
Logical and complexity-theoretic aspects of models of

computation with restricted access to arrays

Iain A. Stewart

Department of Computer Science, University of Durham,

Science Labs, South Road, Durham DH1 3LE, U.K.

e-mail: i.a.stewart@durham.ac.uk

May 17, 2008

Abstract

We study a class of program schemes, NPSB, in which, aside from basic assignments, non-
deterministic guessing and while loops, we have access to arrays; but where these arrays
are binary write-once in that they are initialized to ‘zero’ and can only ever be set to ‘one’.
We show, amongst other results, that: NPSB can be realized as a vectorized Lindström
logic; there are problems accepted by program schemes of NPSB that are not definable in
the bounded-variable infinitary logic Lω

∞ω; all problems accepted by the program schemes
of NPSB have asymptotic probability 1; and on ordered structures, NPSB captures the
complexity class L

NP. We give equivalences (on the class of all finite structures) of the
complexity-theoretic question ‘Does NP equal PSPACE?’, where the logics and classes of
program schemes involved in the equivalent statements define or accept only problems with
asymptotic probability 0 or 1 and so do not cover many computationally trivial problems.
The class of program schemes NPSB is actually the union of an infinite hierarchy of classes
of program schemes. Finally, when we amend the semantics of our program schemes slightly,
we find that the classes of the resulting hierarchy capture the complexity classes Σp

i (where
i ≥ 2) of the Polynomial Hierarchy PH.

keywords: finite model theory; descriptive complexity; program schemes.

1 Introduction

Finite model theory is essentially the study of logical definability over finite struc-
tures. An important sub-area of finite model theory is the relationship between the
logical definability of classes of finite structures and computational complexity the-
ory; that is, descriptive complexity. This relationship is best exemplified by Fagin’s
seminal result that a problem, i.e., a class of finite structures over the same signa-
ture, can be defined by a sentence of existential second-order logic if, and only if, the
problem (or, to be more precise, an encoding of it) can be accepted by a polynomial-
time non-deterministic Turing machine [14]. Not only does this ‘logical approach’ to
computational complexity benefit from years of research in model theory which have
provided new tools and methods not obviously available if one restricts oneself to the

1

Turing-based world of computation, but it has provoked a reexamination of logical
questions and a development of new tools and methods specifically related to and
designed for finite structures.

Logical characterizations of complexity classes in descriptive complexity tend to
assume that there is an underlying built-in ordering of the data. This ordering is gen-
erally used to simulate (the tape-head movements of) an appropriate Turing machine.
Perhaps the most compelling open problem in descriptive complexity is whether there
exists a logic capturing P on unordered data (that is, on the class of all finite struc-
tures) or whether one must always assume that the data is ordered (as is the case in,
for example, the Immerman-Vardi-Sazonov characterization of P as the class of prob-
lems definable in first-order logic extended with an inflationary fixed-point operator
and with a built-in successor relation [22, 30, 42]).

An advantage of adopting a logical framework for the study of computational com-
plexity is that one can delineate fundamental issues, like whether the data is ordered,
which is extremely difficult in traditional complexity theory where the Turing ma-
chine model, working on strings as it does, insists that the data be ordered. Nowhere
is this delineation more necessary than in database theory where the data indepen-

dence principle means that database query languages can not assume any underlying
ordering of the data. It is probably in the realm of query languages where finite
model theory and database theory interact most. There are numerous paradigms for
the design of database query languages including: logic, where the query languages
are nothing other than logics, often the same logics as studied in finite model the-
ory, such as first-order logic extended with an inflationary [8] or a least fixed-point
[20] operator; programming languages , where there are variables taking relations as
their values, where variables can take values derived from first-order combinations of
existing variables, i.e., relations, and where there is some mechanism for iteration,
such as the while language [8], the while+ language [3] and the languages of [27] ob-
tained by extending first-order logic with for-loops; and logic programming, where
new relation variables are available, where there are rules to change the values of the
new relation variables and where there is an appropriate semantics so as to explain
potential anomalies in the applications of the rules, such as Datalog¬ with stratified
semantics [9], well-founded semantics [18] and inflationary fixed-point semantics [1].
It turns out that many of the resulting query languages are equivalent. For example,
the following query languages are all equivalent (on unordered data): first-order logic
extended with an inflationary or a least fixed-point operator; the while+ programming
language; and Datalog¬ with either well-founded or fixed-point semantics (on ordered
data, these query languages all capture the complexity class P). We refer the reader
to [43] for more on this and for an excellent discussion of the general relationship
between database theory and finite model theory.

Abiteboul and Vianu [4, 5] initiated an attempt to deal with the difficulty, men-
tioned above, that Turing machines work on ordered data and remain the mainstay
of computational complexity theory yet database theory insists that all of its query
languages must necessarily work on unordered data. Their work was subsequently de-
veloped in [6], in collaboration with Vardi, where the relational machine was defined.
A relational machine works directly on an input structure (and not its encoding as a
string) and has both a traditional Turing machine component and a facility to manip-
ulate relations using relational algebra operations. Abiteboul, Vianu and Vardi used

2

their machines to define relational complexity classes and proved that their class Pr ,
namely relational polynomial-time, is nothing other than first-order logic extended
with an inflationary fixed-point operator, and that their class PSPACEr, namely
relational polynomial-space, is nothing other than first-order logic extended with a
partial fixed-point operator (we reiterate that these equivalences are on unordered
data). Moreover, they also showed the remarkable equivalence that Pr = PSPACEr

if, and only if, P = PSPACE.
In recent papers, we have developed new programming languages (for unordered

data) based around the paradigm of a program scheme. Program schemes are more
computational in flavour than are formulae of traditional logics yet they remain
amenable to logical manipulation. The concept of a program scheme originates from
the 1970’s with work of, for example, Constable and Gries, Friedman, and Hewitt
and Paterson [10, 15, 29], and complexity-theoretic considerations of such program
schemes were subsequently studied by, for example, Harel and Peleg, Jones and Much-
nik, and Tiuryn and Urzyczyn [21, 25, 41]. Our analysis of program schemes differs
from what has gone before in that we are always concerned with finite structures
(and not infinite ones as was often the case previously) and we do not assume that
the elements of our finite structures are necessarily linearly ordered. Our program
schemes differ from the programming languages of database theory in that variables
take elements of the input structure as values and not relations. Working with such
a ‘low-level’ computational device allows us to incorporate well-known programming
constructs such as stacks, arrays, queues, non-determinism, while-loops, for-loops,
and so on, in our programming languages. Furthermore, as the computations of our
devices manipulate the values of variables, i.e., elements of the input structure, in a
precise and well-defined way, we have managed to obviate the need to use existing,
more established paradigms; for example, we do not need to have any experience of
bounded-variable logics and their relationship with various pebble games in order to
perform our analysis.

Let us summarize some of the results we have so far established (all results men-
tioned below are on the class of all finite structures, except where explicitly stated
otherwise). In [7], we considered a hierarchy of classes of program schemes, NPSS,
where these program schemes involve assignments, while-loops and non-deterministic
guessing and have access to a stack, and showed that this hierarchy is proper and (the
union of it) has exactly the same expressive power as stratified fixed-point logic and
stratified Datalog (and so on ordered structures captures P). On the class of strongly-
connected locally-ordered digraphs, the class of connected planar embeddings and
the class of triangulations, NPSS still captures exactly the polynomial-time solvable
problems [40]. If we remove access to the stack then the resulting class of program
schemes, NPS, is equivalent to Immerman’s transitive closure logic. In [39], we show
that the class of program schemes NPS augmented with arrays, NPSA, captures the
class of problems defined by the sentences of a logic formed by extending first-order
logic with a particular uniform (or vectorized) sequence of Lindström quantifiers, and
that this logic has a zero-one law. However, we show that there are problems defin-
able in a basic fragment of this logic which are not definable in the bounded-variable
infinitary logic Lω

∞ω. As a consequence, the class of problems (accepted by the pro-
gram schemes of) NPSA is not contained in the class of problems defined by the
sentences of partial fixed-point logic, even though in the presence of a built-in suc-

3

cessor relation, both NPSA and partial fixed-point logic capture the complexity class
PSPACE. In [38], we prove that a basic class of program schemes augmented with
access to a queue, NPSQ(1), is exactly the class of recursively enumerable problems
that are closed under extensions. We define an infinite hierarchy of classes of program
schemes for which NPSQ(1) is the first class and the union of the classes of which
is the class NPSQ. We show that the class of problems NPSQ is the union of the
classes of problems defined by the sentences of all vectorized Lindström logics formed
using operators whose corresponding problems are recursively enumerable and closed
under extensions; as a result, every problem in this class has asymptotic probability
0 or 1. Finally, in [17], we define a (deterministic) class of program schemes RFDPS
constructed around notions of forall-loops, repeat-loops and arrays. We show that the
class of problems RFDPS properly contains the class of problems definable in infla-
tionary fixed-point logic (for example, the well-known problem Parity is in RFDPS)
and that there is a strict, infinite hierarchy of classes of problems within RFDPS (the
union of which is RFDPS) parameterized by the depth of nesting of forall-loops in
our program schemes. Suffice it to say, examining classes of program schemes formed
using well understood programming constructs has resulted in new, natural ‘logics’
that seemingly have hitherto arisen in neither in finite model theory nor database
theory.

In this paper, in an attempt to ‘bridge the gap’ between the polynomial-time
world of NPSS and the polynomial-space world of NPSA, we modify the program
schemes of NPSA so that all arrays are ‘binary write-once’ in the sense that all array
elements are initially set at ‘zero’ and the only modification to any array element
allowed is to set it to ‘one’. The resulting class of program schemes is denoted NPSB,
with the levels of the underlying hierarchy being NPSB(i), for i ≥ 1. We show that
NPSB retains some of the properties of NPSA: like NPSA, NPSB can be realized
as a vectorized Lindström logic, and NPSB(1) contains problems not definable in
Lω
∞ω (every problem accepted by a program scheme of NPSB trivially has asymptotic

probability 0 or 1 as NPSB is a sub-class of NPSA); but whereas both NPSA and
NPSA(1) capture PSPACE on ordered structures, NPSB(1) captures NP and NPSB
captures LNP, with the NPSB hierarchy collapsing to NPSB(3). We compare the
relative expressibilities of the classes of program schemes NPSA(1) and NPSB(1).
We show that NPSA(1) = PSPACE ∩ EXT and NPSB(1) = NP ∩ EXT , where
EXT is the class of problems closed under extensions (and hence every non-trivial
problem in EXT has asymptotic probability 1); thus, the question of whether NP is
equal to PSPACE is equivalent to the question of whether the two classes of program
schemes NPSB(1) and NPSA(1) accept the same class of problems on the class of all
finite structures (of course, NPSB(1) and NPSA(1) also coincide with fragments of
the Lindström logics mentioned above).

Finally, we amend the semantics of the class of program schemes NPSB in that
we allow the current values of arrays to be ‘passed across’ to other program schemes
(appearing as, what amounts to, subroutines in the main program scheme) in a com-
putation (hitherto, the semantics has only allowed the current values of variables to
be passed across). We denote the class of program schemes with this amended seman-
tics as NPSBp (the subscript reflects the polynomially many values passed across to
the component program schemes). We show that on the class of all finite structures,
NPSBp(2i − 1) = NPSBp(2i) and captures Σp

i , i.e., the ith level of the Polynomial

4

Hierarchy PH, for i ≥ 2, and so NPSBp captures PH itself.
This paper is structured as follows. In the next section, we outline the definitions

relating to this paper before we define our classes of program schemes in Section
3. In Section 4, we identify the class of program schemes NPSB with a vectorized
Lindström logic. In Section 5, we consider our program schemes and logics on ordered
structures and compare the relative computational power of the classes of program
schemes NPSB(1) and NPSA(1) (on the class of all finite structures). We amend the
semantics of our program schemes in Section 6 before presenting our conclusions and
directions for further research in Section 7.

2 Preliminaries and program schemes

The main reference texts for the basic concepts, notions and results of finite model
theory are [12, 24, 26] and it is to these books that we refer the reader for such
information. Ordinarily, a signature σ is a tuple 〈R1, . . . , Rr, C1, . . . , Cc〉, where each
Ri is a relation symbol, of arity ai, and each Cj is a constant symbol. First-order logic

over the signature σ, FO(σ), consists of those formulae built from atomic formulae
over σ using ∧, ∨, ¬, ∀ and ∃; and FO = ∪{FO(σ) : σ is some signature}.

A finite structure A over the signature σ, or σ-structure, consists of a finite uni-

verse or domain |A| together with a relation Ri of arity ai, for every relation symbol
Ri of σ, and a constant Cj ∈ |A|, for every constant symbol Cj (by an abuse of
notation, we do not usually distinguish between constants and relations, CA

j and RA
i ,

and constant and relation symbols, Cj and Ri). A finite structure A whose domain
consists of n distinct elements has size n, and we denote the size of A by |A| also
(this does not cause confusion). We only ever consider finite structures of size at least
2, and the set of all finite structures of size at least 2 over the signature σ is denoted
STRUCT(σ). A problem over some signature σ consists of a subset of STRUCT(σ)
that is closed under isomorphism; that is, if A is in the problem then so is every
isomorphic copy of A. Throughout, all our structures are finite.

The class of problems defined by the sentences of FO is denoted by FO also,
and we do likewise for other logics. It is widely acknowledged that, as a means for
defining problems, first-order logic leaves a lot to be desired; especially when we
have in mind developing a relationship between computational complexity and logical
definability. For example, every first-order definable problem can be accepted by a
log-space deterministic Turing machine (where structures are encoded as strings) yet
there are problems in the complexity class L (log-space) which can not be defined in
first-order logic (one such being the problem consisting of all those structures, over
any signature, that have even size). Consequently, a number of methods have been
developed so as to increase definability.

One method is to extend first-order logic using a vectorized sequence of Lindström

quantifiers corresponding to some problem Ω; or, as we prefer, an operator Ω for short.
Suppose that Ω is over the signature σ, where σ = 〈R1, . . . , Rr, C1, . . . , Cc〉, as above.
The logic (±Ω)∗[FO] consists of those formulae built using the usual constructs of
first-order logic and also the operator Ω, where the operator Ω is applied as follows.

• Suppose that ψ1(x1,y), . . . , ψr(xr ,y) are formulae of (±Ω)∗[FO] such that:

– each xi is a kai-tuple of distinct variables, for some fixed k ≥ 1;

5

– y is an m-tuple of distinct variables, for some m ≥ 0, each of which is
different from any variable of x1, . . . ,xr; and

– all free variables of any ψi are contained in either xi or y.

• Suppose that d1, . . . ,dc are k-tuples of variables and constants (which need not
be distinct).

• Then:
Ω[λx1ψ(x1,y), . . . ,xrψr(xr,y)](d1, . . . ,dc)

is a formula of (±Ω)∗[FO] whose free variables are the variables of y together
with any other variables appearing in d1, . . . ,dc.

If Φ is a sentence of the form Ω[λx1ψ1(x1), . . . ,xrψr(xr)](d1, . . . ,dc), as above, over
some signature σ′ then we interpret Φ in a σ′-structure A as follows (note that as Φ
is a sentence, the variables of y are absent and the tuples d1, . . . ,dc, which are only
there if there are constant symbols in σ, consist entirely of constant symbols of σ′).

• The domain of the σ-structure Φ(A) is |A|k.

• The relation Ri of Φ(A) is defined via:

– for any u ∈ |Φ(A)|ai = |A|kai , Ri(u) holds in Φ(A) if, and only if, ψi(u)
holds in A.

• The constant Cj of Φ(A) is defined via:

– Cj is the interpretation of the tuple of constants dj in A.

We define that A |= Φ if, and only if, Φ(A) ∈ Ω (the situation where Φ has free
variables is similar except that Φ is interpreted in expansions of σ′-structures by
an appropriate number of constants). We call logics such as (±Ω)∗[FO] vectorized

Lindström logics . We shall also be interested in fragments of vectorized Lindström
logics where: the formulae are such that the operator Ω does not appear within the
scope of a negation sign, namely Ω∗[FO] (the positive fragment of (±Ω)∗[FO]); and
further the formulae are such that there are no nestings of the operator Ω, namely
Ω1[FO] (the positive unnested fragment of (±Ω)∗[FO]).

It can be the case that (a fragment of) a vectorized Lindström logic (±Ω)∗[FO]
has a very straightforward normal form; a normal form which obviates the need to
nest applications of the operator Ω and which tells us something about the ‘degree of
difficulty’ of the particular problem Ω with respect to the class of problems defined by
the sentences of the logic. For example, suppose that every problem in (a fragment of)
(±Ω)∗[FO] can be defined by a sentence of the form Ω[λx1ψ1(x1), . . . ,xrψr(xr)](d1,

. . . ,dc), as above, except where each ψi is quantifier-free first-order. Then we say that
the problem Ω is complete for (the fragment of) (±Ω)∗[FO] via quantifier-free first-

order translations . This is directly analogous to completeness for some complexity
class via some resource-bounded reduction; in fact, as we shall see, such normal forms
can often yield very strong complexity-theoretic completeness results.

Vectorized Lindström logics have been studied quite extensively in finite model
theory and a whole range of complexity classes have been captured , i.e., characterized,
by vectorized Lindström logics (see, for example, [19, 23, 31, 32] and the references

6

therein). However, some (though not all) of these characterizations only hold in the
presence of a built-in successor relation. Consider some vectorized Lindström logic
(±Ω)∗[FO]. To say that this logic has a built-in successor relation, which we denote
by (±Ω)∗[FOs], means that no matter which signature σ′ we are working over, there is
always a binary relation symbol succ and two constant symbols 0 and max available
(none of which is in σ′) such that succ is always interpreted as a successor relation
with least element 0 and greatest element max in any σ′-structure. That is, for any
σ′-structure of size n, succ is always of the form {(0, u1), (u1, u2), . . . , (un−2,max)},
where the elements of {0, u1, u2, . . . , un−2,max} are distinct. However, there is a
further semantic stipulation on the sentences of (±Ω)∗[FOs]: we only consider as well-
formed those sentences for which the interpretation in any structure is independent
of the particular successor relation chosen. For example, define the problem TC over
the signature σ2++ = 〈E,C,D〉, where E is a binary relation symbol and C and
D are constant symbols, as consisting of all those σ2++-structures for which, when
considered as digraphs in the natural way, there is a directed path from the vertex C to
the vertex D. Then the following sentence is a well-formed sentence of (±TC)∗[FOs]
(as satisfiability in a given structure is invariant with respect to succ):

TC[λ(x1, x2), (y1, y2)(x1 = 0 ∧ y1 = max ∧ succ(x2, y2))

∨(x1 = max ∧ y1 = 0 ∧ succ(x2, y2))](0, 0,max,max),

and it defines the problem over the empty signature consisting of those structures
of even size. (Note that in [12], the mechanism by which a successor relation is
introduced into a logic is slightly different from how we have described here in that
only problems on ordered structures are ever considered: see [12]. Nevertheless, the
two approaches essentially amount to the same thing and we shall refer to the two
mechanisms interchangeably. Note also that other relations can be built into logics
in the same way as is a successor relation; or even just two distinct constants can be
built in.)

From a logical perspective, there is a problem with our built-in successor relation in
the following sense. Given a sentence of first-order logic in which the relation symbol
succ appears (and in which other constant and relation symbols might appear), it
is actually undecidable as to whether the sentence is invariant with respect to succ.
That is, there does not exist an effective enumeration of the well-formed sentences
of FOs. Given this fact, it is highly debatable as to whether any ‘logic’ (±Ω)∗[FOs]
should really be called a logic; and it is an open question currently occupying much
research activity as to whether there actually exists a logic capturing the complexity
class P (polynomial-time), or indeed any complexity class contained in NP (non-
deterministic polynomial-time), where by ‘contained in’ we really mean ‘contained in
but expected to be different from’ (as NP itself can be captured by a logic, one such
being existential second-order logic). The reader is referred to [28] for more details
on this and related points. (Notwithstanding the above discussion, we still refer to
(±Ω)∗[FOs] as a logic on the grounds of convenience.)

Theorem 1, below, is an example of a normal form result. Define the problem
CUB, over the signature σ2 = 〈E〉, where E is a binary relation symbol, as follows.

CUB = {G ∈ STRUCT(σ2) : the graph G has a subset of edges inducing a

regular subgraph of degree 3}

7

(think of a σ2-structure G as encoding an undirected graph via: ‘there is an edge
(u, v) if, and only if, u 6= v and E(u, v) ∨ E(v, u) holds in G’). We shall need the
following result later on.

Theorem 1 [36] The complexity class NP is identical to the class of problems defined

by the sentences of CUB∗[FOs]; and any problem in NP can be defined by a sentence

of CUB1[FOs] of the form:
CUB [λx,yψ(x,y)],

where |x| = |y| = k, for some k ≥ 1, and ψ is a quantifier-free formula of FOs. Hence,

CUB∗[FOs] = CUB1[FOs] = NP and CUB is complete for NP via quantifier-free

first-order translations with successor.

Note that Theorem 1 subsumes the ‘traditional’ known complexity-theoretic result
that CUB is complete for NP via log-space reductions (a result attributed to Chvàtal
in [16]).

3 Program schemes

Program schemes are more ‘computational’ means for defining classes of problems
than are logical formulae. A program scheme ρ ∈ NPSA(1) involves a finite set
{x1, x2, . . . , xk} of variables , for some k ≥ 1, and is over a signature σ. It consists of
a finite sequence of instructions where each instruction, apart from the first and the
last, is one of the following:

• an assignment instruction of the form ‘xi := y’, where i ∈ {1, 2, . . . , k} and
where y is a variable from {x1, x2, . . . , xk}, a constant symbol of σ or one of the
special constant symbols 0 and max which do not appear in any signature;

• an assignment instruction of the form ‘xi := A[y1, y2, . . . , yd]’ or ‘A[y1, y2, . . . ,
yd] := y0’, for some i ∈ {1, 2, . . . , k}, where each yj is a variable from {x1, x2,

. . . , xk}, a constant symbol of σ or one of the special constant symbols 0 and
max which do not appear in any signature, and where A is an array symbol of
dimension d;

• a guess instruction of the form ‘guess xi’, where i ∈ {1, 2, . . . , k}; or

• a while instruction of the form ‘while ϕ do α1;α2; . . . ;αq od’, where ϕ is
a quantifier-free formula of FO(σ ∪ {0,max}) whose free variables are from
{x1, x2, . . . , xk}, and where each of α1, α2, . . . , αq is another instruction of one
of the forms given here (note that there may be nested while instructions).

The first instruction of ρ is ‘input(x1, x2, . . . , xl)’ and the last instruction is ‘output
(x1, x2, . . . , xl)’, for some l where 1 ≤ l ≤ k. The variables x1, x2, . . . , xl are the input-

output variables of ρ, the variables xl+1, xl+2, . . . , xk are the free variables of ρ and,
further, any free variable of ρ never appears on the left-hand side of an assignment
instruction nor in a guess instruction. Essentially, free variables appear in ρ as if they
were constant symbols.

A program scheme ρ ∈ NPSA(1) over σ with t free variables, say, takes a σ-
structure A and t additional values from |A|, one for each free variable of ρ, as input;

8

that is, an expansion A′ of A by adjoining t additional constants. The program
scheme ρ computes on A′ in the obvious way except that:

• execution of the instruction ‘guess xi’ non-deterministically assigns an element
of |A| to the variable xi;

• the constants 0 and max are interpreted as two arbitrary but distinct elements
of |A|; and

• initially, every input-output variable and every array element is assumed to have
the value 0.

Note that throughout a computation of ρ, the value of any free variable does not
change. The expansion A′ of the structure A is accepted by ρ, and we write A′ |=
ρ, if, and only if, there exists a computation of ρ on this expansion such that the
output-instruction is reached with all input-output variables having the value max
(in particular, some computations might not be terminating). We can easily build
the usual ‘if’ and ‘if-then-else’ instructions using while instructions (see, for example,
[33]). Henceforth, we shall assume that these instructions are at our disposal.

We want the sets of structures accepted by our program schemes to be problems,
i.e., closed under isomorphism, and so we only ever consider program schemes ρ where
a structure is accepted by ρ when 0 and max are given two distinct values from the
universe of the structure if, and only if, it is accepted no matter which pair of distinct
values is chosen for 0 and max. This is analogous to how we build two constant
symbols into a logic. Furthermore, we can build a successor relation into the program
schemes of NPSA(1) so as to obtain the class of program schemes NPSAs(1). As with
our logics, we write NPSA(1) and NPSAs(1) to also denote the class of problems
accepted by the program schemes of NPSA(1) and NPSAs(1), respectively (and do
likewise with other classes of program schemes).

We have two remarks. First, our notation NPSA(1) reflects the fact that NPSA(1)
is the first level of an infinite hierarchy of classes of program schemes, as we shall
see presently. Second, as the definition of our class of program schemes NPSA(1)
stands, we do not know whether the program schemes in this class can be recursively
enumerated. However, we are prepared to live with this (possible) inconvenience
for the following reasons. We could amend our definition of a program scheme of
NPSA(1) and dispense with the constant symbols 0 andmax but insist that the syntax
was such that the first instructions are always guess x0; guess xmax; while x0 =
xmax do guess x0 od. Consequently, every program scheme begins by assigning two
distinct values from the domain of the input structure to the variables x0 and xmax.
These values would then be used as the constants 0 and max, and acceptance would
be signalled by any execution reaching the instruction output. With this amended
syntax and definition of acceptance, the class of structures accepted by any program
scheme is trivially closed under isomorphism and the class of program schemes is
recursively enumerable; moreover, all the results in this paper would apply with our
class of program schemes NPSA(1) so defined (as readers can easily verify as they
read through the forthcoming proofs). The essential reason for this is that all our
constructions are such that they never use any ‘semantic’ information relating to 0
and max, just the fact that they are distinct elements of the input structure. We
shall remark upon forthcoming definitions and results in relation to this amended

9

definition of NPSA(1) as we proceed. However, there are four real reasons for having
the constant symbols 0 and max in our program schemes, with all of the reasons more
to do with clarity and pragmatism than anything else. First, we can use 0 to cleanly
initialize all variables and arrays, with the result that we never have to worry about
whether an assignment involves an uninitialized variable or array element. Second,
having two distinct constants around is useful when it comes to programming. Third,
we shall soon use the constant symbol max to enable us to study ‘binary write-once’
arrays (that is, arrays where the elements can only be set to max and thereafter
remain unchanged). Fourth, were we to include a built-in successor relation then
having the constant symbols 0 and max available enables us to do this in a consistent
fashion.

Henceforth, we think of our program schemes as being written in the style of
a computer program. That is, each instruction is written on one line and while
instructions (and, similarly, if and if-then-else instructions) are split so that ‘while
ϕ do’ appears on one line, ‘α1’ appears on the next, ‘α2’ on the next, and so on (of
course, if any αi is a while, if or if-then-else instruction then it is split over a number of
lines in the same way). The instructions are labelled 1, 2, and so on, according to the
line they appear on. In particular, every instruction is considered to be an assignment,
a guess or a test. An instantaneous description (ID) of a program scheme on some
input consists of a value for each variable, the number of the instruction about to be
executed and values for all array elements. A partial ID consists of just a value for
each variable and the number of the instruction about to be executed. One step in a
program scheme computation is the execution of one instruction, which takes one ID
to another, and we say that a program scheme can move from one ID to another if
there exists a sequence of steps taking the former ID to the latter.

As we hinted at above, the class of program schemes NPSA(1) is but the first level
of an infinite hierarchy of program schemes. Suppose that we have defined a class of
program schemes NPSA(2m− 1), for some m ≥ 1, and that any program scheme has
associated with it: a set of input-output variables; a set of free variables; and a set of
bound variables (this is certainly the case when m = 1, where the associated set of
bound variables is empty).

Definition 2 Let the program scheme ρ ∈ NPSA(2m − 1) be over the signature σ.
Suppose that ρ has: input-output variables x1, x2, . . . , xk; free variables xk+1, xk+2,

. . . , xk+s; and bound variables xk+s+1, xk+s+2, . . . , xk+s+t. Let xi1 , xi2 , . . . , xip
be

free variables of ρ, for some p (and so k + 1 ≤ i1 < i2 < . . . < ip ≤ k + s). Then:

∀xi1∀xi2 . . . ∀xip
ρ

is a program scheme of NPSA(2m), which we denote by ρ′, with: no input-output
variables; free variables those of {xk+1, xk+2, . . . , xk+s} \ {xi1 , xi2 , . . . , xip

}; and the
remaining variables of {x1, x2, . . . , xk+s+t} as its bound variables.

A program scheme such as ρ′ takes expansions A′ of σ-structures A by adjoining
s−p constants as input (one for each free variable), and ρ′ accepts such an expansion
A′ if, and only if, for every expansion A′′ of A′ by p additional constants (one for each
variable xij

, for j ∈ {1, 2, . . . , p}), A′′ |= ρ (the computation on such an expansion
A′′ always starts with the arrays initialised to 0).

10

Definition 3 A program scheme ρ′ ∈ NPSA(2m − 1), for some m ≥ 2, over the
signature σ, is defined exactly as is a program scheme of NPSA(1) except that the
test in any while instruction is a program scheme ρ ∈ NPSA(2m − 2). The bound
variables of ρ′ consist of the bound variables of any test in any while instruction; all
free variables in any test in any while instruction are input-output or free variables of
ρ′; and there may be other free and input-output variables (appearing in ρ′ at the ‘top
level’ but not in any test). Of course, any free variable never appears on the left-hand
side of an assignment instruction or in a guess instruction (at the ‘top level’).

Suppose that a program scheme ρ′ ∈ NPSA(2m − 1) has s free variables. Then
it takes an expansion A′ of a σ-structure A by adjoining s constants as input and
computes on A′ in the obvious way; except that when some while instruction is en-
countered, the test, which is a program scheme ρ ∈ NPSA(2m − 2), is evaluated
according to the expansion of A′ by the current values of any relevant input-output
variables of ρ′ (which may be free in ρ). In order to evaluate this test, the arrays
associated with ρ are initialized at 0 and when the test has been evaluated the com-
putation of ρ′ resumes accordingly with the values of its arrays and input-output and
free variables being exactly as they were immediately prior to the test being evalu-
ated. In particular, array values can not be ‘passed across’ in the evaluation of tests:
the values of variables can be but they are never amended in the process.

Consequently, we obtain a hierarchy of classes of problems:

NPSA(1) ⊆ NPSA(2) ⊆ . . . ⊆ ∪{NPSA(i) : i = 1, 2, . . .} = NPSA

(we use the inclusion relation between consecutive classes because this is how they
are related as classes of problems). It is easy to see that, for one thing, FO ⊆ NPSA.

In this paper, we are primarily interested in some sub-classes of program schemes
of NPSA, namely the sub-classes NPSB(i), for i = 1, 2, . . ., and the union of these
classes NPSB, where the only allowed assignment instructions with an array element
on the left-hand side are of the form A[x1, x2, . . . , xk] := max; that is, the only values
array elements can have are 0 and max, and once an array element is set to max then
it remains at max thereafter (the notation reflects the binary nature of these arrays).
Obviously, NPSB(i) ⊆ NPSA(i), for all i = 1, 2, . . .; and NPSB ⊆ NPSA.

Remark 4 We note that were we to define our program schemes of NPSA(1) without
using the constant symbols 0 and max, as hinted at previously, then we could adapt
Definitions 2 and 3 accordingly by never quantifying the variables x0 and xmax. Also,
the program schemes of NPSB would be defined by x0 and xmax replacing 0 and max.

Results concerning the program schemes of NPSA have already been obtained,
and some of these results relevant to this paper are stated below. A problem Ω, over
some signature σ and where the domain of any σ-structure of size n is taken to be
{1, 2, . . . , n}, for which the function f(n), defined as the number of structures in Ω
of size n divided by the number of σ-structures of size n, is such that the limit as n
tends to infinity exists and is r is said to have asymptotic probability r. For us, r will
always be 0 or 1. We say that a logic has a zero-one law if every problem definable
in that logic has asymptotic probability 0 or 1.

Theorem 5 [39]

11

(i) There exists a problem Ωa, involving reachability in Petri nets, for which

NPSA = (±Ωa)∗[FO],

and every problem in NPSA has asymptotic probability 0 or 1.

(ii) There is a quantifier-free first-order translation with 2 constants from any prob-

lem in NPSA(1) to the problem Ωa; and so Ωa is complete for NPSA(1) via

quantifier-free first-order translations with 2 constants.

(iii) The problem CUB is in NPSA(1) but not definable in the logic Lω
∞ω.

(iv) In the presence of a built-in successor relation, the hierarchy NPSAs collapses

to the first level, NPSAs(1), and captures the complexity class PSPACE.

It is worth mentioning the role of the logic Lω
∞ω in finite model theory. This

logic is an important logic for a number of reasons, one of which is that it subsumes
many of the logics from finite model theory (including transitive-closure logic, least
fixed point logic and partial fixed point logic) in that these logics can be realized as
fragments of Lω

∞ω. Furthermore, Lω
∞ω has a zero-one law and so any logic subsumed

by Lω
∞ω has a zero-one law. It is particularly interesting that NPSA(1) (and so also

NPSA) can not be realized as a fragment of Lω
∞ω (as CUB is a problem in NPSA(1)

that is not in Lω
∞ω, a result proven in [37]).

In the absence of arrays, when the resulting class of program schemes is denoted
NPS, and additionally in the presence of a stack, when the resulting class of program
schemes is denoted NPSS, there are results analogous to parts (i), (ii) and (iv)
of Theorem 5 (see [7]) in that: both NPS and NPSS can be realized as vectorized
Lindström logics so that the problems corresponding to the operators involved in these
logics are complete for NPS(1) and NPSS(1) via quantifier-free first-order translations
with 2 constants; and on ordered structures, the complexity classes captured are
NL (non-deterministic log-space) and P, respectively. However, unlike NPSA, both
NPS and NPSS can be realized as fragments of Lω

∞ω. Furthermore, the underlying
hierarchies of NPS and NPSS are proper at every level (even if we restrict to problems
only involving trees) whereas, as we shall affirm later, all that is known as regards
NPSA is that NPSA(1) ⊂ NPSA(2) ⊂ NPSA(3).

4 Partitioned Petri nets

We begin by describing a generalization of the digraph reachability problem to a
scenario where the moves between nodes depend upon the availability and utilization
of external resources. We first describe the basic decision problem in an everyday
fashion before we consider a manifestation of it as a class of structures over a given
signature and see how this problem is related to computation in the program schemes
of NPSB(1).

Consider the following scenario. We are given a directed graph G = (V,E), where
|V | = n, with a source vertex source and a sink vertex sink, but where each edge
is labelled with a (possibly empty) set of labels with each label being of one of the
following forms:

12

• ‘user resource ri is unused’;

• ‘system resource sj is available’;

• ‘user resource ri is unused and this move uses this resource but makes the system
resource sj available (if it wasn’t available previously)’.

There is a polynomial number of different user resources {ri : i = 1, 2, . . . , p(n)},
which are either in the state ‘used’ or the state ‘unused’; and a polynomial number of
system resources {si : i = 1, 2, . . . , q(n)}, which are either in the state ‘available’ or
the state ‘unavailable’ (for some polynomials p and q). A move in the digraph from
vertex u to vertex v via the edge (u, v) can only be made if either no labels label
the edge (u, v) or at least one of the labels labelling the edge (u, v) is satisfied (with
a resulting change in the state of a user resource, and possibly a system resource, if
the label is of the third type). The question we ask is, given the initial state where
all user resources are unused and no system resources are available, is it possible to
move from source to sink in our given environment? That is, can the user use his or
her resources wisely so as to enable a traversal in the digraph from the source to the
sink?

Note that whether a move can be made depends only on certain predicates involv-
ing the states of the resources: for example, there are no moves dependent upon the
state of a user resource being ‘used’ or of a system resource being ‘unavailable’. The
situation is as it is as this decision problem arises naturally from our consideration of
our program schemes; but we comment further on this problem and related problems
in the Conclusion.

We encode the above decision problem as a problem, i.e., class of finite structures,
involving Petri nets. Our encoding is natural and has certain properties which we shall
utilize later. The reader is referred to [13] for the basic notions and concepts relating
to Petri nets (this reference also gives details of numerous complexity-theoretic results
concerning fundamental problems in Petri nets).

Definition 6 Define σb = 〈P,Q, T1, T2, T3, C,D〉 where P , Q, T1, T2 and T3 are
relation symbols of arities 1, 1, 2, 3 and 4, respectively, and C and D are constant
symbols. Let P be a σb-structure. We can think of the elements of |P| as being the
places of a Petri net and the relations P and Q as describing two partitions of these
places. We can think of:

• the relation T1 as describing the set of transitions

{({u}, {v}) : u, v ∈ P and T1(u, v) holds};

• the relation T2 as describing the set of transitions

{({u, i}, {v, i}) : u, v ∈ P, i 6∈ P, i ∈ Q and T2(u, v, i) holds}

∪{({u, j}, {v, j}) : u, v ∈ P, j 6∈ P,Q and T2(u, v, j) holds};

and

• the relation T3 as describing the set of transitions

{({u, i}, {v, j}) : u, v ∈ P, i, j 6∈ P, i ∈ Q, j 6∈ Q and T3(u, v, i, j) holds}.

13

Furthermore, the initial marking of our Petri consists of the place C and the places
not in P but in Q. We define the problem Ωb as

{P ∈ STRUCT(σb) : there is a marking reachable from the initial marking

in which there is at least one token on the place D}.

Note that the transitions encoded within a σb-structure P are of one of four types,
as depicted in Fig. 1, and that the relations T1, T2 and T3 of P might have additional
tuples in them that do not affect how we think of P as a Petri net.

With reference to our decision problem presented earlier, it should be clear that:
the places in P correspond to the vertices V of our digraph G = (V,E), with C

corresponding to the source vertex and D the sink vertex; the places not in P but in
Q correspond to the user resources; and the places not in P and not in Q correspond
to the system resources (henceforth, we shall use this terminology to describe the
places of our Petri net). Additionally, the transitions described by T1 correspond to
edges of E with no labels; the transitions described by T2 yield edges labelled with
labels of the form ‘user resource ri is unused’ and ‘system resource sj is available’;
and the transitions described by T3 yield edges labelled with labels of the form ‘user
resource ri is unused and this move uses this resource but makes the system resource
sj available’. We interpret a user resource as being in the state ‘unused’, if there is a
token on it, and as being in the state ‘used’ otherwise (such places only ever have at
most one token on them). It may be the case, in a reachable marking, that a system
resource has more than one token on it. However, tokens can not be removed from
such places. Thus, it is only ever important as to whether a system resource has no
tokens on it, when we think of it being in the state ‘unavailable’, or at least one token
on it when, we think of it being in the state ‘available’.

P to P

o

n

n t Q

Q

on t P

P to P

o

n

n t Q

Q

on t P

P to P

o

n

n t Q

Q

on t P

P to P

o

n

n t Q

Q

on t P

T1 transitions T3 transitionsT2 transitions

Figure 1. The different types of transitions.

The proof of the following theorem is similar to those in [39] although there are
additional complications caused by only having assignments which set array values to
max.

14

Theorem 7 There is a quantifier-free first-order translation with 2 constants from

any problem in NPSB(1) to the problem Ωb. Hence, Ωb is complete for NPSB(1) via

quantifier-free first-order translations with 2 constants.

Proof Let ρ be a program scheme of NPSB(1) over some signature σ in which if
and if-then-else instructions might occur. W.l.o.g., we may assume that array symbols
only appear in assignment instructions, that there is only one array symbol, B, and
that this array symbol has dimension d ≥ 1. We assume that the variables involved
in ρ are x1, x2, . . . , xk.

Let A be a σ-structure of size n ≥ 2. An element u = (u0, u1, . . . , uk) of
{1, 2, . . . , l} × |A|k encodes a partial ID of ρ on input A via: a computation of ρ
on A is about to execute instruction u0 and the variables x1, x2, . . . , xk currently
have the values u1, u2, . . . , uk, respectively. Henceforth, we identify partial IDs of ρ
and the elements of {1, 2, . . . , l} × |A|k.

We now build a Petri net P , as in Definition 6, using ρ and A. Our Petri net
P has a set of places consisting of the set {1, 2, . . . , l} × |A|k in union with the set
{w0,wm : w ∈ |A|d}. The sets of places P and Q are

P = {1, 2, . . . , l} × |A|k and Q = {w0 : w ∈ |A|d},

respectively. Hence, the user resources are {w0 : w ∈ |A|d} and the system resources
{wm : w ∈ |A|d}. We shall use a token on the user resource (w1, w2, . . . , wd)0 to
signify that the current value of B[w1, w2, . . . , wd] is 0; and a token on the system re-
source (w1, w2, . . . , wd)m to signify that the current value of B[w1, w2, . . . , wd] is max.
Obviously, we have to take care to ensure that a marking does not yield contradictory
interpretations.

Let u ∈ {1, 2, . . . , l} × |A|k.
Suppose that the instruction u0 does not involve the array symbol B and it is

possible for ρ on input A to move from any ID whose partial ID is u to an ID whose
partial ID is v in one step. Then the transition ({u}, {v}) is in T1 (more precisely,
the pair (u,v) is in T1).

Suppose that the instruction u0 is of the form xj := B[xi1 , xi2 , . . . , xid
] and it is

possible for ρ on input A to move from any ID whose partial ID is u to an ID whose
partial ID is v in one step (because the value of B[xi1 , xi2 , . . . , xid

] is such that ρ on in-
put A can move from an ID whose partial ID is u to an ID whose partial ID is v in one
step). Then both of the transitions ({u, (ui1 , ui2 , . . . , uid

)0}, {v, (ui1 , ui2 , . . . , uid
)0})

and ({u, (ui1 , ui2 , . . . , uid
)m}, {v, (ui1 , ui2 , . . . , uid

)m}) are in T2 (of course, in the for-
mer transition, vj is 0, and in the latter vj is max, with ui = vi, for all i = 1, 2, . . . , k
different from j).

Suppose that the instruction u0 is of the form B[xi1 , xi2 , . . . , xid
] := max and it is

possible for ρ on input A to move from an ID whose partial ID is u to an ID whose par-
tial ID is v in one step. Then the transition ({u, (ui1 , ui2 , . . . , uid

)m}, {v, (ui1 , ui2 , . . . ,

uid
)m}) is in T2 and the transition ({u, (ui1 , ui2 , . . . , uid

)0}, {v, (ui1 , ui2 , . . . , uid
)m})

is in T3 (of course, in both transitions ui = vi, for i = 1, 2, . . . , k).
Our initial marking of P is such that there is one token on each place of {w0 :

w ∈ |A|d} and one token on the place (1,0) ∈ {1, 2, . . . , l} × |A|k, which we define to
be C; and we define D as the place (l,max) ∈ {1, 2, . . . , l} × |A|k.

It is not difficult to see that our Petri net P (that is, our σb-structure P) can be
described in terms of the σ-structure A using quantifier-free first-order formulae (in

15

which 0 and max appear: explicit descriptions of structures by quantifier-free first-
order formulae are given in, for example, [34]). Consequently, in order for the result to
follow we need to show that: A |= ρ if, and only if, P ∈ Ωb; and that Ωb ∈ NPSB(1).

Suppose that A |= ρ. Then there is a sequence π of (full, not partial) IDs starting
at the initial ID (where all variables have the value 0, where the instruction to be
executed is instruction 1 and where the array B has the value 0 throughout) and
ending in a final ID (where all variables have the value max and where the instruction
to be executed is instruction l) such that ρ moves from one ID in π to the next in one
step. As hinted earlier, we can mirror any ID with a set of markings of our Petri net
P as follows. If the ID consists of the partial ID u ∈ {1, 2, . . . , l}× |A|k together with
some valuation on the array B then the place u is marked with one token as are the
places of {w0 : w ∈ |A|d, B[w] = 0}, and the places of {wm : w ∈ |A|d, B[w] = max}
are marked with at least one token. This accounts for all tokens. Note that the initial
ID of ρ corresponds to the initial marking of P . A simple analysis yields that if ρ
on input A moves from one ID to another in one step then the Petri net can fire
a transition to move from the marking corresponding to the first ID to a marking
corresponding to the subsequent ID; and conversely (as remarked earlier, as regards
the system resources, it does not matter how many tokens reside on them but only
whether or not at least one token resides). Hence, A |= ρ if, and only if, P ∈ Ωb.

All that remains is to show that Ωb ∈ NPSB(1). There are two essential difficulties
in deriving a program scheme to accept Ωb. First, a σb-structure P might be such
that a reachable marking involves more than one token on some system resource; and
we need to cater for this event when we simulate a sequence of transitions in P by
an execution of a program scheme on input P . Second, we need to keep track of
where tokens are in a way which avoids us modelling the fact that a token is on a
place simply by using an array indexed by the place names; for we are not allowed
to register that a token has moved from a place by assigning some array element the
value 0 (recall, the only assignment instruction allowed on an array element is to set
that element to max).

Our Petri net P is such that initially there is one token, call it t, on the place C
of P and there is one token on every user resource (we assume that the place C is
indeed in P : otherwise, our program scheme simply rejects the input P). No other
tokens are involved in the initial marking. Also, transitions are such that we can
imagine the token t as being moved from place to place amongst the places of P , and
we can imagine every other token either staying where it is, after some transition, or
being moved from user resource to a system resource, and then staying where it is
thereafter.

As regards our first difficulty, we do not need to actually monitor how many tokens
lie on any system resource but only whether there is at least one token such a place.
This obviates the need to count tokens. As regards our second difficulty, in order to
decide whether (at least) one token lies on some system resource s, we use a dedicated
array B1, of dimension 1, so that whenever a token is placed on such a s then B1[s]
is set at max: once B1[s] has been set to max we know that there will be a token
on s thereafter. In order to decide whether a token lies on some user resource r, we
use an array B2, of dimension 1, to register when the token originally on the place
r is first moved from r by setting B2[r] equal to max at this point. Consequently, if
we wish to know whether there is a token on such a place r, we test to see whether

16

B2[r] = 0 holds. Finally, we model the movement of the solitary token t by using a
dedicated variable, x say: that is, the token t is on place p if, and only if, x has the
value p. Given the above discussion, it is straightforward to see that the problem Ωb

can be accepted by a program scheme of NPSB(1), and so the result follows.

In essence, Theorem 7 tells us that any problem accepted by a program scheme of
NPSB(1) can be described by a sentence of the form

Ωb[λxψP (x),xψQ(x),x,yψ1(x,y),x,y, zψ2(x,y, z),

x,y, z,wψ3(x,y, z,w)](u,v),

where: |x| = |y| = |z| = |w| = k, for some k ≥ 1, and all variables are distinct; ψP ,
ψQ, ψ1, ψ2 and ψ3 are quantifier-free first-order formulae over σb ∪ {0,max}; and
u and v are k-tuples of constant symbols (in fact, we can actually take u to be 0
repeated k times and v to be max repeated k times: moreover, the sentence is such
that whether it is true in some given structure is independent of the distinct values
chosen for 0 and max).

Similarly to as in [39], Theorem 7 allows us to relate the class of problems accepted
by the program schemes of NPSB with the class of problems defined by the sentences of
the logic (±Ωb)

∗[FO]. For each m ≥ 1, we define the fragment ±Ωb(m) of (±Ωb)
∗[FO]

as follows.

• ±Ωb(1) consists of all formulae of the form

Ωb[λxψP ,xψQ,x,yψ1,x,y, zψ2,x,y, z,wψ3](u,v),

where: ψP , ψQ, ψ1, ψ2 and ψ3 are quantifier-free first-order formulae over
σb ∪{0,max}; u and v are k-tuples of constant symbols or variables; there may
be other free variables; and the truth of any interpretation of the formula (over
a relevant structure and with values given for any free variables) is independent
of the pair of distinct values chosen for 0 and max.

• ±Ωb(m+1), for odd m ≥ 1, consists of the universal closure of ±Ωb(m); that is,
the set of formulae of the form ∀z1∀z2 . . .∀zkψ, where ψ is a formula of ±Ωb(m).

• ±Ωb(m+ 1), for even m ≥ 2, consists of the set of formulae of the form

Ωb[λx(ψ1
P ∨ ¬ψ2

P),x(ψ1
Q ∨ ¬ψ2

Q),x,y(ψ1
1 ∨ ¬ψ2

1),x,y, z(ψ1
2 ∨ ¬ψ2

2),

x,y, z,w(ψ1
3 ∨ ¬ψ2

3)](u,v),

where: ψ1
P , ψ2

P , ψ1
Q, ψ2

Q, ψ1
1 , ψ

2
1 , ψ1

2 , ψ2
2 , ψ

1
3 and ψ2

3 are formulae of ±Ωb(m);
u and v are tuples of constant symbols or variables; there may be other free
variables; and the truth of any interpretation of the formula (over a relevant
structure and with values given for any free variables) is independent of the
pair of distinct values chosen for 0 and max.

As in [36], a straightforward induction yields that:

• for every odd m ≥ 1, every formula in the closure of ±Ωb(m) under ∧, ∨ and ∃
is logically equivalent to a formula of ±Ωb(m); and

17

• for every even m ≥ 1, every formula in the closure of ±Ωb(m) under ∧, ∨ and
∀ is logically equivalent to a formula of ±Ωb(m).

Consequently, (±Ωb)
∗[FO] = ∪{Ωb(m) : m ≥ 1}.

Corollary 8 In the presence of 2 built-in constant symbols, ±Ωb(m) = NPSB(m),
for each m ≥ 1; and so (±Ωb)

∗[FO] = NPSB.

Proof We proceed by induction on m almost identically to the proof of Corollary
10 from [39]. The base case, when m = 1, follows by Theorem 7.

Note that (±Ωb)
∗[FO] = NPSB even in the absence of our 2 built-in constant

symbols as we can ‘build them ourselves’ using existential quantification.
We end this section by showing that NPSB can not be realized as a fragment of

Lω
∞ω (unlike NPS and NPSS).

Lemma 9 The problem CUB can be accepted by a program scheme of NPSB(1).

Proof It was shown in [39] that CUB is in NPSA(1): however, the program scheme
used there to accept CUB is not in NPSB(1). Nevertheless, the basic approach can
be amended to yield a program scheme of NPSB(1).

Let G be a σ2-structure. We begin by ‘guessing’ a set of distinct edges in the
graph G. We use two 3-dimensional array symbols, B1 and B2, to store these guessed
edges. In particular, if our first guessed edge is (u1, v1), having checked that (u1, v1)
is indeed an edge of G, we set B1[0, 0, u1] = max and B2[0, 0, v1] = max. Next,
we guess an edge (u2, v2), check to see whether this edge is indeed an edge of G
and then check to see whether this edge is different from (u1, v1). If so then we set
B1[u1, v1, u2] = max and B2[u1, v1, v2] = max: otherwise, we set B1[u1, v1,max] =
max and B2[u1, v1,max] = max and stop guessing. We continue in this fashion until
the guessing stage stops whence we have a list of distinct edges of G.

Finally, we check to see whether the guessed set of edges induces a regular subgraph
of G of degree 3. It is clear that this whole process can be implemented by a program
scheme of NPSB(1): hence, the result follows.

The facts that the problem CUB can not be defined in Lω
∞ω (see [37]) and that non-

recursive problems can be defined in Lω
∞ω (see [12]) immediately yield the following

result.

Corollary 10 There are problems definable in NPSB(1) (and so NPSB) which are

not definable in Lω
∞ω; and there are problems definable in Lω

∞ω which are not definable

in NPSB.

Let us remark that Lemma 9 is subsumed by a later result; nevertheless, we include
it here in order to show that NPSB(1) can not be regarded as a fragment of Lω

∞ω

(which is our concern at the moment).

18

5 Ordered structures

Given our characterization of the class of problems accepted by the program schemes
of NPSB, we now consider the class of problems accepted by these program schemes
when we restrict ourselves to ordered structures.

Using Theorem 1, we can easily modify the program scheme implicit in the proof
of Lemma 9 so that, in the presence of a built-in successor relation, it accepts any
given problem in NP. Conversely, any problem in NPSBs(1) is in NP. Theorem 7
then yields the following result.

Corollary 11 As classes of problems, NP = NPSBs(1); and Ωb is complete for NP

via quantifier-free first-order translations with successor.

By Corollary 8, NPSBs = (±Ωb)
∗[FOs]; and by Corollary 5.5 of [32] and Corol-

lary 11, (±Ωb)
∗[FOs] = (±HP)∗[FOs], where HP is the problem over the signature

σ2++ consisting of all those σ2++-structures A which, when considered as digraphs
with edge relation EA and two given vertices CA and DA, are such that there
is a Hamiltonian path from CA to DA. Furthermore, by Corollary 3.2.2 of [35],
(±HP)∗[FOs] = LNP (the class or problems accepted by a log-space deterministic or-
acle Turing machine with access to an NP oracle), and every problem in (±HP)∗[FOs]
can be defined by a sentence of the form:

∃z1∃z2 . . .∃zm(HP[λx,yψ(x,y, z)](0,max) ∧ ¬HP[λx,yϕ(x,y, z)](0,max)),

where: x and y are k-tuples of variables, for some k; ψ and ϕ are quantifier-free first-
order formulae (with successor); and 0 (resp. max) is the constant symbol 0 (resp.
max) repeated k times. Hence, translating this normal form into a program scheme
yields that any problem in NPSBs can actually be accepted by a program scheme of
NPSBs(3). Furthermore, any problem accepted by a program scheme ∀z1∀z2 . . . ∀zmρ

of NPSBs(2) can be accepted by a program scheme of NPSBs(1): we simply replace
the universal quantification by code within a program scheme of NPSBs(1) which
uses a while instruction and the successor relation to check whether a structure is
accepted by ρ for every valuation of the free variables z1, z2, . . . , zm. Hence, we have
the following result.

Theorem 12 NPSBs(1) = NPSBs(2) = NP and NPSBs(3) = NPSBs = LNP.

We now turn to the relative computational capabilities of the classes of program
schemes NPSB(1) and NPSA(1) on the class of all finite structures (we have more to
say about comparing the classes NPSB and NPSA in the Conclusion).

The following definitions are essential to what follows. Let σ be some signature
and let A and B be σ-structures. If |A| ⊆ |B| and:

• for every relation symbol R of σ, RA is RB restricted to |A|; and

• for every constant symbol C of σ, CA = CB,

then we say that A is a sub-structure of B and write A ⊆ B. If the problem Ω over σ
is such that for all σ-structures A and B for which A ⊆ B, it is necessarily the case
that A ∈ Ω implies B ∈ Ω, then we say that Ω is closed under extensions . Let EXT
be the class of all problems that are closed under extensions.

19

Lemma 13 Every problem in NPSA(1) is closed under extensions.

Proof Let Ω be a problem over the signature σ accepted by the program scheme ρ
of NPSA(1). Let A and B be σ-structures such that A ⊆ B, and suppose that A |= ρ.
Consider the program scheme ρ on input B where 0 and max are chosen to be distinct
elements of |A|. By ‘mirroring’ an accepting computation of ρ on input A, with the
chosen 0 and max, we obtain an accepting computation of ρ on input B (the fact that
all tests in while, if and if-then-else instructions are quantifier-free first-order enables
us to do this). Hence, B ∈ Ω.

Theorem 14 PSPACE ∩ EXT = NPSA(1) and NP ∩ EXT = NPSB(1).

Proof Let Ω be some problem in PSPACE∩EXT . By [33], there exists a program
scheme ρ ∈ NPSAs(1) accepting Ω. Modify ρ to obtain the program scheme ρ′ ∈
NPSA(1) as follows. In ρ′, begin by guessing a successor relation; that is, when A is
some input structure, guess elements u1, u2, . . . , um ∈ |A| so that

M [0] = u1,M [u1] = u2, . . . ,M [um] = max,

where M is a new one-dimensional array symbol and where the elements of {0, u1, u2,

. . . , um,max} are distinct (this latter condition can be checked as we guess). Replace
any atomic relation of the form succ(x, y) in ρ with the formula y = M [x], and replace
any instruction of the form guess x with the following fragment of code:

guess x

goodx := 0
ok := 0
while ok = 0 do

if (x = goodx ∨ goodx = max) then

ok := max

else

goodx := M [goodx]
fi

od

if x 6= goodx then ‘loop forever’ fi

(where goodx and ok are new variables). Note that this fragment of code essentially
limits our guesses to elements appearing in the domain of our guessed successor rela-
tion. We need to show that acceptance by the program scheme ρ′ is invariant with
respect to 0 and max and that it accepts the problem Ω.

Suppose that A ∈ Ω. Then A is accepted by ρ no matter which successor relation
is chosen for succ in ρ. Choose distinct 0′ and max′ in |A| and a successor relation
succ′ on |A| (with minimal and maximal elements the chosen elements 0′ and max′).
In particular, ρ accepts A with these constants and this successor relation. Consider
a computation of ρ′ on input A where the guessed successor relation is succ′. Then
there exists a computation of ρ′ mirroring any accepting computation of ρ on input
A with this particular successor relation. That is, A is accepted by ρ′ and acceptance
does not depend upon the chosen constants 0 and max.

Conversely, suppose that there is a guessed successor relation, call it succ′ (whose
domain need not be all of |A|), with minimal and maximal elements 0′ and max′,

20

yielding an accepting computation of ρ′ on input A. Let B ⊆ |A| be the domain of
this successor relation and let B be the restriction of A to B. Then B is accepted
by ρ when the successor relation is taken as succ′ (note that the domain of succ′

is the whole of |B|). Hence, B ∈ Ω. However, Ω is closed under extensions and so
A ∈ Ω. But we have seen from above that if A ∈ Ω then A is accepted by ρ′ and
acceptance does not depend upon the chosen constants 0 and max. Thus, acceptance
by ρ′ is invariant with respect to 0 and max; and PSPACE∩EXT ⊆ NPSA(1). The
fact that every problem in NPSA(1) can be solved by a polynomial-space algorithm
is straight-forward; and every problem in NPSA(1) is closed under extensions by
Lemma 13.

Now consider a problem Ω ∈ NP ∩ EXT accepted by the program scheme ρ ∈
NPSBs(1). We proceed as above, and define a program scheme ρ′ ∈ NPSB(1), except
with the following amendment. In NPSB(1), we are only allowed assignments to array
elements of the form M [x1, x2, . . . , xk] := max and so we need some way of encoding
our guessed successor relation. We encode our relation as:

M [0, u1] = max,M [u1, u2] = max, . . . ,M [um,max] = max,

whereM is a new array symbol of dimension 2. Of course, we ensure that the elements
of {0, u1, u2, . . . , um,max} are distinct as we guess. Note that we need to remember
the previously guessed element, ui, so that we know to set M [ui, ui+1] equal to max.
We also need to modify our code so that an atomic relation of the form succ(x, y) is
replaced by the formula M [x, y] = max. Arguing as above yields the result.

Note that the construction used in the proofs of Lemma 9 and Theorem 14 (right at
the end) can easily be generalized to show that the ‘logic’ formed by allowing any pro-
gram scheme ρ of NPSB(1) to be prefixed with a sequence of existentially-quantified
relation symbols (where these relation symbols do not appear in the underlying sig-
nature of the problem in hand but do appear in the program scheme ρ) captures the
class of problems NPSB(1). To see this, we simply ‘guess’ relations for these quan-
tified relation symbols and ‘string’ each relation together using an appropriate array
in the style of a linked list. Should we need to check whether some tuple of values is
in the relation in some computation of the program scheme then we work down the
linked list looking for this tuple. Consequently, we have the following result, which
gives some idea as to the power of NPSB(1).

Corollary 15 NPSB(1) is closed under existential quantification.

One view of Theorem 14 is that it provides syntactic characterizations (via the
the classes of program schemes NPSA(1) and NPSB(1)) of semantically defined com-
plexity classes (namely, PSPACE ∩ EXT and NP ∩ EXT). Actually, we make this
remark modulo our earlier discussion where we mention that we can indeed obtain a
true ‘syntactic’ characterization by working with variables x0 and xmax rather than
using built-in constant symbols 0 and max.

Corollary 16 NP = PSPACE if, and only if, NPSA(1) = NPSB(1).

Proof If NP = PSPACE then NP∩EXT = PSPACE∩EXT ; and so NPSA(1) =
NPSB(1) by Theorem 14. Conversely, if NPSA(1) = NPSB(1) then NPSAs(1) =
NPSBs(1); and so NP = PSPACE by [33] and Corollary 11.

21

Corollary 16 relates an open complexity-theoretic question with a question in-
volving two classes of problems, each problem of which has asymptotic probability
1. This result could easily have been obtained simply by observing that there are
PSPACE-complete that are closed under extensions. Nevertheless, we include it here
to emphasise the relationship between standard complexity classes and our classes of
program schemes.

Corollary 16 can be extended slightly in that we can obtain some additional equiv-
alences involving fragments of certain vectorized Lindström logics. Referring back to
Theorem 5, the problem mentioned in that theorem is actually defined as follows.

Definition 17 Let the signature σa = 〈T1, T3,M,C〉, where M is a unary relation
symbol, T1 is a binary relation symbol, T3 is a relation symbol of arity 4 and C is a
constant symbol. We can envisage a σa-structure A as a Petri net whose places are
given by |A| and whose transitions are given by T1 and T2 via:

• there is a transition ({x}, {y}) whose input place is {x} and whose output place
is {y} if, and only if, T1(x, y) holds; and

• there is a transition ({x1, x2}, {y1, y2}) whose input places are {x1, x2} and
whose output places are {y1, y2} if, and only if, T3(x1, x2, y1, y2) holds, where
x1 6= x2 and y1 6= y2.

The relation M can be seen as providing an initial marking (with one token on place p
if, and only if, M(p) holds) and the constant C as providing a final marking (consisting
of one token on the place C).

A σa-structure A, i.e., a Petri net, complete with inital and final markings, where
every transition has either 2 input places and 2 output places or 1 input place and 1
output place, is in the problem Ωa if, and only if, there is a marking covering the final
marking that is reachable from the initial marking, i.e., there is a reachable marking
in which there is at least one token on the place C.

Corollary 18 The following are equivalent.

(a) NP = PSPACE.

(b) NPSB(1) = NPSA(1).

(c) Ω1
b [FO] = Ω1

a[FO].

(d) The problems Ωb and Ωa are equivalent via quantifier-free first-order translations

with 2 constants.

Proof Corollary 16 implies (a) ⇔ (b). Theorems 5 and 7 imply (b) ⇔ (d). It is
trivially the case that (c) ⇒ (a) and that (d) ⇒ (c).

We end by returning to an earlier remark concerning the NPSB hierarchy on the
class of all finite structures. We include the following result here as we can utilize
results of this section, and this result also applies to the NPSA hierarchy.

Proposition 19 On the class of all finite structures,

NPSB(1) ⊂ NPSB(2) ⊂ NPSB(3).

22

Proof By Lemma 13, every problem in NPSB(1) is closed under extensions; and so,
trivially, NPSB(1) ⊂ NPSB(2).

Consider the following first-order sentence over the signature σ2 = 〈E,C〉, where
E is a binary relation symbol and C is a constant symbol:

∃x(E(C, x) ∧ ∃y(E(x, y) ∧ ∀z(E(x, z) ⇒ z = y))).

There is clearly a program scheme of NPSB(3) accepting the problem Ω defined by this
sentence. For any k ≥ 1, consider the digraphs, Ak and Bk, depicted in Fig. 2 (note
that Bk only differs from Ak by having an extra vertex and edge). No matter what
the value of k, Ak ∈ Ω but Bk 6∈ Ω. We shall show that for any program scheme ρ of
NPSB(2), there exists some k such that Ak |= ρ implies that Bk |= ρ. This will yield
our result.

...

C

k copies

A
k

...

C

k copies

B
k

Figure 2. The digraphs Ak and Bk.

Let ρ be a program scheme of NPSB(2) of the form ∀xk∀x2 . . . ∀xkρ
′, for some

program scheme ρ′ of NPSB(1), and let B̃k be an extension of Bk by k constants
(one for each variable xi). There is an extension of Ak, denote it Ãk, such that Ãk is
embeddable into B̃k via a one-to-one mapping: call the mapping π. Suppose that there
is an accepting computation of ρ′ on input Ãk. We can ‘mirror’ this computation by a
computation of ρ′ on B̃k by making guesses according to the mapping π (after having
chosen our constants 0 and max, again according to π). The two computations of ρ′,
on Ãk and B̃k, proceed in tandem (in that their flows of control are identical) and
because the computation of ρ′ on Ãk leads to acceptance, so must the computation
of ρ′ on B̃k (recall, any tests are quantifier-free first-order and so only ever refer to
the current values of variables). Our result follows.

We add that the proof of Proposition 19 suffices to show that, on the class of all
finite structures, NPSA(1) ⊂ NPSA(2) ⊂ NPSA(3).

6 Amended semantics

Finally, let us amend our semantics of the program schemes of NPSB. When we defined
the semantics of a program scheme ρ of NSPB(2i + 1), for some i > 0, we insisted
that when a test in some if-then-else or while instruction is evaluated (recall, such a
test is a program scheme of NSPB(2i)), the only values used in this evaluation are the
current values of the variables of ρ. In particular, all arrays involved in the evaluation

23

are initialized to 0 prior to the evaluation. Suppose that we now insist that arrays
used in the evaluation are initialized to their current values prior to the evaluation.
Consequently, not only can we pass the current values of the variables across to an
evaluation, we can pass the current values of the arrays across too (or course, when
the program scheme ρ resumes after evaluation of the test, the values of the arrays are
what they were prior to the evaluation of the test). We denote the program schemes
of NPSB with this semantics as NPSBp to reflect the fact that a polynomial number
of values is passed across in an evaluation (rather than just a constant number in the
standard semantics). Allowing a polynomial number of values to be passed across to
an evaluation drastically changes the expressibility of the resulting class of program
schemes (modulo the usual complexity-theoretic qualifications). The complexity class
PH is the Polynomial Hierarchy; that is, PH = ∪∞

i=1Σ
p
i , where Σp

1 = NP and where,

for each i ≥ 2, Σp
i = NPΣ

p

i−1 (the class of problems accepted by a polynomial-time
non-deterministic oracle Turing machine with access to a Σp

i−1 oracle).

Theorem 20 NPSBp(1) = NPSB(1), NPSBp(2) = NPSB(2) and for every i ≥ 2,
NPSBp(2i− 1) = NPSBp(2i) = Σp

i . Consequently, NPSBp = PH.

Proof Similarly to the proof (elucidated immediately prior to Theorem 12) that
NPSBs(1) = NPSBs(2), so we can show that NPSBp(2i − 1) = NPSBp(2i), for all
i ≥ 2. Obviously, NPSBp(1) = NPSB(1) and NPSBp(2) = NPSB(2) (as our original
semantics and our amended semantics do not differ in these cases).

We now show how to build our own successor relation using a program scheme of
NPSBp(3). Essentially, we guess a successor relation and store it in the array S, of
dimension 2, via the following code:

x := 0

while x 6= max do

guess y

if x 6= y then

S[x, y] := max

x := y

fi

od

Then we check, using an if-then-else instruction with the test a program scheme of
NPSBp(2), that every value appears in the guessed relation S and that no value
appears more than once. Consequently, by Corollary 11, any problem in NP can be
accepted by some program scheme of NPSBp(3).

Not withstanding the above remark, we would like to explicitly simulate a non-
deterministic polynomial-time Turing machine computation using a program scheme
of NPSBp(3). We can use arrays to store the work-tape of any such Turing machine
and our successor relation, held in S, to mirror the movement of the tape heads. Our
only restriction to this simulation is that we can only set array values at max: we
can not reset them to 0. Hence, the obvious means of simulation is doomed to failure
given that, in general, the contents of a cell of a Turing machine work-tape fluctuate
and that if we simulate a cell of the work tape using a fixed number of array elements
then we can only register a constant number of changes to the cell contents. However,

24

we can get round this difficulty by using the fact that any (accepting) computation of
our Turing machine has length polynomial in the size of the input structure: hence,
we can use an array to store the complete history of changes to the contents of a
Turing machine work-tape cell as follows.

For simplicity, assume that we wish to hold the contents of n Turing machine
work-tape cells (where the input structure has size n) using some arrays and that
these contents are only ever 0 or 1. Furthermore, assume that the time taken by our
Turing machine to accept (if it does) is n. The general case where a cell can contain
more symbols, where there is a polynomial number of work-tape cells to deal with and
where the Turing machine accepts in a polynomial number of steps can be handled
similarly by increasing the dimensions of our arrays. Let A and B be array symbols
of dimension 2. Using our successor relation (constructed earlier), we use the array
cells A[u, 1], A[u, 2], . . . , A[u, n] (we think of the elements of our input structure as
being named {1, 2, . . . , n} with the names reflecting our successor relation) to register
the first change of the contents of the work-tape cell u, the second change of the
work-tape cell u, the third change of the work-tape cell u, and so on; and the array
cells B[u, 1], B[u, 2], . . . , B[u, n] to register the value of work-tape cell u after the first
change, the value of work-tape cell u after the second change, the value of work-tape
cell u after the third change, and so on.

If A[u, i] = max then this is interpreted as meaning that there have been at least
i changes of contents; and if B[u, i] = 0 (resp. B[u, i] = max) then this is interpreted
as meaning that after the ith change, the contents of work-tape cell u is 0 (resp. 1).
Note that when the work-tape cell u changes from 1 to 0, on the ith change, say, in
order to register this change we need only set A[u, i] = max and leave B[u, i] alone
(as it has been initialized to 0). Furthermore, with this representation, and using
our successor relation, we can easily determine the current contents of any work-tape
cell: we simply cycle down the array A to find the last change of contents and then
ascertain the current contents using B. Thus, it should be clear how we can explicitly
simulate our Turing machine computation using a program scheme of NPSBp(3).

Now, consider a polynomial-time non-deterministic oracle Turing machine M con-
sulting an NP oracle. By Corollary 11, and using an array to hold the contents of
the oracle tape, we can simulate an oracle call of M by an if-then-else instruction
where the test is a program scheme of NPSBp(2) (exactly because we are allowed, in
our modified semantics, to pass the values of arrays over to the evaluation of a test).
Hence, we have essentially proven that any problem in NPNP can be accepted by a
program scheme of NPSBp(3). Conversely, it is straightforward to see that any prob-
lem accepted by a program scheme of NPSBp(3) can be accepted by a polynomial-time
non-deterministic oracle Turing machine with an oracle in NP (the only point worthy
of note in this regard is that we must ensure that the contents of all arrays in the
program scheme are written on the simulating Turing machine’s oracle tape). Hence,
NPSBp(3) = NPNP.

The general result now follows by a simple induction: for example, any polynomial-
time non-deterministic oracle Turing machine consulting an oracle in NPNP can be
explicitly simulated; and by above the oracle calls can be simulated by if-then-else
instructions where the tests are program schemes from NPSBp(4).

25

7 Conclusions

In this paper, we have examined the computational capabilities of different classes of
program schemes, based around ‘binary write-once arrays’, on the class of finite struc-
tures, the class of ordered finite structures and with respect to different semantics.
We now discuss some potential directions for future research.

Perhaps the most obvious unanswered question is as regards the NPSB hierarchy:
‘Is it the case that, like the NPS and NPSS hierarchies, the NPSB hierarchy is proper
at every level?’ (the same question can be asked for the NPSA hierarchy). So far,
we have not been able to answer this question (beyond Proposition 19). The main
reason for the lack of progress is that whereas in [7] we were able to ‘re-use’ domain
elements so as to ‘mirror’ computations of program scheme of NPS and NPSS (in
the style of the proof of Proposition 19), the existence of arrays means that we can
‘remember the values already used’ in a computation and consequently it is not clear
that domain elements can be re-used in a suitably anonymous fashion (the reader is
referred to [7], and the proofs therein, in order to make more sense of this remark).
The fact that working with program schemes of NPSB takes us outside the ‘bounded-
variable world’ of the logic Lω

∞ω (see Corollary 10), whereas this is not the case with
the program schemes of NPS and NPSS, is particularly intriguing in this respect.

In relation to the above comments (and as suggested by an anonymous referee),
it would be interesting to further examine the relationship between the classes of
program schemes in this paper and (fragments of) the more standard logics from
finite model theory and descriptive complexity, such as bounded-variable infinitary
logic and second-order logic. For example, how does the class of existential second-
order formulae in which the first-order matrix is purely existential compare with the
class of program schemes NPSB(1)? Also, can we translate program schemes into
restricted infinitary formulae (not necessarily involving a finite number of variables)
and apply known results concerning such formulae with certain quantifier alternations
to obtain proper hierarchies of program schemes?

The results in Section 6, relating the computational capabilities of the classes of
program schemes NPSB(1) and NPSA(1), are in the style of Abiteboul and Vianu
[2, 4], Abiteboul, Vianu and Vardi [6] and Dawar [11]. However, we would prefer
to have determined similar results but regarding the classes NPSB and NPSA (or,
equivalently, the logics (±Ωb)

∗[FO] and (±Ωa)∗[FO]). So far, we have been unable to
extend the results of Section 6 to these classes of programs schemes. There are some
very straightforward implications to be made however. For instance (on the class of
all finite structures):

• by Corollary 18, if NP = PSPACE then NPSB = NPSA (and, equivalently,
(±Ωb)

∗[FO] = (±Ωa)∗[FO]);

• by Theorems 5 and 12, if NPSB = NPSA (or, equivalently, (±Ωb)
∗[FO] =

(±Ωa)∗[FO]) then LNP = PSPACE; and

• by Theorems 5 and 12, if Ω∗
b [FO] = Ω∗

a[FO] then NP = PSPACE (as any
problem in Ω∗

b [FO] can easily be seen to be in NP).

We would like to be able to equate the questions: ‘Is LNP equal to PSPACE?’, ‘Is
NPSB equal to NPSA?’ and ‘Is (±Ωb)

∗[FO] equal to (±Ωa)∗[FO]?’; as well as the

26

questions: ‘Is NP equal to PSPACE?’ and ‘Is Ω∗
b [FO] equal to Ω∗

a[FO]?’. As yet, we
have been unable to do so.

Finally, let us return to the decision problem described at the beginning of Section
4 involving the traversal of a digraph subject to the utilization of user and system
resources. We feel that this problem, and its variations, are very relevant in the
study of the complexity of agent-based systems . Essentially, an agent-based system is
an environment within which an agent must successfully accomplish a task. Agents
interact with the environment by performing actions and these actions can result in a
change of state of the environment. Our resource-dependent digraph traversal problem
can easily be viewed as an agent-based system, and we intend to investigate exactly
how the study of program schemes and logics can impact upon that of agent-based
systems in a future paper.

Acknowledgement We are very grateful to the insightful comments of a referee
which significantly improved the clarity and rigour of this paper.

References

[1] S. Abiteboul and V. Vianu, Procedural and declarative database update lan-
guages, Proc. of ACM Symp. on Principles of Database Systems, ACM Press
(1988) 240–250.

[2] S. Abiteboul and V. Vianu, Fixpoint extensions of first-order logic and Datalog-
like languages, Proc. of 4th Ann. IEEE Symp. on Logic in Computer Science,
IEEE Press (1989) 71–79.

[3] S. Abiteboul and V. Vianu, Procedural languages for database queries and up-
dates, Journal of Computer and System Sciences 41 (1990) 181–229.

[4] S. Abiteboul and V. Vianu, Generic computation and its complexity, Proceedings

of the 23rd Ann. ACM Symp. on Theory of Computing, ACM Press (1991) 209–
219.

[5] S. Abiteboul and V. Vianu, Computing with first-order logic, Journal of Com-

puter and System Sciences 50 (1995) 309–335.

[6] S. Abiteboul, M.Y. Vardi and V. Vianu, Fixpoint logics, relational machines and
computational complexity, Journal of the Association for Computing Machinery

44 (1997) 30–56.

[7] A.A. Arratia-Quesada, S.R. Chauhan and I.A. Stewart, Hierarchies in classes of
program schemes, Journal of Logic and Computation 9 (1999) 915–957.

[8] A.K. Chandra and D. Harel, Structure and complexity of relational queries, Jour-

nal of Computer and System Sciences 25 (1982) 99–128.

[9] A.K. Chandra and D. Harel, Horn clause queries and generalizations, Journal of

Logic Programming 2 (1985) 1–15.

[10] R. Constable and D. Gries, On classes of program schemata, SIAM Journal of

Computing 1 (1972) 66–118.

27

[11] A. Dawar, A restricted second-order logic for finite structures, Information and

Computation 143 (1998) 154–174.

[12] H.D. Ebbinghaus and J. Flum, Finite Model Theory, Springer-Verlag (1995).

[13] J. Esparza and M. Nielsen, Decidability issues for Petri nets – a survey, Journal

of Information Processing and Cybernetics 30 (1994) 143–160.

[14] R. Fagin, Generalized first-order spectra and polynomial-time recognizable sets,
in: Complexity of Computation (ed. R.M. Karp), SIAM-AMS Proceedings 7

(1974) 43–73.

[15] H. Friedman, Algorithmic procedures, generalized Turing algorithms and ele-
mentary recursion theory, in: Logic Colloquium 1969 (ed. R.O. Gandy, C.M.E.
Yates), North-Holland (1971) 361–390.

[16] M. Garey and D.S. Johnson, Computers and Intractability: A Guide to the The-

ory of NP-Completeness , Freeman (1979).

[17] R.L. Gault and I.A. Stewart, An infinite hierarchy in a class of polynomial-time
program schemes, Theory of Computing Systems 39 (2006) 753–783.

[18] A. van Gelder, K.A. Ross and J.S. Schlipf, The well-founded semantics for general
logic programs, Proc. of ACM Symp. on Principles of Database Systems, ACM
Press (1988) 221–230.

[19] G. Gottlob, Relativized logspace and generalized quantifiers over finite ordered
structures, Journal of Symbolic Logic 62 (1997) 545–574.

[20] Y. Gurevich and S. Shelah, Fixed-point extensions of first-order logic, Annals of

Pure and Applied Logic 32 (1986) 265–280.

[21] D. Harel and D. Peleg, On static logics, dynamic logics, and complexity classes,
Information and Control 60 (1984) 86–102.

[22] N. Immerman, Relational queries computable in polynomial time, Information

and control 69 (1986) 86–104.

[23] N. Immerman, Languages that capture complexity classes, SIAM Journal of

Computing 16 (1987) 760–778.

[24] N. Immerman, Descriptive Complexity, Springer-Verlag (1998).

[25] N.D. Jones and S.S. Muchnik, Even simple programs are hard to analyze, Journal

of Association for Computing Machinery 24 (1977) 338–350.

[26] L. Libkin, Elements of Finite Model Theory, Springer-Verlag, Berlin (2004).

[27] F. Neven, M. Otto, J. Tyszkiewicz and J. van den Bussche, Adding for-loops to
first-order logic, Information and Computation 168 (2001) 156–186.

[28] M. Otto, Bounded Variable Logics and Counting, Lecture Notes in Logic Volume

9, Springer-Verlag (1997).

28

[29] M. Paterson and N. Hewitt, Comparative schematology, Record of Project MAC

Conf. on Concurrent Systems and Parallel Computation, ACM Press (1970) 119–
128.

[30] V. Sazonov, Polynomial computability and recursivity in finite domains, Elek-

tronische Informationsverarbeitung und Kybernetik 60 (1980) 319–323.

[31] I.A. Stewart, Complete problems involving boolean labelled structures and pro-
jection translations, Journal of Logic and Computation 1 (1991) 861–882.

[32] I.A. Stewart, Using the Hamiltonian path operator to capture NP, Journal of

Computer and System Sciences 45 (1992) 127–151.

[33] I.A. Stewart, Logical and schematic characterization of complexity classes, Acta

Informatica 30 (1993) 61–87.

[34] I.A. Stewart, Methods for proving completeness via logical translations, Theo-

retical Computer Science 118 (1993) 193–229.

[35] I.A. Stewart, Logical characterizations of bounded query classes II: polynomial-
time oracle machines, Fundamenta Informaticae 18 (1993) 93–105.

[36] I.A. Stewart, Complete problems for monotone NP, Theoretical Computer Sci-

ence 145 (1995) 147–157.

[37] I.A. Stewart, Logics with zero-one laws that are not fragments of bounded-
variable infinitary logic, Mathematical Logic Quarterly 41 (1997) 158–178.

[38] I.A. Stewart, Program schemes, queues, the recursive spectrum and zero-one
laws, Proc. of 7th Ann. Int. Computing and Combinatorics Conference (ed. J.
Wang), Lecture Notes in Computer Science Vol. 2108, Springer-Verlag, Berlin
(2001) 39–48.

[39] I.A. Stewart, Program schemes, arrays, Lindström quantifiers and zero-one laws,
Theoretical Computer Science 275 (2002) 283–310.

[40] I.A. Stewart, Using program schemes to logically capture polynomial-time on cer-
tain classes of structures, London Mathematical Society Journal of Computation

and Mathematics 6 (2003) 40–67.

[41] J. Tiuryn and P. Urzyczyn, Some relationships between logics of programs and
complexity theory, Theoretical Computer Science 60 (1988) 83–108.

[42] M. Vardi, The complexity of relational query languages, Proc. of 14th Ann. ACM

Symp.on Theory of Computing, ACM Press (1982) 137–146.

[43] V. Vianu, Databases and finite-model theory, in Descriptive Complexity and

Finite Models (ed. N. Immerman and P. Kolaitis), DIMACS Series in Discrete
Mathematics and Theoretical Computer Science Vol. 31, American Mathematical
Society (1996), 97–148.

29

