

the sequence of extensions K ⊂ KL(0) ⊂ KL(1) ⊂ · · · ⊂ KL(N) = L. This
gives L� ∈ Bfa(N) such that L ∈ X(L�). Then use that ē(L/K) = ē(L�/K�)
and apply Lemma 4.4 from section 4.2. �

Remark. Notice that the ideal m1
L�(c

∗
1(v̄

0, L�)) = m1
K�(c

∗
1(ū

0, K�)/2N ) does
not depend on L�.

Corollary 6.6. The correspondence K� �→ cl(K�) ∈ L̃FR(N), where K� ∈
Bfa(N), induces the identification of the absolute Galois groups ψ : Γ

K̃
−→

ΓK (here K̃ is the p-adic closure of the
⋃

m�0 Km). This identification is

compatible with ramification filtrations, i.e. for any j ∈ J(N), Γ(ϕK� (j))
K0

∩
Γ

K̃
= Γ(j)

K , where ϕK� = limm→∞ ϕKm/K0 is the function from Remark (4)
in section 4.2.

Proof. Suppose L is a finite Galois extension of K in R0(N). By Corollary
6.2, there is a Galois extension L� ∈ Bfa(N) of K� and a natural identifica-
tion of Galois groups ΓL/K = ΓLu/Ku

, where u � 0. This identification is
compatible with the ramification filtration in lower numbering, i.e. for any
j ∈ J(N), it holds that

ΓL/K,j = ΓLu/Ku,j = ΓLu/K0,j ∩ Γ
K̃

.

Also, for u � 0, we have ϕL/K = ϕLu/Ku
. Suppose j1 = ϕL/K(j). Then for

u � 0,

ϕLu/K0(j) = ϕKu/K0(ϕLu/Ku
(j)) = ϕKu/K0(j1) = ϕK�(j1).

So, for any j1 ∈ J(N), we have Γ(j1)
L/K = Γ(ϕK� (j1))

Lu/K0
∩ Γ

K̃
and we obtain the

statement of our corollary by taking projective limit on L. �
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6.3. The above results show that if K ∈ X(K�) with K� ∈ Bfa(N), then
R0(N) contains a separable closure of K. Because R0(N) is perfect, the
algebraic closure of K in R0(N) is algebraically closed. Even more, R0(N) is
v1
K-complete, therefore, R0(N) contains the v1

K-completion R(K̄) of K̄.
Proposition 6.7. R0(N) = R(K̄).

Proof. Suppose K� has the index parameter n∗(K�) and the ramification
parameter c∗ = c∗(n∗, K�). Let d = c∗(n∗, K�)/p2N . Consider the identifica-
tion R(N) = lim←−

u

(OC(N)p
mod m1

K�(d))u and take any r = (rw)w�0 ∈ R(N).

Fix w � 0.
Let L be a finite extension of K0 in C(N)p such that rw ∈ OL mod m1

K�(d).
We can assume that L is such that L� := LK� ∈ Bfa(N). We know that for
m � 0, we can take the ramification invariant c∗(m, L�) for L� such that

c∗(m, L�)/p = c∗1(m, L�) = e1c∗/p2N = e1d,

where e1 = pr1 ē(L�/K�). Notice that m1
L�(e

1d) = m1
K�(d) does not depend

on L�. By Corollary 5.6 after an appropriate choice of the structural func-
tions m1, . . . , mN−1 we can find an index parameter ū ∈ U(m1, . . . , mN−1)
such that pru induces an identification of OLū

mod m1
R,K�(p

ud) and
OLū

mod m1
K�(d). Because, Lū ⊃ L, there is an l(w) ∈ OLū

⊂ R(N) such
that pru(l(w)) = rw = pru(σu−wr).

So, σu−w(r) − l(w) ∈ m1
R,K�(p

ud) and r ≡ σw−u(l(w)) modm1
R,K�(p

wd).
Because σw−u(l(w)) ∈ R(L) and w can be taken arbitrarily large, this

implies that K̄ is v1
R,K� -adically dense in R0(N).

The proposition is proved. �
Remark. Corollary 5.6 implies that the above identification R0(N) =

R(K̄) is compatible with the P -topological structures. Also, this identification
is compatible with the natural structures of Γ

K̃
-module on R0(N) and ΓK-

module on R(K̄) via the identification ψ from Corollary 6.6.

7. The functors X and XK�

7.1. The functor XK� , K� ∈ Bfa(N).
Let K� ∈ Bfa(N) and let Ba

K�(N) be the category of separable extensions
L� of K� in Ba(N). Morphisms in Ba

K�(N) are isomorphisms f in the category
Ba(N) such that f |K� = id.

Let L̃FR(N)K� be the category of finite separable extensions of cl(K�) ∈
L̃FR(N), where morphisms come from isomorphisms in LFR(N), which are
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the identity on K. In this section we use results of section 6 about the cor-
respondence E� �→ cl(E�), where E� ∈ Bfa(N), to construct an equivalence of
the categories Ba

K�(N) and L̃FR(N)K� .
Let L� be a separable extension of K� ∈ Bfa(N) in B(N). Then L� ∈

Ba(N) (cf. section 4.2). Choose a finite Galois extension E� of K� such that
E� ∈ Bfa(N) and E� ⊃ L� (cf. Proposition 4.5). If K ∈ cl(K�), then there
is a unique separable extension E of K in R0(N) such that E ∈ cl(E�) and
[E : K] = [E� : K�] (cf. section 6). Therefore, G = Gal(E�/L�) (by definition
it equals Gal(Eu/Lu) for u � 0) acts on E and we can set L = EH , where
H ⊂ G is such that EH

� = L�.
Proposition 7.1. With the above notation, cl(L) ∈ L̃FR(N) does not

depend on the choice of K ∈ X(K�) and E� ∈ Bfa(N).
The proof is straightforward.
With the notation from the above proposition set XK�(L�) = cl(L).
Suppose L�, L′

� ∈ Ba
K�(N) and f : L� −→ L′

� is a morphism in Ba
K�(N). In

other words, f is sequentially P -continuous and compatible with the corre-
sponding F -structures automorphism of C(N)p such that f(Lm) = L′

m for
m � 0 and f |K� = id.

Choose E� ∈ Bfa(N) such that E� ⊃ L� and E� is finite Galois over K�.
Let E′

� = f(E�), G = Gal(E�/K�), G′ = Gal(E′
�/K�), H = Gal(E�/L�) and

H ′ = Gal(E′
�/L′

�).
Let K ∈ cl(K�) and let E be its Galois extension from cl(E�) of degree

[E� : K�]. Then EH = L ∈ XK�(L�). Let fR be an automorphism of R0(N)
induced by f . Then fR is sequentially P -continuous and compatible with F -
structures, fR(E) ∈ cl(E′

�) and fR(E)H′
= fR(EH) = fR(L) = L′ ∈ XK�(L

′
�).

So, fR ∈ Hom
L̃FR(N)K�

(XK�(L�),XK�(L
′
�)). Clearly, if we set fR = XK�(f),

then we get a functor XK� from Ba
K�(N) to L̃FR(N)K� .

Summarizing the results of section 6 we obtain the following principal result
of this paper.

Theorem 2. (a) The above defined functor XK� , where K� ∈ Bfa(N), is
an equivalence of the categories Ba

K�(N) and L̃FR(N)K� .
(b) XK� induces an identification ψK� of groups Γ

K̃
= Gal(K̄/K̃) and

ΓK = Gal(Ksep/K), where K ∈ cl(K�) and Ksep is the separable closure of K
in R0(N).

(c) The identification ψK� is compatible with ramification filtrations on Γ
K̃

and ΓK, i.e. for any j ∈ J(N), ψK� identifies the groups Γ
K̃

∩ Γ(ϕK� (j))
K0

and

Γ(j)
K , where ϕK� is the function from Remark (4) in section 4.2.

Remark. If N = 1, then cl(K�) consists of only one field K. So, we
obtain the functor from Ba

K�(1) to the category of finite separable extensions
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of K in R0(1). Even more, we can treat all K� ∈ Ba(1) with the same field⋃
u Ku := K̃0 by introducing the family E of all finite extensions E of Qp in

K̃0 such that K̃0 is a p-extension of E. Then OK can be identified with the
family of all

(
αE mod m1

K�(c
∗
1)

)
E∈E , where αE ∈ OE , such that if E1 ⊃ E is

an extension in E and [E1 : E] = pd, then

αpd

E1
≡ αE mod m1

K�(c
∗
1).

This description of the elements of the field-of-norms, which is attached to the
infinite extension K̃0, was used in [FW1, FW2] to prove all the basic properties
of the field-of-norms functor in the case of 1-dimensional local fields.

7.2. The functor X : Ba(N) −→ RLFR(N). Let RLFR(N) be the
category of sequentially P -closed perfect subfields in R0(N). These subfields
are considered with their natural F -structure and P -topology. Morphisms are
sequentially P -continuous isomorphisms of such fields, which are compatible
with corresponding F -structures.

If K� ∈ Ba(N), choose L� ∈ Bfa(N) such that L�/K� is a finite Galois
extension. If L ∈ cl(L�), then G = Gal(L�/K�) acts on R(L). Indeed, for any
g ∈ G and any L ∈ cl(L�), the action of g on L� induces a field isomorphism
g : L −→ L′, where L′ ∈ X(L�) and we have a natural identification R(L) =
R(L′) (cf. Proposition 5.7). With the above notation set X (K�) = R(L)G ∈
RLFR(N).

Proposition 7.2. X (K�) does not depend on a choice of L� ∈ Bfa(N).
Proof. Suppose L′

� ∈ Bfa(N) is such that L′
�/K� is a finite Galois extension

with the Galois group G′. Choose M� ∈ Bfa(N) such that M� ⊃ L�, M� ⊃ L′
�

and M� is a finite Galois extension of K� with the Galois group S.
Let H = Gal(M�/L�), H ′ = Gal(M�/L′

�). If L ∈ cl(L�), L′ ∈ cl(L′
�), then

there are M ∈ X(M�) and M′ ∈ X(M�) such that M/L and M′/L′ are Galois
extensions with Galois groups H and H ′, respectively. Then R(M) = R(M′)
and R(L′)G′

= R(M′)S = R(M)S = R(L)G.
The proposition is proved. �
Suppose K�, K ′

� ∈ Ba(N) and f ∈ HomBa(N)(K�, K ′
�) is an isomorphism,

i.e. f : C(N)p −→ C(N)p is a sequentially P -continuous and compatible with
F -structures field automorphism such that f(K�) = K ′

� . As earlier, denote by
fR the automorphism of R0(N) which is induced by f .

Choose L� ∈ Bfa(N) such that L�/K� is a finite Galois extension with the
group G. Then L′

� = f(L�) is a Galois extension of K ′
� with the group G′

which is conjugate to G via the automorphism f of C(N)p. If L ∈ cl(L�),
then fR(L) = L′ ∈ cl(L′

�) and fR(X (K�)) = fR(R(L)G) = R(L′)G′
= X (K ′

� ).
So, fR ∈ HomRLFR(N)(X (K�),X (K ′

�)) and X : Ba(N) −→ RLFR(N) is a
functor. The following property follows directly from the above definitions.
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Proposition 7.3. (a) X is a faithful functor;
(b) if L�, K�∈Bfa(N) and L� is a separable extension of K�, then R(XK�(L�))

= X (L�).
7.3. Let ε = (ε(n) mod p)n�0 ∈ R(1) ⊂ R(N), where ε(0) = 1, ε(1) 
= 1 and

ε(n+1)p = ε(n) for all n � 0, be Fontaine’s element. Let 〈ε〉 = εZp ⊂ R(1)∗

be the multiplicative subgroup of all Fontaine’s elements. Notice that if f :
C(N)p −→ C(N)p is a field automorphism, then fR(〈ε〉) = 〈ε〉, where fR is
induced by f .

Proposition 7.4. (a) The correspondence f �→ fR identifies Aut C(N)p

and the subgroup Aut′ R0(N) of g ∈ AutR0(N) such that g(〈ε〉) = 〈ε〉.
(b) If f is sequentially P -continuous (respectively, compatible with F -

structures), then so is fR.
Proof. We have noticed already that for any f ∈ Aut C(N)p, fR(〈ε〉) = 〈ε〉.
Suppose g ∈ AutR0(N) and g(〈ε〉) = 〈ε〉, i.e. g(ε) = εa with a ∈ Z∗

p.
Notice that g : R(N)−→R(N) induces the automorphism W (g) : W (R(N))

−→ W (R(N)), where W is the functor of Witt vectors. Consider Fontaine’s
map (cf. [Fo]), γ : W (R(N)) −→ OC(N)p

given by the correspondence

(r0, r1, . . . , rn, . . . ) �→ r
(0)
0 + pr

(1)
1 + · · · + pnr(n)

n + . . . ,

where for any r = (rm mod p)m�0 ∈ R(N) and n � 0, r(n) = limm→∞ rpm

m+n ∈
OC(N)p

. This map is a surjective morphism of p-adic algebras and its kernel
J is a principal ideal generated by 1 + [ε]1/p + · · · + [ε](p−1)/p. Therefore,
W (g)(J) = J and W (g) induces an automorphism f = W (g) modJ of C(N)p.
Clearly, fR = g.

From the above description of the correspondence f �→ fR it is clear that
the compatibility of fR with F -structures is implied by the same property
for f .

Suppose f is sequentially P -continuous. Because arithmetic operations in
C(N)p and R0(N) are sequentially P -continuous, it will be sufficient to prove
that for any M � 0, the map

α : R(N) −→ OC(N)p
mod pM+1

such that for r = (rm mod p)m�0 ∈ R(N), α(r) = γ([r]) mod pM+1 =
rpM

M mod pM+1 is sequentially P -continuous. But the map r �→ rM mod p

is sequentially P -continuous by the definition of the P -topological structure
on R(N) and the map rM mod p �→ rpM

M mod pM+1 is sequentially p-adically
continuous and, therefore, sequentially P -continuous. The proposition is
proved. �

Remark. Suppose K� ∈ Bfa(N), K̃ is the p-adic closure of the union of
all Ku, u � 0, and K ∈ cl(K�). Then the Fontaine map induces the ring
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epimorphism γ : W (OR(K)) −→ O
K̃

. This follows from the basic properties
of the construction of K, e.g. from Corollary 5.6. This map also transports
the ΓK-module structure on the left to the Γ

K̃
-structure on the right via the

identification of ΓK and Γ
K̃

from Corollary 6.6.
7.4. Introduce the following definition.
Definition. A subfield K̃ of C(N)p is an SAPF-field if there is a K� ∈

Ba(N) such that K̃ is the p-adic closure of
⋃

n�0 Kn.

Remark. The above defined SAPF-fields are higher-dimensional analogues
of strict arithmetic profinite extensions introduced in [FW1, FW2].

Denote by SAPF(N) the category of SAPF-fields in C(N)p such that
if K̃, K̃ ′ ∈ SAPF(N), then HomSAPF(N)(K̃, K̃ ′) consists of sequentially P -
continuous and compatible with F -structures f ∈ Aut C(N)p such that f(K̃)
= K̃ ′.

Let K̃ ∈ SAPF(N). Set X̃ (K̃) = X (K�), where K� ∈ Ba(N) is such that
K̃ is the p-adic closure of

⋃
n�0 Kn and X is the functor from section 7.2.

Lemma 7.5. The above defined X̃ (K̃) does not depend on the choice of
K� ∈ Ba(N).

Proof. The proof follows directly from the construction of the functor X
and Proposition 5.7. �

The correspondence K̃ �→ X̃ (K̃) can be naturally extended to the functor
X̃ : SAPF(N) −→ RLFR(N). Taking together the above results about the
functor X we obtain the following theorem.

Theorem 3. Suppose K� ∈ Ba(N) and K̃ is the p-adic closure of
⋃

n�0 Kn.
Then the functor X̃ induces the identification ι : Γ

K̃
−→ ΓK̃ where K̃ =

X (K�). If K� ∈ Bfa(N) and K ∈ cl(K�), then R(K) = K̃ and under a natural
identification ΓK = ΓK̃, the identification ι is compatible with ramification
filtrations, i.e. for any j ∈ J(N),

Γ
K̃
∩ Γ(ϕK� (j))

K0
= Γ(j)

K .

Remark. If N = 1 we can relate all fields from X(K�) with a given field
K̃ without using the operation of radical closure (cf. the above remark to
Theorem 2).

8. A property of the P -continuity for the functor X

8.1. Suppose K ∈ LFp(N).
Let Γab

K (p) be the Galois group of the maximal abelian p-extension of K.
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For any M � 1, consider the Witt-Artin-Schreier duality

Γab
K (p)/pM × WM (K)/(σ − id)WM (K) −→ WM (Fp)

where σ is the Frobenius endomorphism of the additive group WM (K) of
Witt vectors of length M with coefficients in K. This allows us to provide
Γab
K (p)/pM with the P -topological structure. Its basis of open 0-neighbor-

hoods consists of the annihilators of the sequentially P -compact subsets of
WM (K)/(σ − id)WM (K). By the results of section 1.2 the basis of such com-
pact subsets consists of the images in WM (K)/(σ − id)WM (K) of all subsets
of the form

WM (D) = {(a0, . . . , aM−1) ∈ WM (K) | a0, . . . , aM−1 ∈ D}

where D ∈ Cb(K) is the basis of P -sequentially compact subsets in K.
Finally, the P -topology on Γab

K (p) appears as the projective limit topology
of the projective system of P -topological groups Γab

K (p)/pM .
8.2. Suppose K ∈ LF0(N) and K contains a primitive pM th root of unity

ζpM . Then the P -topological structure on K∗ induces the P -topological struc-
ture on Γab

K (p)/pM , where ΓK(p) is the Galois group of the maximal abelian
p-extension of K. This structure is defined similarly to the characteristic p

case by the use of the Kummer duality

Γab
K (p)/pM × K∗/K∗pM

−→ 〈ζpM 〉.

We do not need this structure in a full generality. Let Γ̃K(p)/pM be the
quotient of Γab

K (p)/pM by the annihilator of the subgroup (1 + pOK)× in K∗.
Then we have the induced pairing

Γ̃ab
K (p)/pM × (1 + pOK)× −→ 〈ζpM 〉

and a basis of open subgroups in Γ̃ab
K (p)/pM consists of the annihilators of

the subsets 1 + pD, where D ∈ Cb(K), D ⊂ OK and Cb(K) is a basis of
P -sequentially compact subsets in K from section 1.2.

8.3. Suppose K� ∈ Bfa(N) and for any M ∈ N, there is an n = n(M) such
that Kn contains a primitive pM th root of unity.

Let K̃ be the p-adic closure of the union of all Kn. Then for any M ∈ N,
we have a natural identification

Γab
K̃

(p)/pM = lim←−
n

Γab
Kn

(p)/pM .

Notice that if n0∈N and v∈K∗
n0

, then for n�n0, v∈(1+pOKn
)× mod K∗pM

n

for any given M ∈ N. Indeed, it will be sufficient to verify this for M = 1.
Consider the tower Kū0 ⊂ Kv̄1 ⊂ Kū1 ⊂ · · · ⊂ Kv̄n ⊂ Kūn ⊂ . . . from
section 4.3.5. Then for any n � 1, there are local parameters t1n, . . . , tNn in
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Kūn and t̃1n, . . . , t̃Nn in Kv̄n such that tp1n ≡ t̃1n mod m1
K�(c

∗
1), . . . , tpNn ≡

t̃Nn mod m1
K�(c

∗
1). If v ≡ t̃c1

11 . . . t̃cN

N1(1 + ã1) modK∗p
v̄1 , then

v ≡ tpc1
11 . . . tpcN

N1 (1+ap
1 + b1) ≡ (1+ap

1 + b1)(1+a1)−p ≡ 1+ b1 +pa′
1 modK∗p

ū1 ,

where v1
K�(b1) � c∗1, ã1 ∈ mKv̄1 , a1 ∈ mKū1 is such that ã1 ≡ ap

1 mod m1
K�(c

∗
1)

and a′
1 ∈ mKū1 . Repeating this procedure m times we obtain that v ≡

1 + bm + pa′
m mod K∗p

ūm , where v1
K�(bm) � mc∗1 and a′

m ∈ mKūm . So, if
mc∗1 � v1

K�(p), then v ∈ (1 + pOKūm )× mod K∗p
ūm . It remains to notice that

for n � 0, Kūm ⊂ Kn.
Therefore,

Γab
K̃

(p)/pM = lim←−
n

Γ̃ab
Kn

(p)/pM

and the basis of P -open neighborhoods in Γab
K̃

(p)/pM consists of annihilators
of all sequentially compact subsets 1+ pD ⊂ (1+ pO

K̃
)×, where D ∈ Cb(Kn),

for some n � 0.
8.4. Suppose K� ∈ Bfa(N), K ∈ X(K�) and ι : Γ

K̃
−→ ΓK is the identifi-

cation of Galois groups (where K̃ is the p-adic closure of the
⋃

n�0 Kn) from
Theorem 3. Suppose that for each M ∈ N, a primitive pM th root of unity
ζpM ∈ Kn if n � 0 and consider the groups Γab

K̃
(p)/pM = lim←−

n

Γ̃ab
Kn

(p)/pM and

Γab
K (p)/pM with the above P -topological structures.
Theorem 4. For any M ∈ N, the identification

ι mod pM : Γab
K̃

(p)/pM −→ Γab
K (p)/pM

is a P -homeomorphism.
Proof.
8.4.1. Choose a primitive pM th root of unity ζpM . Then we can identify

WM (Fp) and 〈ζpM 〉 and consider the dual to ι mod pM group morphism

ι̃M : WM (K)/(σ − id)WM (K) −→ K̃∗/K̃∗pM

.

Then ι mod pM is P -continuous if and only if ι̃M transforms each sequentially
P-compact subset in WM (K)/(σ − id)WM (K) onto a sequentially P -compact
subset in K̃∗/K̃pM

. In other words, ι mod pM is P -continuous if and only if
ι̃M is sequentially P -continuous.

Notice that the map ι̃M can be characterised as follows.
Let w̄ ∈ WM (K)/(σ − id)WM (K) and let w ∈ WM (K) be a lifting of w̄.

Consider T ∈ WM (R0(N)) such that σT − T = w; then for any τ ∈ ΓK,
τT − T = aτ ∈ WM (Fp). Let v̄ ∈ K̃∗/K̃∗pM

and v ∈ K̃∗ be a lifting of v̄.
Consider Z ∈ C(N)p such that ZpM

= v. Then for any τ ∈ Γ
K̃

, τZ/Z = ζbτ

M ,
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where bτ ∈ WM (Fp). With respect to the identification Γ
K̃

= ΓK given by
the construction of the functor XK� , we have the following criterion:

ι̃M (w̄) = v̄ ⇔ aτ = bτ ∀τ ∈ Γ
K̃

= ΓK.

8.4.2. As earlier, let R(K) be the completion of the radical closure of K
(with respect to first valuation). Denote by OR(K) its valuation ring. Notice
first that the natural embedding K ⊂ R(K) induces a natural identification
of P -topological groups

WM (R(K))/(σ − id)WM (R(K)) = WM (K)/(σ − id)WM (K).

Let ε be Fontaine’s element. Recall, ε = (ε(n))n�0 ∈ R = R(1) ⊂ R(N)
is such that ε(0) = 1, ε(1) 
= 1 and we can assume that ε(M) = ζpM — this
is the primitive pM th root of unity chosen in 8.4.1. From the construction of
K ∈ cl(K�) it follows that ε ∈ OR(K), and therefore, it is invariant under the
action of ΓK.

Lemma 8.1. Suppose w̄ comes from w =
f

[ε] − 1
mod pM ∈ WM (R(K)),

where f ∈ W (OR(K)). Then ι̃M (w̄) = v̄, where

v̄ = exp(−pγ(σ−1f) − · · · − pMγ(σ−Mf)) mod K̃∗pM

and γ is Fontaine’s map (cf. remark in section 7.3 ).

Proof. Let U ∈ W (R0(N)) be such that σU − U = f/([ε] − 1), then for
any τ ∈ ΓK, τU − U = ãτ ∈ W (Fp), where ãτ mod pM = aτ .

Let ε1 = σ−1ε, then

s = ([ε] − 1)/([ε1] − 1) ∈ W 1(R(1)) ⊂ W (R(1)) ⊂ W (R(N)),

where W 1(R(1)) = Ker γ and γ : W (R(1)) −→ OCp
is Fontaine’s map. It is

well known (cf. [Fo]), that s generates the ideal W 1(R(1)). Notice that similar
arguments show that s also generates the kernel W 1(R(N)) of the analogue
of Fontaine’s map from W (R(N)) to OC(N)p

.
Let T1 = U([ε1] − 1). Then T1 ∈ W (R(N)) and σT1 − sT1 = f . Let

X = U([ε] − 1) = sT1 ∈ W 1(R(N)), then

σX

σs
− X = f

and for any τ ∈ ΓK, τX − X = ãτ ([ε] − 1).
Let A(N)cris be an analogue of Fontaine’s Acris constructed by the use of

R(N) instead of R. This is the divided power envelope of the W (R(N)) with
respect to the ideal W 1(R(N)), which is generated by s. Proceeding as in
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[Ab2] we obtain that if

(5)
σm

p
− m = f

where m ∈ Fil1 A(N)cris, then for any τ ∈ Γ
K̃

, τm − m = ãτ log[ε].
Multiplying both parts of the equality (5) by p and taking exponentials we

obtain the equality

(6) σY = Y p exp(pf)

where Y ∈ 1 + Fil1 A(N)cris and for any τ ∈ Γ
K̃

, τY/Y = [ε]ãτ . Proceeding
again as in [Ab2] we can prove that Y ∈ 1 + W 1(R(N)) (and therefore can
forget about the crystalline ring A(N)cris; cf. Remark (2) below).

The equation (6) implies that

σMY = Y pM

exp(pσM−1f + · · · + pMf)

and, because σ is bijective on W (R(N)), this gives

(7) Y = (σ−MY )pM

exp(pσ−1f + · · · + pMσ−Mf).

Notice that for any τ ∈ Γ
K̃

, τ (σ−MY ) = (σ−MY )[σ−Mε]ãτ .
Apply Fontaine’s map γ : W (R(N)) −→ OC(N)p

to both parts of (7).
Notice that γ(Y ) = 1, γ(σ−MY ) = Z ∈ 1 + pOC(N)p

, γ([σ−Mε]) = ζpM and
γ(σ−sf) ∈ O

K̃
for any s ∈ Z. This gives

ZpM

= exp(−pγ(σ−1f) − · · · − pMγ(σ−Mf)) ∈ 1 + pO
K̃

and for any τ ∈ Γ
K̃

, τZ/Z = ζaτ

pM .
The above computations imply that ι̃M (w̄) = v̄, where

v̄ = exp(−pγ(σ−1f) − · · · − pMγ(σ−Mf)) mod K̃∗pM

.

The lemma is proved. �
Remarks. (1) The above computations can be used to deduce (in the

similar way as in [Ab2]) the explicit formula for the Hilbert symbol for higher-
dimensional fields from [Vo].

(2) The use of Fontaine’s crystalline ring in the above proof provides a
very natural way to pass from the Witt-Artin-Schreier theory to the Kummer
theory through the “Bloch-Kato” theory: equation (5) plays a very important
role in the paper [BK].
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8.4.3. Continue the proof of Theorem 4.
Suppose t1, . . . , tN is a system of local parameters in K (note that K has

a standard F -structure). Denote by k the last residue field of K. Let t̃1 =
[t1], . . . , t̃N = [tN ] be the Teichmüller representatives of t1, . . . , tN in WM (K).
Denote by OM (K) the set of all power series∑

ā

wāt̃a1
1 . . . t̃aN

N ,

where ā = (a1, . . . , aN ) ∈ ZN and the coefficients wā satisfy the restrictions
similar to the restrictions on αā from section 1.1. Then OM (K) is a sequen-
tially P -closed subring in WM (K).

Let O0
M (K) be a minimal sequentially P -closed additive subgroup in OM (K)

containing all wāt̃a1
1 . . . t̃aN

N , such that wā ∈ WM (k), (a1, . . . , aN ) < 0̄N and
gcd(a1, . . . , aN , p) = 1, and the element α0 mod pM ∈ WM (k), such that α0

has trace 1 in the extension W (k) ⊗ Qp/Qp. With the above notation there
is the following proposition.

Proposition 8.2. (a) OM (K) = O0
M (K) ⊕ (σ − id)OM (K).

(b) A natural embedding OM (K) ⊂ WM (K) induces a sequentially P -
continuous identification of O0

M (K) and WM (K)/(σ − id)(WM (K)).
Proof. For part (a) one can proceed on the level of formal power series.

For (b) we must have the following two properties:

O0
M (K) ∩ (σ − id)WM (K) = 0

and
O0

M (K) + (σ − id)WM (K) = WM (K).

Both follow easily from (a) and the existence of the embedding σM−1(WM (K))
⊂ OM (K), which can be proved by induction on M . �

Corollary 8.3. In WM (K)/(σ − id)WM (K), any convergent in the P -
topology sequence can be lifted to a convergent sequence in O0

M (K) ⊂ WM (K).
Now we can finish the proof of Theorem 4.
Suppose {w̄i}i�1 ∈ WM (K)/(σ − id)WM (K) is a P -convergent sequence.

Lift it to a convergent sequence {w′
i}i�1 in WM (K). Consider 1-dimensional

valuation v1
K on R0(N). Then the convergence of {w′

i}i�1 implies that v1
K-

valuations of coordinates of all w′
i have a lower bound. Therefore, there is

an s0 ∈ N such that for all i � 1, w′
i =

f ′
i

σs0([ε] − 1)
mod pM , where all f ′

i ∈

W (OR(K)). Clearly, the sequence {f ′
i mod pM}i�1 converges in WM (OR(K)).

For any i � 1, set wi = σ−s0w′
i =

fi

[ε] − 1
, where fi = σ−s0f ′

i . Then all

wi are still liftings of w̄i to WM (R(K)) and {fi mod pM}i�1 is a converging
sequence of elements in WM (OR(K))).
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Applying Lemma 8.1 we obtain for all i � 1, that ι̃M (w̄i) = v̄i, where

vi ≡ exp(−pγ(σ−1fi) − · · · − pMγ(σ−Mfi)) mod K̃∗pM

.

Clearly, such a sequence {v̄i}i�1 is P -convergent and its limit is the image
of the limit of w̄i under ι̃M . Therefore, ι̃M is sequentially P -continuous. We
omit the verification that the inverse map is also sequentially P -continuous.

The theorem is proved.

9. The Grothendieck conjecture for higher-dimensional local fields

9.1. Suppose K, K ′ are 1-dimensional local fields from the category LF(1)
= LF0(1)

∐
LFp(1). Then any isomorphism f ∈ HomLF(1)(K, K ′) is given

by an automorphism of C(1)p or, respectively, C(1)p such that f(K) = K ′.
Therefore, f induces the isomorphism of profinite groups

f∗ : ΓK′ −→ ΓK

such that for any v � 0, f∗(Γ(v)
K′ ) = Γ(v)

K , where Γ(v)
K is the ramification

subgroup with the upper number v � 0.
The inverse statement was proved in [Mo] in the mixed characteristic case

and in [Ab4] if the characteristic of the residue fields of K and K ′ is � 3. It
is known as a local (1-dimensional) analogue of the Grothendieck conjecture
and can be stated in the following form:

If ι : ΓK′ −→ ΓK is an isomorphism of profinite groups such that for any
v � 0, ι(Γ(v)

K′ ) = Γ(v)
K , then there is an f ∈ HomLF(1)(K, K ′) such that ι = f∗.

9.2. Suppose N � 1 and K,K′ ∈ L̃FR(N). Suppose f ∈ Hom
L̃FR(N)

(K,K′)
is an isomorphism. In other words, f : R0(N) −→ R0(N) is sequentially P -
continuous and compatible with F -structures field automorphism such that for
all 1 � i � N , f(K(i)R(K(i−1))) = K′(i)R(K′(i−1)). Then f∗ : ΓK′ −→ ΓK
is an isomorphism of profinite groups such that for any j ∈ J(N), f∗(Γ(j)

K′ ) =
Γ(j)
K (cf. [Ab5]). We point out that in the case of higher-dimensional local

fields K of positive characteristic, the knowledge of their Galois group to-
gether with its ramification filtration is sufficient to recover the isomorphism
class of K only in the category L̃FR(N).

In addition, suppose E is a finite extension of K in R0(N) and f(E) = E ′.
Then E ′ is a finite extension of K′ such that f∗(ΓE′) = ΓE . Let M ∈ N.
Consider the induced isomorphism of the maximal abelian quotients modulo
pM th powers

f∗
M : Γab

E′ (p)/pM −→ Γab
E (p)/pM .
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It is dual to the isomorphism of additive groups

fM : WM (E)/(σ − id)WM (E) −→ WM (E ′)/(σ − id)WM (E ′).

Clearly, fM is sequentially P -continuous and, therefore, maps sequentially P -
compact subsets to sequentially P -compact subsets. This implies that f∗

M is
P -continuous for all M ∈ N.

The inverse statement appears as an analogue of the Grothendieck conjec-
ture for higher-dimensional local fields of characteristic p.

Theorem 5. With the above notation, suppose that p � 3 and ι : ΓK′ −→
ΓK is an isomorphism of profinite groups such that

(a) for any j ∈ J(N), ι(Γ(j)
K′ ) = Γ(j)

K ;
(b) if E and E ′ are finite extensions of K and, resp., K′ in R0(N) such

that both E and E ′ have a standard F -structure and ι(ΓE′) = ΓE , then for
all M � 1, the induced isomorphism ιM : Γab

E′ (p)/pM −→ Γab
E (p)/pM is P -

continuous.
Then there is an isomorphism f ∈ Hom

L̃FR(N)
(K,K′) such that f∗ = ι.

This statement was proved in [Ab6] in the case N = 2. The case of general
N can be done along the same lines.

Remarks. (1) Actually, in the statement of the main theorem in [Ab6]
there was no requirement that E and E ′ have a standard F -structure. But
in the proof we applied this condition only to fields, which have a standard
F -structure. Also, in [Ab6] there was a requirement about the P -continuity of
the induced group isomorphism ιab : Γab

E′ −→ Γab
E but again, in the proof, we

applied this property only to the induced isomorphism of the Galois groups
Γab
E′ (p) and Γab

E (p) of the maximal abelian p-extensions of E ′ and E .
(2) The restriction p � 3 appears because our proof is based on the nilpo-

tent Artin-Schreier theory, which allows us to study the maximal quotient of
the Galois group ΓK(p) of nilpotent class < p together with induced ramifica-
tion filtration. If p = 2, this gives us only information about ΓK(2)ab which is
not sufficient to establish such a result. For p � 3, the proof uses only the ex-
plicit description of the ramification filtration in the group ΓK(p)/C3(ΓK(p)).

9.3. Suppose N � 1 and K, K ′ ∈ LF0(N). Any sequentially P -continuous
and compatible with F -structures field automorphism f : C(N)p −→ C(N)p

such that f(K) = K ′ induces an isomorphism of profinite groups f∗ : ΓK′ −→
ΓK such that f∗(Γ(j)

K′) = Γ(j)
K for any j ∈ J(N).

Suppose E is a finite extension of K; then E′ = f(E) is a finite extension of
K ′. If both E and E′ contain a primitive pM th root of unity, then the groups
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Γab
E (p)/pM and Γab

E′(p)/pM are provided with the P -topological structure (cf.
section 8.2) and the induced isomorphism

f∗
M : Γab

E′(p)/pM −→ Γab
E (p)/pM

is P -continuous.
Consider the inverse statement.
Theorem 6. With the above notation, suppose that p � 3 and ι : ΓK′ −→

ΓK is an isomorphism of profinite groups such that
(a) for all j ∈ J(N), ι(Γ(j)

K′) = Γ(j)
K ;

(b) if E, E′ are finite extensions of K and, resp., K ′ such that both contain
a primitive pM th root of unity and ι(ΓE′) = ΓE, then the induced isomorphism

ιM : Γab
E′(p)/pM −→ Γab

E (p)/pM

is P -continuous.
Then there is a (unique) f ∈ HomLF0(N)(K, K ′) such that f(K) = K ′ and

f∗ = ι.
Remark. Modulo some technical details and notation (cf. Remark (1) in

section 9.2) this statement was announced in [Ab5].
Proof.
9.3.1. Notice first that the compatibility of ι with ramification filtrations

gives for 1 � r � N , the group isomorphisms ι(r) : ΓK′(r) −→ ΓK(r), which
are induced by ι. All these isomorphisms are also compatible with the corre-
sponding ramification filtrations.

In particular, ι(1) is compatible with ramification filtrations isomorphism
of the absolute Galois groups of 1-dimensional local fields K(1) and K ′(1).
Therefore, by the 1-dimensional case of a local analogue of the Grothendieck
conjecture (cf. section 8.1) ι(1) is induced by a field isomorphism f(1) : Cp −→
Cp such that f(1)(K(1)) = K ′(1).

9.3.2. Prove the existence of F�, F ′
� ∈ Bfa(N) such that for all n � 0,

(a) F0 ⊃ K, F ′
0 ⊃ K ′;

(b) ι(ΓF ′
n
) = ΓFn

;
(c) ζpn ∈ Fn and ζpn ∈ F ′

n, where ζpn is a primitive pnth root of unity.
Let L0 = Qp{{tN}} . . . {{t2}} be a basic N -dimensional local field. Then

K and K ′ are its finite extensions with induced F -structures. Consider E� ∈
B(N) such that for all n � 1, En = E0(ζpn , pn√

t2, . . . ,
pn√

tN ). Clearly, E� ∈
Ba(N) (even more, E� ∈ Bfa(N)): It is easy to see that n∗(E�) = 1 and
c∗(1, E�) = 1, because for all n ∈ N, pr1(j(En+1(r)/En(r))) = pn. Indeed,
if n � 1 and θ = pn+1√

tr, then for any τ ∈ Gal(En+1(r)/En(r)En+1(r − 1)),
τ 
= id, it holds that

vEn+1(r)(τθ − θ) = vEn+1(r)(θ(ζp − 1)) = vEn+1(r)(θ) + (pn, 0, . . . , 0).
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Let L� = KE�. Then L� ∈ Ba(N) by Proposition 4.1. Introduce L′
� =

{L′
n | n � 0} ∈ B(N) such that ι(ΓL′

n
) = ΓLn

. Then L′
� ∈ Ba(N) because ι is

compatible with ramification filtrations.
Suppose n∗ = n∗(L�) is an index parameter for L� (cf. section 4.2). Clearly,

n∗ can be taken also as an index parameter for L′
�. Choose a finite extension

M(N−1) of Ln∗(N−1) such that if M = Ln∗M(N−1), then (M, M(N−1)) ∈
LC(N) is standard (cf. Theorem 1). We can enlarge (if necessary) M(N−1) to
satisfy the following property: If M(N−1)′ is such that ι(N−1)(ΓM(N−1)′) =
ΓM(N−1) and M ′ = L′

n∗M(N − 1)′, then (M ′, M(N − 1)′) ∈ LC(N) is stan-
dard. Therefore, the towers M� = L�M(N − 1) and M ′

� = L′
�M(N − 1)′ are

such that for all n � 0, ι(ΓM ′
n
) = ΓMn

and both (Mn∗ , Mn∗(N − 1)) and
(M ′

n∗ , M ′
n∗(N − 1)) ∈ LC(N) are standard.

Apply the above procedure to (N − 1)-dimensional towers M�(N − 1),
M ′

� (N − 1) ∈ Ba(N − 1) with a parameter m∗ � n∗ and so on. Finally,
we obtain finite separable extensions F� and F ′

� of L� and, resp., L′
�, which

still satisfy the above requirements (a)–(b) but are already objects of the cat-
egory Bfa(N). Clearly, for all n ∈ N, ζpn ∈ Fn. Then ι(1)(ΓF ′

n
(1)) = ΓFn

(1)
implies that f(1)(Fn) = F ′

n and ζpn ∈ F ′
n.

9.3.3. Let F ∈ cl(F�) and F ′ ∈ cl(F ′
� ) (cf. section 5). By Theorem 2, the

group isomorphism ι induces the identification

ιF� : ΓF ′ −→ ΓF

which is compatible with ramification filtrations on these groups.
Suppose the finite extensions E/F and E ′/F ′ are such that ιF�(ΓE′) = ΓE . If

E and E ′ have standard F -structures, then E ∈ cl(E�) and E ′ ∈ cl(E′
�), where

E�, E′
� ∈ Bfa(N) are finite separable extensions of F� and F ′

� , respectively.
Therefore, we can apply Theorem 4 to deduce from the condition (b) of the
statement of our theorem that for any M ∈ N, the induced identification

ιF�,M : Γab
E′ (p)/pM −→ Γab

E (p)/pM

is P -continuous.
Therefore, by the charactersitic p case of the Grothendieck conjecture (cf.

Theorem 5 in section 9.2), the isomorphism ιF� is induced by a sequentially
P -continuous field isomorphism fR : R0(N) −→ R0(N), such that fR|F is an
isomorphism between F and F ′ in the category L̃FR(N).

9.3.4. Clearly, fR|R0(1) is induced by the f(1) : C(1)p −→ C(1)p from
section 9.3.1. Therefore, fR leaves invariant the subgroup of Fontaine’s el-
ements 〈ε〉 and by Proposition 7.4, fR is induced by a field automorphism
f : C(N)p −→ C(N)p.
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The characteristic property of the field automorphism fR is that it trans-
forms the action of any τ ∈ ΓK′ on R0(N) into the action of ι(τ ) ∈ ΓK on
R0(N). Therefore, f satisfies the same property and we have

f(K) = f(C(N)ΓK
p ) = C(N)ΓK′

p = K ′.

So, f ∈ HomLF0(N)(K, K ′) and Theorem 6 is proved.
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et corps des normes, Compositio Math. 132 (2002), no. 1, 57-98. MR1914256
(2003f:11179)

[Mo] Sh. Mochizuki, A version of the Grothendieck conjecture for p-adic local fields, Int.
J. Math. 8 (1997), no. 4, 499-506. MR1460898 (98g:11073)

[Sch] T. Scholl, Higher fields of norms and (ϕ, Γ)-modules, Doc. Math. 2006, Extra vol.,

685–709 (electronic).
[Vo] S. Vostokov, Explicit construction of the theory of class fields of a multidimensional

local field, Izv. Akad. Nauk SSSR Ser. Mat. 49 (1985), no. 2, 283-308. MR791304
(86m:11096)

[ZhK] I. Zhukov, M. Koroteev, Elimination of wild ramification, Algebra i Analiz 11
(1999), no. 6, 153-177; English transl. in, St. Peterburg Math. J. 11 (2000), no.
6, 1063-1083. MR1746073 (2002a:11134)

[Zh1] I. Zhukov, Higher dimensional local fields. In: Invitation to higher local fields (Mun-
ster, 1999), Geom. Topol. Monogr. (2000), no. 3, 5-18. MR1804916 (2001k:11245)

[Zh2] I. Zhukov, On ramification theory in the case of an imperfect residue field, Mat. Sb.
194 (2003), no. 12, 3-30. MR2052694 (2005e:11158)

Department of Mathematics and Sciences, Durham University, Science Labo-

ratories, South Road, Durham, DH1 3LE, United Kingdom

E-mail address: victor.abrashkin@durham.ac.uk

http://www.ams.org/mathscinet-getitem?mr=1369413
http://www.ams.org/mathscinet-getitem?mr=1369413
http://www.ams.org/mathscinet-getitem?mr=771673
http://www.ams.org/mathscinet-getitem?mr=771673
http://www.ams.org/mathscinet-getitem?mr=0321929
http://www.ams.org/mathscinet-getitem?mr=0321929
http://www.ams.org/mathscinet-getitem?mr=657238
http://www.ams.org/mathscinet-getitem?mr=657238
http://www.ams.org/mathscinet-getitem?mr=1948685
http://www.ams.org/mathscinet-getitem?mr=1948685
http://www.ams.org/mathscinet-getitem?mr=526137
http://www.ams.org/mathscinet-getitem?mr=526137
http://www.ams.org/mathscinet-getitem?mr=527692
http://www.ams.org/mathscinet-getitem?mr=527692
http://www.ams.org/mathscinet-getitem?mr=1693457
http://www.ams.org/mathscinet-getitem?mr=1693457
http://www.ams.org/mathscinet-getitem?mr=826154
http://www.ams.org/mathscinet-getitem?mr=826154
http://www.ams.org/mathscinet-getitem?mr=1136845
http://www.ams.org/mathscinet-getitem?mr=1136845
http://www.ams.org/mathscinet-getitem?mr=1914256
http://www.ams.org/mathscinet-getitem?mr=1914256
http://www.ams.org/mathscinet-getitem?mr=1460898
http://www.ams.org/mathscinet-getitem?mr=1460898
http://www.ams.org/mathscinet-getitem?mr=791304
http://www.ams.org/mathscinet-getitem?mr=791304
http://www.ams.org/mathscinet-getitem?mr=1746073
http://www.ams.org/mathscinet-getitem?mr=1746073
http://www.ams.org/mathscinet-getitem?mr=1804916
http://www.ams.org/mathscinet-getitem?mr=1804916
http://www.ams.org/mathscinet-getitem?mr=2052694
http://www.ams.org/mathscinet-getitem?mr=2052694

	0. Introduction
	1. Preliminaries
	1.1. The concept of higher-dimensional local field
	1.2. Concept of P-topology

	2. Higher-dimensional elimination of wild ramification
	2.1
	2.2
	2.3
	2.4. The case (a0)
	2.5. The case (a1)
	2.6. Special extensions
	2.7. The case (b2)
	2.8. The case (c)
	2.9. Characteristic 0 analogue of the Artin-Schreier theory
	2.10. The case (b1)

	3. Ramification theory and Krasner's lemma
	3.1. Category of local fields with F-structure
	3.2. Standard F-structure
	3.3. Review of ramification theory (cf. Ab5)
	3.4. Krasner's Lemma 

	4. Families of increasing towers
	4.1. The category B(N)
	4.2. The category Ba(N), NZ0
	4.3. The category Bfa(N)
	4.4. Proof of Proposition 4.6

	5. Family of fields X(K), KBfa(N)
	5.1. Fontaine's field R0(N)
	5.2. The family of fields X(K)
	5.3. The categories LF R(N) and LF R(N)"0365LF R(N)
	5.4. The class cl (K)LF "0365LF R(N), KBfa(N)
	5.5.

	6. Separable extensions in Bfa(N) and LF "0365LF R(N)
	6.1
	6.2
	6.3

	7. The functors X and XK
	7.1
	7.2. The functor X:Ba(N)-3muRLF R(N)
	7.3
	7.4

	8. A property of the P-continuity for the functor X
	8.1
	8.2
	8.3
	8.4

	9. The Grothendieck conjecture for higher-dimensional local fields
	9.1
	9.2
	9.3

	Acknowledgments
	References

