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Abstract

We develop a method for solving for equilibrium outcomes in stationary strategic settings in which specula-

tors are informationally large and understand how their actions affect the information content of prices. This

allows us to characterize speculation by institutional investors who receive private long-lived information on a

recurring basis, and trade strategically. When the underlying asset value process has a stationary autoregres-

sive structure, we develop a contraction mapping argument to solve for the stationary linear equilibrium. We

derive analytically and numerically how the characteristics of private information—its quantity, persistence

and correlation, and division among speculators—affect trading profits, pricing and trading strategies. Our

central finding is that what matters for equilibrium outcomes are the most recent signals that speculators

receive. Speculators trade so much more aggressively on new information than old that the bulk of their

profits come from their two or three most recent private signals. Trading on past prices drops off faster yet;

effectively only the most recent price matters.

Keywords: speculation, market microstructure finance, forecasting-the-forecasts, frequency domain, station-

ary linear equilibrium

JEL: E3, D4, G1, G12



1 Introduction

This paper develops a method for solving for equilibrium outcomes in stationary strategic settings in which

agents are informationally large and understand how their actions affect the information content of prices.

We use the method to characterize speculative trade and stock price dynamics when speculators acquire

private, long-lived information on a recurring basis, and trade strategically.

Existing dynamic models of speculative trade are effectively models of corporate insiders who receive

advance information about earnings: speculators acquires information at known dates, and there is a well-

defined earnings announcement date at which point everyone becomes fully informed (see Back, Cao and

Willard 2000, Holden and Subrahmanyam 1992, Foster and Viswanathan 1994, 1996, Bernhardt and Miao

2004). The researchers then derive how speculators trade over the interim on the information that each has.

This paper considers a very different type of speculation. We model the speculative trade of large

investors such as Warren Buffett, or institutions such as Goldman Sachs. Their accumulated expertise,

continual research and superior ability to numerically process that information permit them to assess the

valuation consequences of information better, and thereby earn vast profits from proprietary equity trades

on a consistent basis. Information arrival is ongoing, and these expert speculators understand that they

can evaluate past, current and future information better than most other agents. They also understand

how their trades affect prices and convey information to others; and that prices contain information about

the signals of other speculators that they, themselves, can use. As information about past signals leaks out

through price, their value is reduced, but not to zero.

In this context, the problem for speculators becomes: How do they combine current and past private

information together with the information in current and past stock prices to determine how intensively to

trade on each piece of information that they possess? In particular, how do speculators weigh new informa-

tion relative to old? These questions cannot even be posed in the models of speculation cited above, where

each speculator receives private information only once.

This speculation by institutional investors that we model is a pervasive and unceasing feature of stock

markets. However, to address such speculation, we must confront the analytical challenges associated with

dealing with strategic interaction with recurring arrival of long-lived information: traders should use the

entire history of their private signals to process the information in the history of equilibrium prices, and then

determine how intensively to trade on each signal and each price taking into account the impacts of their

trades on the pricing by the market maker, and, via price, the trades of other speculators1.

This paper develops a method to solve for equilibrium outcomes in such a setting. We then answer ques-

tions such as: How do speculators trade on new information versus old? On private signals versus prices?

How does competition among speculators affect trading and price dynamics? Does increased competition
1This gives rise to a forecasting-the-forecasts of others issues in a heterogeneous agent framework so that traders’ forecasts

differ conditional on prices—see Townsend (1985), Pearlman and Sargent (2005) where these issues do not arise and Malinova

and Smith (2003) who investigates forecasting-the-forecasts in a non-strategic setting.
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cause prices to reveal more information? Information about recent innovations? Past innovations? How do

the characteristics of private information—its quantity, correlation and persistence—affect trading strategies,

pricing, profit and information transmission?

The central message from our analysis is that what matters for equilibrium outcomes are the most recent

signals that speculators receive. We find that speculators trade more aggressively on new information than

old—to such an extent that they earn the bulk of their profits from their two or three most recent private

signals. Trading on past prices drops off faster yet; effectively only the most recent price matters.

We analyze an environment in which the asset value evolves according to an ar stochastic process, and

investors privately observe innovations to the asset’s value. We develop an iterative best-response mapping

of speculators to the conjectured trading strategies of other speculators. We then develop a novel contraction

mapping argument to derive the existence of a stationary linear equilibrium. We prove that the associated

equilibrium trading strategies are given by infinite sums of ar(1) functions of their private signals and prices.

We then provide tight analytical characterizations of how trading strategies, prices and profits are affected

by the amounts of private information and liquidity trade in the economy. Finally, we use the iterative

best-response algorithm to characterize numerically how equilibrium outcomes—trading strategies, pricing,

volume, information revealed, profits—vary with the primitives that describe the environment.

Our key initial insight is that if the underlying asset values are stationary, then equilibrium strategies,

though complicated, will be stationary linear functions of the history of private signals and prices. It follows

that the linear trading strategy that maximizes a trader’s expected profits conditionally, also maximizes

expected profits unconditionally. We exploit this equivalence and solve this unconditional expected profit-

maximization problem, using variational methods to find the optimal trading functions (Whiteman 1985).

Futia (1982) uses these methods to solve for equilibrium outcomes in a standard noisy REE setting with

non-strategic traders. Effectively, we extend these methods to strategic settings.

To prove that a stationary linear equilibrium exists, we construct an iterative best-response mapping, and

show that it converges. Specifically, we conjecture that speculators adopt linear trading strategy functions

on the history of their private signals. We then solve for the implied pricing and trading on the information

in prices. Finally, we assume that each speculator believes that other speculators trade according to this con-

jecture, and solve for the best response. We iterate on this best-response mapping and construct an indirect

contraction mapping argument to prove that there is a fixed point, which corresponds to the equilibrium.2

We then characterize equilibrium outcomes. We prove that an agent’s net total order is equal to his

forecast of the error in the market maker’s forecast of his trade on private information. That is, from an

agent’s trade on private information, he subtracts off its projection onto the history of prices—he subtracts

off the market maker’s forecast of his trade on private signals. We further prove that both the private

and public information trading strategy components are infinite sums of ar(1) terms, and that there is no

2Seiler and Taub (2008) establish the robustness of this equilibrium by modifying our methods to apply to a multi-asset

setting where there is both slight correlation between assets and slight persistence in asset values.
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simpler representation: the best response to a trading strategy with k ar(1) terms, is incrementally more

sophisticated, with k + 1 terms. We next prove that trading intensities decay faster than do the impacts of

innovations to the valuation process. Continuing, we prove that in contrast to the complicated structure of

trades, equilibrium pricing takes a simple form: the market maker unwinds the complicated autoregressive

structure of the order flow so that the price process has the same ar(1) structure as the asset value process.

We also show how the amounts of private information and liquidity trade affect trading strategies, proving

that the weights on private signals are proportional to σu
σe

, the ratio of the standard deviation of liquidity trade

to that of signals. It follows that pricing is inversely proportional to σu
σe

informed profits are proportional to

σuσe. Thus, we prove that properties of simpler models of informed trade such as Kyle (1985) extend.

Lastly, we derive the quantitative impact of the degree of competition between speculators and the per-

sistence and correlation of private information on the intertemporal structure of (a) trading intensities, (b)

speculator profit, (c) pricing, and (d) information content of prices. This analysis shows that even when

signals are uncorrelated across speculators and the value process is nearly a random walk, speculators earn

most of their profits from their two or three most recent private signals. In part, this reflects that past trading

reveals information about older signals, but trading intensities on older signals also drop off far faster than

do the contributions of the innovations to the value process itself. What drives the reduced trading on older

signals is the greater negative correlation in older signals conditional on the information in prices. Trading

on past prices drops off faster yet; effectively only the information in the most recent price matters.

We find that both dividing information more finely among speculators and raising signal correlations tilt

trading intensities, raising trading on more recent information and reducing trading on older information.

However, increased competition has remarkably slight impacts on aggregate speculator profits unless signals

are highly correlated. That is, while competition and correlation have complicated impacts on how specula-

tors trade, the aggregate consequences of competition are typically small. We also find that unless the signal

correlation is high, greater competition reduces the market maker’s forecast errors about recent innovations,

but raises forecast errors on older information, with the surprising result that the total forecast error is raised.

Past researchers have focused on simpler settings. The seminal paper, Kyle (1985), considers a single

speculator who learns the asset’s terminal value at the beginning of the trading game. Back and Pedersen

(1998) extend this analysis to allow the speculator to receive information over time, but strategic interac-

tions between agents remain absent.3 Back, Cao and Willard (2000), Holden and Subrahmanyam (1992),

and Foster and Viswanathan (1994, 1996) introduce multiple agents who receive symmetrically-distributed

signals, but these papers assume that information arrives only at date zero. The equilibrium dynamics of

our model are very different from these models. In particular, in our model, trading intensities drop off
3Chau and Vayanos (2008) consider a single speculator in a stationary environment with repeated information arrival,

where the market maker sees both order flow and dividends, and dividends are partially driven by the private signal process.

The stochastic process of dividends is structured so that in the continuous time limit, the relative contribution of the privately-

observed process to value vanishes, so that the speculator can increase trade intensity without reducing market depth: his

intense trading causes all private information to be incorporated into price arbitrarily quickly, but he still earns positive profits.
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sharply at initial lags, but the declines level off at higher lags. In sharp contrast, in standard models, trading

intensity on the same piece of information initially drops very slowly over time, but as the timing of public

revelation of information draws near, trading intensities plummet, as the price impact of order flow goes to

infinity. Qualitatively, with recurring information arrival, our economy never reaches the “late” stages of

models where information arrives only once and the timing of public release of information is known.

Boulatov and Livdan (2007) modify the continuous time framework of Back et al. by introducing market

closures and allowing for new signal arrivals about the fixed value of the asset during closures. Bernhardt

and Miao (2004) extend these analyses to arbitrary finite horizon environments in which agents can acquire

distinct signals at different dates of varying qualities and correlations. Bernhardt and Miao prove that trad-

ing strategies are linear functions of unrevealed private information. However, they cannot provide more

specific analytical characterizations, and their quantitative characterizations are limited to three periods, as

the conditional variance-covariance matrix of private information blows up in their non-stationary setting.

A second approach has been to assume that private information is short-lived: as new private informa-

tion arrives, old information is revealed to the market (Admati and Pfleiderer 1988). Then agents, when

deciding how much to trade, need not trade off current for future profit. A third approach has been to build

noisy REE models to characterize volume and price dynamics when agents are price takers (Wang 1994, He

and Wang 1995, Malinova and Smith 2003, Makarov and Rytchkov 2007). Assuming that agents are infor-

mationally small and ignore the price impact of their trades circumvents individual strategic behavior, as

agents do not have to trade off profit-taking against information release. But, allowing for strategic informed

trade is important—in practice, informed agents for a given stock are few in number, and these speculators

are typically institutional traders who understand that their significant trading has price impacts that they

should and do anticipate and internalize.

These models of speculation share the dealership market structure of Kyle (1985). However, no real world

analogue of this market design exists. In sharp contrast, in Kyle (1989) agents submit demand schedules

that detail how much they want to trade at each price, and the equilibrium price clears the market, equating

supply to demand. This institutional structure is used to determine opening prices on most exchanges, and

is used exclusively for small stocks on exchanges such as the Paris Bourse. We provide a dynamic analysis

of demand-submission markets, exploiting the fact that equilibrium outcomes correspond to those in a com-

petitive dealership market where speculators know the market-clearing price when submitting their orders

(Bernhardt and Taub 2006). That is, a demand submission market is strategically equivalent to a noisy

rational expectations setting in which speculators internalize the fact that they are informationally large.

We conclude the introduction with the caveat that our analytical approach fully exploits the stationarity

of our underlying economy—in particular, information arrival is constant over time, and the frequency

of trading opportunities corresponds to the frequency of arrival rates of new information. In practice,

speculators such as Goldman Sachs typically have greater informational advantages at some times than

others—for example, they may be more able to process information around earnings announcements than
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other agents—and the arrival rate of trading opportunities exceeds that of information. In all likelihood,

the real world is “somewhere in between” the standard settings considered by the literature, where there

is a known terminal date after which all parties are symmetrically informed, and our setting, where the

expected informational advantage of speculators is constant over time. In particular, because Goldman

Sach’s informational advantage hinges on its superior ability to crunch numbers (and not on its access to

specific earnings information), their informational advantage does not vary so much with the earnings cycle.

That is, in practice, the informational advantage of speculators never vanishes (in contrast to standard

models), even though it varies a little over the earnings cycle in predictable ways (in contrast to our model).

We next present the economic environment. Section 3 analyzes trading strategies and pricing. Section 4

develops the contraction mapping argument used to prove existence of the equilibrium. Section 5 analyzes

properties of equilibrium strategies. Section 6 quantitatively characterizes equilibrium outcomes. A conclu-

sion follows. All proofs are in Appendix A and B. We provide a guide to the frequency domain methods

that we use in an online appendix, http://econ.uiuc.edu/∼bart/frequencydomainmethods.

2 The Model

N risk-neutral informed speculators and exogenous liquidity traders trade claims to a firm over time in a

market made by risk-neutral competitive, uninformed market makers. Speculators share a common discount

factor β < 1. At the end of each date t there is a probability π that the firm is “liquidated”. This liquidation

date is best interpreted as a date at which all private information becomes public, in which case speculators

cease to be able to extract positive profits from the past private information that they have acquired. So

with probability 1 − π then, the firm continues in its private state on to date t + 1. The firm’s liquidation

value evolves stochastically over time according to the sum of N first-order autoregressive (ar(1)) processes,

vt = ρvt−1 +
N∑
j=1

ejt,

where v0 is public information, ρ ∈ (0, [β(1−π)]−1/2], and each value innovation ejt ∼ N(0, σ
2

N ), j = 1, . . . , N ,

is independently and identically distributed across the N processes and time. Our numerical analysis reveals

how signal correlation affects outcomes. The ar(1) formulation allows for a rich class of earnings processes;

the greater is ρ, the more persistent is the contribution of a date t innovation et ≡
∑N
j=1 ejt to future

earnings.4

Information. Speculator i has private information about the ei process: at date t, only speculator i knows

the date-t history of those innovations, (eit, eit−1, eit−2, . . . , ei0).5 In addition, each speculator knows the

4We note that the range of the persistence parameter ρ includes unity, corresponding to the value process following a random

walk; and indeed, our theoretical analysis extends to ρ > 1, provided that [β(1 − π)]−1/2 > ρ , allowing for a nonstationary

evolution of the value process. To maintain tractability however, we focus on ρ < 1 in our numerical analysis.
5One can interpret date t = −1 as the previous date at which all private information of speculators was made public; our

framework accommodates “starting over” with new arrival of private information.
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date-t history of prices, including the date-t price at which orders will be executed. As we noted earlier,

equilibrium outcomes correspond to those in a demand submission market.

Pricing. Let xit be speculator i’s order at date t, and let Xt =
∑N
j=1 xjt be the total speculative trade. In ad-

dition to trade from speculators, there is liquidity trade of ut. Liquidity trade is independently and identically

normally distributed each period, ut ∼ N(0, σ2
u), and is uncorrelated with the asset value process. Total net

order flow at date t is Xt+ut and Ωt−1 ≡ (Xt−1+ut−1, . . . X1+u1, v0) is the order flow history. The competi-

tive market makers set price equal to the expected value of the asset given this date-t public information, i.e.,

pt = E
[ ∞∑
τ=t

π(1− π)τ−tβ
τ−t

vτ | Xt + ut,Ωt−1

]
,

where π(1−π)τ−t is the probability the firm is liquidated at the end of date τ ≥ t after date τ trading given

that it has not been liquidated prior to date t. We focus on equilibria in which market makers set prices

that are linear functions of the order flow history. As a result, knowing the history of prices is equivalent

to knowing the history of order flows. Thus, at date t, trader i knows the earnings innovation history,

eit ≡ (eit, eit−1, . . . ei1), his past orders, xit ≡ (xit, xit−1, . . . xi1), and the order flow history, Ωt.

Speculator Optimization. Consider speculator i’s perspective at some date t given that the firm has

not yet been liquidated. Were the firm liquidated at future date τ , i’s net signed position at liquidation

would be
∑
s≤τ xis, and the date t value of this position would be β

τ−t
vτ
∑
s≤τ xis. The date t cost of this

position would be
∑
s≤τ β

t−s
psxis, because i’s order xis at date s was executed at price ps, and from a date

t perspective is discounted by β
s−t

. Thus, if the firm is liquidated at date τ , speculator i’s trading profits

equal the difference between the value of his position and its cost,∑
s≤τ

(β
τ−t

vτ − β
s−t

ps)xis.

Integrating over future possible liquidation dates, at date t, speculator i seeks to maximize expected dis-

counted lifetime trading profits:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

π(1− π)τ−t
[∑
s≤τ

(β
τ−t

vτ − β
s−t

ps)xis

]∣∣∣ eit,Ωt,xit−1

]
, (1)

where we suppress the formal dependence of prices on net order flows. Note that we can decompose spec-

ulator i’s expected discounted lifetime trading profits into a (sunk) component due to past trading that he

no longer controls and a profit component due to current and future trading that he seeks to maximize. As

a result, speculator i’s optimization problem is identical in structure each period.

3 Analysis

Our analysis mirrors that of Back et al. (2000) in that we restrict attention to equilibrium path outcomes.

We also focus on stationary linear equilibria. When agents adopt stationary strategies, eit and Ωt fully
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determine xit, so that conditioning on xit−1 is redundant. We first show that we can write a speculator’s

optimization problem in an analytically tractable way in which the dating on prices, orders and expected

contributions to the value process correspond. Intuitively, from the perspective of a speculator at date t, a

sufficient statistic for value is the expected liquidation value of the firm given his date-t information.

Lemma 3.1 Speculator i’s objective can be written as:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

[β(1− π)]τ−t
(

π

1− ρβ(1− π)
vτ − pτ

)
xiτ

∣∣∣ eit,Ωt

]
.

Here, π
1−ρβ(1−π)

vτ is essentially a one-period security that pays off in period τ , corresponding to the firm’s

expected liquidation value given date-τ information, integrating over possible liquidation dates. We simplify

notation by defining β = β(1 − π), and working with the adjusted innovations, eiτ ≡ π
1−ρβ eiτ , whose

associated variance is σ2
e . The asset value is then v ≡ π

1−ρβ v. This lets us rewrite speculator i’s objective as

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

βτ−t
(
vτ − pτ

)
xiτ

∣∣∣ eit,Ωt

]
. (2)

We next develop the consequences of the stationary linear trading strategies and pricing. We conjecture

and verify that the market maker’s pricing function is a linear function of the net order flow history:

pt =
∞∑
s=0

[
λs(Xt−s + ut−s)

]
≡ λ(L)(Xt + ut).

The price function linearly weights current and past net order flow, where λs is the weight on date t− s net

order flow. To ease presentation, we use the lag operator notation, λ(L)(Xt + ut), to represent this pricing

function. We further conjecture that speculators adopt symmetric trading strategies that are linear functions

of the histories of their private signals and net order flows, so that trader j’s order at date t takes the form

xjt =
∞∑
s=0

[
bsejt−s +Bs(Xt−s + ut−s)

]
≡ b(L)ejt +B(L)(Xt + ut). (3)

That is, bs is the weight on a signal from date t− s, and Bs is the weight on net order flow from date t− s.

We call b the private-information trading filter and call B the public-information trading filter.

Given the conjectured linear pricing and linear trading strategies of the other speculators, speculator i

computes his optimal order by solving a stationary single-agent optimization problem, which yields his best

response. To emphasize the possibility that speculator i could choose trading rules other than the conjectured

b and B, we index his choices by i; in equilibrium, bi = b and Bi = B. Using standard time-domain methods,

we first prove that trader i’s optimal order is a linear function of the forecast error in the market maker’s fore-

cast of his trade on private information. We then exploit the fact that there is a unique solution to the first-

order conditions to i’s profit-maximization problem to verify that trading strategies are, in fact, stationary.

Speculator i chooses his order xit at time t to maximize expected discounted trading profits,

max
xit

E

[ ∞∑
s=0

βs

(
vt+s − λ(L)

( N∑
j=1

xj,t+s + ut+s

))
xi,t+s

∣∣∣ eit,Ωt

]
.
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We first solve for the net order flow from the perspective of speculator i to obtain

Xt + ut = xit +
(∑
j 6=i

b(L)ejt + (N − 1)B(L) (Xt + ut)
)

+ ut,

where b(L) and B(L) are the conjectured components of the trading strategies of speculators j 6= i. Solving

for Xt + ut as a function of speculator i’s order yields

Xt + ut =
1

1− (N − 1)B(L)

(
xit +

∑
j 6=i

b(L)ejt + ut

)
≡ q(L)

(
xit +

∑
j 6=i

b(L)ejt + ut

)
,

where q(L) ≡ 1
1−(N−1)B(L) . The first-order condition for speculator i at time t with respect to xit is

0 = E

[
(vt − λ(L) (Xt + ut))−

∞∑
s=0

βsxi,t+s

s∑
τ=0

λτqs−τ

∣∣∣ eit,Ωt

]
,

where, for example, qs denotes the sth lag of q(L). Using

q(βL−1)λ(βL−1)xit =
∞∑
s=0

βs
s∑

τ=0

λτqs−τxi,t+s,

we rewrite the first-order condition as

0 = E
[
(vt − λ(L) (X + ut))− q(βL−1)λ(βL−1)xit

∣∣∣ eit,Ωt

]
.

In this first-order condition, beliefs are conditioned on Ωt, which is endogenous. Proposition 3.2 below details

how i’s optimal order depends on Ωt, establishing that we can circumvent this endogeneity. In particular, it

shows that from i’s trades on his private signals, he subtracts off their projections onto the history of prices.

The result simply says that speculator i’s relevant private information is the difference between his private

signals and what the market maker believes them to be. The proposition rests on a condition—expected dis-

counted profits arbitrarily far into the future converge to zero—that we later prove holds in the equilibrium.

The condition amounts to restricting attention to pricing rules that a speculator cannot “game” by buying

and selling arbitrarily large orders to earn unbounded profits, something that must hold in any equilibrium.

Proposition 3.2 Suppose that given date t information, (eit,Ωt), for any ε > 0, there exists a future date

t+ s(eit,Ωt, ε), such that for any τ > t+ s(eit,Ωt, ε), the time t discounted expected profits from date τ on

are less than ε, i.e., Et
[∑∞

s=τ β
s−t(vs−ps)xis∣∣ eit,Ωt

]
< ε. Then trader i’s order xit is a linear function of

the market maker’s forecast error (conditional on the net order flow history, Ωt) of his trade on his private

signals, eit. The first-order condition describing his optimal order is

E
[
q(βL−1)λ(βL−1)xit

∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
= E

[
vt

∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
. (4)

Using this forecast-error structure, we can drop conditioning on Ωt from trader i’s first-order condition.

That is, as conjectured, along a stationary equilibrium path, xit is a stationary linear function of eit −
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E[eit|Ωt], i.e., Bi(L) is a vector of projection coefficients of current and lagged trading intensities on private

information onto the net order flow history.

Having proved that equilibrium trading strategies are linear and stationary, we now show that we can

re-pose a speculator’s conditional profit-maximization problem as an unconditional problem: the two solu-

tions correspond. This lets us analyze the problem in the frequency domain, where the solution is a function

reflecting the weighting of current and past information. The analogous first-order condition in the frequency

domain takes the form of a functional equation, which is easier to manipulate and characterize.

The unconditional analogue to trader i’s conditional profit-maximization problem given in equation (2) is:

max
bi,Bi

E

[ ∞∑
t=0

βt

(
V (L)

N∑
j=1

ejt − λ(L)
[( N∑

j=1

bj(L) +
N∑
k=1

γk(L)bj(L)
)
ejt +

N∑
k=1

γk(L)ut + ut

])

×

(
bi(L)eit + γi(L)

(
bi(L)eit +

∑
j 6=i

b(L)ejt + ut

))]
. (5)

The first line is the market maker’s forecast error, vt − pt, and the second is i’s order, xit. We exploit the

linear form of equilibrium trading strategies, posing the optimization as one over the choice of functions bi

and Bi (recalling that γi is a function of Bi).

Proposition 3.3 below reveals that because equilibrium trading strategies and pricing are stationary and

linear—the same linear trading rule (i.e., the coefficients of the linear function) maximizes (2) given any equi-

librium path of private information and price realizations—the trading strategies that maximize speculator i’s

conditional optimization problem, also maximize his unconditional optimization problem. Intuitively, in the

conditional problem, speculator i can always choose the unconditional trading rule. But, if i ever finds that

unconditional rule suboptimal, then integrating over all possible histories yields an unconditional expected

profit that exceeds that attained using the unconditional trading rule. But this contradicts the optimality

of the unconditional trading rule. Hence, the conditional and unconditional trading rules must correspond.

Proposition 3.3 Under the conditions of Proposition 3.2, if bi and Bi solve speculator i’s unconditional

optimization problem, equation (5), then they solve i’s conditional optimization problem, equation (2).

Rather than solve the unconditional optimization problem directly, it is easier to transform it to the

frequency domain where we can use a variational approach. Central to this transformation is the fact that

because expectations are unconditional in the objective, we can first integrate out over ejt and ut to rewrite

the objective solely in terms of variances and covariances, plus the strategy functions. To see this, recognize

that period profit is the product of the pricing error and the trader’s order, each of which we can express as

inner products of vectors of weighting functions with the vector of innovations to asset value and liquidity

trade. Because ejt and ut are independently distributed, the expectations of their cross-products are zero

at non-identical lags, and yield variance terms at identical lags. Hence, the objective is a sum of cross-

products of coefficients of weighting functions and variances. Its structure allows it to be expressed as the
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convolution of functions. As a result, we can use the variational methods laid out in the online appendix at

http://econ.uiuc.edu/∼bart/frequencydomainmethods to solve for optimal trading strategies.

The market-maker’s problem. The market maker acts competitively, setting price equal to the expected

value of the firm given the history of net order flows. Since period net order flow is normally distributed,

conditional forecasts are linear. Again we can obtain the equilibrium pricing function by solving an un-

conditional optimization problem, i.e., by solving the analogue of (2). That is, the market maker’s pricing

function solves the following linear-least-squares prediction problem:

min
λ
E

[ ∞∑
t=0

βt(vt − λ(L)(Xt + ut))2
]
.

Substituting in the form of strategies, we can integrate out the stochastic elements, and solve the market

maker’s prediction problem in the frequency domain.

4 Equilibrium

In this section, we first define a stationary, symmetric equilibrium, and then establish its existence.

Definition 4.1 A stationary symmetric linear equilibrium is a triple (b, B, λ) such that:

(i) b and B solve a trader’s optimization problem.

(ii) λ solves the competitive market maker’s prediction problem.

(iii) Net order flow is generated by the optimization by speculators and the market maker.

The solution to the first-order conditions of speculator i’s optimization problem characterizes his best

response to the conjectured actions of the other traders and the price process, mapping the triple (b, B, λ)

into best-responses—the functions bi and Bi. Appendix A presents the variational derivatives characterizing

these best responses and that for λ. Lemma 4.2 below shows that both B (and hence γ) and λ are determined

by b in equilibrium. Intuitively, we know from Proposition 3.2 that γ is (minus) the projection of a specula-

tor’s trade on his signals onto net order flow (i.e., speculator i’s net order takes a forecast-error structure). In

turn, λ, as the solution to a least squares prediction problem, is the projection of the value process onto net

order flow, and because a speculator’s order is determined only by b, net order flow is determined only by b.

Lemma 4.2 γi is the projection of bi onto net order flow, and λ is the projection of the conjectured net

order flow onto the value process.

Once we incorporate these equilibrium relationships, equilibrium is determined by the fixed point of spec-

ulator i’s best-response mapping. This mapping is nonlinear, so that closed-form solutions cannot be found

directly. This leads us to consider a sequence of iterative best responses by a representative speculator i taking

the best response from the kth iteration round as describing the conjectured behavior of the other speculators,
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and the pricing relationship consistent with this behavior as the conjectured pricing rule. We then solve for

i’s best response to obtain the (k+1)th iteration. We prove that this best-response mapping is a contraction

mapping. We then show that the limit of this best-response iteration corresponds to a stationary equilibrium.

Because of the non-linearity of the best-response mapping determining bi, we establish its fixed point

properties indirectly by establishing a fixed point in the informationally-based portion of net order flow.

Net order flow consists of two pieces, the direct informationally-based portion,
∑N
j=1 b(L)ejt + ut, plus that

due to the filtering by speculators of net order flow, Nγ(L)
(∑N

j=1 b(L)ejt + ut

)
. It eases presentation to

represent the informationally-based portion as a single process,

J(L)wt ≡
N∑
j=1

b(L)ejt + ut, (6)

where wt is normalized to be a unit-variance i.i.d. fundamental innovation process. Here, wt is the portion

of current net order flow that cannot be forecasted by the market maker from past order flow, and is scaled

to have a unit variance. Net order flow is then (1 + Nγ(L))J(L)wt, and the associated price process is

λ(L)(1 +Nγ(L))J(L)wt. To emphasize that the market maker can unwind the filtering of net order flow by

speculators, so that his information is effectively J(L)wt, we define

µ ≡ λ(L)(1 +Nγ(L)). (7)

The price process is then µ(L)J(L)wt. This makes clear that, in equilibrium, the market maker filters the

informationally-based portion of the order flow process, J(L)wt, directly.

Definition 4.3 Let H2(β) be the space of square-integrable analytic functions on ∆(β) ≡ {z : |z| < β1/2}.

Define T : H2(β) → H2(β)) to be the mapping generated by the equations defining the functions bi and the

corresponding γ, J and µ functions.

Proposition 4.4 presents the contraction-mapping result. The associated unique fixed point characterizes

the stationary linear equilibrium.

Proposition 4.4 T has a fixed point b in H2(β). The fixed point b takes the form

b = c0

( c1
1− ρL

+
∞∑
`=2

c`
1− a`L

)
where c` > 0 for all `, with

∑∞
`=1 c` = 1 and a1 = ρ > a2 > · · · > a` > · · · > 0.

The analysis uses a contraction mapping argument on the space of square-integrable functions of a complex

variable on the unit circle, which has a tractable structure. Specifically, we develop a contraction argument

on iterations of the J function, where J(L)wt =
∑N
j=1 b(L)ejt + ut is the information-based portion of order

flow left after subtracting out the portion based on the filtering of net order flow. The contraction mapping

argument assumes that the initial element of the mapping belongs to a restricted subset of H2. Specifically,
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we begin with a conjectured trading strategy of the form posed above, assuming only that c` ≥ 0, and that

1 > aj > 0 (i.e., allowing trading strategies to have a finite basis, and allowing for a1 6= ρ). We prove that

iterating preserves the structure and that the greatest ar coefficient, i.e., a1, converges to ρ. The contraction

mapping feature then implies that the fixed point inherits this structure. The contraction mapping implies

there is a unique fixed point given the initial class of conjectures, but, because we do not consider arbitrary

conjectures, the theorem does not ensure a global uniqueness result. However, Bernhardt and Miao (2004)

established that there is a unique linear Markov equilibrium to any finite horizon economy, and we are

confident that this uniqueness extends to the stationary economy.

From the fixed point of the contraction mapping, we back out b, γ, and µ. The proposition reveals that

private information is used directly in that the first b term matches the autoregressive structure of the value

process, V . Intuitively, ρ enters the equilibrium trading strategy because the value process V enters linearly

into the first-order condition characterizing a speculator’s best response, re-seeding itself, as it were. Subse-

quent terms in the private-information trading filter feature smaller autoregressive parameters, a`, implying

that speculators trade more aggressively on newer information than old. This reflects that agents’ private

information conditional on the net order flow history becomes increasingly negatively correlated with age.

The fact that all c` are positive indicates that, in equilibrium, a speculator always trades in the direction of

his net private information.

The proof to the proposition shows that the best response to a conjectured trading strategy of the other

speculators with k ar(1) terms, is incrementally more sophisticated, with k + 1 terms, and the smallest a`

autoregressive coefficient is lower than any of the conjectured ones. It follows that the equilibrium trading

strategy does not have a finite representation.6 To highlight how it is the strategic one-upmanshsip by

speculators that underlies the complicated nature of equilibrium strategies, note by way of contrast that a

monopolist speculator has no incentive to accelerate trading intensity on information. In particular, as a

referee pointed out, examining equation (28) in the appendix, substituting N = 1 and solving for J(z) yields

J(z) = J(0)
1− f1z
1− a1z

with a1 = ρ and f1 = ρ

1+
√

1−βρ2
< a1. Using equation (21) we can then solve for the simple form of a

monopolist speculator’s trading strategy,

b(z) =
σu
σe

√
1− βρ2

1
1− ρz

.

That is, a monopolist speculator’s trading intensity mirrors the autoregressive structure of the value process,

where the coefficient, σu
σe

√
1− βρ2, reflects (i) the standard weighting by the noise-to-signal content of net

order flow (a result that we generalize to multiple speculators in Proposition 5.1), and (ii) the speculator’s

intertemporal tradeoff between current and future profits.
6Makarov and Rytchkov (2007) consider a variant of our model with a continuum of non-strategic, risk-averse agents. In that

setting, they find a related result that the price process does not have a finite representation. In contrast, as Proposition 4.8

reveals, in our strategic setting with a market maker, the price process mirrors the autoregressive structure of the value process.
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The next proposition shows that the fixed point identified in Proposition 4.4 characterizes the trading

strategies in the stationary linear equilibrium of the trading game. Essentially, the remaining step is to verify

that the properties on trading strategies and pricing identified in Proposition 4.4 imply that distant future

discounted expected profits can be made arbitrarily small, i.e., the conditions in Proposition 3.2 hold.

Proposition 4.5 The fixed point of the contraction mapping characterizes the stationary linear equilibrium.

In this equilibrium, speculators trade more aggressively on newer information than old, and their trading

intensities on private signals decay faster than ρ.

With the basic properties of the trading filter b established, we now show that the informationally-based

portion of net order flow has the same autoregressive structure as b. This result is immediate from its def-

inition, J(L)wt =
∑N
j=1 b(L)ejt + ut, and the fact that liquidity trade is a white noise process. Of course,

the coefficients weighting the autoregressive elements for J(L) and b(L) differ, as the informationally-based

portion of net order flow is the amalgamation of the contributions of each speculator plus liquidity trade—the

market maker has less information than speculators.

Proposition 4.6 The direct informationally-based order flow process, J(L), has the same autoregressive

structure, (a1 = ρ, a2, a3, . . .), as the private trading filter, b(L).

Proposition 4.7 below details that the functions µ and γ have the same autoregressive structure. Intu-

itively, this is because both are projections involving the net order flow process—µ is a projection by the

market maker of net order flow onto the unobservable value process, while γ is a projection of a speculator’s

private information onto the net order flow process. Again, µ and γ have different coefficients weighting the

common basis elements, reflecting that speculators have more information than the market maker.

Proposition 4.7 A trader’s filter γ(L) on net order flow has the same autoregressive structure as the

market-maker’s filter, µ(L).

Finally, we prove that the price process has the same autoregressive structure as the value process.

Intuitively, were this not so, systematic deviations between pricing and valuation would arise over time,

deviations that speculators would exploit.

Proposition 4.8 The price process evolves according to

pt = ρpt−1 + `wt,

where ` > 0 is the weighting parameter on the innovation to current net order flow, wt, i.e., the weighting

parameter on the unforecastable portion of the current net order flow.

Formally, this result follows from substituting for the forms of µ(L) and J(L) into the price process,

µ(L)J(L)wt, and showing that it is proportional to V (L)wt. In essence, the market-maker’s price filter un-
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does the complicated autoregressive structure of the order flow induced by speculators’ trades and converts

it back to a process with the same ar(1) structure as the value process.

5 Trading Intensity Properties

We now characterize the properties of equilibrium trading strategies, pricing and the dynamics of informa-

tion. We first derive how the levels of noise trade and private information about the asset affect trading

strategies, pricing and profits. We prove that the variance of noise trade and the variance of asset value

innovations affect equilibrium strategies in a particularly simple way: they scale the trading intensity with

which speculators trade on private information.

Fixing all other parameters, let b(σ2
e , σ

2
u) be the equilibrium private-information trading intensity function

as a function of the variances of asset value innovations and noise trade. Define the equilibrium pricing func-

tion, λ(σ2
e , σ

2
u), and speculator profit function, π(σ2

e , σ
2
u), analogously. Finally, let b(1, 1) be the equilibrium

private-information trading function when σ2
e = σ2

u = 1. Then,

Proposition 5.1 Equilibrium private-information trading strategies are linearly homogeneous in σu
σe

:

b(σ2
e , σ

2
u) =

σu
σe
b(1, 1) and γ(σ2

e , σ
2
u) =

σu
σe
γ(1, 1).

Proposition 5.1 details that the variances of noise trade and asset innovations do not affect the autoregres-

sive structure of the equilibrium trading strategies. In turn, this means that the impacts of these variances

on pricing and informed profits take simple forms:

Proposition 5.2 The equilibrium pricing function is linearly homogeneous in σe
σu

:

λ(σ2
e , σ

2
u) =

σe
σu
λ(1, 1).

The equilibrium profit function is linearly homogeneous in σeσu:

π(σ2
e , σ

2
u) = σeσuπ(1, 1).

Propositions 5.1 and 5.2 reveal that the qualitative impacts of the variances of noise trade and asset inno-

vations found in single-agent settings by Kyle (1985) and Back (1992) are, in fact, general properties.

6 Numerical Characterizations

We now provide quantitative characterizations of equilibrium outcomes, exploring how the extent of compe-

tition among speculators interacts with the persistence and correlation in asset innovations to affect (a) how

speculators trade on current and past information, (b) speculator profit, (c) pricing, and (d) the information

revealed through price about current and past innovations.
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Base Case. Our base-case features two speculators with discount factor β = 0.95. Each ejt is independently

and normally distributed with zero mean and variance 1
2 , and the autoregressive parameter of the asset value

process is ρ = 0.97, so that innovations have a very persistent impact on the asset’s value. Finally, the vari-

ance of noise trade each period is one, which matches the total variance of the innovation to the asset’s value.

The market maker’s equilibrium pricing function evolves according to an ar(1) with an autoregressive

parameter that matches the value process,

µ(L)J(L)wt = 0.895
∞∑
τ=0

(.97)τwt−τ ↔ pt = 0.97pt−1 + .895wt.

The leading moving average coefficients of key equilibrium variables are given in Table 1:

Lag 0 1 2 3 4 5 6 7 8 9

b(L) 0.355 0.271 0.215 0.177 0.149 0.128 0.112 0.100 0.090 0.081

γ(L) -0.101 -0.064 -0.043 -0.030 -0.021 -0.016 -0.012 -0.010 -0.008 -0.007P
j πjt−τ 0.359 0.172 0.090 0.051 0.031 0.020 0.013 0.010 0.007 0.005

σ2FE
m 1.095 0.674 0.451 0.323 0.243 0.189 0.152 0.125 0.104 0.088

Cond. Signal Corr. -0.020 -0.233 -0.425 -0.580 -0.694 -0.775 -0.831 -0.871 -0.898 -0.918

Table 1: Moving average coefficients

Observe that trading intensities on older information quickly decline, especially those on net order flow: By

the third lag, the γ coefficients fall by 70%, while the trading intensity on private signals falls by only 50%.

This difference reflects that after only a few lags, accounting for his (small) trade on private information in

the net order flow ceases to convey much information to i.

Thus, while we prove analytically that trading intensities decline faster than the valuation process—this

follows directly from the fact that ρ = a1 > a2 > . . . ai > . . . 0—our numerical analysis quantifies the rapidity

with which this occurs. It is not the fact that there is “less” information remaining in older news that drives

this decline. Rather, it is that the information being revealed through price results in negative correlations

in net private information conditional on the information in price (the last line in the table). Intuitively, at

longer lags, price increasingly reflects an average of the private signals, so that when one speculator’s net

private information is high, the other’s is low. Hence, they are necessarily negatively correlated. In fact,

the correlation in agents’ net private information becomes very negative at short lags; because agents see

the current period price, their private information is conditionally negatively correlated even at lag zero. It

is this correlation structure that induces speculators to trade more aggressively on recent information than

on older information. The effect on trading is an instance of the “waiting game” phenomenon described by

Foster and Viswanathan (1996), and Back, Cao and Willard (2000).

It is worthwhile to observe that speculators trade very differently on signals of different vintages than

they do in standard models on the same signal at different points in time. These comparisons are subtle,

as there are “other” differences between our work and the literature, both in modeling and in numerical

implementation.7 Nonetheless, the qualitative trading patterns are radically different. With zero correlation

in signals and two speculators, Figure 1b, p2135 of Back, Cao and Willard reveals that over the entire first
7In our model speculators see contemporaneous price, which causes them to raise trading intensities, as they internalize how

their trades affect the information and trades of other speculators. This feature is absent in the discrete time literature [in

continuous time, as in Back, Cao and Willard, this timing distinction is irrelevant]. Also, Back, Cao and Willard assume that

liquidity trade is persistent, following Brownian motion versus our i.i.d. structure; Brownian motion damps trading intensities.

15



half of the trading horizon there is a negligible total drop-off in trading intensity on net private information of

about 10%; but over the last 5% of the trading horizon trading intensities plummet by roughly 80%, reinforced

by the steep increase in price impact, which is going to infinity. In contrast, in our baseline numerical

parameterization, trading intensities drop off quickly, but the percentage declines in trading intensities fall

at higher lags—exactly the opposite qualitative pattern.

Numerically, we find that only recent information—the first few lags—contributes much to speculator

profits. Profits drop off more quickly than do trading intensities both because of the increasingly negative

correlation at distant lags, and because private information is revealed over time through trade, so there is

“less of it”. This reduction in information is captured by the lag decomposition of the variance of the market

maker’s forecast error of the asset’s value. In effect, even though the entire history of signals is available and

relevant for the construction of the equilibrium, only recent information is of practical consequence.

This rapid drop-off in profits from older information is very different from what the literature finds when

speculators trade over time on their one piece of private information. For example, Foster and Viswanathan

(1996) consider 3 speculators with a slight initial correlation in signals of 0.1818 and 800 trading opportu-

nities, and find (see Figure 3, p1462) find that period profit in the first trading opportunity is slightly more

than twice that in the 400th trading opportunity—a gradual, almost linear dropoff in profits (equivalently,

about 55% of private information is revealed in the first 400 trading opportunities).

Persistence in the value process. Table 2 illustrates how ρ affects equilibrium outcomes in our base-case

parameterization. Reducing ρ lowers the contribution of a lagged innovation ejt−τ to the asset’s period-t

value, ρτejt−τ , thereby reducing the total private information in the economy, as the variance of the value

process is Nσ2
e

1−βρ2 . Panel 1 illustrates that as ρ is reduced, price becomes far more sensitive to current period

order flow. Indeed, even when ρ = 0.5, the price impact of order flow quickly approaches what it would be

in a static environment (pt = Xt + ut when ρ = 0). As ρ declines, speculator profits fall, but by far less

than proportionately to the reduction in the amount of information. This is because as ρ falls, speculators

trade more intensively on newer information (see the lag decompositions of b and γ), and less intensively on

older information. As a result, the current innovation contributes more to profits, but all other innovations

contribute less. In turn, as ρ is reduced, the market maker’s forecast error falls even more rapidly than do

speculator profits: the higher trading intensities on newer information reduce the contribution of current

information to the forecast error variance, and lagged innovations matter less.

In essence, when ρ is smaller, future unrevealed private information decays more rapidly, and this shifts

the intertemporal tradeoff toward extracting profits at lag 0, and away from deferring profit extraction. The

resulting higher trading intensity at lag 0 raises the negative correlation at higher lags to such an extent that

by lag 1 reductions in ρ lower trading intensities: by lag 1 the waiting game features dominate the direct

effect of the more rapid decline in unrevealed private information in terms of trading intensity incentives. In

turn, this implies that reductions in ρ (i) raise lag 0 trading profits but (ii) lead to even sharper declines in

trading profits at more distant lags, as there is both less information and reduced speculation at these lags.8

Competition and correlation. We next explore how increased competition interacts with the correlation

in agent signals to affect equilibrium outcomes. One might conjecture that raising competition by dividing

Finally, to facilitate numerical solution, our base numerical parameterization features a discount factor of β = 0.95 and slight

decay in the value process (ρ = 0.97), whereas the literature has β = 1 and there is no decay in the sole innovation; the discount

factor and decay speed up trading in our setting.
8We thank a referee for this observation.
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Table 2: Persistence and Equilibrium Outcomes

Aggregate Variables

ρ = 0.97 ρ = 0.75 ρ = 0.50 ρ = 0.00

Price (pt) .97pt−1 + .895(Xt + ut) .75pt−1 + .935(Xt + ut) .50pt−1 + .978(Xt + ut) (Xt + ut)

Informed Profit (
∑
j πj) 0.760 0.599 0.542 0.500

Forecast error (σ2FE) 3.87 1.017 0.673 0.500

Amount of Information 9.42 2.14 1.31 1.00

( 1
1−βρ2 )

Lag 0 1 2 3 4 5

b0.97je 0.355 0.271 0.215 0.177 0.149 0.128

b0.75je 0.681 0.390 0.238 0.152 0.100 0.068

b0.50je 0.831 0.330 0.141 0.062 0.028 0.012

γ0.97
j -0.101 -0.064 -0.043 -0.030 -0.021 -0.016

γ0.75
j -0.206 -0.075 -0.030 -0.013 -0.006 -0.003

γ0.50
j -0.253 -0.060 -0.014 -0.003 -0.001 -0.000

∑
j π

0.97
j 0.359 0.172 0.090 0.051 0.031 0.020∑

j π
0.75
j 0.490 0.083 0.018 0.004 0.001 0.000∑

j π
0.50
j 0.508 0.031 0.002 0.001 0.000 0.000

σ2FE0.97 1.095 0.674 0.451 0.323 0.243 0.189

σ2FE0.75 0.731 0.188 0.060 0.021 0.009 0.004

σ2FE0.50 0.609 0.056 0.006 0.001 0.000 0.000

corr0.97 -0.020 -0.233 -0.425 -0.580 -0.694 -0.775

corr0.75 -0.168 -0.593 -0.829 -0.928 -0.966 -0.981

corr0.50 -0.238 -0.710 -0.919 -0.977 -0.989 -0.992
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the total information among more agents should significantly affect aggregate outcomes. Tables 3 and 4 reveal

that this conjecture is false unless signals are highly correlated. Indeed, Table 3 reveals that when signals are

independently distributed, aggregate profits and the price impact of order flow are extremely insensitive to the

degree of competition. One might alternatively conjecture that when signals are independently distributed

then the extent of competition should have little effect on strategic interactions—after all, in static settings

with independent signals, outcomes do not depend on how information is divided. This conjecture is also

wrong—competition greatly affects how agents trade on new information relative to old. Finally, one might

conjecture that raising competition should lower the market maker’s forecast error variance. This conjecture,

too is wrong: increased competition raises the forecast error variance if signals are sufficiently uncorrelated.

Table 3 presents equilibrium outcomes for N = 2, 4, and 32 agents when ejt is independently distributed

with variance 1
N , so that the variance of total private information is fixed at one. The table reveals that

aggregate outcomes—pricing, total speculator profit and market maker forecast error—are remarkably insen-

sitive to how information is divided among agents. Going from two speculators to 32, total speculator profits

fall by only two percent; and there is a similar percentage decline in the price impact of order flow. The

market maker’s forecast error—a measure of the information revealed through trade—rises by five percent

due to this increased competition. This is because greater competition causes agents’ private information to

be more conditionally negatively correlated. As a result, agents trade less aggressively, so that net order flow

contains less information. In sum, in a dynamic setting with independently distributed signals, the extent

of competition matters for aggregate outcomes, but not by very much.

The second panel of Table 3 shows how competition affects the lag decomposition of key equilibrium

variables when signals are independently distributed. This panel shows that the insensitivity of aggregate

outcomes to competition masks how agents trade on new information relative to old. Raising competition

especially raises the conditional negative correlation in private information at lags, causing agents to tilt trad-

ing intensities, raising trading intensities on new information and lowering them on older information. As a

result, the source of speculator profits is altered: profits from the current innovation are higher, but future

profits are reduced by a little more. So, too, trade reveals more information to the market maker about the

current innovation, but less about past innovations, so that forecast error variances at long lags are far higher.

Table 4 shows how correlation interacts with the extent of competition to affect outcomes. When traders’

signals are correlated, the vector version of the frequency-domain methods must be employed (see our online

appendix, http://econ.uiuc.edu/∼/bart/frequencydomainmethods.) The vector methods are far more diffi-

cult to solve numerically, leading us to set ρ = 0.5. Table 4 reveals that correlation has a convex impact on

aggregate profits—profits fall increasingly sharply as we increase θ—an effect that is dramatically enhanced

by increasing the number of speculators. When there are two traders, raising θ from 0 to 0.5 modestly reduces

total expected speculator period profits from 0.533 to 0.506. Thus, neither raising competition alone, nor

raising correlation alone has a major impact on aggregate outcomes. Conversely, the number of traders has

minimal effects on outcomes only when signal correlations are low: maintaining a high correlation, θ = 0.5,

and going from two to four agents sharply reduces total speculator profits by almost 20%. Continuing, with

four speculators, a correlation of θ = 0.75 lowers profits 36% below their level when signals are uncorrelated,

while with two speculators, profits are reduced by only 14%.

Inspection of the lag decompositions of trading intensities reveals why. With two agents, raising the signal

correlation to θ = 0.5 increases trading intensity on current information by 44 percent; but raising both the
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Table 3: Competition and Equilibrium Outcomes

Aggregate Variables

N=2 N=4 N=32

Price (pt) 0.97pt−1 + .895(Xt + ut) 0.97pt−1 + .889(Xt + ut) 0.97pt−1 + .886(Xt + ut)

Informed Profit (
∑
j πj) 0.760 0.752 0.747

Forecast error (σ2FE) 3.87 4.00 4.07

Lag 0 1 2 3 4 5

b2je 0.355 0.271 0.215 0.177 0.149 0.128

b4je 0.371 0.267 0.205 0.165 0.137 0.118

b32je 0.382 0.264 0.198 0.158 0.131 0.112

γ2
j -0.101 -0.064 -0.043 -0.030 -0.021 -0.016

γ4
j -0.051 -0.031 -0.020 -0.014 -0.010 -0.008

γ32
j -0.006 -0.004 -0.002 -0.002 -0.001 -0.001

∑
j π

2
j 0.359 0.172 0.090 0.051 0.031 0.020∑

j π
4
j 0.365 0.166 0.085 0.048 0.029 0.019∑

j π
32
j 0.370 0.162 0.082 0.046 0.029 0.019

σ2FE2 1.095 0.674 0.451 0.323 0.243 0.189

σ2FE4 1.073 0.668 0.458 0.335 0.257 0.205

σ2FE32 1.059 0.663 0.460 0.341 0.265 0.212

corr2 -0.020 -0.233 -0.425 -0.580 -0.694 -0.775

corr4 -0.049 -0.329 -0.536 -0.677 -0.770 -0.830

corr32 -0.078 -0.400 -0.606 -0.733 -0.810 -0.860
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Table 4: Competition and Correlation: ρ = 0.5

N = 2 N=4 N=2 N=4

θ = 0 θ = 0 θ = 1
2 θ = 1

2

Informed Profit (
∑
j πj) 0.533 0.532 0.506 0.437

Lag 0 1 2 3 4 5

b2je (θ = 0) .872 .326 .131 .056 .024 .011

b4je (θ = 0) .875 .306 .120 .050 .022 .010

b2je (θ = .5) 1.257 .465 .187 .081 .036 .017

b4je (θ = .5) 1.768 .538 .203 .085 .038 .018

γ2
j (θ = 0) -.226 -.047 -.011 -.003 -.001 .000

γ4
j (θ = 0) -.113 -.022 -.005 -.001 .000 .000

γ2
j (θ = .5) -.311 -.044 -.008 -.002 -.001 -.000

γ4
j (θ = .5) -.190 -.014 -.002 -.001 -.000 -.000

πj2 (θ = 0) .496 .033 .003 .000 .000 .000

πj4 (θ = 0) .496 .032 .003 .000 .000 .000

πj2 (θ = .5) .488 .018 .001 .000 .000 .000

πj4 (θ = .5) .429 .017 .002 .000 .000 .000

number of agents and the signal correlation more than doubles trading intensities on current information.

Trading intensities at lags also rise with the increased correlation, but the effect is less. Intuitively, it is the

race to trade on common information ahead of other agents that leads to the far higher trading intensities on

new information. Trading so aggressively drives down the conditional correlation in agents’ information at

lags, so that the impact of raising correlation and competition is reduced at lags. It is this more aggressive

trading that drives down total speculator profits.

Thus, to significantly affect aggregate outcomes, we must raise both the number of speculators and the

correlation in their information. The consequences of doing so are to raise trading intensities and to tilt

them toward new information relative to old information, driving down profits.
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7 Conclusion

How information is dispersed through prices has long been a central question in finance. We develop a new

framework to answer this question. Our model of speculative trade in stock markets resides in an infinite

horizon setting, so that our findings are not distorted by finite horizon boundaries. We characterize precisely

how information at one date interacts with information from other dates. The use of private information

and its revelation through price never ends: each new realization of private information leads agents to

re-interpret the history of private and information and prices.

We characterize analytically how the primitives of the economic environment affect equilibrium outcomes,
proving that the variances of noise trade and private information proportionately scale trading strategies,
pricing, profit and information transmission. We find that competition slows the transmission of information,
but the quantitative impacts of competition are slight unless speculator signals are substantially correlated,
so that they compete and trade on common information.
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A Proofs and derivations

The structure of this appendix is as follows. First, the proof of Lemma 3.1 shows how to transform a spec-

ulator’s objective with conventionally-dated assets into one in which the dating of assets, prices, and trades

are the same. The proof of Proposition 3.2 then establishes that a speculator’s order is equal to the market-

maker’s forecast error of the speculator’s trade on his private signals when projected on price. This lets us to

remove the conditioning on public information in a speculator’s objective. The proof has two parts. The first

is the projection theoretic argument. The second uses a boundedness condition verified in Lemmas A.8-A.9 to

preclude the optimality of non-stationary strategies. These lemmas rely on the structure of the functions that

characterize the equilibrium: bi, γi, and µ. To establish this structure we derive the first-order conditions that

characterize best responses, and analyze the structure dictated by iterating repeatedly on these conditions,

starting with a conjecture about the form of trading strategies. Lemmas A.4– A.7 set out some mechanics

of frequency-domain analysis, and Lemmas A.1–A.3 establish key properties of the equilibrium functions.

We then prove our central result, Proposition 4.4. This proof establishes that the autoregressive coeffi-

cients of bi(z) are between zero and ρ, the autoregressive coefficient of the asset value process. To do this,

we establish that each iteration of the equilibrium functions results in a new set of these coefficients that is

interspersed between the previous set. The appendix ends with proofs of our characterization propositions.

A.1 Transforming the objective (Lemma 3.1)

We first decompose the speculator’s date-t objective, equation 1, into (i) “sunk” profits from past trading

at dates τ < t, plus (ii) profits from current and future trading,

max
{xiτ}τ≥t

Et

[ ∞∑
T=t

π(1− π)T−t
[∑
τ≤T

(β
T−t

vT − β
τ−t

pτ )xiτ

]∣∣∣∣∣eit,Ωt,xit−1

]

= Et

[ ∞∑
T=t

π(1− π)T−t
[∑
τ<t

(β
T−t

vT − β
τ−t

pτ )xiτ

]∣∣∣∣∣eit,Ωt,xit−1

]

+ max
{xiτ}τ≥t

Et

[ ∞∑
T=t

π(1− π)T−t
[ ∑
t≤τ≤T

(β
T−t

vT − β
τ−t

pτ )xiτ

]∣∣∣∣∣eit,Ωt,xit−1

]
.

The speculator maximizes expected lifetime future profits by maximizing expected profits from current and

future trading. We expand this component as

Et

[
πxit

[ ∞∑
T=t

[β(1− π)]T−tvT −
∞∑
T=t

(1− π)T−tpt

]
+ πxit+1

[ ∞∑
T=t+1

[β(1− π)]T−tvT −
∞∑

T=t+1

(1− π)T−tβpt+1

]

+ πxit+2

[ ∞∑
T=t+2

[β(1− π)]T−tvT −
∞∑

T=t+2

(1− π)T−tβ
2
pt+2

]
+ . . .

∣∣∣∣eit,Ωt

]

= Et

[
πxit

[ ∞∑
T=t

[β(1− π)]T−tvT −
1
π
pt

]
+ πxit+1

[ ∞∑
T=t+1

[β(1− π)]T−tvT −
β(1− π)

π
pt+1

]

+πxit+2

[ ∞∑
T=t+2

[β(1− π)]T−tvT −
[β(1− π)]2

π
pt+2

]
+ . . .

∣∣∣∣∣eit,Ωt

]

= Et

[ ∞∑
τ=t

πxiτ

[ ∞∑
T=τ

[β(1− π)]T−tvT − [β(1− π)]τ−t
pτ
π

]∣∣∣∣∣eit,Ωt

]
.
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The first equality follows from solving the geometric series, and the second from writing the summation com-

pactly. Next, we multiply through by π and factor out the common β̄(1− π)T−t to rewrite the objective as

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β(1− π)]τ−t
( ∞∑
T=τ

[β(1− π)]T−τπvT − pτ
)∣∣∣∣∣eit,Ωt

]

= max
{xiτ}τ≥t

Et

[
Eτ

[ ∞∑
τ=t

xiτ [β(1− π)]τ−t
( ∞∑
T=τ

[β(1− π)]T−τπvT − pτ
)∣∣∣∣∣eiτ ,Ωτ

]∣∣∣∣∣eit,Ωt

]
.

The equality follows from iterating on the expectation operator. At date τ , xiτ is a deterministic function of

date τ information (solving i’s optimization problem), so we can pass the date τ expectation operator through:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β(1− π)]τ−tEτ

[( ∞∑
T=τ

[β(1− π)]T−τπvT − pτ
)∣∣∣∣∣eiτ ,Ωτ

]∣∣∣∣∣eit,Ωt

]
.

Now use the ar(1) structure of vT , Eτ
[
vT |eiτ ,Ωτ

]
= ρT−τEτ

[
vτ |eiτ ,Ωτ

]
, to simplify i’s objective:

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β(1− π)]τ−tEτ

[( ∞∑
T=τ

[ρβ(1− π)]T−τπvτ − pτ
)∣∣∣∣∣eiτ ,Ωτ

]∣∣∣∣∣eit,Ωt

]

= max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

xiτ [β(1− π)]τ−tEτ

[(
π

1− ρβ(1− π)
vτ − pτ

)∣∣∣∣∣eiτ ,Ωτ

]∣∣∣∣∣eit,Ωt

]
.

The equality follows from solving the geometric series. Finally, we integrate out and rearrange terms to write

i’s objective as

max
{xiτ}τ≥t

Et

[ ∞∑
τ=t

[β(1− π)]τ−t
(

π

1− ρβ(1− π)
vτ − pτ

)
xiτ

∣∣∣∣∣eit,Ωt

]
. 2

A.2 Proof of Propositions 3.2 and 3.3

The proof of Proposition 3.2 has two parts. The first uses the theory of recursive projections to simplify a term

in the first-order condition, proving that it is orthogonal to public information. The second part uses a bound-

edness hypothesis that we later verify. We first simplify the E
[
vt
∣∣ eit,Ωt

]
term in the first-order condition,

0 = E
[
(vt − λ(L) (X + ut))− q(βL−1)λ(βL−1)xit

∣∣∣ eit,Ωt

]
= E

[
vt − pt − q(βL−1)λ(βL−1)xit

∣∣∣ eit,Ωt

]
.

Using the law of recursive projections, we decompose E
[
vt
∣∣ eit,Ωt

]
into

E
[
vt
∣∣ eit,Ωt

]
= E

[
vt
∣∣ Ωt

]
+ E

[
vt − E

[
vt

∣∣∣ Ωt

] ∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
= pt + E

[
vt − E

[
vt
∣∣ Ωt

] ∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
,

using pt = E
[
vt
∣∣ Ωt

]
. By construction, Ωt is orthogonal to the forecast error eit − E

[
eit
∣∣ Ωt

]
, so that

E
[
E
[
vt
∣∣ Ωt

] ∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
= 0,

and hence

E
[
vt
∣∣ eit,Ωt

]
= pt + E

[
vt

∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
.
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Substituting into the first-order condition, the pt terms cancel, so that the sum of the first two terms in the

first-order condition simplifies to E
[
vt

∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
, which is orthogonal to Ωt. Thus, we have

E
[
q(βL−1)λ(βL−1)xit

∣∣∣ eit,Ωt

]
=
[
vt

∣∣∣ eit − E
[
eit
∣∣ Ωt

]]
.

Since the right-hand side only varies with eit and Ω according to the structure of forecast errors, eit −
E
[
eit
∣∣ Ωt

]
, so must the forecast of future trades on the left-hand side, i.e., the first-order condition takes

the form given in the Proposition.

It remains to prove that the optimal orders xit+s, s > 0, are characterized by first-order conditions.

Suppose to the contrary that they are not. Then they must generate discounted time-t expected profits that

exceed by some ε > 0 the maximized expected profits given the restriction that orders not depend on the

net order flow history. We decompose i’s discounted expected time-t profits into

E
[τ−1∑
s=0

βs(vt+s − pt+s)xit+s
∣∣∣eit,Ωt

]
+ E

[ ∞∑
s=τ

βs(vt+s − pt+s)xit+s
∣∣∣eit,Ωt

]
. (8)

Using the boundedness premise, as a function of date t information, for all τ ≥ t+s(eit,Ωt, ε), the discounted

time-t expected profits from the second sum are strictly less than ε. Hence, to derive a contradiction, we

need only show that the strategy maximizing the first sum in (8), E
[∑τ−1

s=0 β
s(vt+s − pt+s)xit+s

∣∣∣eit,Ωt

]
,

is solely a function of the forecast error, eit − E
[
eit
∣∣ Ωt

]
. But, our setting is a special case of Bernhardt

and Miao (2004), who establish that optimal/equilibrium trading strategies are linear functions of forecast

errors in a general finite horizon setting, with arbitrary numbers of informed speculators at each date, and

arbitrary correlations in the signals that speculators receive at each date. 2

Proof: (Proposition 3.3.) Let (bci , B
c
i ) be the stationary trading rules that solve the conditional optimiza-

tion problem (2), and suppose that they did not correspond to the trading rules (bui , B
u
i ) that maximize

i’s unconditional optimization problem (5). Then for a set of histories of positive probability, (bci , B
c
i ) must

earn higher profits than (bui , B
u
i ). Moreover, there are no histories for which the reverse is true: the trading

rules that maximize profits given any history (ejt,Ωt) must yield expected profits that are at least as high

as those from using (bui , B
u
i ), because (bui , B

u
i ) can feasibly be employed at any history.

Integrating over all possible histories yields i’s unconditional payoff from using the rule (bci , B
c
i ). But,

this then implies that the unconditional payoff from using (bci , B
c
i ) exceeds that from using (bui , B

u
i ). This

contradicts the premise that (bui , B
u
i ) maximize unconditional expected profits. 2

25



A.3 Frequency-Domain Analysis

We now prove that an equilibrium exists and characterize it. We write speculator i’s optimization problem

in the frequency domain as

max
bi(·),Bi(·)

1
2πi

∮
tr

{


V (z)− λ(1 + (N − 1)γ(z) + γi(z))b(z)
...

V (z)− λ(1 + (N − 1)γ(z) + γi(z))bi(z)
...

V (z)− λ(1 + (N − 1)γ(z) + γi(z))b(z)

−λ(z)(1 + (N − 1)γ(z) + γi(z))



×

(
γi(βz−1)b(βz−1) . . . (1 + γi(βz−1))bi(βz−1) . . . γi(βz−1)b(βz−1) γi(βz−1)

)
σ2
e 0 . . . 0 0
...

...

0 0 . . . σ2
e 0

0 0 . . . 0 σ2
u


}
dz

z
,

where the integration is counterclockwise around the unit circle. We abbreviate notation in what follows, for

example writing bi instead of bi(z), and b∗i instead of bi(βz−1). The objective takes a vector form because

there are N + 1 fundamental processes: the N innovation processes {ejt}, and the noise trade process ut.

The final term in the objective reflects that we have passed the expectations operator through: it is the

variance covariance matrix of signals and noise trade. The column vector is the market maker’s forecast

error of the firm’s value, and the row vector multiplying it is i’s order.

The market-maker’s frequency-domain objective is the following linear, least-squares prediction problem,

min
λ(·)

1
2πi

∮
tr

{
V − λb(1 +Nγ)

...

V − λb(1 +Nγ)

−λ(1 +Nγ)



×

(
(V ∗ − λ∗b∗(1 +Nγ∗) . . . V ∗ − λ∗b∗(1 +Nγ∗) − λ∗(1 +Nγ∗)

)
σ2
e 0 . . . 0 0
...

...

0 0 . . . σ2
e 0

0 0 . . . 0 σ2
u


}
dz

z

It eases presentation to solve the market maker’s optimization problem first. To do so, we construct a

variation λi+αζ. Taking the variational derivative for λ and exploiting β-symmetry (see our online appendix,

http://econ.uiuc.edu/∼bart/frequencydomainmethods) we obtain the following Wiener-Hopf equation as the

first-order condition for λ:

N(V − λb(1 +Nγ))b∗(1 +Nγ∗)σ2
e − λ(1 +Nγ)(1 +Nγ∗)σ2

u =
−1∑
−∞

. (9)

We follow standard convention and use
∑−1
−∞ as shorthand for an arbitrary function that has only negative

powers of z in its Laurent expansion, and hence cannot be part of the solution to an agent’s optimization
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problem. Because the covariance matrix is diagonal, the first-order condition takes a one-dimensional form.

Dividing (9) by (1 +Nγ∗) and rearranging yields

N(V b∗ − λ(1 +Nγ)bb∗)σ2
e − λ(1 +Nγ)σ2

u =
−1∑
−∞

. (10)

Solution for bi. Taking the variational derivative of speculator i’s objective with respect to bi and exploit-

ing β-symmetry (see our online appendix, http://econ.uiuc.edu/∼bart/frequencydomainmethods) yields the

following Wiener-Hopf equation:

[(V − λbi(1 + (N − 1)γ + γi)(1 + γ∗i )− λ∗bi(1 + (N − 1)γ∗ + γ∗i )(1 + γi)]σ2
e =

−1∑
−∞

. (11)

Substituting for the posited symmetric equilibrium trading strategies, bi = b and γi = γ, equation (11)

simplifies to

[(V − λb(1 +Nγ)(1 + γ∗)− λ∗b(1 +Nγ∗)(1 + γ)]σ2
e =

−1∑
−∞

. (12)

Re-arranging equation (12), yields

b[λ(1 +Nγ)(1 + γ) + λ∗(1 +Nγ∗)(1 + γ)]σ2
e = V (1 + γ∗)σ2

e +
−1∑
−∞

.

The coefficient of σ2
e on the left-hand side is the sum of complex conjugates. Due to this symmetry, by

Rozanov’s theorem (1967), we can factor it into the product of an analytic, invertible function g(z) and its

conjugate,9

gg∗ ≡ λ(1 +Nγ)(1 + γ∗) + λ∗(1 +Nγ∗)(1 + γ). (13)

Substituting for gg∗, (12) becomes

b(gg∗) = V (1 + γ∗) +
−1∑
−∞

⇒ b = g−1[g∗−1V (1 + γ∗)]+. (14)

Here [·]+ is the annihilator operator that sets the coefficients of negative powers of z in the Laurent expansion

to zero, while preserving all coefficients on the non-negative powers of z to obtain a feasible (backward-looking

in time) solution to the speculator’s optimization problem.

Solution for Bi. We first recall the definition (translated to the frequency domain) of γi:

γi =
Bi(z)

1−
∑
j 6=iBj(z)−Bi(z)

. (15)

We note the following Frechet derivatives of γj and 1 +Nγ with respect to Bi:

∂γi
∂Bi

=
1

1−
∑
k Bk

+
Bi

(1−
∑
k Bk)2

= (1 + γi)(1 +Nγ) and
∂(1 +Nγ)

∂Bi
= (1 +Nγ)2. (16)

9We remind the reader that the conjugate of g(z) is g(βz−1). Technically, this is not the complex conjugate per se, but can

effectively treated as such; see the online appendix http://econ.uiuc.edu/∼bart/frequencydomainmethods.
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Taking the variational derivative with respect to Bi yields

[(V b∗ − λb(1 + (N − 1)γ + γi))b∗(1 + γ∗i )(1 +Nγ∗)− λ∗b∗bγi(1 +Nγ∗)2]σ2
e + . . .

+ [(V b∗ − λb(1 + (N − 1)γ + γi))b∗(1 + γ∗i )(1 +Nγ∗)− λ∗b∗b(1 + γi)(1 +Nγ∗)2]σ2
e + . . .

+ [(V b∗ − λb(1 + (N − 1)γ + γi))b∗(1 + γ∗i )(1 +Nγ∗)− λ∗b∗bγi(1 +Nγ∗)2]σ2
e

+ [−λ(1 + (N − 1)γ + γi)(1 + γ∗i )(1 +Nγ∗)− λ∗γi(1 +Nγ∗)2]σ2
u =

−1∑
−∞

. (17)

Substituting for bi = b and γi = γ this first-order condition simplifies to

[N [(V b∗ − λb(1 +Nγ)b∗)(1 + γ∗)(1 +Nγ∗)− λ∗b∗bγ(1 +Nγ∗)2]− λ∗b∗b(1 +Nγ∗)2]σ2
e

+ [−λ(1 +Nγ)(1 + γ∗)(1 +Nγ∗)− λ∗γ(1 +Nγ∗)2]σ2
u =

−1∑
−∞

.

Next, divide out a factor (1 +Nγ∗) to obtain

[N [(V b∗ − λb(1 +Nγ)b∗)(1 + γ∗)− λ∗b∗bγ(1 +Nγ∗)]− λ∗b∗b(1 +Nγ∗)]σ2
e

+ [−λ(1 +Nγ)(1 + γ∗)− λ∗γ(1 +Nγ∗)]σ2
u =

−1∑
−∞

. (18)

Re-arranging yields

[N(V b∗ − λ(1 +Nγ)bb∗)σ2
e − λ(1 +Nγσ2

u)](1 + γ∗)

− λ∗Nb∗bγ(1 +Nγ∗)σ2
e − λ∗b∗b(1 +Nγ∗)σ2

e − λ∗γ(1 +Nγ∗)σ2
u =

−1∑
−∞

. (19)

The first part of this expression, the coefficient of (1+γ∗), duplicates the market-maker’s first-order condition

(10) and drops out. We can divide λ∗ and (1 +Nγ∗) out of the remaining term, yielding

−Nb∗bγσ2
e − b∗bσ2

e − γσ2
u =

−1∑
−∞

. (20)

To solve this, we need a factorization step. We first write the direct informationally-based portion of net

order flow as J(L)wt =
∑N
j=1 b(L)ejt + ut, where wt is normalized to be a unit-variance i.i.d. innovation

process. We then have

JJ∗ = Nbb∗σ2
e + σ2

u, (21)

where by Rozanov’s factorization theorem, we can choose J(z) to be analytic and invertible. Hence, the

inverse, J(z)−1, is analytic. Substituting (21) into (20) yields

J∗Jγ = −bb∗σ2
e . (22)

We have thus demonstrated the following:

Lemma A.1 Speculator i’s trade on net order flow takes the form of a projection: γ = −J−1[J∗−1bb∗σ2
e ]+.
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This lemma re-establishes our finding in the time domain that γi is the projection of i’s trades on private

information onto the net order flow process. The negative sign in the formula for γi emphasizes that i

subtracts this projected information from his gross order flow—i trades less aggressively to the degree that

his private information can be inferred from the net order flow history.

Finally, substituting for JJ∗ into the first-order condition for λ, equation (10)yields

λJJ∗(1 +Nγ) = V (Nb∗σ2
e) +

−1∑
−∞

. (23)

The price process is then λ(L)(1 +Nγ(L))J(L)wt. Defining µ ≡ λ(1 +Nγ), we solve (23) for

µ ≡ λ(1 +Nγ) = J−1[J∗−1V (Nb∗σ2
e)]+. (24)

The following lemma shows that the annihilator operator can generate explicit solutions if the argument

of the operator has a special form.

Lemma A.2 Let f be analytic on β−1/2 and ρ < β−1/2. Then [f∗(1− ρz)−1]+ = f(βρ)(1− ρz)−1.

Proof: Direct computation (see Taub (1986). 2

A.3.1 Properties of the solution.

Lemma A.3 1 +Nγ is invertible.

Proof: Solve the definition of J in (21) for bb∗σ2
e = JJ∗−σ2

u

N and substitute this into the solution for γ given

in Lemma A.1, to obtain

Nγ = −J−1[J∗−1(JJ∗ − σ2
u)]+

= −1 + J−1[J∗−1σ2
u]+ ⇒ 1 +Nγ = J−1[J∗−1σ2

u]+.

Because [J∗−1σ2
u]+ is a scalar and J−1 is invertible by construction, the result follows. 2

Exploiting Lemma A.3, we substitute J into the first-order condition for λ and invert to obtain

λ = (1 +Nγ)−1J−1[J∗−1V Nb∗σ2
e ]+. (25)

It follows that λ is invertible: (1+Nγ)−1 and J−1 are invertible by construction, and because V is an ar (1)

process, [J∗−1V Nb∗σ2
e ]+ is proportional to V (Lemma A.2), which is invertible. This invertibility implies

that observing prices is equivalent to observing the J process.

A.3.2 Some lemmas about rational functions

Lemmas A.4-A.7, establish properties of rational functions that we need for the contraction mapping ar-

gument used to prove Proposition 4.4. The contraction argument requires us to bound appropriately some

structured polynomials. To do this, we first characterize the behavior of the roots of symmetric quadratic

equations that arise in factorizations.

Lemma A.4 Let 0 < a < 1. Define f(z) by f(z)f(z−1) ≡ (1−az)(1−az−1) +σ2. Then f(z) = f0(1− f1z)
and f1 < a.
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Proof: Multiplying out and matching coefficients of z0 and z + z−1 respectively yields the equations

σ2 + 1 + a2 = f2
0 (1 + f2

1 ) and f2
0 f1 = a,

which can be solved for f0 and f1. The solution for f1 is

f1 =
σ2+1+a2

a ±
√(

σ2+1+a2

a

)2 − 4

2
.

Because the root must be fractional, the relevant root is the smaller one, i.e., the radical is subtracted.

Routine algebra then reveals that

σ2+1+a2

a −
√(

σ2+1+a2

a

)2 − 4

2
< a. 2

Lemma A.4 shows that adding an ma process to an independent i.i.d. process results in a moving-average

component of the joint process that has a smaller ma parameter than the initial ma parameter. The next

lemma establishes a similar result: adding an ar process to an independent i.i.d. process results in a moving-

average component of the joint process that has a smaller ma parameter than the initial ar parameter. We

use this result to establish the characteristics of J(z).

Lemma A.5 Let h(z) =
∏k−1
i=1 (1− fiz)/

∏k
i=1(1− aiz) with 1 > a1 > f1 > a2 > f2 > · · · > ak > 0. The

partial-fractions representation of h(z) is

h(z) =
k∑
i=1

ci
1− aiz

, where
k∑
i=1

ci = 1 and ci > 0.

Conversely, this partial-fractions representation implies the factored-form representation with 1 > a1 > f1 >

a2 > f2 > · · · > ak > 0.

Proof: We prove the result by recursively expanding
∏k−1
i=1 (1 − fiz)/

∏k
i=1(1 − aiz) into partial-fractions

form. We first expand 1−f1z
(1−a1z)(1−a2z)

into c11
1−a1z

+ c12
1−a2z

, where

(i) c11 =
a1 − f1
a1 − a2

∈ (0, 1); (ii) c12 =
f1 − a2

a1 − a2
∈ (0, 1); and (iii) c11 + c12 = 1,

proving the result for k = 1. We now assume that the induction hypothesis holds for k, i.e., there is a partial-

fractions representation with the appropriate properties on cki , and prove that it holds for k + 1. We have∏k
i=1(1− fiz)∏k+1
i=1 (1− aiz)

=
∏k−1
i=1 (1− fiz)∏k
i=1(1− aiz)

(1− fkz)
(1− ak+1z)

.

Substituting the posited partial-fractions representation for k yields

k∑
i=1

cki (1− fkz)
(1− aiz)(1− ak+1z)

=
k∑
i=1

cki

[ ck+1
i1

(1− aiz)
+

ck+1
i2

(1− ak+1z)

]
,

where ck+1
i1 + ck+1

i2 = 1 and ck+1
ij < 1, and because, by induction,

∑k
i=1 c

k
i = 1, then

k∑
i=1

cki (ck+1
i1 + ck+1

i2 ) ≡
k+1∑
i=1

ck+1
i = 1.
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To establish the converse argument, first assume a partial-fractions representation for k = 2,

c1
1− a1z

+
c2

1− a2z
,

with c1 + c2 = 1 and c1, c2 > 0, and a1 > a2. Establishing a common denominator yields

c1
1− a1z

+
c2

1− a2z
=

1− (c1a2 + c2a1)z
(1− a1z)(1− a2z)

,

so that a1 > c2a1 + c1a2 = f1 > a2. An analogous induction argument establishes this representation holds

for an arbitrary k. 2

Lemma A.6 Let −ρ < f < ρ and 0 < ρ < 1. Then

inf{|z|=1}2 Re
(

1− fz
1− fρ

)
> 1.

Proof: Using the polar form z = eiθ = cos(θ) + i sin(θ), if 0 ≤ f < ρ, then

inf{|z|=1}Re(1− fz) = inf{|z|=1}(1− f cos(θ)), (26)

with the infimum clearly attained at θ = 0, i.e., at z = 1. Hence,

inf{|z|=1}2 Re
(

1− fz
1− fρ

)
≥ 2(1− f)

1− fρ
> 1,

for f ∈ (0, ρ). Similarly, if −ρ < f < 0, the infimum is attained at z = −1, and we again have

inf{|z|=1}2 Re
(

1− fz
1− fρ

)
≥ 2(1 + f)

1− fρ
> 1. 2

Lemma A.7 Let 0 < f1 < a < f2 < ρ. Then

inf{|z|=1}2 Re

(
(1−f1z)(1−f2z)

1−az
(1−f1ρ)(1−f2ρ)

1−aρ

)
> 1.

Proof: We first expand the denominator of Re
(

1−f1z)(1−f2z)
1−az

)
in a power series,

Re
(

(1− f1z)(1− f2z)
1− az

)
= Re

(
(1− (f1 + f2)z + f1f2z

2)
∞∑
k=0

akzk

)

= Re

( ∞∑
k=0

akzk − (f1 + f2)
∞∑
k=1

ak−1zk + f1f2

∞∑
k=2

ak−2zk

)

=
(
1− f1 + f2

a
+
f1f2
a2

)
Re

( ∞∑
k=0

akzk

)
+ Re

(
f1 + f2
a

− f1f2
a2
− f1f2

a
z

)
=

(
1− f1 + f2

a
+
f1f2
a2

)
Re
(

1
1− az

)
+
(
f1 + f2
a

− f1f2
a2
− f1f2

a
Re(z)

)
.

We now evaluate the first term. Observe that for any complex number a+ ib, the real part of the inverse is

the sum of the complex conjugates:

Re
(

1
a+ bi

)
=

1
a+ bi

+
1

a− bi
=

2a
a2 + b2

.
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Using 1− az = 1− a cos(θ)− ia sin(θ), we have

Re
(

1
1− az

)
=

2(1− a cos(θ))
(1− a cos(θ))2 + (a sin(θ))2

=
2(1− a cos(θ))

1− 2a cos(θ) + a2 cos(θ)2 + a2 sin(θ)2

=
2(1− a cos(θ))

1− 2a cos(θ) + a2
,

Substituting this structure, and using Re(z) = cos(θ) we obtain

Re
(

(1− f1z)(1− f2z)
1− az

)
= (1− f1 + f2

a
+
f1f2
a2

)
2(1− a cos(θ))

1− 2a cos(θ) + a2
+
(
f1 + f2
a

− f1f2
a2
− f1f2

a
cos(θ)

)
.

We now show that Re
(

(1−f1z)(1−f2z)
1−az

)
achieves its maximum at θ = 0. Differentiating the last term with

respect to θ yields
d

dθ

(
−f1f2

a
cos(θ)

)
=
f1f2
a

sin(θ) > 0.

The other term is slightly more complicated. We have

d

dx

2(1− ax)
1− 2ax+ a2

=
a(1− a2)

(1− 2ax+ a2)2
> 0,

and because d
dθx = d

dθ cos(θ) = − sin(θ) < 0, the derivative of the first term is positive if the coefficient

(1− f1 + f2
a

+
f1f2
a2

) ≡ 1
a2

(a2 − a(f1 + f2) + f1f2) ≡ 1
a2
X(a)

is negative. We know that f1 < a < f2, so we just need to show that X(a) < 0. It is immediate that

X(f1) = X(f2) = 0. Hence X(a) < 0, if X ′′(a) > 0. But X ′′(a) = 2 > 0, so this follows.

Finally, substitute in the fact that the infimum is attained at θ = 0 (or equivalently z = 1) to bound

inf{|z|=1}2 Re

(
(1−f1z)(1−f2z)

1−az
(1−f1ρ)(1−f2ρ)

1−aρ

)
= inf{|z|=1} 2Re

(
1−f1z
1−f1ρ
1−az
1−aρ

1− f2z
1− f2ρ

)
=

1−f1
1−f1ρ
1−a
1−aρ

2(1− f2)
1− f2ρ

from below. From Lemma A.6, the second term, 2(1−f2)
1−f2ρ exceeds one. To see that first term exceeds one note

that 1−y
1−yρ falls in y: 0 < f1 < a implies that the fraction in the numerator exceeds that in the denominator. 2

Lemma A.7 extends to higher-order ratios—applying a partial-fractions expansion inductively reveals

that the infimum is always attained at z = 1, and the same ratio argument can be repeatedly applied.

A.4 Proof of Proposition 4.4

We now prove our main result, Proposition 4.4. We first develop a fixed point condition for the function JJ∗

using the equations for b, J , µ, γ, and g (equations (14), (21), (23), Lemma A.1, and (13), respectively).

We then prove that if J has a structure such that its numerator and denominator coefficients are real and

initially have an interspersing structure, then this structure is preserved by the mapping implicit in the fixed

point condition; moreover, with this structure, the modulus of the mapping is a positive fraction, establishing

the contraction property. The proof has several sub-arguments that we develop in sequence.

The Recursion. Making use of the ar structure of the value process filter V , we first apply the annihilator

lemma, Lemma A.2, to the solution for b in (14) to obtain

b = g−1[g∗−1(1 + γ∗)V ]+ = g−1AbV,
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where Ab ≡ 1+γ(βρ)
g(βρ) . Thus,

bb∗ = A2
b

V V ∗

µ(1 + γ∗) + µ∗(1 + γ)
.

Now substitute for bb∗ into the equation (21) that defines JJ∗ to obtain

JJ∗ = NA2
b

V V ∗

µ(1 + γ∗) + µ∗(1 + γ)
σ2
e + σ2

u.

Next, apply Lemma A.2 to equation (24) to obtain a simplified expression for µ,

µ = J−1AµV,

where Aµ ≡ Nb(βρ)
J(βρ) σ

2
e . Also, rewriting our solution for γ in Lemma A.1 yields

γ = −J−1[J∗−1b∗bσ2
e ]+ = −J−1[J∗−1 J

∗J − σ2
u

N
]+ = − 1

N
+ J−1J(0)−1σ

2
u

N
,

so that

1 + γ =
N − 1
N

+ J−1J(0)−1σ
2
u

N
.

Finally, substituting these values for µ and 1 + γ into the JJ∗ equation yields

JJ∗ = NA2
b

V V ∗

J−1AµV (N−1
N +J∗−1J(0)−1 σ

2
u
N )+J∗−1AµV ∗(

N−1
N +J−1J(0)−1 σ

2
u
N )
σ2
e + σ2

u

= N
A2
b

Aµ
V V ∗JJ∗

V (N−1
N J∗+J(0)−1 σ

2
u
N )+V ∗(N−1

N J+J(0)−1 σ
2
u
N )
σ2
e + σ2

u.
(27)

This is a non-linear functional equation in J . It is highly algebraic in character, in that if J is a rational

function then the solution is determined by the roots of a polynomial of finite or possibly infinite order. To

find these roots, we substitute the constants

b(βρ) =
1 + γ(βρ)
g(βρ)2

V (βρ) and 1 + γ(βρ) =
N − 1
N

+ J(βρ)−1J(0)−1σ
2
u

N

from our solutions for b and 1 + γ into the ratio A2
b/Aµ in (27),

A2
b

Aµ
=
(

1 + γ(βρ)
g(βρ)

)2
J(βρ)

Nb(βρ)σ2
e

,

and manipulate, simplifying (27) to

JJ∗ =
1

V −1(N−1
N J(0)J+

σ2
u
N )

V (βρ)−1(N−1
N J(0)J(βρ)+

σ2
u
N )

+ V ∗−1(N−1
N J(0)J∗+

σ2
u
N )

V (βρ)−1(N−1
N J(0)J(βρ)+

σ2
u
N )

JJ∗ + σ2
u. (28)

We next make an initial conjecture that J is a kth-order rational function of the form

J = J(0)
∏k
i=1(1− fiz)∏k
i=1(1− aiz)

,

with the interspersion property, 1 > a1 > f1 > a2 > f2 > · · · > ak > fk > 0. We then iterate on the

mapping in (28), establishing the key fact that this property is preserved by the iteration.

Substituting for V and the conjecture for J , we write the V −1(N−1
N J(0)J + σ2

u

N ) term in the denominator

of (28) as

V −1(N−1
N J(0)J + σ2

u

N ) = (1− ρz)
(
N−1
N J(0)2

Qk
i=1(1−fiz)Qk
i=1(1−aiz)

+ σ2
u

N

)
= 1−ρzQk

i=1(1−aiz)

(
N−1
N J(0)2

∏k
i=1(1− fiz) +

∏k
i=1(1− aiz)σ

2
u

N

)
.

(29)
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The right-hand side of (28) then takes the form

1
S(z) + S(βz−1)

JJ∗ + σ2
u, (30)

where S(z) is implicitly defined from (29).

Increment of the polynomial order. To ease presentation, we set β = 1; generalizations to β < 1 obtain

immediately with a rescaling of z and the coefficients of the Laurent expansions of the functions.10 We now

show that the polynomial order in the numerator and denominator of J increases by exactly one on each

iteration. To see this, inspect the mapping in (30). S includes a V −1J term and its conjugate counterpart

has a V ∗−1J∗ term: J and J∗ have order-k numerators and V −1 and V ∗−1 have order-1 numerators, so

their products are order-(k+ 1). This numerator enters the denominator of equation (30), implying that the

denominator increments to k + 1. Finally, getting a common denominator on the right-hand side involves

multiplying σ2
u by the order-(k + 1) denominator of the first term, yielding an order-k + 1 numerator. In

particular, if ai 6= ρ, for all i, then canceling the common
∏k
i=1(1−aiz) in the denominator of S(z) and J(z),

and the common
∏k
i=1(1 − aiz−1) in the denominator of S(z−1) and J(z−1), and establishing a common

denominator for the iterated JJ∗ yields

JJ∗ ∝
∏k
i=1(1− fiz)

∏k
i=1(1− fiz−1) + σ2

u

∏k+1
i=1 (1− a′iz)

∏k+1
i=1 (1− a′iz−1)∏k+1

i=1 (1− a′iz)
∏k+1
i=1 (1− a′iz−1)

, (31)

where the denominator
∏k+1
i=1 (1−a′iz)

∏k+1
i=1 (1−a′iz−1) is obtained by (a) establishing a common denominator

for the terms of S+S∗ that have not been canceled and then writing it in factored form, and (b) the propor-

tionality constant is J(0)2 divided by the constant generated by the factoring. If, instead, ai = ρ, for some i,

then it cancels with the 1−ρz in the numerator of (29), and it hence does not cancel with the 1−ρz in JJ∗,

in which case ρ continues to enter the iterated version of JJ∗, and there are k denominator terms in S+S∗.

Interspersion property preserved by iteration. Next observe that if iteration preserves the intersper-

sion structure and the iteration is contractive, then the fixed point must also have this structure. To determine

how the properties of the iterated values a′i and f ′i relate to their kth-order values, ai and fi, first observe that

when z = a′i, that
∏k+1
i=1 (1− a′iz−1) = 0 (or

∏
i,ai 6=ρ(1− a

′
iz
−1) = 0 if ai = ρ for some i). Hence, the iterated

values a′i solve S(z) + S(z−1) = 0. Observe that ai cannot be a zero of the numerator of S(z) + S(z−1):∏
(1− aiz−1) appears in the denominator of S(z−1), so that S(ai) + S(a−1

i ) = S(ai) +∞ 6= 0. Hence, any

conjectured approximation of the equilibrium is perturbed by iteration in the sense that a′i 6= ai, for ai 6= ρ.

Suppose first that a1 = ρ. The largest zero of S(z)+S(z−1) must be less than ρ, because S(z)+S(z−1) > 0

for z between ρ and 1. Note that limz↓a2S(z−1) = −∞, and S(z−1) is continuous and monotonic on (a2, ρ].

Hence, there is a unique zero in (a2, ρ). Similar reasoning demonstrates that the other zeros are such that

ai+1 < a′i+1 < ai for i = 1, . . . , k, with the convention ak+1 = 0.

Now consider a1 6= ρ. First let a1 < ρ. For z > ρ, we have S(z) > 0 and S(z−1) > 0, so that a′1 < ρ.

For a2 < z < a1, it is also true that S(z) > 0 and S(z−1) > 0: this is because there are two negative

terms, 1 − ρz−1, and 1 − a1z
−1, whose signs cancel each other out. For z ∈ (a1, ρ) S(z−1) < 0 and S(z−1)

approaches −∞ as z approaches a1 from above. Hence, S(z) + S(z−1) must have a zero in the interval

(a1, ρ). The same reasoning establishes the interspersion properties for the other a′i terms.

10That is, it is innocuous to treat S∗ as if it is the complex conjugate of S. See the online appendix

http://econ.uiuc.edu/∼bart/frequencydomainmethods for a detailed explanation.
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Now, let a1, . . . , aj > ρ. Again, the iterated value of a1, a′1, cannot exceed a1: all the terms 1 − ai/a′i,
1−fi/a′i, 1−aia′i, and 1−fia′i would then be positive. Hence, a′1 < a1. Next note that if f1 > ρ, then S(z−1)

switches sign at f1, so that a′1 > f1 > ρ, and if a1 > ρ > a2, then S(z−1) is negative for ρ < z < a1, and

becomes positive again for z < ρ, so that again S(z)+S(z−1) has a crossing point at zero somewhere in the in-

terval (ρ, a1), and hence a′1 ∈ (ρ, a1). Again, as above, the interspersion property holds for the other a′i terms.

Interspersing properties of the f ′i . By assumption, ai > fi > ai+1 > 0, and we just established that if

a1 ≥ ρ then ai > a′i+1 > ai+1; and if a1 < ρ then a′i > ai > a′i+1. Rewriting the JJ∗ mapping (31) as

JJ∗ ∝
∏k
i=1(1− fiz)

∏k
i=1(1− fiz−1)∏k+1

i=1 (1− a′iz)
∏k+1
i=1 (1− a′iz−1)

+ σ2
u,

we see that the first zero of the numerator, f ′1, must have the property a′1 > f ′1 > a′2, as σ2
u > 0, and

continuing to alternate signs, we must have a′2 > f ′2 > a′3, and so on.

Finally, because the f ′i are interspersed between the a′i terms, applying Lemma A.5 establishes that

ci > 0, and conversely ci > 0 implies that the f ′i are interspersed between the a′i terms.

The set {ai} is infinite in equilibrium. Because the coefficients {ai} of the next round of iteration are

strictly interspersed (except possibly for ai = ρ), their order increases by one on each iteration. Hence, the

set of {ai} cannot be finite in equilibrium.

Bounding the modulus of the mapping. Denote the mapping implicit in (28) by T ∗, with T ∗ : H2(β)→
H2(β), where H2(β) is the space of analytic square-integrable functions on the β-disk, β = {z

∣∣|z| ≤ β1/2}.
We first show that the modulus of T ∗ is a fraction under the assumption that the interspersing property

holds, i.e., that 1 > a1 > f1 > a2 > · · · > 0, and then verify that T ∗ maps H2(β) into itself.

Integrating (30) around the unit circle to calculate the norm yields

‖ J2 ‖=‖ νJ2 ‖ +σ2
u, (32)

where νν∗ ≡ 1
S+S∗ . We establish the contraction property by showing that11

‖ 1
S + S∗

‖=‖ 1
2Re(S)

‖< 1.

We cannot compute the norm of the denominator directly, so we use an indirect argument, bounding the

infimum of the denominator from below by one, which bounds the norm of 1
2Re(S) from above by one:

1
2πi

∮
{|z=1|}

1
2 Re(S)

dz

z
≤ 1

inf{|z|=1}2 Re(S)
< 1.

We now bound this expression. To minimize presentation of sub-cases, we exploit the fact that on iteration

a1 → ρ, and characterize that case. Recall that the structure of J is

J = J(0)
∏k
i=1(1− fiz)∏k
i=1(1− aiz)

,

with ai ≤ ρ and fi ≤ ρ. Write the numerator of S as

N − 1
N

J(0)2
∏k
i=1(1− fiz)∏k
i=2(1− aiz)

+
σ2
u

N
(1− ρz),

11We again note that we are treating S∗ as if it were the complex conjugate of S via our temporary assumption that β = 1;

again, see the online appendix http://econ.uiuc.edu/∼bart/frequencydomainmethods.
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where we note that because of the product V −1J in the numerator, there is one more fi term than ai term.

In common denominator form, the numerator becomes

N−1
N J(0)2

∏k
i=1(1− fiz) + σ2

u

N (1− ρz)
∏k
i=2(1− aiz)∏k

i=2(1− aiz)
,

which, using a direct extension of Lemma A.4, we write as

C

∏k
i=1(1− f̃iz)∏k
i=2(1− aiz)

,

where C is a constant, and ρ > f̃i > fk. Therefore, returning to the definition of S + S∗ in (28) and (30),

we just need to prove that

2 inf
{|z|=1}

Re


Qk
i=1(1−f̃iz)Qk
i=2(1−aiz)Qk
i=1(1−f̃iρ)Qk
i=2(1−aiρ)

 > 1.

Because of the interspersing property, i.e., ai > fi > ai+1 we can apply Lemma A.7 to this expression,

which establishes that the modulus of T ∗ is a fraction. Therefore T ∗ is a contraction. Because the space of

square-integrable analytic functions H2 is complete, there is a fixed point. 2

A.5 The fixed point is a stationary linear equilibrium

We now prove that the fixed point identified by the contraction mapping is a stationary linear equilibrium.

The essential step is to prove that the boundedness condition stated in Proposition 3.2 holds in equilibrium.

We begin establishing this boundedness property with Lemma A.8, which characterizes the structure of

the equilibrium pricing rule from the perspective of an individual speculator. After that, we prove the

boundedness result in Lemma A.9. We make use there of Proposition B.1, proved in Appendix B, which is

a purely technical result about the positive definiteness of a matrix, AT , that shows up in the proof.

Lemma A.8 If the pricing rule and trading strategies of speculators j 6= i take the forms given in Proposition

4.4, then the price process as a function of i’s order flow history takes the form

pt(xit, ξt) = ξt + ξ̂ [ξ0xit + ξ1xit−1 + ξ2xit−2 + . . . ] .

ξt is a random term reflecting stochastic components of trades by speculators j 6= i and noise traders that

decays faster than ρ. Further, ξ0 > ξ1 > · · · > 0, and ξ̂ > 0.

Proof: From i’s perspective, pt(xit) = q(L)λ(L)xit. Substituting for

q(L) =
1

1− (N − 1)B(L)
, γ(L) =

B(L)
1−NB(L)

and Γ(L) = 1 +Nγ(L) =
1

1−NB(L)
, (33)

and defining µ(L) = Γ(L)λ(L), we solve for

q(L)λ(L) = (1 + γ(L))−1Γ(L)λ(L) = (1 + γ(L))−1µ(L). (34)

Algebraic manipulation then reveals that

1 + γ(L) =
1− (N − 1)B(L)

1−NB(L)
= q(L)−1Γ(L).
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Recall that the finite approximation of b takes the multiplicative form

b(L) = c0

∏k−1
i=1 (1− ciL)∏k
i=1(1− aiL)

.

J(L) takes a similar form, save that the polynomial orders of its numerator and denominator are equal:

J(L) = J(0)
∏k
i=1(1− fiL)∏k
i=1(1− aiL)

. (35)

We now characterize the structure of γ(L) and µ(L), recalling that

γ = J−1[J∗−1b∗bσ2
e ]+ and µ = J−1[J∗−1Nb∗V σ2

e ]+.

Recall that b is the sum of ar terms. From Lemma A.2, the expression for γ, [J∗−1b∗bσ2
e ]+ is also the sum

of ar(1) terms, i.e., the annihilate preserves the ar structure of b. Similarly, [J∗−1Nb∗V σ2
e ]+ is an ar(1).

To characterize γ and µ, we use this structure to determine the polynomial orders of the numerators and

denominators of 1 + γ and of µ. Finding the common denominator of 1 + γ(L) we have

1 + γ(L) ∼
∏k
i=1(1− giL)∏k
i=1(1− fiL)

, (36)

where we ignore the leading multiplicative constant. Similarly,

µ(L) ∼
∏k−1
i=1 (1− aiL)∏k
i=1(1− hiL)

,

where the order of the numerator is only k− 1 because V (L) cancels the first ar term in J(L). Because the

polynomial orders are such that the product (1 + γ(L))−1µ(L) has numerator polynomial order that is less

than the polynomial order of the denominator, it can be expressed in partial-fractions form.

The autoregressive coefficients of µ(L) lie in (0, 1). Hence, examining (34), it suffices to show that the

autoregressive coefficients of (1 + γ(L))−1 also lie in (0, 1), i.e., the gi in (36) lie in (0, 1). We have

γ = J−1[J∗−1b∗bσ2
e ]+ = J−1[J∗−1 J

∗J − σ2
u

N
]+ =

1
N

(1− J−1[J∗−1σ2
u]+).

Substituting the rational function structure from (35) for J yields

(1 + γ) ∼
N−1
N

∏k
i=1(1− fiL) + J(0)−2

∏k
i=1(1− aiL)σ2

u∏k
i=1(1− fiL)

.

The numerator term of (1+γ) is a convex combination of two terms with coefficients ai ∈ (0, 1) and fi ∈ (0, 1),

so that the implied coefficients of the convex combination, the gi, also have the property gi ∈ (0, 1). It follows

that ξk is formed from the sum of elements of a geometric series that arises from expanding each ar term,

and ξ0 > ξ1 > · · · > 0 as claimed.

It remains to prove that ξ̂ > 0. To do this, we show that the leading coefficients of the constituent

expressions for price, (1 + γ(L))−1, and µ(L) are positive. We first show that ‖ γ ‖≤ 1
N :

‖ γ ‖ = ‖ J−1[J∗−1b∗b]+ ‖ σ2
e ‖ ≤ ‖ J−1[J∗−1 J

∗J − σ2
u

N
]+ ‖

≤ 1
N
‖ 1− J−1[J∗−1σ2

u]+ ‖ ≤
1
N

(
1− inf

z
|J−1|2σ2

u

)
≤ 1

N
.
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It follows that the leading coefficient of 1+γ(L) and hence of (1+γ(L))−1 is positive. Turning to the leading

coefficient of µ(L), recall that

µ = J−1[J∗−1Nb∗V σ2
e ]+.

Note that the J(L) function is formed from a factorization. Hence, J(0) is a standard deviation, which is posi-

tive, and therefore the leading term of J−1 is positive. By assumption, the leading coefficient of V (L) is unity.

Finally, from the definition of J , we have

bb∗ =
JJ∗ − σ2

u

Nσ2
e

.

Because J(L) is formed from a factorization, JJ∗− σ2
u is a Hermitian positive definite rational function. As

such, it can be factored, implying that the leading coefficient of b(L) is positive. 2

Lemma A.9 Suppose the pricing rule and trading strategies of speculators j 6= i take the forms given in

Proposition 4.4. Write pt+s(xit+s) to be the price, incorporating the fixed stationary linear responses by the

other speculators, as a function of speculator i’s current and lagged orders. Let {xit+s}∞s=0 maximize i’s

discounted expected profits,

Et

[ ∞∑
s=0

βs(vt+s − pt+s(xit+s))xit+s
∣∣eit,Ωt

]
,

where we omit the formal dependence of i’s trades on his information. Take ε > 0. Then there exists an

s(eit,Ωt, ε) such that for all τ > s(eit,Ωt, ε)

Et

[ ∞∑
s=τ

βs(vt+s − pt+s(xit+s))xit+s
∣∣eit,Ωt

]
< ε.

Proof: The proof strategy is the following. We first decompose speculator i’s expected profit function

given time t information into two components, a “deterministic component” that is a function of time t

information, and a “stochastic component” that reflects expected future trading profits stemming from the

yet-to-be realized future signals and noise trades. We next show that the stochastic component of profits

is a concave function of speculator i’s orders and has a bounded expected payoff. To do this, we find a

gross upper bound on these expected payoffs, by calculating speculator i’s profits when he knows all future

realizations of future signals and noise trades—showing that his optimal strategy is a linear function of this

information, and computing the resulting profits—and then integrating over the possible signals and noise

trades. This stochastic component retains its structure in future periods, and by an appropriate choice of

t+ s can be made arbitrarily small in terms of date t value due to discounting.

Speculator i’s objective can be decomposed into

max
{xit+s}

Et

[ ∞∑
s=0

βs
[
ρsvt − ζt+s

]
xit+s −

[
ξ̂ [ξ0xit+s + ξ1xit+s−1 + ξ2xit+s−2 + . . . ]

]
xit+s|eit,Ωt

]

+Et
[ ∞∑
s=0

βs
[
vt+s − ρsvt − (ξt+s − ζt+s)

]
xit+s −

[
ξ̂ [ξ0xit+s + ξ1xit+s−1 + ξ2xit+s−2 + . . . ]

]
xit+s|eit,Ωt

]
,

where ζt+s is the portion of ξt+s that is forecastable by speculator i given his date-t information. Letting

wt+s = vt+s − ρsvt − (ξt+s − ζt+s), a strict upper bound on the expected payoff associated with the second
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sum in i’s objective is obtained when speculator i optimizes given knowledge of the entire future history of

{wt+s}s≥t, and we then integrate over all possible future histories. So consider∫
w

[
max

{xit+s}s≥0

∞∑
s=0

βswt+sxit+s −
[
ξ̂ [ξ0xit+s + ξ1xit+s−1 + ξ2xit+s−2 + . . . ]

]
xit+s|{wt+s}

]

For any realized future path of the {wt+s}, the speculator solves the deterministic problem

max
{xit+s}s≥0

( ∞∑
s=0

βswt+sxit+s −
[
ξ̂ [ξ0xit+s + ξ1xit+s−1 + ξ2xit+s−2 + . . . ]

]
xit+s

)
xi0, . . . , xit given.

First consider the finite-horizon version of this deterministic problem.

max
{xit,...,xit+T }

( xit xit+1 . . . xit+s . . . xit+T )



wt

βwt+1

...

βswt+s
...

βTwt+T



−( xit xit+1 . . . xt+s . . . xit+T )

0BBBBBBBBBBB@

ξt ξt−1 . . . ξ0 0 0 . . . 0

βξt+1 βξt . . . βξ1 βξ0 0 . . . 0

...
...

βsξt+s βsξt+s−1 . . . βsξt βsξt−1 . . . . . . 0

...
...

βT ξt+T βT ξt+T−1 . . . βT ξt+T−s βT ξt+T−s−1 . . . . . . βT ξ0

1CCCCCCCCCCCA

0BBBBBBBBBBB@

xi0

xi1
...

xit+s
...

xit+T

1CCCCCCCCCCCA
.

We write this problem more compactly as

max
xT

x′TwT − x′T ( NT MT )

(
xt

xT

)
,

where

MT ≡



ξ0 0 0 . . . 0

βξ1 βξ0 0 . . . 0
...

...

βsξt βsξt−1 . . . . . . 0
...

...

βT ξt+T−s βT ξt+T−s−1 . . . . . . βT ξ0


,

and the time subscripts emphasize that we are considering the finite-horizon problem. The problem consists

of a linear part, x′TwT −x′TNTxt, and a quadratic part, x′TMTxT . We calculate the second-order condition of

the finite-horizon problem explicitly, determining that the central matrix MT is negative definite. Removing

the negative sign, this is equivalent to establishing that the internal matrix is positive definite. We establish

negative definiteness by considering the symmetrized version of the problem:

max
xT

x′TwT −
1
2
x′T (MT +M ′T )xT = max

xT
x′TwT − x′TATxT .
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Because AT is symmetric, AT is positive definite if its eigenvalues are positive. Lemma A.8 established

that the price impact of i’s trades is given by the sum of ar(1) expressions with with ξ0 > ξ1 > · · · > 0.

Lemma B.1 establishes the positive definiteness of AT by expanding it into the infinite sum of matrices,

each associated with one of the ar(1) expressions, which we show are positive definite. Because the sum of

positive definite matrices is positive definite, it follows that AT is positive definite.

Finally, we must address the fact that in the limit, the final row of the matrix MT , which is multiplied

by βT , converges to zero, so that the strict negative definiteness of −A∞ might fail. We must show that

there is no strategy that can exploit this asymptotic linearity. To drive the quadratic penalty to zero, a

necessity for the arbitrage strategy, the growth of |xit+s| must be bounded below 1/βs so that the shrinkage

of βs dominates it. But the gain from this strategy occurs from the linear term in the objective, and this

is discounted at rate βs. Therefore, the gain from this strategy shrinks to zero, and it must be suboptimal.

Hence, speculator i’s optimal trading strategy in this perfect foresight economy is characterized by the linear

first-order conditions, and quadratic payoffs. Integrating over all possible signal realizations and all possible

noise trades, we find that the expected payoff from the “stochastic component” of the objective is bounded.

It remains to show that the future contribution of the deterministic component of profits given date t

information can be made arbitrarily small. Due to discounting and the autoregressive decay in the contri-

butions of private information to the price process, the future contribution to profits of speculator i’s date

t private information (including information in prices) can be made arbitrarily small by a choice of a future

date t+ s(eit,Ωt, ε), so that for all s > s(eit,Ωt, ε),

βs
[
E[vit+s|eit,Ωit]− E[ξt+s|eit,Ωit]

]
is arbitrarily small.

It follows that the only way to make sufficiently distant future profits non-trivial is to adopt a trading

strategy that induces increasingly large deviations between price and value. However, the structure of pricing

implies that this requires trade sizes to grow at a rate exceeding 1
β , and the quadratic convex structure of

the price impact of trades that we have established then implies that this generates arbitrarily high negative

profits, a contradiction of optimality. 2

Proof: (Proposition 4.5) This follows immediately from Proposition 4.4 and the above lemmas. 2

A.6 Proofs of characterization results

Lemma A.10 The dynamic structure of J is determined entirely by the structure of V and N , and is

independent of σ2
e and σ2

u.

Proof: We make the mapping in (28) dimensionless by dividing by σ2
u/N :

JJ
∗

=
1

V ∗−1((N−1)J(0)J
∗
+1)

V (βρ)−1((N−1)J(0)J(βρ)+1)
+ V −1((N−1)J(0)J+1)

V (βρ)−1((N−1)J(0)J(βρ)+1)

JJ
∗

+ 1,

which is independent of σ2
e and σ2

u. 2

Lemma A.11 J ∝ σu and b ∝ σu
σe

.
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Proof: The result for J follows immediately from inspecting the JJ∗ mapping in (28). The result for b

follows from the identity

bb∗ =
JJ∗ − σ2

u

Nσ2
e

. 2

Proof: (Proposition 4.6) This is a direct result of factoring in the definition of J from JJ∗ in (21) and

finding the partial-fractions representation. 2

Proof: (Proposition 4.7) This follows directly from the equations defining µ and γ. 2

Proof: (Proposition 4.8) Substituting for µ(z) = J−1[J∗−1Nb∗σ2
eV ]+ into the price process, µ(z)J(z)wt,

yields [J∗−1Nb∗σ2
eV ]+. By Lemma A.2 the annihilate of this product of non-analytic functions with the

ar(1) process V (z) is equal to

J−1(βρ)Nb(βρ)σ2
eV (L),

where the constant is J−1(βρ)Nb(βρ)σ2
e , and we recall that wt is a white noise process. 2

Proof: (Propositions 5.1 and 5.2) We proved in Lemma A.11 that J ∝ σu and b ∝ σu
σe

. Hence,

γ(z) ∝ b(0)2

J(0)2
σ2
e ∝

σ2
u

σ2
e

σ2
u

σ2
e ∝ 1.

Therefore, 1 +Nγ ∝ 1. Now recall that

µ(z) = J−1[J∗−1Nb∗σ2
eV ]+ ∝

σ2
e

σ2
u

[b∗V ]+ ∝
σ2
e

σ2
u

σu
σe
V ∝ σe

σu
.

Recall that the pricing filter λ = µ/(1 +Nγ). Therefore, λ ∝ σe
σu
. The result for profit is similar. From the

objective (7), an informed trader’s expected profit is:

π = N(V − µb)γbσ2
e + (V − µb)bσ2

e + µσ2
u.

Using the proportionality results for b, µ, and γ, we have

µb ∝ 1; γbσ2
e ∝ σuσe; bσ2

e ∝ σuσe; µσ2
u ∝ γσe;

and therefore π ∝ σeσu. 2
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B A technical lemma on the positive definiteness of a matrix

Lemma B.1 Let 0 < β < 1, 0 < a < 1, and define a representative term of the sum,

WT ≡
1
2





1 0 0 0 . . . 0

βa β 0 0 . . . 0
...

...

βτaτ βτaτ−1 . . . βτ . . . 0
...

...

βTaT βTaT−1 βTaT−2 . . . . . . βT



+



1 βa . . . βτaτ . . . βTaT

0 β . . . βτaτ−1 . . . βTaT−1

...
...

0 0 . . . βτ . . . βTaT−τ

...
...

0 0 . . . 0 . . . βT




.

Then WT is positive definite.

Proof: Write WT explicitly as

WT =



2 βa β2a2 β3a3 . . . βTaT

βa 2β β2a β3a2 . . . βTaT−1

...
...

βτaτ βtaτ−1 . . . 2βτ . . . βTaτ−T

...
...

βTaT βTaT−1 βTaT−2 . . . . . . 2βT



=


1 0 0 . . . 0

0 β 0 . . . 0
...

...

0 0 0 . . . βT

+



1 βa β2a2 β3a3 . . . βTaT

βa β β2a β3a2 . . . βTaT−1

...
...

βτaτ βtaτ−1 . . . βτ . . . βTat−T

...
...

βTaT βTaT−1 βTaT−2 . . . . . . βT


≡ ∆(β, T ) +BT .

Clearly, ∆(β, T ) is positive definite. We now establish that BT is positive definite. BT is positive definite if

B−1
T is positive definite, and B−1

T is positive definite if its eigenvalues are all strictly positive because B−1
T is
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symmetric. One can verify by direct multiplication that

B−1
T =

1
1− βa2



1 −a 0 0 . . . 0 0 0

−a 1+βa2

β − a
β 0 . . . 0 0 0

0 − a
β

1+βa2

β2 − a
β2 . . . 0 0 0

...
...

0 0 0 0 . . . − a
βT−2

1+βa2

βT−1 − a
βT−1

0 0 0 0 . . . 0 − a
βT−1

1
βT



=
1

1− βa2
∆(β, T )−1



1 −a 0 0 . . . 0 0 0

−βa 1 + βa2 −a 0 . . . 0 0 0

0 −βa 1 + βa2 −a . . . 0 0 0
...

...

0 0 0 0 . . . −βa 1 + βa2 −a
0 0 0 0 . . . 0 −βa 1


≡ 1

1− βa2
∆(β, T )−1B̃−1

T .

The eigenvalues of B−1
T are positive if the eigenvalues of B̃−1

T are positive. The characteristic equation is∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1− λ −a 0 0 . . . 0 0 0

−βa 1 + βa2 − λ −a 0 . . . 0 0 0

0 −βa 1 + βa2 − λ −a . . . 0 0 0
...

...

0 0 0 0 . . . −βa 1 + βa2 − λ −a
0 0 0 0 . . . 0 −βa 1− λ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= 0.

Define the determinant

DT ≡

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



1 + βa2 − λ −a 0 0 . . . 0 0 0

−βa 1 + βa2 − λ −a 0 . . . 0 0 0

0 −βa 1 + βa2 − λ −a . . . 0 0 0
...

...

0 0 0 0 . . . −βa 1 + βa2 − λ −a
0 0 0 0 . . . 0 −βa 1− λ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
.

Then the characteristic equation can be written more succinctly as

(1− λ)DT−1 + a

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣



−βa −a 0 0 . . . 0 0 0

0 1 + βa2 − λ −a 0 . . . 0 0 0

0 −βa 1 + βa2 − λ −a . . . 0 0 0
...

...

0 0 0 0 . . . −a 1 + βa2 − λ −a
0 0 0 0 . . . 0 −βa 1− λ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
= (1− λ)DT−1 − βa2DT−2.
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Thus, the characteristic equation is

(1− λ)DT−1 − βa2DT−2 = 0.

It is also immediate that

Dt = (1 + βa2 − λ)Dt−1 − βa2Dt−2.

This is a second-order linear difference equation. It helps to express it in first-order nonlinear form:

Dt

Dt−1
= (1 + βa2 − λ)− βa2

Dt−1
Dt−2

or

xt = (1 + βa2 − λ)− βa2

xt−1
.

The terminal condition is then
DT−1

DT−2
= xT−1 =

βa2

1− λ
.

and the initial conditions are:

D1 = 1− λ and D2 = (1 + βa2 − λ)(1− λ)− βa2,

so that

x2 =
(1 + βa2 − λ)(1− λ)− βa2

1− λ
.

We now demonstrate that λ cannot be negative. Suppose λ = −b, b > 0. Then

x2 = 1 + βa2 + b− βa2

1 + b
> 1.

Similarly,

xt = 1 + βa2 + b− βa2

xt−1
> 1,

if xt−1 > 1. Therefore, xT−1 > 1. But the terminal condition is then

xT−1 =
βa2

1 + b
< 1,

which contradicts xT−1 > 1 from the previous step. Thus, B̃−1
T is positive definite.

Now observe that the product ∆(β, T )−1B̃−1
T must also be positive definite. This follows because ∆(β, T )

is diagonal. When we compute the tth principle minor of the product ∆(β, T )−1B̃−1
T , the minor is the

determinant of the product ∆(β, t)−1 and the tth principle minor of B̃−1
T , which is guaranteed to be positive

by the above argument. Therefore, the determinant of the product is also positive.

Now we can write

WT = ∆(β, T )(I + (1− βa2)B̃T ).

Because the sum of positive definite matrices is positive definite, this is also positive definite. 2
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